
Multi-party Updatable Delegated
Private Set Intersection

Aydin Abadi†1 Changyu Dong‡2 Steven J. Murdoch§1 Sotirios Terzis¶3

1 University College London
2 Newcastle University

3 University of Strathclyde

Abstract. With the growth of cloud computing, the need arises for Pri-
vate Set Intersection protocols (PSI) that can let parties outsource the
storage of their private sets and securely delegate PSI computation to
a cloud server. The existing delegated PSIs have two major limitations;
namely, they cannot support (1) efficient updates on outsourced sets and
(2) efficient PSI among multiple clients. This paper presents “Feather”,
the first lightweight delegated PSI that addresses both limitations simul-
taneously. It lets clients independently prepare and upload their private
sets to the cloud once, then delegate the computation an unlimited num-
ber of times. We implemented Feather and compared its costs with the
state of the art delegated PSIs. The evaluation shows that Feather is more
efficient computationally, in both update and PSI computation phases.

1 Introduction

Private Set Intersection (PSI) is an interesting protocol that lets parties com-
pute the intersection of their private sets without revealing anything about the
sets beyond the intersection [24]. PSI has various applications. For instance, it
has been used in COVID-19 contact tracing schemes [22], remote diagnostics
[18], and Apple’s child safety solution to combat “Child Sexual Abuse Material”
(CSAM) [13]. PSI has been considered by the “Financial Action Task Force”
(FATF) as one of the vital tools for enabling collaborative analytics between fi-
nancial institutions to strengthen “Anti-Money Laundering” (AML) and “Coun-
tering the Financing of Terrorism” (CFT) compliance [23].

Traditionally, PSIs have been designed for the setting where parties locally
maintain their sets and jointly compute the sets’ intersection. Recently, it has
been a significant interest in the delegated PSIs that let parties outsource the
storage of their sets to cloud computing which later can compute the intersection
without being able to learn the sets and their intersection. One of the reasons
for this trend is that the cloud is becoming mainstream among individuals,
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businesses, and financial institutes. For instance, IDC’s 2020 survey suggests that
the banking industry is not only adopting but also accelerating the adoption of
the cloud, based on its benefits proven in the market [45]. The cloud can serve
as a hub that allows for large-scale storage and data analysis by pooling clients’
data together, without the need for them to locally maintain the data, which lets
them discover new knowledge that could provide fresh insights to their business.

However, there are two major limitations to the existing delegated PSIs;
namely, they cannot efficiently support (1) updates on outsourced private sets,
and (2) PSI among multiple clients. Particularly, they have been designed for
static sets and do not let parties efficiently update their outsourced sets. For
application areas involving large private sets frequently updated, like fintech
(e.g., stock market trend analysis [47]), e-commerce (e.g., consumer behaviour
prediction [48]), or e-health (e.g., cancer research on genomic datasets [10]), the
cost of securely updating outsourced sets using these schemes is prohibitive; in
particular, it is linear with the entire set’s size, O(c). Another limitation is that
they cannot scale to multiple clients without sacrificing security or efficiency.
Specifically, in the most efficient delegate PSI in [1], the cloud has to perform a
high number of random polynomials’ evaluations which leads to a performance
bottleneck, when the number of clients is high. A PSI that supports more than
two parties creates opportunities for much richer analytics than what is possible
with two-party PSIs. For example, it can benefit (i) companies that wish to
jointly launch an ad campaign and identify the target audience, (ii) multiple
ISPs which have private audit logs and want to identify network attacks’ sources,
or (iii) the aforementioned Apple’s solution in which different CSAM datasets
are provided by distinct child safety organizations [8].

Our Contributions. In this paper, we:

• present Feather, the first multi-party delegated PSI that lets a client effi-
ciently update its outsourced set by accessing only a tiny fraction of this set.
The update in Feather imposes O(d2) computation cost, where d is a hash
table’s bin size, i.e., d = 100.
• implement Feather and make its source code public, in [2].
• perform a rigorous cost analysis of Feather. The analysis shows that (a) up-

dates on a set of 220 elements are over 1000 times, and (b) PSI’s computations
are over 2 times faster than the fastest delegated PSI. Moreover, during the
PSI computation when two clients participate, Feather’s cloud-side runtime
is over 26 times faster than the cloud’s runtime in the fastest delegated PSI
and this gap would grow when the number of clients increases. In Feather,
it only takes 4.7 seconds to run PSI with 1000 clients, where each client has
211 elements.

Feather offers other features too; for instance, the cloud learns nothing about
the sets and their intersection, each client can independently prepare its set, and
can delegate the PSI computation an unlimited number of times. We define and
prove Feather’s security in the simulation-based paradigm.



2 Related Work

Since their introduction in [24], various PSIs have been designed. PSIs can be
broadly divided into traditional and delegated ones. In traditional PSIs data
owners interactively compute the result using their local data. So far, the pro-
tocol of Kolesnikov et al. in [39] is the fastest two-party PSI secure against a
semi-honest/passive adversary. It relies on symmetric key operations and has a
computation complexity linear with the set size, i.e., O(c), where c is a set size.
Recently, Pinkas et al. in [43] proposed an efficient PSI that is secure against a
stronger (i.e., active) adversary, and has O(c log c) computation complexity. Re-
cently, researchers propose two threshold PSIs in [13] that let the Apple server
learn the intersection of CSAM and a user’s set only if the intersection cardinal-
ity exceeds a threshold. These two PSIs involve O(c) asymmetric key operations.
Also, there have been efforts to improve the communication cost in PSIs, through
homomorphic encryption and polynomial representation [9,17,20,27]. Recently,
a new PSI has been proposed that achieves a better balance between commu-
nication and computation costs [19]. Also, researchers designed PSIs that let
multiple (i.e., more than two) parties efficiently compute the intersection. The
multi-party PSIs in [31,40] are secure against passive adversaries while those
in [11,26,50] were designed to remain secure against active ones. To date, the
protocols in [40] and [26] are the most efficient multi-party PSIs designed to
be secure against passive and active adversaries respectively. The computation
complexities of [40] and [26] are O(cξ2 + cξ) and O(cξ) respectively, where ξ is
the number of clients. However, Abadi et al. [4] showed that the latter is suscep-
tible to several attacks. The former uses inexpensive symmetric key primitives
and performs well with a small number of clients, i.e., up to 15. But, as we will
discuss, it imposes high costs when the number of clients is high.

Delegated PSIs use cloud computing for computation and/or storage, while
preserving the privacy of the computation inputs and outputs from the cloud.
They can be divided further into protocols that support one-off and repeated
delegation of PSI computation. The former like [33,36,51] cannot reuse their
outsourced encrypted data and require clients to re-encode their data locally
for each computation. The most efficient such protocol is [33], which has been
designed for the two-party setting and its computation complexity is O(c). In
contrast, the latter (i.e., repeated PSI delegation ones) let clients outsource the
storage of their encrypted data to the cloud only once, and then with the data
owners’ consent run any number of computations.

Looking more closely at the repeated PSI delegation protocols, the ones in
[41,44,52] are not secure, as illustrated in [1,5]. In contrast, the PSIs in [1,5,6,49]
are secure. Those in [5,6,49] involve O(c) asymmetric key operations. In these
schemes, the entire set is represented as a polynomial outsourced to the cloud.
The protocol in [1] is more efficient than the ones in [5,6,49] and involves only
O(c) symmetric key operations. It uses a hash table to improve the performance.
However, all these four protocols have been designed for the two-party setting
and only support static datasets. Even though the authors in [1,5,6] explain how
their two-party protocols can be modified to support multi-party, the extensions



are computationally expensive; they also (a) impose a bottleneck to the cloud,
and (b) do not provide any empirical evaluation for their modified protocols. In
these PSIs, for parties to update their sets and avoid serious data leakage, they
need to locally re-encode their entire outsourced set that incurs high costs.

3 Preliminaries

In this section, we outline the primitives used in this paper. We present a notation
table in Appendix A.

3.1 Pseudorandom Functions and Permutation

Informally, a pseudorandom function is a deterministic function that takes a
key of length Λ and an input; and outputs a value indistinguishable from that
of a truly random function. In this paper, we use two pseudorandom functions:
PRF : {0, 1}Λ×{0, 1}∗ → Fp and PRF′ : {0, 1}Λ×{0, 1}∗ → {0, 1}Ψ , where |p| = Ω
and Λ, Ψ,Ω are the security parameters. In practice, a pseudorandom function
can be obtained from an efficient block cipher [35].

A pseudorandom permutation, π(k, #»v ), is a deterministic function that per-
mutes the elements of a vector, #»v , pseudorandomly using a secret key k. In
practice, Fisher-Yates shuffle algorithm [38] can permute a vector of m elements
in time O(m). Formal definitions of pseudorandom function and permutation
can be found in [35].

3.2 Hash Tables

A hash table is an array of bins each of which can hold a set of elements. It is
accompanied with a hash function. To insert an element, we first compute the
element’s hash, and then store the element in the bin whose index is the element’s
hash. In this paper, we set the table’s parameters appropriately to ensure the
number of elements in each bin does not exceed a predefined capacity. Given the
maximum number of elements c and the bin’s maximum size d, we can determine
the number of bins, h, by analysing hash tables under the balls into the bins
model [12]. In Appendix B, we explain how the hash table parameters are set.

3.3 Horner’s Method

Horner’s method [21] is an efficient way of evaluating polynomials at a given
point, e.g., x0. In particular, given a degree-n polynomial of the form: τ(x) =
a0 + a1x + a2x

2 + ... + anx
n and a point: x0, one can efficiently evaluate the

polynomial at the point iteratively from inside-out, in the following fashion:

τ(x0) = a0 + x0(a1 + x0(a2 + ...+ x0(an−1 + x0an)...)))

Evaluating a degree-n polynomial naively requires n additions and (n2+n)
2

multiplications, whereas using Horner’s method the evaluation requires only n
additions and n multiplications. We use this method throughout the paper.



3.4 Bloom Filter

A Bloom filter [14] is a compact data structure that allows us to efficiently check
an element membership. It is an array of m bits (initially all set to zero), that
represents n elements. It is accompanied with k independent hash functions. To
insert an element, all the hash values of the element are computed and their
corresponding bits in the filter are set to 1. To check an element membership, all
its hash values are re-computed and checked whether all are set to 1 in the filter.
If all the corresponding bits are 1, then the element is probably in the filter;
otherwise, it is not. In Bloom filters it is possible that an element is not in the
set, but the membership query indicates it is, i.e., false positives. In this work,
we ensure the false positive probability is negligible, e.g., 2−40. In Appendix C,
we explain how the Bloom filter parameters can be set.

3.5 Representing Sets by Polynomials

Freedman et al. in [24] put forth the idea of using a polynomial to represent a
set elements. In this representation, set elements S = {s1, ..., sd} are defined over

a field, Fp, and set S is represented as a polynomial of form: ρ(x) =
d∏
i=1

(x− si),

where ρ(x) ∈ Fp[X] and Fp[X] is a polynomial ring. Often a polynomial of degree
d is represented in the “coefficient form” as: ρ(x) = a0 + a1 · x + ... + ad · xd.
As shown in [37], for two sets S(A) and S(B) represented by polynomials ρ(A)

and ρ(B) respectively, their product, i.e., polynomial ρ(A) ·ρ(B), represents the set
union, while their greatest common divisor, i.e., gcd(ρ(A), ρ(B)), represents the
set intersection. For two degree-d polynomials ρ(A) and ρ(B), and two degree-d
random polynomials γ(A) and γ(B), it is proven in [37] that:

θ = γ(A) · ρ(A) + γ(B) · ρ(B) = µ · gcd(ρ(A), ρ(B)), (1)

where µ is a uniformly random polynomial, and polynomial θ contains only
information about the elements in S(A)∩S(B), and contains no information about
other elements in S(A) or S(B). To find the intersection, one extracts θ’s roots,
which contain the roots of (i) random polynomial µ and (ii) the polynomial that
represents the intersection, i.e., gcd(ρ(A), ρ(B)). To distinguish errors (i.e., roots
of µ) from the intersection, PSIs in [1,5,37] use a padding technique. In this
technique, every element ui in the set universe U , becomes si = ui||G(ui), where
G is a cryptographic hash function with sufficiently large output size. Given a
field’s arbitrary element, s ∈ Fp, and G’s output size, we can parse s into a and

b, such that s = a||b and |b| = |G(.)|. Then, we check b
?
= G(a). If b = G(a), then

s is an element of the intersection; otherwise, it is not.
Polynomials can also be represented in the “point-value form”. Specifically,

a polynomial p(x) of degree d can be represented as a set of m (m > d) point-
value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct non-zero points
and yi = ρ(xi) for all i, 1 ≤ i ≤ m. Polynomials in point-value form have been
used previously in PSIs [1,27]. A polynomial in this form can be converted into



coefficient form via polynomial interpolation, e.g., via Lagrange interpolation [7].
Usually, PSIs that rely on this representation assume that all xi are picked from
F \ U . Also, one can add or multiply two polynomials, in point-value form, by
adding or multiplying their corresponding y-coordinates.

4 Feather: Multi-party Updatable Delegated PSI

In this section, we first outline Feather’s model, followed by an overview of its
three protocols: setup, update, and PSI computation. Then, we elaborate on
each protocol.

4.1 An Overview of Feather’s Definition

Similar to most PSIs, we consider the semi-honest adversaries; similar to the
PSIs in [1,6,32], we assume that the adversaries do not collude with the cloud.
However, all but one clients are allowed to collude with each other. Similar to
the security model of searchable encryption [29,34], in our security model we let
some information, i.e., the query and access patterns, be leaked to the cloud to
achieve efficiency. Informally, we say the protocol is secure as long as the cloud
does not learn anything about the computation inputs and outputs beyond the
allowed leakage and clients do not learn anything beyond the intersection about
the other clients’ set elements. We formalise Feather’s security in the simulation-
based paradigm. We require the clients’ and cloud’s view during the execution
of the protocol can be simulated given their input and output (as well as the
leakage). We refer readers to Appendix D for a formal definition.

4.2 An Overview of Feather’s Protocols

At a high level, Feather works as follows. In the setup, the cloud publishes a set
of public parameters. Any time a client wants to outsource the storage of its set,
it uses the parameters to create a hash table. It inserts its set’s elements to the
hash table’s bins, encodes the bins’ content such that the encoded bins leak no
information. Next, it assigns random-looking metadata to each bin, and shuffles
the bins and the metadata. It sends the shuffled hash table and metadata to the
cloud. When the client wants to insert/delete an element to/from its outsourced
set, it figures out to which bin the element belongs and asks the cloud to send
only that bin to it. Then, the client locally updates that bin’s content, encodes
the updated bin, and sends it to the cloud. In the PSI computation phase, the
result recipient client, i.e., client B, interacts with other clients’ to have their
permission. Those clients that want to participate in the PSI computation send
a set of messages to the cloud and client B. Using the clients’ messages, the
cloud connects the clients’ permuted bins with each other and then obliviously
computes the sets intersection. It sends the result to client B which, with the
assistance of other clients’ messages, extracts the result. Figure 1 in Appendix
E depicts the parties’ interaction in Feather.



In Feather, we use various techniques to attain scalability and efficiency. For
instance, by analysing the most efficient delegated PSI in [1], we identified a per-
formance bottleneck that prevents this PSI to scale in the multi-party setting.
Specifically, we observed that in this scheme, the cloud has to perform a high
number of random polynomials’ evaluations on the clients’ behalf. To avoid this
bottleneck, in Feather, each client locally evaluates its random polynomials and
sends the result to the cloud, yielding a significant performance improvement on
the cloud side. To attain efficiency, we (i) substitute previous schemes’ padding
technique with an efficient error detecting mechanism, (ii) use an efficient poly-
nomial evaluation (i.e., Horner’s) method, and (iii) utilise a novel combination
of permuted hash tables, permutation mapping, labels, and resettable counters.

4.3 Feather Setup

In this section, we first explain the efficient error detecting technique and then
present Feather’s setup protocol.

An Efficient Error Detecting Technique. As we described in section 3.5,
often in the PSIs that use the polynomial representation, during the setup, each
set element is padded (with some values). This lets the result recipient distinguish
actual set elements from errors. A closer look reveals that the minimum bit-size
of the padding is t+ ε (due to the union bound), where 2t is the total number of
roots and 2−ε is the maximum probability that at least one invalid root has a set
element structure, e.g., ε ≥ 40. So, this padding scheme increases element size,
and requires a larger field. This has a considerable effect on the performance
of (all arithmetic operations in the field and) polynomial factorisation whose
complexity is bounded by (i) the polynomial’s degree and (ii) the logarithm
of the number of elements in the field, i.e., O(na log2 2|p|) or O(na|p|), where
1 < a ≤ 2, n is polynomial’s degree and |p| is the field bit size [25].

We observed that to improve efficiency, the padding scheme can be replaced
by Bloom filters. The idea is that each client generates a Bloom filter which
encodes all its set elements, blinds, and then sends the blinded Bloom filter (BB)
along with other data to the cloud. For PSI computation, the result recipient gets
the result along with its own BB. After it extracts the result, i.e., polynomials’
roots, it checks if the roots are already in the Bloom filter and only accepts
those in it. The use of BB reduces an element size and requires a smaller field
which improves the performance of all arithmetic operations in the field. Here,
we highlight only the improvement during the factorisation, as it dominates the
protocol’s cost. After the modification, the factorisation complexity is reduced
from O(na(|p|+t+ε)) to O(na|p|). For instance, for e elements, e ∈ [210, 220], and
the error probability 2−40, we get a factor of 1.5-2.5 lower runtime, when |p| ∈
[40, 100]. In general, this improvement is at least a factor of 2, when |p| ≤ t+ ε.
The smaller element and field size reduces the communication and cloud-side
storage costs too.



Feather Setup Protocol. Now, we present the setup protocol in Feather.
Briefly, first the cloud generates and publishes a set of public parameters. Then,
each client builds a hash table using these parameters. It maps its set elements
into the hash table’s bins and represents each bin’s elements as a blinded polyno-
mial. It assigns a Bloom filter to each bin such that a bin’s Bloom filter encodes
that bin’s set elements. Next, it blinds each filter and assigns a unique label
to each bin. It pseudorandomly permutes the (i) bins (containing the blinded
polynomials), (ii) blinded Bloom filters, and (iii) labels. It sends the permuted:
bins, blinded Bloom filters, and labels to the cloud. It can delete its local set at
this point. Below, we present the setup protocol.

Cloud Setup: Sets c as an upper bound of sets’ size and sets a hash table
parameters, i.e., table’s length: h, hash function: H, and bin’s capacity: d. It
picks pseudorandom functions PRF (used to generate labels and masking) and
PRF′ (used to mask Bloom filters), and a pseudorandom permutation, π. It picks
a vector #»x = [x1, .., xn] of n = 2d + 1 distinct non-zero values. It publishes the
parameters.
Client Setup: Let client I ∈ {A1, ...Aξ, B} have set: S(I), |S(I)| < c. Client I:

1. Gen. a hash table and Bloom filters: Builds a hash table HT(I) and inserts
its elements into it, i.e., ∀s(I)i ∈ S(I): H(s(I)i ) = j, then s(I)i → HT

(I)
j . If needed,

it pads every bin to d elements (using dummy values). Then, for every j-th

bin, it generates a polynomial representing the bin’s elements:
d∏
l=1

(x − e(I)l ),

and evaluates each polynomial at every element xi ∈ #»x , where e(I)l is either
a set element or a dummy value. This yields a vector of n y-coordinates:

y(I)
j,i =

d∏
l=1

(xi − e(I)l ), for that bin. It allocates a Bloom filter: B(I)
j to bin HT

(I)
j ,

and inserts only the set elements of the bin in the filter.
2. Blind Bloom filters: Blinds every Bloom filter, by picking a secret key: bk(I),

extracting h pseudorandom values and using each value to blind each Bloom
filter; i.e., ∀j, 1 ≤ j ≤ h : BB(I)

j = B
(I)
j ⊕ PRF′(bk(I), j), where ⊕ denotes XOR.

Thus, a vector of blinded Bloom filters is computed:
# »
BB(I) = [BB(I)

1 , ..., BB
(I)

h ].
3. Blind bins: To blind every y(I)

j,i, it assigns a key to each bin by picking a
master secret key k(I), and generating h pseudorandom keys: ∀j, 1 ≤ j ≤ h:
k(I)
j = PRF(k(I), j). Next, it uses each k(I)

j to generate n pseudorandom values
z(I)
j,i = PRF(k(I)

j , i). Then, for each bin, it computes n blinded y-coordinates
as follows: ∀i, 1 ≤ i ≤ n : o(I)

j,i = y(I)
j,i + z(I)

j,i. Thus, d elements in each HT
(I)
j are

represented as #»o (I)
j : [o(I)

j,1, ..., o
(I)
j,n].

4. Gen. labels: Assigns a pseudorandom label to each bin, by picking a fresh
key: lk(I) and then computing h values, i.e., ∀j, 1 ≤ j ≤ h : l(I)j = PRF(lk(I), j).

5. Shuffle: Pseudorandomly permutes the labeled hash table. To do that, it

picks a fresh key, pk(I), and then calls π as follows:
#»

ô (I) = π(pk(I), #»o (I)),
#»

l̂ (I) =

π(pk(I),
#»

l (I)), where #»o (I) = [ #»o (I)
1 , ...,

#»o (I)

h ] and
#»

l (I) contains the labels gener-

ated in step 4. Also, it pseudorandomly permutes
# »
BB(I) as:

# »

B̂B(I) = π(pk(I),
# »
BB(I)).

6. Gen. resettable counters: Builds and maintains a vector: #»c (I) of counters c(I)i
initially zero, where each counter c(I)i keeps track of the number of times a



bin HT
(I)
i in the outsourced hash table is retrieved by the client for an update.

They will let the client efficiently regenerate the most recent blinding factors.

Outsourcing: every client I sends the permuted labeled hash table: (
#»

ô (I),
#»

l̂ (I))

along with the permuted blinded Bloom filters:
# »

B̂B(I) to the cloud.

4.4 Feather Update Protocol

In this section, we present the update protocol in Feather. Briefly, for client I to
insert/delete an element, s(I), to/from its outsourced set, it asks the cloud to send
to it a bin and that bin’s blinded Bloom filter. To do that, it first determines to
which bin the element belongs. It recomputes the bin’s label and sends the label
to the cloud which sends the bin and related blinded Bloom filter to it. Then,
the client uses the counter and a secret key to remove the most recent blinding
factors from the bin’s content, applies the update, re-encodes the bin and filter.
Next, it refreshes their blinding factors and sends the updated bin along with
the updated filter to the cloud.

The efficiency of Feather’s update protocol stems from three factors: (a) the
ability of a client to (securely) update only a bin of its outsourced hash table,
that leads to very low complexities, (b) the use of an efficient error detecting
technique that yields communication and computation costs reduction, and (c)
the use of the local counters that yields client-side storage cost reduction. Now,
we explain the update protocol in detail.

1. Fetch a bin and its Bloom filter: Recomputes the label of the bin to which
element s(I) belongs, by generating the bin’s index: H(s(I)) = j, and computing
the label: l(I)j = PRF(lk(I), j). It sends l(I)j to the cloud which sends back the
bin: #»o (I)

j , and the blinded Bloom filter: BB(I)
j .

2. Unblind : Removes the blinding factors from #»o (I)
j and BB

(I)
j as follows.

a. Regen. blinding factors: To regenerate the blinding factors of the bin and
its Bloom filter, it first regenerates the key for that bin, as k(I)

j = PRF(k(I), j).
Then, it uses k(I)

j , bk(I), and c(I)j to regenerate the bin’s masking values:

• If the bin has never been fetched (i.e., c(I)j = 0), then it computes

b(I)j = PRF′(bk(I), j) and ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(k(I)

j , i)

• Otherwise (i.e., c(I)j 6= 0), it computes:

b(I)j = PRF′(PRF′(bk(I), j), c(I)j ) and ∀i, 1 ≤ i ≤ n : z(I)

j,i = PRF(PRF(k(I)

j , c
(I)

j ), i)

b. Unblind: Removes the blinding factors from the bin and its blinded Bloom
filter, as follows. B

(I)
j = BB

(I)
j ⊕ b(I)j , ∀i, 1 ≤ i ≤ n : y(I)

j,i = o(I)
j,i − z(I)

j,i.
The result is a Bloom filter: B(I)

j and a vector: #»y (I)
j = {y(I)

j,1, ..., y
(I)
j,n}.

3. Update the counter: Increments the corresponding counter: c(I)j = c(I)j + 1.
4. Update the bin’s content:

• If update: element insertion



∗ if the element, to be inserted, is not in the bin’s Bloom filter, then it uses
the n pairs of (y(I)

j,i, xi) to interpolate a polynomial: ψj(x) and considers
valid roots of ψj(x) as the set elements in that bin. Then, it generates a

polynomial:
d∏

m=1

(x− s′(I)m ), where its roots consist of valid roots of ψj(x),

s(I), and some random elements to pad the bin. Next, it evaluates the
polynomial at every xi ∈ #»x . This yields #»u (I)

j = [u(I)
j,1, ..., u

(I)
j,n]. It discards

B
(I)
j and builds a fresh one: B′(I)j encoding s(I) and valid roots of ψj(x).

∗ otherwise, i.e., if s(I) ∈ B
(I)
j , it sets #»u (I)

j = #»y (I)
j and B

′(I)
j = B

(I)
j , where #»y (I)

j

and B
(I)
j were computed in step 2.b. Note, in this case the element already

exists in the set; therefore, the element is not inserted.
• If update: element deletion

∗ if the element, to be deleted, is not in the bin’s Bloom filter, then it sets
#»u (I)
j = #»y (I)

j and B
′(I)
j = B

(I)
j , where #»y (I)

j and B
(I)
j were computed in step 2.b.

It means the element does not exist in the set, so no deletion is needed.
∗ otherwise, if s(I) ∈ B

(I)
j , it uses pairs (y(I)

j,i, xi) to interpolate a polynomial:

ψj(x). It constructs a polynomial:
d∏

m=1

(x− s′(I)m ), where its roots contains

valid roots of ψj(x), excluding s(I), and some random elements to pad the
bin (if required). Then, it evaluates the polynomial at every xi ∈ #»x . This
yields #»u (I)

j = [u(I)
j,1, ..., u

(I)
j,n]. Also, it discards B

(I)
j and builds a fresh one:

B
′(I)
j that encodes valid roots of ψj(x) excluding s(I).

5. Blind : Blinds the updated bin: #»u (I)
j and Bloom filter: B′(I)j as follows.

a. generates fresh blinding factors:

b(I)j = PRF′(PRF′(bk(I), j), c(I)j ), ∀i, 1 ≤ i ≤ n : z(I)
j,i = PRF(PRF(k(I)

j , c
(I)
j ), i)

b. blinds the bin’s content and Bloom filter, using the fresh blinding factors.

BB
(I)
j = B

′(I)
j ⊕ b(I)j and ∀i, 1 ≤ i ≤ n : o(I)

j,i = u(I)
j,i + z(I)

j,i

6. Send update query : Sends #»o (I)
j = [o(I)

j,1, ..., o
(I)
j,n], BB(I)

j , l(I)j , and “Update” to the
cloud which replaces the bin’s and Bloom filter’s contents with the new ones.

4.5 Feather PSI Computation Protocol

In this section, we present the PSI computation protocol in Feather. Note, to
let the cloud compute PSI correctly, clients need to tell it how to combine the
bins of their hash tables (each of which permuted under a different key) without
revealing the bins’ original order to the cloud. Also, as the blinding values of
some of the bins get refreshed (when updated), each client needs to efficiently
regenerate the most recent ones in PSI delegation and update phases. To address
those issues, we use two novel techniques: permutation mapping, and resettable
counter, respectively. Now, we outline how the clients delegate the computation
to the cloud. When client B wants the intersection of its set and clients Aσ ∈
{A1, ..., Aξ} sets, it sends a message to each client Aσ to obtain its permission. If
client Aσ agrees, it generates two sets of messages (with the help of the counter),
one for client B and one for the cloud. It sends messages that include unblinding



vectors to client B, and a message that includes a permutation map to the cloud.
The vectors help client B to unblind the cloud’s response. The map lets the cloud
associate client Aσ’s bins to client B’s bins. The cloud uses the clients’ messages
and the outsourced datasets to compute the result that contains a set of blinded
polynomials. It sends them to client B which unblinds them and retrieves the
intersection. Below, we present the PSI computation protocol in more detail.

1. Computation Delegation: It is initiated by B which is interested in the
intersection.

a. Gen. a permission query: Client B performs as follows.
i. Regen. blinding factors: regenerates the most recent blinding factors:

#»z (B) = [ #»z (B)
1 , ..., #»z (B)

h ] (as explained in step 2.a. of the update). Then, it
shuffles the vector: π(pk(B), #»z (B)).

ii. Mask blinding factors: to mask the shuffled vector, it picks a fresh tem-
porary key: tk(B), uses it to allocate a key to each bin, i.e., ∀g, 1 ≤ g ≤ h :
tk(B)
g = PRF(tk(B), g). Then, using each key, it generates fresh pseudoran-

dom values and uses them to blind the vector’s elements, as below:

∀g, 1 ≤ g ≤ h, ∀i, 1 ≤ i ≤ n : r(B)

g,i = z(B)

a,i + PRF(tk(B)

g , i)

Let #»r (B)
g = [r(B)

g,1, ..., r
(B)
g,n]. Note, #»z (B)

a at index a (1 ≤ a ≤ h) in #»z (B) moved
to index g after it was shuffled in the previous step.

iii. Send off secret values: sends lk(B), pk(B), #»r (B) = [ #»r (B)
1 , ..., #»r (B)

h ], and its id:
ID

(B), to every client Aσ. Also, it sends tk(B) to the cloud.
b. Grant the computation: Each client Aσ ∈ {A1, ..., Aξ} performs as follows.

i. Gen. a mapping: computes a mapping vector that will allow the cloud
to match client Aσ’s bins to client B’s ones. To do so, it first generates
#  »

M Aσ→ B whose elements, mg, are computed as follows.

∀g, 1 ≤ g ≤ h : l(Aσ)

g = PRF(lk(Aσ), g), l(B)

g = PRF(lk(B), g),mg = (l(Aσ)

g , l(B)

g )

It permutes the elements of
#  »

M Aσ→ B. This yields mapping vector
#  »

M̂ Aσ→ B

ii. Regen. blinding factors: regenerates the most recent blinding factors:
#»z (Aσ) = [ #»z (Aσ)

1 , ..., #»z (Aσ)

h ] where each #»z (Aσ)
g contains n blinding factors. After

that, it pseudorandomly permutes the vector as: π(pk(Aσ), #»z (Aσ)).
iii. Gen. random masks and polynomials: assigns n fresh random values:

a
(A

σ
)

g,i and two random degree-d polynomials: ω(A
σ
)

g , ω(B
σ
)

g to each bin: HTg.
iv. Gen. mask removers: generates #»q (Aσ) that will assist client B to remove

the blinding factors from the result provided by the cloud. To do that, it
first multiplies each element at position g in π(pk(A), #»z (A)) and in #»r (B), by
ω(Aσ)
g and ω(Bσ)

g , respectively, i.e., ∀g, 1 ≤ g ≤ h and ∀i, 1 ≤ i ≤ n :

v(Aσ)
g,i = ω(Aσ)

g,i · z(Aσ)
j,i and v(Bσ)

g,i = ω(Bσ)
g,i · r(Bσ)

g,i = ω(Bσ)
g,i · (z(B)

a,i + PRF(tk(B)
g , i))

Then, given permutation keys: pk(Aσ) and pk(Bσ), for each value v(Aσ)
g,i it

finds its matched value: v(Bσ)
e,i , such that the blinding factors z(Aσ)

j,i and
z(B)
j,i of the two values belong to the same bin, HTj. Specifically, for each



v(Aσ)
g,i = ω(Aσ)

g,i ·z(Aσ)
j,i it finds v(Bσ)

e,i = ω(Bσ)
e,i ·(z(B)

j,i +PRF(tk(B)
e , i)). Next, it combines

and blinds the matched values, i.e., ∀g, 1 ≤ g ≤ h and ∀i, 1 ≤ i ≤ n :

q(Aσ)
e,i = −(v(Aσ)

g,i +v(Bσ)
e,i )+a(Aσ)

g,i = −(ω(Aσ)
g,i ·z(Aσ)

j,i +ω(Bσ)
e,i ·(z(B)

j,i +PRF(tk(B)
e , i)))+a(Aσ)

g,i

v. Send values: sends #»q (Aσ) = [ #»q1
(Aσ), ..., # »qh

(Aσ)] to client B, where each #»qe
(Aσ)

contains q(Aσ)
e,i . It sends to the cloud ID

(B), ID
(Aσ),

#  »

M̂ Aσ→ B, the blinding factors:
a(Aσ)
g,i , “Compute”, and random polynomials’ y-coordinates, i.e., all ω(Aσ)

g,i , ω(Bσ)
g,i .

2. Cloud-side Result Computation : The cloud uses each mapping vector:
#  »

M̂ Aσ→ B to match the bins’ of clients Aσ and B. Specifically, for each e-th bin

in
#»

ô (B) it finds gσ-th bin in
#»

ô (Aσ), where both bins would have the same index,
e.g., j, before they were permuted. Next, it generates the elements of

#»
te, i.e.,

∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n :

te,i = (
ξ∑

σ=1

ω(Bσ)
e,i ) · (o(B)

e,i + PRF(tk(B)
e , i))−

ξ∑
σ=1

a(Aσ)
gσ,i +

ξ∑
σ=1

ω(Aσ)
gσ,i
· o(Aσ)

gσ,i

where o(Aσ)
gσ,i ∈ #»o (Aσ)

gσ
∈ #»

ô (Aσ). It sends to B its blinded Bloom filters:
# »

B̂B(B) and

result
#»
t = [

#»
t1, ...,

#»
th], where each

#»
te has values te,i.

3. Client-side Result Retrieval : Client B unblinds the permuted Bloom fil-

ters using the key bk(B). This yields a vector of permuted Bloom filters
#»

B̂ (B).
Then, it uses the elements of vectors #»q (Aσ) to remove the blinding from the
result sent by the cloud, i.e., ∀e, 1 ≤ e ≤ h and ∀i, 1 ≤ i ≤ n :

fe,i = te,i +

ξ∑
σ=1

q(Aσ)

e,i = (

ξ∑
σ=1

ω(Bσ)

e,i ) · (u(B)

j,i ) +

ξ∑
σ=1

ω(Aσ)

gσ,i
· u(Aσ)

j,i

Given vectors
#»

fe and #»x , it interpolates h polynomials: φe(x), for all e. Then,
it extracts the roots of each polynomial. It considers the roots encoded in

B(B)
e ∈

#»

B̂ (B) as valid, and the union of all valid roots as the sets’ intersection.

Theorem 1. If PRF and PRF′ are pseudorandom functions, and π is a pseudo-
random permutation, then Feather is secure in the presence of (a) a semi-honest
cloud, or (b) semi-honest clients where all but one clients collude with each other.

Proof outline. In the following, we provide an overview of the proof and we refer
readers to Appendix G for an elaborated one. We conduct the security analysis
for three cases where one of the parties is corrupt at a time. In corrupt cloud
case, we show that given the leakage function output, i.e. query and access pat-
terns, we can construct a simulator that produces a view indistinguishable from
the one in the real model. The proof includes (1) simulating each client’s out-
sourced data, (2) simulating clients queries (in PSI and update) by using query
pattern (and access pattern in the update), and (3) arguing that the simulated
values are indistinguishable from their counter-party in the real model, mainly
based on the indistinguishability of pseudorandom functions and permutation
outputs. In corrupt client B case, the proof includes (1) simulating each autho-
riser client’s input and query, (2) simulating cloud’s result, and (3) arguing that



the simulated values are indistinguishable from their counter-party in the real
model and it cannot learn anything beyond the intersection; the argument is
based on the indistinguishability of randomised polynomials (in Sec. 3.5) and
the indistinguishability of pseudorandom functions and permutation output. In
corrupt client Aσ case, the proof comprises (1) simulating client B’s queries
and (2) arguing that the simulated values are indistinguishable from those in
the real model, according to the indistinguishability of pseudorandom functions
output.

In Appendix F, we provide several remarks on Feather’s protocols and explain
why naive solutions cannot offer Feather’s features. Also, in Appendix H, we
present various extensions of Feather that outline how to: (a) reduce authorizers’
storage space, (b) reset the counters, (c) further delegate grating the computation
to a semi-honest third-party, and (d) further reduce communication cost.

5 Asymptotic Cost Analysis

In this section, we analyse and compare the complexities of Feather with those
of delegated and traditional PSIs that support multi-client in the semi-honest
model. Table 1 summarizes the results. We do not take the update cost of the
traditional multi-party PSIs, i.e., in [31,40], into account, as they are designed
for the cases where parties maintain locally their set elements and do not (need
to) support data update. We present a full analysis in Appendix I.

Table 1: Comparison of the multi-party PSIs. Note, c: set cardinality upper bound,
ξ + 1: total number of clients, d = 100, and all costs are in big O.

Property Feather [1] [5] [6] [49] [40] [31]

Repeated Delegated PSI X X X X X × ×
Supporting Multi-party X X X X X X X

Mainly Symmetric Key Primitives X X × × × X X

Total PSI Comm. Complexity cξ cξ cξ cξ cξ cξ2 cξ2

Total PSI Comp. Complexity cξ + c cξ + c cξ + c2 cξ + c2 cξ + c2 cξ2 + cξ cξ2 + cξ

Update Comm. Complexity d c c c c - -

Update Comp. Complexity d2 c c c c - -

5.1 Communication Complexity

In PSI Computation. Below, we analyse the protocols’ communication cost
during the PSI computation. Briefly, in Feather, client B’s cost is O(cξ), each
client Aσ’s cost is O(c), and the cloud’s cost is O(c). Thus, Feather’s total com-
munication cost during the computation of PSI is O(cξ). The cost of each PSI in



[1,5,6,49] is O(cξ), where the majority of the messages in [5,6,49] are the output
of a public-key encryption scheme, whereas those in [1] and Feather are random
elements of a finite field, that have much shorter bit-length. Also, each scheme’s
complexity in [31,40] is O(cξ2).

In Update. In Feather, for a client to update its set, it sends to the cloud two
labels, a vector of 2d+1 elements, and a Bloom filter. So, in total its complexity is
O(d). The cloud sends a vector of 2d+1 elements and a Bloom filter to the client
that costs O(d). Therefore, the update in Feather imposes O(d) communication
cost. The protocols in [1,5,6,49] offer no efficient update mechanism. Therefore,
for a client to securely update its set, it has to download and locally update the
entire set, which costs O(c).

5.2 Computation Complexity

In PSI Computation. Next, we analyse the schemes computation complexity
during the PSI computation. First, we analyse Feather’s complexity. In short,
client B’s and cloud’s complexity is O(cξ + c) while each client Aσ’s complexity
is O(c). During the PSI computation, the main operations that the parties per-
form are modular addition, multiplication, and polynomial factorization. Thus,
Feather’s complexity during the PSI computation is O(cξ + c). In the delegated
PSIs in [5,6,49], the cost is dominated by asymmetric key operations and poly-
nomial factorization. These protocols’ cost is O(cξ + c2). Moreover, the cost of
running PSI in the delegated PSI in [1] is O(cξ+ c). Now, we turn our attention
to the traditional PSIs in [31,40]. Each PSI in [31,40] has O(cξ2 +cξ) complexity
and involves mainly symmetric key operations.

In Update. In Feather, to update an element, a client (i) performs O(d) modu-
lar additions and multiplications, (ii) interpolates a polynomial that costs O(d),
(iii) extracts a bin’s elements that costs O(d2), and (iv) evaluates a polynomial
which costs O(d). So, the client’s total cost is O(d2). To update a set element
in the PSIs in [5,49], a client has to encode the element as a polynomial, eval-
uate the polynomial on 2c + 1 points, and perform O(c) multiplications. The
cloud performs the same number of multiplications to apply the update. So,
each protocol’s update complexity is O(c). In [6], the client has to download
the entire set, remove blinding factors, and apply the change locally that costs
O(c). Although the PSI in [1] use a hash table, if a client updates a single bin,
then the cloud would learn which elements are updated (with a non-negligible
probability); Because the bins are in their original order and each bin’s address
is the hash value of an element in that bin. Thus, in [1], for a client to securely
update its set, it has to locally re-encode the entire set that costs O(c).

6 Concrete Cost Evaluation

In this section, we first explain how we choose the optimal parameters of a hash
table. Then, we provide a concrete evaluation of three protocols: Feather and



the PSIs in [1,40]. The reason we only consider [1,40] is that [40] is the fastest
traditional multi-party PSI while [1] is the fastest delegated PSI among the PSIs
studied in section 5. We consider protocols in the semi-honest model.

6.1 Choice of Parameters

In Feather, with the right choice of the hash table’s parameters, the cloud can
keep the overall costs optimal. In this section, we briefly show how these param-
eters can be chosen. As before, let c be the upper bound of the set cardinality,
d be the bin size, and h be the number of bins. Recall, in Feather the overall
cost depends on the product, hd, i.e., the total number of elements, including
set elements and random values stored in the hash table. Also, the computation
cost is dominated by factorizing h polynomials of degree n = 2d + 1. For the
cloud to keep the costs optimal, given c, it uses Inequality 2 (in Appendix B)
to find the right balance between parameters d and h, in the sense that the cost
of factorizing a polynomial of degree n is minimal, while hd is close to c. At a
high level, to find the right parameters, we take the following steps. First, we
measure the average time, t, taken to factorize a polynomial of degree n, for
different values of n. Then, for each c, we compute h for different values of d.
Next, for each d we compute ht, after that for each c we look for minimal d
whose ht is at the lowest level. After conducting the above experiments, we can
see that the cloud can set d = 100 for all values of c. In this setting, hd is at
most 4c and only with a negligibly small probability, 2−40, a bin receives more
than d elements. We present a full analysis in Appendix J.1.

6.2 Concrete Communication Cost Analysis

In PSI Computation. Below, we compare the three PSIs’ concrete communi-
cation costs during the PSI computation. Briefly, Feather has 8-496 times lower
cost than the PSI in [40], while it has 1.6-2.2 times higher cost than the one in [1],
for 40-bit elements. The PSI’s cost in [40] grows much faster than Feather’s and
the scheme in [1], when the number of clients increases. Feather has a slightly
higher cost than the one in [1], as Feather lets each client Aσ send to the cloud
2hn y-coordinates of random polynomials yielding a significant computation im-
provement. Table 2 compares the three PSIs’ cost. Table 5, in Appendix J.2,
provides a detailed analysis of Feather’s communication cost.

In Update. In Feather, a client downloads and uploads only one bin, that
makes its cost of update 0.003 MB for all set sizes, when each element bit-size
is 40. In [1], for a client to securely update its data, it has to download the
entire set, locally update and upload it. Via this approach, the update’s total
communication cost, in MB, is in the range [0.13, 210] when the set size is in the
range [210, 220] and each element bit-size is 40. Thus, Feather’s communication
cost is from 45 to 70254 times lower than [1].



Table 2: Concrete communication cost comparison (in MB)

Protocols Elem. size
Set’s Cardinality Number of Clients

212 216 220 3 4 10 15 100

[40]
40, 64-bit

X 24 45 300 679 30278

X 407 762 5015 11341 505658

X 6719 12571 82697 186984 8335520

[1]

40-bit
X 0.8 1 2 4 29

X 18 25 62 93 625

X 300 400 1001 1501 10011

64-bit
X 1.3 1.7 4 6 43

X 28 37 94 141 941

X 452 602 1506 2260 15069

Feather

40-bit
X 1 2 5 8 61

X 30 44 123 189 1311

X 494 705 1973 3028 20979

64-bit
X 2 3 9 14 97

X 48 69 196 301 2096

X 773 1111 3138 4828 33549

6.3 Concrete Computation Cost Analysis

In this section, we provide an empirical computation evaluation of Feather using
a prototype implementation developed in C++. Feather’s source code can be
found in [2]. We compare the concrete computation cost of Feather with the two
protocols in [1,40]. All experiments were run on a macOS laptop, with an Intel
i5@2.3 GHz CPU, and 16 GB RAM. In Appendix J.3, we provide full detail
about the system’s parameters used in the experiment.

In PSI Computation. We first compare the runtime of Feather and the PSI
in [1] in a two-client setting, as the latter was designed and implemented in
this setting. Briefly, Feather is 2-2.5 times faster than the PSI in [1] (as Figure
6 in Appendix J.3 shows). The cloud-side runtime in Feather is 26-34 times
faster than the one in [1]. Because Feather lets each client compute and send
y-coordinates of random polynomials to the cloud, so the cloud does not need to
re-evaluate them. Tables 6 and 7, in Appendix J.3, compare these PSIs’ runtime
in the setup and PSI computation respectively. Briefly, for a small number of
clients, the performance of the PSI in [40] is better than Feather, e.g., about 40-4
times when the number of clients is 3- 15. But, the performance of the one in [40]
gets significantly worse when the number of clients is large, e.g., 100-150; as its
cost is quadratic with the number of clients. Thus, Feather outperforms the PSI
in [40] when the number of clients is large. We provide a more detailed analysis
in Appendix J.3. We also conducted experiments when a very large number of
clients participate in Feather, i.e., up to 16000 clients. To provide a concrete
value here, in Feather it takes 4.7 seconds to run PSI with 1000 clients where
each client has 211 elements. Table 9, in Appendix J.3, provides more detail.

In Update. Now, we compare the runtime of Feather and the PSI in [1] during
the update. As the PSI in [1] does not provide a way for an update, we developed



a prototype implementation of it that lets clients securely update their sets. The
implementation’s source code is in [3]. The update runtime of Feather is much
faster than that of in [1]. The update runtime of the latter scheme, for 40-bit
elements, grows from 0.07 to 27 seconds when the set size increases from 210 to
220; whereas in Feather, the update runtime remains 0.023 seconds for all set
sizes. Hence, the update in Feather is 3-1182 times faster than the one in [1].
Table 3 provides the update’s runtime detailed comparison.

Table 3: The update runtime comparison between Feather and [1] (in sec.).

Protocols Elem. size 210 211 212 213 214 215 216 217 218 219 220

[1]
40-bit 0.07 0.09 0.13 0.21 0.37 0.68 1.72 3.41 6.88 13.75 27.2

64-bit 0.08 0.11 0.14 0.22 0.38 0.69 1.76 3.43 7.12 13.94 28.15

Feather
40-bit ← 0.023 →

64-bit ← 0.035 →

7 Conclusion

Private set intersection (PSI) is an elegant protocol with numerous applications.
Nowadays, due to cloud computing’s growing popularity, there is a demand for
an efficient PSI that can securely operate on multiple outsourced sets that are
updated frequently. In this paper, we presented Feather. It is the first efficient
delegated PSI that lets multiple clients (i) securely store their private sets in
the cloud, (ii) efficiently perform data updates, and (iii) securely compute PSI
on the outsourced sets. We implemented Feather and performed a rigorous cost
analysis. The analysis indicates that Feather’s performance during the update
is over 103 times, and during PSI computation is over 2 times faster than the
most efficient delegated PSI. Feather has low communication costs too.

Recently, it has been shown that the most efficient multi-party PSI in [26]
supposed to be secure against active adversaries, suffers from serious issues.
Hence, to fill the void, future research could investigate how to enhance Feather
so it remains secure against active adversaries while preserving its efficiency.
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A Notations

In Table 4, we summarise the notations used in Feather’s protocols.

Table 4: Notation table.

Setting Symbol Description

G
e
n
e
ri

c

c Set cardinality upper bound

h The total number of bins

d A bin’s capacity

n n = 2d+ 1

e(I) Value e belongs to client I

HTj j-th bin of hash table: HT

Bj Bloom filter allocated to HTj

BBj Blinded Bj

zj,i The most recent i-th PR value assigned to HTj

lj PR label of HTj
#»
v̂ After (elements of) #»v is permuted

#»
ô (I) Client I outsourced blinded y-coordinates
#»

l̂ (I) Client I outsourced labels
#»

B̂B(I) Client I outsourced blinded Bj ’s

#»c A vector of resettable counters: ci

pk π key used to permute a vector

lk, k PRF keys used to gen. labels, and blind y’s

S
e
tu

p s→ X Element s is inserted to X

S(I) Client I’s set

U
p

d
a
te

bj Bj ’s most recent blinding factor

B′j Updated Bloom filter

#»uj (Updated) y-coordinates of HTj

P
S
I

C
o
m

p
u
ta

ti
o
n

gσ Client Aσ g-th bin in the permuted hash table
#»
t Cloud result, vector of combined bins

# »

M̂A→ B Permuted mapping vector

mg An element of
# »

M̂A→ B

r
(B)
g,i Masked blinding factor

ωg Random polynomial

#»q (A) A vector of blinding factor removers: q
(A)
e,i

#»
fe An unblinded combined bin

B Hash Tables

In this paper, a hash table is utilised for two reasons; to achieve efficiency when
(a) computing PSI, and (b) updating outsourced set. We set the table’s parame-
ters appropriately to ensure the number of elements in each bin does not exceed
a predefined capacity. Given the maximum number of elements c and the bin’s
maximum size d, we can determine the number of bins by analysing hash tables
under the balls into bins model [12].



Theorem 2. (Upper Tail in Chernoff Bounds) Let Xi be a random variable

defined as Xi =
c∑
i=1

Yi, where Pr[Yi = 1] = pi, Pr[Yi = 0] = 1 − pi, and all Yi

are independent. Let the expectation be µ = E[Xi] =
h∑
i=1

pi, then Pr[Xi > d =

(1 + σ) · µ] <
(

eσ

(1+σ)(1+σ)

)µ
,∀σ > 0

In this model, the expectation is µ = c
h , where c is the number of balls and

h is the number of bins. The above inequality provides the probability that bin
i gets more than (1 + σ) · µ balls. Since there are h bins, the probability that at
least one of them is overloaded is bounded by the union bound:

Pr[∃i,Xi > d] ≤
h∑
i=1

Pr[Xi > d] = h ·
( eσ

(1 + σ)(1+σ)

) c
h

(2)

Thus, for a hash table of length h = O(c), there is always an almost constant
expected number of elements, d, mapped to the same bin with a high probability
[42], e.g., 1− 2−40.

C Bloom Filter

In this work, we use Bloom filters to let parties (in Feather) identify real set
elements from errors. A Bloom filter [14] is a compact data structure for prob-
abilistic efficient elements’ membership checking. A Bloom filter is an array of
m bits that are initially all set to zero. It represents n elements. A Bloom filter
comes along with k independent hash functions. To insert an element, all the hash
values of the element are computed and their corresponding bits in the filter are
set to 1. To check an element’s membership, all its hash values are re-computed
and checked whether all are set to one in the filter. If all the corresponding bits
are one, then the element is probably in the filter; otherwise, it is not. In Bloom
filters false positives are possible, i.e. it is possible that an element is not in the
set, but the membership query shows that it is. According to [16], the upper

bound of the false positive probability is: q = pk(1 + O(kp

√
lnm−k ln p

m )), where

p is the probability that a particular bit in the filter is set to 1 and calculated
as: p = 1− (1− 1

m )kn. The efficiency of a Bloom filter depends on m and k. The
lower bound of m is n log2 e · log2

1
q , where e is the base of natural logarithms,

while the optimal number of hash functions is log2

1
q , when m is optimal. In

this paper, we only use optimal k and m. In practice, we would like to have a
predefined acceptable upper bound on false positive probability, e.g. q = 2−40.
Thus, given q and n, we can determine the rest of the parameters.

D Feather’s Security Definition

In this section, we provide Feather’s security definition. Similar to the majority
of previous PSI’s, we consider the semi-honest model. In particular, we consider



a static semi-honest adversary who controls one of the parties at a time, i.e., non-
colluding semi-honest adversaries [28,32]. For the sake of simplicity, we consider
three kinds of party, cloud C and clients Aσ ∈ {A1, ..., Aξ}, and B engage in the
protocol, where each Aσ authorizes the computation and client B is interested
in the result. We assume parties use a secure communication channel. Similar
to the security model of searchable encryption [34,29], in our security model
we allow some information, i.e., query and access patterns, to be leaked to the
cloud. This is an inevitable tradeoff if we want to retain efficiency, because to
hide those patterns we would have to use primitives such as ORAM [46], which
would make the protocol inefficient. Informally, we say the protocol is secure as
long as the cloud does not learn anything about the computation inputs and
output beyond the allowed leakage and clients do not learn anything beyond the
intersection about the other clients’ set elements. The leakage includes query
and access patterns. The protocol involves two types of operations: set update:
Upd, and delegated PSI computation: D-PSI.

Query Pattern . Intuitively, in the protocol clients need to explicitly ask the
cloud for a certain operation it wants to perform on its outsourced data. There-
fore, the cloud learns, whether the client’s ith query is for update or PSI com-
putation. In other words, the query pattern includes a list of clients’ queries,
that includes update and PSI computation queriers, sent to the cloud. Formally,
we define the query pattern

#»

T as a vector of strings where every element of the
vector is defined as Ti ∈ {Upd(I)t , PSI-Com}, where 1 ≤ t ≤ β, and value β is the
total number of update queries issued by each client I ∈ {A1, ..., Aξ, B}. Also,

| #»T | = poly(λ) = Υ , where λ is a security parameter.

Access Pattern . In our protocol, a set is encoded as a hash table and each
bin of the hash table is tagged with a unique deterministic label, in a form
of a pseudorandom binary string of length l, where l is a security parameter.
Without loss of generality, we assume in each update query only one element is
inserted/removed to/from the set. Each update query always requires the client
to send a label to the cloud, receive the bin (tagged with the label), and then
rewrite the contents of the bin. Thus, in the update process, the cloud can see
what part of the outsourced data is updated. But, it cannot associate that part
with the sets’ elements. In particular, given a sequence of client’s queries, the
cloud can see that a bin is updated but it does not learn the original address of
the bin because the bins are pseudorandomly permuted. Also, it cannot figure
out whether the update is an insertion or a deletion.

Definition 1. (Access Pattern) Let HT(I) be client I’s hash table containing h
bins where each bin, HT

(I)
i , is tagged with a unique label l(I)i . Also, let #»o ′(I) =

π(k(I), #»o (I)) be shuffled data, where k(I) is a secret key and #»o (I) = [(HT(I)
1 , l(I)1 ), ...,

(HT(I)

h , l(I)h )]. The access pattern, for the shuffled data, induced by β-update queries
is a symmetric binary matrix M(I) such that for 1 ≤ i, j ≤ β, the element in the
ith row and jth column is 1, M(I)

i,j = 1, if the ith query equals jth query (i.e. both
queries have the same label) and 0 otherwise (where I ∈ {A1, ..., Aξ, B}).



The multi-party delegated PSI protocol, D-PSI, computes a function that maps
the inputs to some outputs. We define this function as: F : ⊥× 2U × ...× 2U︸ ︷︷ ︸

ξ+1

→

⊥ × ... × ⊥ × f∩ where ⊥ denotes the empty string, 2U denotes the power-
set of the set universe and f∩ denotes the set intersection function. For inputs
⊥, S(A1), ..., S(Aξ) and S(B) belonging to C,A1, ..., Aξ and B respectively, the func-
tion outputs nothing to C,A1, ..., Aξ, but outputs f∩(S(A1), ..., S(Aξ), S(B)) = S(A1)∩
... ∩ S(Aξ) ∩ S(B) to B. Note, for PSI computation we do not have any data leak-
age. In the security model, we define the leakage function as leak( #»o ′(I),

#      »

upd(I)) =

[M(I),
#»

T ] that captures precisely what is being leaked by the update operation.
The function takes as input clients’ outsourced data, and β update queries. It
outputs two different types of information; namely, the access pattern (i.e., the
matrix) and the query pattern of the clients. We say the protocol is secure if (1)
nothing beyond the leakage is revealed to the cloud; (2) whatever can be com-
puted by a client in the protocol can be obtained from its input and output only.
This is formalized by the simulation paradigm. We require a client’s view during
the execution of D-PSI to be simulatable given its input and output. As one client’s
update pattern is not leaked to the other client, the scheme is secure as long as
the PSI computation result does not leak any information to the client. Also, we
require that the cloud’s view of both operations, i.e., Feather = (Upd, D-PSI), can be
simulated given the leakage. The party I’s view on input tuple (x, y, z) is denoted
by VIEW

t
I (x, y, z), and equals (w, r(i),m(i)

1 , ...,m
(i)
g ), where if I ∈ {A1, ..., Aξ, B},

then t : D-PSI, if I = C, then t : Feather, w ∈ (x, y, z) is the input of I, r(i) is the
outcome of ith internal coin tosses and m(i)

j is the jth message it received.

Definition 2. Let S = {S(A1), ..., S(Aξ)} and also Feather = (Upd, D-PSI) be the
scheme defined above. We say that Feather is secure at the client-side in the pres-
ence of static semi-honest adversaries if there exist probabilistic polynomial-time
algorithms SIMAσ

and SIMB that given the input and output of a client, can sim-
ulate a view that is computationally indistinguishable from the client’s view in
the protocol:

{SIMAσ
(S(Aσ),⊥)}S,S(B)

c≡ {VIEW D-PSI

Aσ
(⊥,S, S(B))}S,S(B)

{SIMB(S(B), f∩(S, S(B)))}S,S(B)

c≡ {VIEW D-PSI

B (⊥,S, S(B))}S,S(B) ,

where D-PSI was defined above and Aσ ∈ {A1, ..., Aξ}. Also, Feather is secure, at
the cloud-side, in the presence of static semi-honest adversaries if there exists
probabilistic polynomial-time algorithm SIMC that given the leakage function, can
simulate a view that is computationally indistinguishable from the cloud’s view
in the protocol:

{SIM leak()

C (⊥,⊥)}S,S(B)

c≡ {VIEW Feather

C (⊥,S, S(B))}S,S(B)

E Feather’s Protocols Workflow

Figure 1 outlines parties’ interaction in Feather’ protocols.
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Fig. 1: Workflow in Feather’s protocols

F Further Remarks on Feather

In this section, we provide several remarks on Feather’s update and PSI compu-
tation protocols.

Remark 1. In Feather, if multiple elements are updated at once, then multiple
bins need to be accessed by a client (with a certain probability). This means the
efficiency gap between Feather and the fasted delegated PSI in [1] in the update
phase will reduce depending on the number of bins retrieved. To alleviate it, the
client can use the lazy update technique, in the sense that it waits and buffers
enough elements locally until some of them end up in the same bin. Then, it
fetches the related bins and updates them. In this case, the client retrieves a lower
number of bins and has less computation and communication overheads than the
naive scheme where it updates the elements immediately. In general, when m
elements are supposed to be updated in one go, the probability that a certain
bin will receive less than a certain number of elements, say d′, can be calculated

via the lower tail in Chernoff bounds: Pr[Xi < d′ = (1−σ) ·µ] <
(

e−σ

(1−σ)(1−σ)

)µ
,

where σ ∈ (0, 1] and µ = m
h . The rest of the parameters are the same as those

defined in Section 3.2.

Remark 2. In the following, we outline why the result’s correctness holds, in step
3 in the Feather’s PSI protocol. For the sake of simplicity, first we consider the
two-client setting, where only client A1 and B engage in the protocol. In this case,
it holds that f ′e,i = te,i+q(A1)

e,i = ω(B1)
e,i ·u(B)

j,i +ω(A1)
g1,i
·u(A1)

j,i , where u(B)
j,i and u(A1)

j,i are (y-

coordinates of) polynomial representation of clients B and A1 sets respectively,
while ω(B1)

e,i and ω(A1)
g1,i

are (y-coordinates of) two random polynomials of degree d.

As stated in Section 3.5, the result, f ′e,i, is (y-coordinates of) a polynomial that
encodes the intersection of the two parties’ sets. The same holds if there are ξ

clients , i.e., f ′′e,i = ω(Bσ)
e,i · u(B)

j,i +
ξ∑

σ=1

ω(Aσ)
gσ,i
· u(Aσ)

j,i . The only difference between f ′′e,i

and fe,i, in terms of presentation, is that in the former, u(B)
j,i is multiplied by only

one random polynomial of degree d while in the latter, u(B)
j,i is multiplied by the

sum of ξ polynomials of degree at most d. We know that the sum of ξ random



polynomials of degree d is a random polynomial of degree d. Thus, the result in
step 3, fe,i, encodes the intersection of the parties’ set elements.

Remark 3. Another reason that Feather’s PSI scales better than [1] is that it
removes a bottleneck from the cloud by requiring clients to send the evaluated
random polynomials to it in step 1(b.)v. This relieves the cloud of re-evaluating
them, and improves the cloud performance by up to 34 times. See Section J.3
for more detail.

Remark 4. Since the client, in the update phase, refreshes the blinding factors
each time it retrieves a bin, the cloud cannot figure out whether it inserts or
deletes an element. Also, as the original index of each bin is hidden from the
cloud, it cannot learn which element has been updated in the bin.

Remark 5. In the protocol, the client does not need to recompute the hash table
as long as each client’s set cardinality remains smaller than the upper bound: c,
irrespective of the number of updates performed on its outsourced data. Only
in the case where a bin exceeds its capacity the client would need to recompute
the table. However, as shown in section 3.2, given c, we can set the hash table
parameters (i.e. total number of bins and bin capacity) in such a way that a bin
overflows only with a negligibly small probability.

Remark 6. The bit-size of the field elements are different from the bit-size of each
Bloom filter. Therefore, to mask them two different pseudorandom functions (i.e.
PRF and PRF′) with appropriate output sizes are needed.

Remark 7. One might be tempted to use an efficient traditional two-party PSI
instead of Feather, such that clients store their data in the cloud, then for each
PSI, they download the data and each of them runs a two-party PSI locally
with the result recipient at a time. To record updates, a client encrypts the
element (to be updated) and stores it in the cloud. In this setting, each time
the client downloads the data to run PSI, it also downloads the update records,
applies the change locally and uploads the entire data updated to the cloud.
However, this approach has serious security issues in PSI computation, as it
leaks more information than the intersection to the result recipient, e.g. pair-
wise intersection. Also, this approach for update introduces additional cost: (a)
the size of outsourced data grows with the number of update queries (even if the
update is deletion) and (b) the client may store multiple copies of an item in
the cloud, as there is no efficient way for it to figure out whether the set element
exists in its outsourced set. Alternatively, one may use traditional multi-party
PSI, to address the above security issues. In this case, a client might want to still
use the above naive technique to update data. But, as shown in Sections 5 and J,
this approach will: (a) have a much higher communication cost than Feather’s,
(b) have a slower run-time than Feather’s, for a large number of clients, and (c)
inherit the same issues stated above for the update.



G Feather Security Proof

In this section, we present Feather’s security proof in the presence of static semi-
honest adversaries. We conduct the security analysis for the three cases where
one of the parties is corrupted at a time.

Theorem 3. If PRF and PRF′ are pseudorandom functions, and π is a pseudo-
random permutation, then Feather is secure in the presence of (a) a semi-honest
cloud, or (b) semi-honest clients where all but one clients collude with each other.

Proof. We will prove the theorem by considering in turn the case where each of
the parties has been corrupted. In each case, we invoke the simulator with the
corresponding party’s input and output. Our focus is on the case where party
Aσ wants to engage in the computation of the intersection, i.e. it authorizes the
computation. If party Aσ does not want to proceed with the protocol, the views
can be simulated in the same way up to the point where the execution stops.

Case 1: Corrupted Cloud. We show that given the leakage function (output)
we can construct a simulator SIMC that can produce a view computationally
indistinguishable from the one in the real model. In the real execution, the cloud’s

view is: VIEW
Feather
C (⊥,S, S(B)) = {⊥, rC ,

#»

ô ,
#»

l̂ ,
# »

B̂B,
#»

ô (B),
#»

l̂ (B),
# »

B̂B(B), (Q1, ..., QΥ ),⊥}.
In the above view, S is authorizer clients’ sets (i.e. S = {S(A1), ..., S(Aξ)})

and rC is the outcome of internal random coins of the cloud. Moreover,
#»

ô =

{ #»

ô (A1), ...,
#»

ô (Aξ)},
#»

l̂ = {
#»

l̂ (A1), ...,
#»

l̂ (Aξ)}, and
# »

B̂B = {
# »

B̂B(A1), ...,
# »

B̂B(Aξ)}, where
#»

ô (I),
#»

l̂ (I), and
# »

B̂B(I) are client I’s outsourced permuted blinded y-coordinates, per-
muted labels, and permuted blinded Bloom filters respectively, where I ∈ {A1

, ..., Aξ, B}. In the case where the PSI computation is delegated to the cloud, Qb

(1 ≤ b ≤ Υ ) has the form:Qb = { #»a , #»ω (A), #»ω (B), tk(B), ID, ID(B),
#  »

M̂ , “Compute”}, other-
wise (i.e. if client I sends an update query), Qb = { #»o (I)

g , l
(I)
g , BB

(I)
g , “Update”}. Note

that for PSI delegation, #»a = { #»a (A1), ..., #»a (Aξ)}, #»ω (A) = { #»ω (A1), ..., #»ω (Aξ)}, #»ω (B) =

{ #»ω (B1), ..., #»ω (Bξ)}, ID = {ID(A1), ..., ID(Aξ)}, and
#  »

M̂ = {
#  »

M̂ A1→ B, ...,
#  »

M̂ Aξ→ B}. Also, each
#»a (Aσ) ∈ #»a contains h·n random elements: a(Aσ)

g,i ; each #»ω (Aσ) ∈ #»ω (A) and #»ω (Bσ) ∈ #»ω (B)

contains h ·n y-coordinates: ω(Aσ)
g,i and ω(Bσ)

g,i , of random polynomials, respectively

(∀g, i, 1 ≤ i ≤ n and 1 ≤ g ≤ h). Furthermore, each
#  »

M̂ Aσ→ B ∈
#  »

M̂ contains h
tuples of the form: (l(Aσ)

g , l(B)
g ). Recall that when the query is update, #»o (I)

g contains
n values blinded by fresh blinding factors, l(I)g is a bin’s label and BB(I)

g is a Bloom
filter blinded by a fresh blinding factor, where 1 ≤ g ≤ h. Now we construct the
simulator SIMC in the ideal model.

1. Simulate clients’ outsourced data.
(a) Simulate hash tables: It uses the public parameters and the hash func-

tion to construct ξ + 1 hash tables: HT′(A1), ..., HT′(Aξ), HT′(B). It fills each
bin of the hash tables with n uniformly random values picked from Fp.
So, each bin HT

′(I)
j contains a vector #»o ′(I)j of n random values. Also, it

creates an empty view and appends ⊥ and uniformly random coin r′C to
the view.



(b) Simulate labels and blinded Bloom filters: Assigns a pseudorandom la-
bel to each bin HT

′(I)
j . So, it picks fresh label-keys, lk′(I), and computes the

labels as ∀I, I ∈ {A1, ..., Aξ, B} and ∀j, 1 ≤ j ≤ h : l′(I)j = PRF(lk′(I), j).
Also, it allocates a random bit string of length Ψ , as a blinded Bloom
filter: BB′(I)j , to each bin.

(c) Simulate permuted outsourced dataset: For each client, it pairs every bin
with its label and blinded Bloom filter and then randomly permutes the
pairs. To do that, for each client, it constructs vector: [( #»o ′(I)1 , l′(I)1 , BB′(I)1 )
, ..., ( #»o ′(I)h , l′(I)h , BB′(I)h )]. Then, it randomly permutes the vector. Next, it
inserts each element #»o ′(I)g (∀g, 1 ≤ g ≤ h) of the permuted vector into
#»

ô ′(I). Also, it inserts each element l′(I)g and BB′(I)g of the permuted vector

into
#»

l̂ ′(I) and
# »

B̂B′(I) respectively. For each client, it appends the three

vectors, (i.e.,
#»

ô ′(I),
#»

l̂ ′(I) and
# »

B̂B′(I)) to the view. Note that, the three
vectors are the simulation of each client’s outsourced data in the real
world.

2. Simulate labels’ vector used for update queries. As defined in Section
D, for each client, a leakage: [M(I),

#»

T ] includes access pattern: matrix M(I),

and query pattern:
#»

T . Recall that in the real world, a client fetches a bin
by sending to the cloud the bin’s label and it may happen multiple times.
As a result, in total a vector of labels is sent to the cloud for the updates.
In the ideal world, the simulator, given the matrix and the outsourced data
(generated above), needs to simulate a labels vector: #»v (I) that will contain

a set of labels l′(I) ∈
#»

l′ (I), and the vector has the same access pattern as the
one indicated by the matrix. The technique used here has a resemblance to
the one utilised in searchable encryption schemes. To generate the vector,
the simulator first constructs vector #»v (I) of zeros, where | #»v (I)| = β. Then, for
every row i (1 ≤ i ≤ β) of the matrix M(I), it performs the following:
(a) If there exists at least one element set to 1 in the row and if the ith

element in the vector #»v (I) is zero, then it finds a set G such that ∀g ∈
G : M(I)

i,g = 1. Next, it picks a label l′(I) ∈
#»

l′ (I) and inserts it into all
ith, gth positions of the vector #»v (I). The label must be distinct from the
ones used for the previous rows i′, where i′ < i. Otherwise, if the ith

element in the vector is non-zero, it moves on to the next row.
(b) If all the elements in the row are zero and if the ith element in the vector

#»v (I) is zero, then it picks a label l′(I) ∈
#»

l′ (I) and inserts it at position
ith of the vector, where the label is distinct from the ones used for the
previous rows i′, where i′ < i. Otherwise, i.e., if ith element in the vector
is non-zero, it moves on to the next row.

3. Simulate clients queries. Uses the query pattern:
#»

T , to generate a set of
queries depending on the type of each query in

#»

T , i.e. for PSI computation
or update. Specifically, it checks Tb ∈

#»

T (∀b, 1 ≤ b ≤ Υ ), and performs as
follows:
• Simulate clients queries for PSI computation: if Tb = PSI-Com, then con-

structs #»a ′ = { #»a ′(A1), ..., #»a ′(Aξ)} where each #»a ′(Aσ) contains n random ele-

ments: a′
(Aσ)

g,i of the field, Fp. Also, it constructs #»ω ′(A) = { #»ω ′(A1), ..., #»ω ′(Aξ)}



and #»ω ′(B) = { #»ω ′(B1), ..., #»ω ′(Bξ)}, where each #»ω ′(Aσ) ∈ #»ω ′(A) and #»ω ′(Bσ) ∈ #»ω ′(B)

contains h · n y-coordinates: ω′(Aσ)
g,i and ω′(Bσ)

g,i , of random d-degree poly-

nomials, respectively. Then, it constructs
#  »

M̂ ′ that comprises ξ vectors:
#  »

M̂ ′
Aσ→ B (1 ≤ σ ≤ ξ) randomly permuted, such that each

#  »

M̂ ′
Aσ→ B con-

tains h tuples of the form: (l′(Aσ)
g , l′(B)

g ). It picks a random key: tk′(B). It
computes ID = {ID(A1) , ..., ID(Aξ)}, ID

(B) and “Compute”. Next, it constructs:

Q′b = { #»a ′, #»ω ′(A), #»ω ′(B), tk′(B), ID, ID(B),
#  »

M̂ ′, “Compute”}, and appends Q′b to
the view.

• Simulate a client’s query for update: if Tb = Upd
(I)
t , then sets: Q′b =

{ #»o ′(I), l′(I)t , BB′(I), “Update”}, where #»o ′(I) contains n fresh random values,
l′(I)t is the tth element in the vector #»v (I), and BB′(I) is a fresh random
string. After that, it appends Q′i to the view.

4. Appends ⊥ to its view and outputs the view.

We are ready now to show why the two views are indistinguishable. Briefly, in
the following, we argue that (a) the outsourced data, (b) clients’ queries for PSI
computation, and (c) clients’ queries for the update, in real and ideal models are
indistinguishable (with the use of the leakage).
Outsourced data indistinguishability: In both views, the input and output parts
(i.e. ⊥) are identical and the random coins are both uniformly random, so they

are indistinguishable. In the real world, each vector #»o (I)
g ∈

#»

ô (I) (1 ≤ g ≤ h)
contains n values blinded with fresh pseudorandom values, the outputs of a

pseudorandom function; each blinded Bloom filter: BB(I)
j ∈

# »

B̂B(I) is also masked
with a fresh pseudorandom value of length Ψ . In the ideal world, each vector
#»o ′(I)j ∈

#»

ô ′(I) (1 ≤ j ≤ h) contains n fresh random values sampled uniformly from

the same field and each BB
′(I)
j ∈

# »

B̂B′(I) contains a Ψ -bit long fresh random string.
Since the blinded values and random values are not distinguishable, the elements

of vectors
#»

ô (I) and
#»

ô ′(I) as well as vectors
# »

B̂B(I) and
# »

B̂B′(I) are indistinguishable

either. Also, labels l(I)j ∈
#»

l̂ (I) and l′(I)j ∈
#»

l̂′ (I) are the outputs of a pseudorandom

function and they are indistinguishable. Therefore, the elements of vectors
#»

l̂ (I)

and
#»

l̂′ (I) are indistinguishable. Furthermore, since a pseudorandom permutation

is indistinguishable from a random permutation, permuted vectors
#»

ô (I),
# »

B̂B(I) and
#»

l̂ (I), in the real model, and permuted vectors
#»

ô ′(I),
# »

B̂B′(I) and
#»

l̂′ (I), in the ideal
model, are indistinguishable respectively.

Now we show that Qb is indistinguishable from Q′b, (∀b, 1 ≤ b ≤ Υ ). Note
that, since sequence Q′1, ..., Q

′
Υ , in the ideal model, is generated given the leakage

function, its access and query patterns are identical to the access and query
patterns of Q1, ..., QΥ , in the real model.
Indistinguishability of clients’ queries in PSI: We consider the case where
Tb = PSI-Com. In this case, each #»a (Aσ) ∈ #»a contains h · n random elements,
so does each vector #»a ′(Aσ) ∈ #»a ′; therefore, elements of vectors #»a and #»a ′ are
indistinguishable. Moreover, each vector #»ω (Aσ) ∈ #»ω (A), #»ω (Bσ) ∈ #»ω(B), #»ω ′(Aσ) ∈ #»ω ′(A),
and #»ω ′(Bσ) ∈ #»ω ′(B) contains h ·n y-coordinates of h random d-degree polynomials



picked from the same field and evaluated at the same set of values. Thus, vectors
#»ω(A) and #»ω(B) in the real world are indistinguishable from vectors: #»ω ′(A) and #»ω ′(B)

in the ideal world, respectively. Also, keys tk(B) and tk′(B) are random values,
so they are indistinguishable. Messages ID, ID(B) and “Compute” are identical in

both views. In the real model, each pair in each
#  »

M̂ Aσ→ B ∈
#  »

M̂ has the form

(l(Aσ)
g , l(B)

g ), where l(I)g ∈
#»

l̂ (I) and each l(I)g is a pseudorandom string (1 ≤ g ≤ h
and I ∈ {A1, ..., Aξ, B}). In the ideal model, each pair in randomly permuted

vector:
#  »

M̂ ′
Aσ→ B ∈

#  »

M̂ ′ has the form (l′(Aσ)

g′ , l′(B)

g′ ) where l′(I)
g′ ∈

#»

l̂′ (I) and each l′(I)
g′ is

a pseudorandom string; so
#  »

M̂ and
#  »

M̂ ′ are indistinguishable. We conclude that
Qb is indistinguishable from Q′b.

Indistinguishability of client’s query in update: Now we move on to the case
where Tb = Upd

(I)
t . In the real model, #»o (I)

g contains n elements blinded with
fresh pseudorandom values; while in the ideal model, #»o ′(I) comprises n random
values sampled uniformly from the same field. Since the random values and
blinded values are indistinguishable, #»o (I)

g and #»o ′(I) are indistinguishable. In the

real model, l(I)j is a pseudorandom string and is an element of vector
#»

l̂ (I). In

the ideal model, l′(I)j is a pseudorandom string and is an element of vector
#»

l̂′ (I).
So, the labels have the same distribution and are indistinguishable. In the real
model, blinded Bloom filter: BB(I)

g has been masked with a fresh pseudorandom
blinding factor of length Ψ ; in the ideal model, BB′(I) is a fresh random string of
the same length; therefore, BB(I)

g and BB′(I) are indistinguishable. Also, message
“Update” is identical in both models. Thus, Q′b and Qb are indistinguishable in this
case too. From the above, we conclude that the views are indistinguishable.

Case 2: Corrupted Client B. In the real execution client B’s view is defined
as:

VIEW
D-PSI

B (⊥,S, S(B)) = {S(B), rB,
#»q ,

#»

f ,
#»

B̂ (B), f∩(S, S(B))}

where S = {S(A1), ..., S(Aξ)}, #»q = { #»q (A1), ..., #»q (Aξ)} and
#»

B̂ (B) is a set of Bloom filters
pseudorandomly permuted. The simulator SIMB who receives pk(B), lk(B), S(B) and
f∩(S, S(B)) performs as follows:

1. Simulate clients inputs. Creates an empty view, appends S(B) and uni-
formly at random chosen coins r′B to it. It chooses the following arbitrary
sets: S′ = {S′(A1), ..., S′(Aξ)} and S′(B) = S(B) such that S′ ∩ S′(B) = f∩(S, S(B))
and |S′(Aσ)|, |S′(B)| ≤ c, where c is a set cardinality’s upper bound and
1 ≤ σ ≤ ξ. It uses the table parameters to construct ξ + 1 hash tables:
HT′(A1), ..., HT′(Aξ), HT′(B). Next, it maps the elements in S′(I) to the bins of
HT′(I), where I ∈ {A1, ..., Aξ, B}; i.e., ∀I : H(s′(I)i ) = j, then s′(I)i → HT

′(I)
j ,

where s′(I)i ∈ S′(I) and 1 ≤ j ≤ h. It assigns to each bin HT
′(B)
j ∈ HT′(B) a

Bloom filter: B′(B)
j that encodes the set elements in the bin. Note, in total

we have a set of Bloom filters:
#»

B′(B) = {B′(B)
1 , ..., B′(B)

h }. It builds a polynomial
representing the d elements of each bin. If a bin contains less than d ele-



ments first it is padded. ∀I and ∀j, 1 ≤ j ≤ h: τ ′(I)j (x) =
d∏

m=1

(x− e(I)m ), where

e(I)m ∈ HT
′(I)
j .

2. Simulate cloud’s result. Assigns a random polynomial: ω′(Aσ)
j of degree d to

each bin HT
′(Aσ)
j , where 1 ≤ σ ≤ ξ. Also, it assigns ξ random polynomials

of degree d to each bin HT
′(B)
j . Next, it constructs vector

#»

f ′ = [
#»

f ′1, ...,
#»

f ′h]

where elements of each vector
#»

f ′j are computed as follows. ∀j, 1 ≤ j ≤ h and

∀i, 1 ≤ i ≤ n: f ′j,i = (
ξ∑

σ=1

ω′(Bσ)
j (xi)) · (τ ′(B))

j (xi)) +
ξ∑

σ=1

ω′(Aσ)
j (xi) · τ ′(Aσ)

j (xi)− vj,i

where vj,i is a fresh random element of the field. Then, it permutes
#»

f ′ as:
#»

f ′′ = π(pk(B),
#»

f ′).
3. Simulate authorizer clients queries. Generates vector #»q ′ = [ #»q ′1, ...,

#»q ′h]
where each vector #»q ′j contains n elements of the form: q′j,i + vj,i such that
q′j,i is a fresh random value and vj,i was generated in the previous step. Next,
it permutes #»q ′ as #»q ′′ = π(pk(B), #»q ′).

4. It appends #»q ′′,
#»

f ′′,
#»

B̂ ′′ = π(pk(B),
#»

B′(B)), f∩(S, S(B)) to the view and outputs
it.

Now we show that the two views are computationally indistinguishable. In short,
in the following, we argue the (a) authoriser clients’ queries, (b) cloud’s result
in real and ideal models are indistinguishable, and (c) the result recipient only
learns the intersection from the final result.

Indistinguishability of authorizer clients queries: In the real model, the ele-
ments in #»q j are blinded with fresh pseudorandom values. In the ideal model, the
elements in #»q ′′j are fresh random values drawn uniformly from the same field.
Moreover, both #»q and #»q ′′ are permuted in the same way. Hence, the vectors #»q
and #»q ′′ are computationally indistinguishable. Also, the entries S(B) and ⊥ are
identical in both views.

Indistinguishability of cloud’s result: Both vectors
#»

B̂ ′′ and
#»

B̂ are permuted in
the same way and encode the elements of the same set, i.e., S(B), so they are
indistinguishable. In the real model, the elements in

#»
t j are blinded with fresh

pseudorandom values. In the ideal model, the elements in
#»

f ′′j are fresh random

values drawn uniformly from the same field. Moreover, both vectors
#»
t and

#»

f ′′

are permuted in the same way. Hence, the vectors
#»
t and

#»

f ′′ are computationally
indistinguishable.

Indistinguishability of the final result: In the real model, given each
#»

f j, the ad-

versary interpolates a 2d-degree polynomial that has form: φj(x) = (
ξ∑

σ=1

ω(Bσ)
j (x))·

(τ (B)
j (x))+

ξ∑
σ=1

ω(Aσ)
gσ

(x) ·τ (Aσ)
j (x) = µj ·gcd(τ (A1)

j (x), ..., τ
(Aξ)

j (x), τ (B)
j (x), where poly-

nomial gcd(τ (A1)
j (x) , ..., τ

(Aξ)

j (x), τ (B)
j (x)) represents intersection of the sets in the

corresponding bin, HTj. Similarly, in the ideal model, after unblinding each bin

(i.e. summing
#»

f ′′j with #»q ′′j component-wise) the adversary uses the unblinded
y-coordinates to interpolate a 2d-degree polynomial: φ′j(x) that has the form



φ′j(x) = (
ξ∑

σ=1

ω′(Bσ)
j (x)) · (τ ′(B)

j (x)) +
ξ∑

σ=1

ω′(Aσ)
j (x) · τ ′(Aσ)

j (x) = µ′j · gcd(τ ′(A1)
j (x)

, ..., τ
′(Aξ)

j (x), τ ′(B)
j (x)), where polynomial gcd(τ ′(A1)

j (x) , ..., τ
′(Aξ)

j (x), τ ′(B)
j (x)) rep-

resents intersection of the sets in the corresponding bin: HT′j. As stated in section
3.5, µj and µ′j are uniformly random polynomials and the probability that their
roots represent set elements is negligible, thus φj(x) and φ′j(x) only contain infor-
mation about the set intersection and have the same distribution in both models
[15,37]. Note, even if client B colludes with ξ − 1 clients, it cannot learn any-
thing about the non-colluding client’s set elements. Because, as proven in [37],

polynomial
ξ∑

σ=1

ω(Bσ)
j (x) is always a random polynomial even if only one of the

polynomials, e.g. ω(Bσ)
j (x), is contributed by an honest client and is a uniformly

random polynomial not known to client B. Also, since the same hash table pa-
rameters are used, the same elements would reside in the same bins in both
models, therefore polynomials gcd(τ (A1)

j (x) , ..., τ
(Aξ)

j (x), τ (B)
j (x)) and gcd(τ ′(A1)

j (x)
, ..., τ

′(Aξ)

j (x), τ ′(B)
j (x)) represent the set elements of the intersection for that bin.

Also, the output: f∩(S, S(B)) is identical in both views. Thus, we conclude that
the two views are computationally indistinguishable.

Case 3: Corrupted Client Aσ. In the real execution, the view of each client
Aσ ∈ {A1, ..., Aξ} is defined as: VIEW

D-PSI
Aσ

(⊥,S, S(B)) = {S(Aσ), rAσ
, lk(B), pk(B), #»r (B),

ID
(B),⊥}. The simulator, SIMA, who receives S(Aσ) performs as follows. It con-

structs an empty view, and adds S(Aσ) and uniformly at random chosen coins r′Aσ

to the view. It simulates client B’s queries by picking two random keys lk′(B),
pk′(B) and constructing #»r ′(B) = [ #»r ′(B)

1 , ..., #»r ′(B)

h ], where each vector #»r ′(B)
j contains

n random values picked from the field. It appends the two keys, #»r ′(B), ID
(B) and

⊥ to the view and outputs the view.
In the following, we will explain why the two views are indistinguishable. In

brief, we show that all messages, i.e. queries, it receives is indistinguishable in
the real and ideal models. In both views, S(Aσ), ID(B) and ⊥ are identical. Also rAσ

and r′Aσ
are chosen uniformly at random so they are indistinguishable. Moreover,

lk(B), pk(B), lk′(B) and pk′(B) are the keys picked uniformly at random, so they are
indistinguishable. In the real model, each vector #»r (B)

i contains n values blinded
with fresh pseudorandom values. In the ideal model, each vector #»r ′(B)

i has n fresh
random elements of the field. Since the random values and blinded values are
indistinguishable, #»r (B) and #»r ′(B) are indistinguishable. Note, no client Aσ gets
any set (representation) of other clients, therefore even if all Aσ ∈ {A1, ..., Aξ}
collude with each other, they cannot learn anything about client B’s set elements.
We conclude, the two views are indistinguishable.

H Feather’s Extensions

In this section, we explain how Feather can be extended to (1) further lower the
storage cost at the client-side, (2) allow a client to reset its local counter, (3)
support the delegation of the authorisation to a semi-honest third party, and (4)
further reduce the communication cost.



H.1 Authorizer Storage Space Reduction

There are cases where the clients which authorise the computation have only
access to a device with very limited storage capacity, e.g. mobile phone or tablet.
In the following, we show how we can slightly adjust the PSI protocol, to allow
those kinds of authoriser to grant the computation too. The main idea is that
client B sends only one bin at a time to each client Aσ when they want to delegate
the computation. Then, client Aσ can work on only one bin, and generate the
corresponding messages to be sent to client B and the cloud. In step 1(a.)i, client
B for each vector #»z (B)

j ∈ #»z (B), finds index e that is the index of vector #»z (B)
j after

#»z (B) is pseudorandomly permuted. Next, in step 1(a.)ii, for each #»z (B)
j it computes

#»r (B)
e whose elements are computed as follows:

∀i, 1 ≤ i ≤ n : r(B)

e,i = z(B)

j,i + PRF(tk(B)

e , i)

Then, it constructs a vector of h tuples ( #»r (B)
e , j, e) (where 1 ≤ e, j ≤ h),

and randomly permutes the vector. Client B, in step 1(a.)iii sends lk(B), pk(B)

and ID
(B) to client Aσ. Then, in the same step, it sends each tuple: ( #»r (B)

e , j, e) in
the permuted vector to client Aσ. Therefore, in this process, instead of sending
the entire vector, #»r (B) = [ #»r (B)

1 , ..., #»r (B)

h ], it sends a tuple (including one of the
vectors in #»r (B)) at a time. In step 1(b.)ii, client Aσ finds index g the position
where a value at index j (after permutation) would move to, when client Aσ’s
permutation key is used. Then, it regenerates vector #»z (A σ)

j . Next, in step 1(b.)iv,
it computes values v(Aσ)

g,i and v(B)
e,i as follows. ∀i, 1 ≤ i ≤ n :

v(Aσ)

g,i = ω(Aσ)

g (xi) · z(Aσ)

j,i

v(B)

e,i = ω(B)

e (xi) · r(B)

e,i = ω(B)

e (xi) · (z(B)

j,i + PRF(tk(B)

e , i))

Also, client Aσ in the same step, computes vector #»q (Aσ)
e whose elements are

computed as: ∀i, 1 ≤ i ≤ n : qe,i = −(v(Aσ)
g,i + v(B)

e,i ) + a(Aσ)
g,i . In step 1(b.)v, it sends

#»q (Aσ)
e to client B. In the same step, client Aσ computes (l(Aσ)

j , l(B)
j ) and sends this

tuple (and their ids) to the cloud. Note, client B sends the tuples in a random
order to client Aσ, therefore the tuples that the cloud receives, i.e. (l(Aσ)

j , l(B)
j ), are

also in a random order. So, the above modification reduces the required storage
size at the client-side from O(hd) to a bin’s size d, with a complexity: O(d).

H.2 Counter Reset

To rest its counter, i.e., set all counters c(I)j to zero, the client I ∈ {A1, ...Aξ, B}
regenerates #»z (I) = [ #»z (I)

1 , ..., #»z (I)

h, ] where each vector #»z (I)
j contains the most recent

blinding factors used to blind the client’s y-coordinates. Also, it picks a fresh

master key k′(I) and generates #»z ′(I) = [ #»z ′(I)1 , ..., #»z ′(I)h ] such that each vector
#»

z′(I)
j

contains n fresh pseudorandom values z′(I)j,i generated the same way as the ones in
step 3, with the difference that here k′(I) is used. After that, it computes vector
#»z ′′(I) = [ #»z ′′(I)1 , ..., #»z ′′(I)h ] where the elements of each vector #»z ′′(I)j are computed as

follows. ∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i : z′′(I)j,i = z′(I)j,i −z(I)
j,i . It sends

#»

b (I) = π(pk(I), #»z ′′(I))



to the cloud and asks it to sum (component-wise) each elements in the vector
with the elements in the outsourced dataset. The cloud performs as follows:
∀g, 1 ≤ g ≤ h,∀i, 1 ≤ i ≤ n : o(I)

g,i + b(I)g,i = u(I)
g,i + z′(I)g,i . The client keeps k′(I),

discards k(I), and sets its entire counter to zero. Note, although the number of
counters is at most h and equals the hash table length, each counter’s bit-size is
independent of and smaller than the bit-size of each element in the table.

H.3 Authorizer Delegation

In Feather’s PSI computation, each authorizer client Aσ can further delegate
granting the computation to a semi-honest third party without leaking any in-
formation about the set elements. As in step 1.b., when the authorizers grant
the computation, they do not need to access their outsourced data. Therefore,
as long as the third parties do not collude with the cloud, they cannot learn
anything about the outsourced set elements. But, the traditional (multi-party)
PSI protocols cannot directly and efficiently offer this feature, as the data has
to be encoded by each client locally every time PSI is run.

H.4 Further Communication Cost Reduction

The communication (and computation) cost of Feather, in PSI computation,
can be further reduced in the case where a subset of authorizer clients Aσ run
multiple instances of PSI computation, e.g. β times, with client B at different
points in time. In this case, each Aσ can compute and send to the cloud the

mapping vector:
#  »

M̂ Aσ→ B, only once, and ask the cloud to store it. Then, for any
subsequent PSI invocation, the cloud reuses that mapping vector. For instance,
when there are ξ authorizer clients, this technique results in 2h(β − 1)ξ total
reduction in the communication cost.

I Full Asymptotic Cost Analysis

In this section, we analyse and compare the communication and computation
complexity of Feather with other delegated and traditional PSI protocols that
support multi-client in the semi-honest model.

I.1 Communication Complexity

In PSI Computation. Below, we analyse the protocols’ communication com-
plexity during the PSI computation. To compute PSI in Feather, client B, in
step 1(a.)iii, sends tk(B) to the cloud, also it sends to each client Aσ, two values:
pk(B) and lk(B), and vector #»r (B) of h bins. So, in total, client B’s communication
cost is ξ(2hd + h + 2) + 1 or O(cξ). In step 1(b.)v, each client Aσ sends to the

cloud tk(A), vector
#  »

M̂ Aσ→ B containing 2h elements, hn blinding factors: a(Aσ)
g,i , and

in total 2hn y-coordinates, i.e. ω(Aσ)
g (xi) and ω(Bσ)

g (xi). In the same step, it sends



#»q (Aσ) containing h bins to client B. So, client Aσ total communication cost is
2h(4d + 3) or O(c). The cloud communication cost is h(3d + 1) or O(c); as in
step 2, it sends to client B, vector

#»
t of h bins and h Bloom filters: BB(I)

j , where
|BB(I)

j | ≈ d and d = 100. Thus, Feather’s total PSI communication is O(cξ).
The total communication cost of each protocol in [1,5,6,49] is O(cξ), where

the majority of the messages in [5,6,49] are the output of a public key encryp-
tion scheme, whereas those in [1] and Feather, are random elements of a finite
field, that have much shorter bit-length. Moreover, the traditional PSI protocol
in [30] has O(cξ) communication complexity where all messages are the out-
put of a public key encryption scheme. Also, each scheme in [31,40] has O(cξ2)
communication cost where most of the messages in these protocols have shorter
bit-length, i.e. 128-bit, than in [30]. Nevertheless, the total number of messages
exchanged in [40] is less than the one in [31].

In Update. Now, we analyse the protocols’ communication complexity during
the update. In Feather, for a client to update an element, it sends to the cloud
two labels, one in each of steps 1 and 6. Moreover, in step 6, it sends to the
cloud a vector of 2d + 1 elements and a Bloom filter: BB(I)

j , where |BB(I)
j | ≈ d.

So, in total its communication cost is 3(d + 1) or O(d). The cloud in step 1
sends a vector of 2d+ 1 elements and a Bloom filter to the client. Therefore, the
cloud’s communication cost is 3d+ 1 or O(d). Also, the update in each protocol
in [1,5,6,49] has O(c) communication complexity.

I.2 Computation Complexity

Note that in our computation analysis, we do not count the pseudorandom and
hash functions invocation cost, as they are fast operations and their costs are
dominated by the other operations, e.g. modular arithmetic, shuffling, and fac-
torization.

In PSI Computation. Next, we analyse the protocols’ computation com-
plexity during the PSI computation. To compute PSI in Feather, client B, in
step 1(a.)i, shuffles a vector of h elements that costs O(c). It performs nh and
h(n+ nξ + 1) modular additions in steps 1(a.)ii and 3 respectively. In step 3, it
interpolates h polynomials where each costs O(d). As stated in section 3.2, for
a fixed bin’s capacity: d, and fixed overflow probability, the hash table length:
h, is linear with the set cardinality upper bound: c, i.e. h = (1 + σ) cd , where
σ ≥ 1 and for different values of c we have d = 100. In step 3, client B fac-
torizes h polynomials where each costs O(d2). In total, client B’s computation
cost is O(c+ 201hξ + 10302h) which is O(cξ + c). Note, client B performs only
inexpensive modular additions linear with cξ while other operations cost is lin-
ear with c. Each client Aσ in each step 1(b.)i and 1(b.)ii shuffles a vector of h
elements that costs O(2h) in total. In step 1(b.)iv, it performs 2hnd multiplica-
tions and 2hnd additions to evaluate the polynomials. In this step, to generate
values v(Aσ)

g,i , v
(Bσ)
g,i , it performs 2hn multiplications, it permutes two vectors of h



elements and carries out 2hn additions to generate vectors #»qe
(Aσ). In total, it

performs O(81208h) or O(c) modular operations. The cloud in step 2, performs
3hn(ξ + 1) additions and hn(ξ + 1) multiplications to generate values te,i. In
total, the cloud’s computation cost involves 804h(ξ + 1) or O(cξ + c) modular
operations. Hence, Feather’s computation complexity of PSI is O(cξ + c).

In the delegated PSI in [5,6,49], set elements are represented as a single
polynomial whose degree is linear to the set cardinality, c. In these protocols, the
cost of computing PSI, for each client, is dominated by public key encryption
operations, with complexity O(c), and polynomial factorization, for client B,
with complexity O(c2). Therefore, their total computation cost is O(cξ+c2). The
delegated PSI protocol in [1] uses a hash table and encodes set elements into a set
of polynomials of degree d, and this leads to O(cξ+c) for computing PSI. Now we
turn our attention to the traditional PSI protocols [30,31,40]. The computation
cost of the protocol in [30] is dominated by threshold additive homomorphic
encryption operations. In this protocol, there is a leader party who interacts
with other parties to compute a set of values, then all parties interact with each
other again to compute the final result. In the protocol, the leader’s computation
complexity involves O(c2) exponentiations, while each of the other parties’ cost
involves O(c) exponentiations. Therefore, the protocol’s total computation cost
involves O(cξ + c2) exponentiations. The authors also provide a variant of the
protocol that uses a hash table to reduce the computation cost to O(cξ+cξ log c).
The protocols in [31,40] also have a leader client with the same role as above, with
a difference that the number of public key operations in these protocols is much
lower. The total computation cost of both protocols in [31,40] is O(cξ2 +cξ), but
[40] has a better performance than [31].

In Update. Now, we analyse the protocols’ computation complexity during the
update. To update an element in Feather, a client performs 2d+ 2 additions in
step 2, and interpolates a polynomial in step 4 that costs O(d). In this step, it
extracts a bin set elements that costs O(d2), and performs nd multiplications
and nd additions to evaluate the polynomial. In step 2, the client performs n+1
additions to blind the values sent to the cloud. So, the client total computation
cost is O(2n+ 2nd+ 2 + d+ d2) or O(d2), recall d = 100. To update an element
in [5,49], a client needs to encode the element as a polynomial, evaluate the
polynomial on 2c + 1 elements and perform 2c + 1 modular multiplications, to
blind the evaluated values. Also, the cloud needs to perform the same number
of multiplications to apply the update. Therefore, each protocol’s update com-
plexity is O(c). However, in [6] due to the way each outsourced value is blinded,
the client has to download the entire dataset, remove the blinding factors and
apply the change locally that also costs O(c). In the protocol proposed in [1], if a
client naively updates only one bin, then the cloud would be able to learn which
elements have been updated with a non-negligible probability. The reason is that
the bins are in their original order, and each bin’s address is the hash value of
an element in the bin. If the client retrieves a bin, then the cloud would be able
to figure out what element is being updated with a non-negligible probability



when the set universe is not big. So, for the client to securely update its data, it
has to locally re-encode the entire outsourced data that costs O(c) too.

J Concrete Cost Evaluation

In this section, we first show how in Feather optimal parameters of a hash table
can be determined. Then, we provide a concrete communication and computation
evaluation of three protocols: Feather and [1,40]. The reason we only consider
[1,40] is that [40] is the fastest traditional multi-client PSI while [1] is the fastest
delegated PSI among the protocols studied in section 5. We consider the semi-
honest model where all but one clients can collude with each other. The protocol
in [1] was mainly designed and implemented for the two-client setting; however,
in theory, it is capable of supporting multi-client. Thus, for the sake of fair
comparison, we include it in our analysis.

J.1 Choice of Parameters

In Feather, with the right choice of parameters, the cloud can keep the overall
costs optimal, while keeping bins’ overflow probability negligibly small, e.g. 2−40.
In this section, we show how the hash table parameters can be chosen. As before,
let c be the upper bound of the set cardinality, d be the bin size, and h be
the number of bins. Recall that in our protocol, as we have shown, the overall
(computation, communication, and storage) cost depends on the product, hd
(i.e. the total number of elements, including set elements and random values
stored in the hash table). Furthermore, the computation cost is dominated by
factorizing h polynomials of degree n = 2d + 1. In order for the cloud to keep
the costs optimal, given c, it uses inequality 2, in Section 3.2, to find the right
balance between parameters d and h, in the sense that the cost of factorizing a
polynomial of degree n = 2d+ 1 is minimal, while hd is close to c.

At a high level, we do the following to find the right parameters. First, we
measure the average time, t, taken to factorize a degree n = 2d+ 1 polynomial
for different values of n (see Figure 2). Then, for each c, we compute h for
different values of d (see Figure 3). Next, for each d we compute ht, after that
for each c we find minimal d whose ht is at the lowest level (see Figure 4). In
the experiments, the number of set elements upper bound ranges over [210, 220],
and the bit length of set elements is 64. First, we determine the running time of
polynomial factorization, t. To calculate the running time, we factorize random
polynomials of degree n = 2d+ 1, for different values of n, where n ∈ [20, 1000],
so n can have small and large values. The experiment’s 4 result is depicted in
Figure 2.

4
The experiment is based on an implementation written in C++. It were conducted on a macOS
laptop, with an Intel i5@2.3 GHz CPU, and 16 GB RAM. We use the NTL library for factorizing
the polynomials defined over a field, Fp, where p is an 64-bit prime number. Also, to obtain the
average time, for each polynomial’s degree, n, we run the experiment 100 times using random
polynomials whose coefficients are picked uniformly at random from the field.
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Fig. 2: The average time taken to factorize polynomials of degree n defined over Fp,
where p is a 64-bit prime number.

As we can see in the figure when n > 600 the time grows rapidly. This
means, if we put so many elements in a bin, it would take too long to factorize
a bin’s polynomial. So we set n < 600 (i.e. d < 300). Second, for each value
of c ∈ {210, 213, 215, 217, 220}, and d ∈ [20, 290], we use the inequality to find
their corresponding number of bins, h; while keeping the probability (of bin
overloading) below 2−40. The result is depicted in Fig 3. Interestingly, as it is
evident in the figure, (for all c ∈ {210, 213, 215, 217, 220}) h grows rapidly when
d < 50 decreases; however, such growth is much slower when d > 100 reduces.
Third, given t and h, for each c we calculate the time of factorizing h polynomial
of degree n = 2d+1 for different d (i.e. we calculate ht). The result is illustrated
in Fig 4. It is evident in the figure that, for all c, when 100 ≤ d ≤ 110 the
computation cost is at the lowest level, so we set d = 100. In this case, as can be
seen in figure 3, hd ≤ 4c. For example, as we show in the graph at the bottom
left of the figure (i.e. c = 220 = 1048576), for d = 100, we have h = 41943, so
hd = 4194300 ≈ 4c.

In conclusion, in the protocol, the cloud can set d = 100 for all values of c. In
this setting, hd is at most 4c and only with a negligibly small probability, 2−40,
a bin may receive more than d elements.

J.2 Concrete Communication Cost Analysis

In PSI Computation. Below, we compare the three schemes’ concrete com-
munication costs during the PSI computation. Figure 5 summarises the result. In
short, Feather has from 8 to 496 times lower communication cost than [40], while
it has from 1.6 to 2.2 times higher communication cost than [1]. The communi-
cation cost of [40] is much higher than the other two protocols and grows much
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Fig. 3: The relation between the number of bins, h, and the size of each bin, d, for
different set size upper bounds, c.

faster when the number of clients increases5. The reason is that the number of
rounds and messages exchanged between parties in [40] is much higher.

In particular, the total number of bits: b, exchanged in [40] is quadratic with
the number of clients, i.e., b = (ξ + 1)(ξ − 1)(l(m1β1 +m2β2) + 500(m1 +m2)).
For instance, in [40] when an element’s size is 40-bit and set cardinality is 216,
the total communication cost in MB ranges in [407, 505658] when the number of
clients in the range [3, 100]. Nevertheless, in Feather and [1], the total number of
bits: b, is linear with the number of clients, i.e., in Feather, b = u((ξ−1)(10hd+
7h+ 2) + h(2d+ 1) + 1) + 5771h and in [1], b = u′ξ(h(2d+ 1)) + 256(ξ − 1). For
example, for the same parameters as above, the total communication cost (in
MB) of Feather is in the range [30, 1311], while that cost is in the range [18, 625]
for [1]. In the above equations, ξ + 1 refers to the total number of clients, l
is the bit-length of oblivious programmable pseudorandom function’s (OPRF)
output, such that l ≥ 128, and mi, βi are parameters of Cuckoo hashing, defined
in Table 2 in [40], and 500 refers to the amortized communication cost of each
OPRF instance in bits. Moreover, u and u′ are bit-length of a set’s element in

5
The x-axes, in the figures provided in this paper, are on a logarithmic scale.
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Feather and [1] respectively, such that u′ ≥ 2u + 15. Also, h and d = 100 refer
to a hash table length and bin’s capacity respectively.

The main reason that our protocol has a slightly higher communication cost
than [1] is that in our protocol we allow each client Aσ to send to the cloud
2hn y-coordinates of random polynomials; instead, similar to [1], we could have
let each client send to the cloud only a single key for a pseudorandom function
with which all pseudorandom polynomials and their y-coordinates would be re-



computed. However, we observed that this would add significant computation
cost to the cloud, especially when the number of clients is high, as the cloud
would have to evaluate the random polynomials 2ξhn times. Therefore, we tol-
erate about 2x added communication cost to achieve much higher computation
improvement at the cloud side. We provide a detailed concrete communication
comparison between the three protocols in Table 2, and detailed communication
cost, breakdown by party, in Feather in Table 5.

Table 5: Feather’s concrete communication cost (in MB): breakdown by party.

Party Setting Field-size 210 211 212 213 214 215 216 217 218 219 220

R
e
su

lt
R

e
c
ip

ie
n
t

2
-C

li
e
n
t 40-bit: 0.05 0.1 0.21 0.42 0.84 1.69 4.52 9.04 18.1 36.2 72.4

64-bit: 0.06 0.14 0.28 0.57 1.14 2.28 6.1 12.21 24.42 48.84 97.7

128-bit: 0.11 0.24 0.48 0.96 1.93 3.87 10.31 20.63 41.28 82.57 165.14

3
-C

li
e
n
t 40-bit: 0.08 0.16 0.33 0.66 1.34 2.68 7.15 14.31 28.63 57.27 114.56

64-bit: 0.11 0.24 0.48 0.96 1.93 3.87 10.31 20.63 41.28 82.57 165.14

128-bit: 0.21 0.43 0.87 1.75 3.51 7.03 18.74 37.49 75 150.01 300.03

5
-C

li
e
n
t 40-bit: 0.14 0.28 0.57 1.16 2.32 4.66 12.42 24.85 49.71 99.43 198.86

64-bit: 0.21 0.43 0.87 1.75 3.51 7.03 18.74 37.49 75 150 300

128-bit: 0.4 0.82 1.65 3.32 6.67 13.35 35.6 71.21 142.44 284.89 569.81

1
0
-C

li
e
n
t 40-bit: 0.29 0.59 1.19 2.39 4.79 9.6 25.59 51.19 102.4 204.81 409.63

64-bit: 0.45 0.92 1.85 3.72 7.46 14.93 39.82 79.64 159.3 318.62 637.25

128-bit: 0.89 1.8 3.61 7.26 14.56 29.16 77.75 155.5 311.04 622.11 1244.26

1
0
0
-C

li
e
n
t

40-bit: 3 6.11 12.22 24.55 49.2 98.51 262.66 525.33 1050.77 2101.64 4203.38

64-bit: 4.79 9.75 19.51 39.18 78.51 157.19 419.13 838.26 1676.69 3353.54 6707.25

128-bit: 9.57 19.46 38.93 78.18 156.68 313.68 836.37 1672.75 3345.82 6691.96 13384.2

A
u
th

o
ri

se
r 40-bit 0.12 0.24 0.49 0.98 1.97 3.96 10.56 21.12 42.25 84.51 169.0

64-bit: 0.19 0.39 0.78 1.57 3.16 6.33 16.9 33.8 67.6 135.22 270.44

128-bit: 0.38 0.78 1.57 3.15 6.33 12.67 33.8 67.6 135.21 270.44 540.89

C
lo

u
d

40-bit 0.03 0.06 0.12 0.24 0.49 0.98 2.63 5.26 10.53 21.07 42.15

64-bit: 0.04 0.09 0.19 0.39 0.78 1.58 4.21 8.42 16.85 33.72 67.44

128-bit: 0.09 0.19 0.39 0.78 1.57 3.16 8.42 16.85 33.71 67.44 134.88

In Update. Now, we evaluate the protocols’ concrete communication cost dur-
ing the update. In [1], in order for a client to securely update its outsourced data,
it has to download the entire set, locally update and upload the data. Via this
approach, the update’s total communication cost (for both the client and cloud),
in MB, will be in the range [0.13, 210] when the set size is in the range [210, 220]
and each element bit-size is 40. But, in Feather a client needs to download and
upload only one bin, that makes its total communication cost of update 0.003
MB for all set sizes (for the same element bit size as above). Thus, Feather’s
communication cost is from 45 to 70254 times lower than the one in [1].



J.3 Concrete Computation Cost Analysis

In this section, we provide an empirical computation evaluation of Feather using
a prototype implementation developed in C++. Feather’s source code includes
about 2000 lines of code (counted by cloc6), is available on a GitHub public
repository7. We compare the concrete computation cost of Feather against the
two protocols in [1,40]. Our prototype implementations utilise GMP8, Cryp-
topp9, NTL10, and Bloom Filter11 libraries for big-integer arithmetics, cryp-
tographic primitives, polynomial factorization and element membership checks
respectively. All experiments were conducted on a macOS laptop, with an Intel
i5@2.3 GHz CPU, and 16 GB RAM. We do not take advantage of paralleliza-
tion even though our protocol is highly parallelizable. In the experiments, we
use randomly generated 40 or 64 bits integers as set elements, and set size in the
range [210, 220]. The probability of bin overflow in the hash table, for the three
protocols, and false-positive in the Bloom filters, for Feather, is 2−40. Similarly,
the probability of bin overflow in [1] is set to 2−40. The error probability in the
padding scheme, for [1], is also set to 2−40 that results in padding size in the
range [52, 63] for the above set size range. To achieve optimal performance, as
discussed in Section J.1, we set bin capacity to d = 100. These choices of hash
table parameters lead to a hash table length in the range [30, 41943]. Accord-
ingly, in Feather, a Bloom filter’s parameters is set as follows, the total number
of elements: 100, the false-positive probability: 2−40, the optimal number of hash
functions: 40, and the optimal bit-length of Bloom filter: 5771. We also use two
different field sizes for Feather: 40 and 64 bits.

In PSI Computation. Now, we compare the three schemes’ runtime during
the PSI computation. First, we compare the runtime of Feather and the PSI in
[1]; to do that we run the latter protocol on the same machine specified above.
As the protocol in [1] has been designed and implemented for the two-client
setting, we compare the performance of Feather and the scheme in [1] in that
setting. Figure 6 summarises the result.

As Figure 6 indicates, Feather’s performance is better than the PSI in [1]. In
particular, Feather is 2-2.5 times faster than the PSI in [1]. The main reason is
that Feather avoids using the padding technique, so it can operate on a smaller
field size; wheres, the protocol in [1] uses the padding that negatively affects
all operations, particularly polynomial factorization, the dominant operation in
both protocols.

Tables 6 and 7 compare the two protocols’ performance at setup and PSI
computation respectively. As Table 6 illustrates, client-side setup runtime in
Feather is up to 1.4 times lower than that in [1]. This Feather’s improvement

6
https://github.com/AlDanial/cloc

7
https://github.com/anonymous-02020/Feather/tree/master/Implementation

8
https://gmplib.org

9
https://www.cryptopp.com

10
https://www.shoup.net/ntl

11
http://www.partow.net/programming/bloomfilter/index.html
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Fig. 6: PSI computation runtime comparison between Feather and [1].

Table 6: Client-side setup runtime comparison between Feather and [1] (in sec.).

Phase Protocols Elem. size 210 211 212 213 214 215 216 217 218 219 220

Client-side
Setup

Feather
40-bit 0.11 0.22 0.45 0.9 1.8 3.53 10.17 20.42 40.06 81.35 163.01

64-bit 0.11 0.23 0.45 0.9 1.81 3.54 10.24 20.44 40.74 81.6 163.13

[1]
40-bit 0.16 0.33 0.65 1.31 2.6 5.18 13.87 27.49 55.56 113.48 233.79

64-bit 0.16 0.33 0.65 1.32 2.61 5.24 14.27 27.65 55.95 119.1 234.78

Table 7: PSI computation runtime comparison between Feather and [1] (in sec.).

Phases Protocols Elem. size
Set’s Cardinality

210 211 212 213 214 215 216 217 218 219 220

Client-side
Computation
Delegation

Feather
40-bit 0.08 0.21 0.38 0.8 1.63 3.41 9 16.8 34.1 73.2 145.57

64-bit 0.09 0.21 0.42 0.83 1.66 3.42 9.01 18.06 35.18 73.62 147.09

[1]
40-bit 0.35 0.71 1.44 2.87 5.78 11.46 30.82 60.26 121.83 244.44 488.14

64-bit 0.36 0.72 1.45 2.88 5.98 11.49 31.47 60.88 122.22 256.01 490.04

Cloud-side
Computation

Feather
40-bit 0.01 0.02 0.04 0.1 0.2 0.43 1.08 2.15 4.42 9.04 17.78

64-bit 0.01 0.02 0.05 0.1 0.21 0.43 1.1 2.17 4.8 9.1 17.9

[1]
40-bit 0.34 0.68 1.36 2.74 5.49 10.95 29.24 58.67 116.43 233.36 469.79

64-bit 0.34 0.69 1.36 2.75 5.59 10.99 30.12 58.7 116.64 244.27 470.5

Client-side
Result

Retrieval

Feather
40-bit 0.9 1.79 3.59 7.31 15.02 29.1 74.68 150.58 297.07 640.63 1208.99

64-bit 1.23 2.54 5 9.5 20.23 39.63 102.5 200.26 411.27 806.49 1636.61

[1]
40-bit 1.82 3.33 6.28 12.47 24.55 49.43 130.5 265.67 519.31 1041.26 2081.19

64-bit 2.39 4.01 7.66 14.92 29.63 58.72 162.53 313.42 620.69 1293.42 2479.55

Total
Feather

40-bit 0.99 2.02 4.01 8.21 16.85 32.94 84.76 169.53 335.59 722.87 1372.34

64-bit 1.33 2.77 5.47 10.43 22.1 43.48 112.61 220.49 451.25 889.21 1801.6

[1]
40-bit 2.51 4.72 9.08 18.08 35.82 71.84 190.56 384.6 757.57 1519.06 3039.12

64-bit 3.09 5.42 10.47 20.55 41.2 81.2 224.12 433 859.55 1793.7 3440.09

stems from two main factors, (a) using an efficient error detecting mechanism
that allows parties to work on a smaller field, and (b) utilising a more effi-
cient polynomial evaluation method, i.e., Horner’s method. Moreover, as Table
7 shows, the cloud-side performance, in Feather is 26-34 times faster than [1]



and the gap will increase if more clients participate. The reason is that Feather
allows each client to send y-coordinates of random polynomials to the cloud.
Therefore, unlike [1], the cloud does not need to re-evaluate the polynomials and
this yields saving computation cost at the cloud-side (with the penalty of dou-
bling the overall communication cost). Otherwise, this computation cost would
be a bottleneck at the cloud, particularly when the number of clients is high.

Now, we compare the runtime of Feather and [40]. For the latter protocol’s
runtime, we use the values reported in [40]. For Feather, we measure the total
runtime of three phases: client-side PSI delegation (that includes both clients),
cloud-side result computation and client-side result retrieval. We highlight that
in Feather all parties use a single thread and core; whereas, in [40] the leader
client deals with all other clients’ queries in parallel using multiple cores which
leads to lower runtime at the leader-side. Moreover, the experiment in [40] took
advantage of 16 times bigger RAM than ours. Similar to the other two protocols,
we assume each client upon receiving a message, starts performing computations
on it. As Figure 7 shows, the performance of [40] is better than Feather especially
for a small number of clients. The main reason is that Feather utilises polynomial
factorization to extract the set elements from outsourced data. This operation
makes Feather’s performance slower than [40] which does not need to use it, as
the clients keep their data locally. Hence, this is the added cost of our protocol to
achieve data outsourcing where the clients can delete their data after outsourcing
it. To provide concrete values here, for instance, when set cardinality is 216 and
element bit-size is 40, [40] is from 40 to 4 times faster than Feather when the
number of clients is 3 and 15 respectively. However, the performance of the
protocol in [40] becomes significantly worse when the number of clients increases.
The main reason is that the protocol’s total computation cost is quadratic with
the number of clients.
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Fig. 7: PSI computation runtime comparison between Feather and [40].

Nonetheless, in Feather, the runtime gradually grows when the number of
clients increases, as its total computation cost is linear with the number of clients;
see Table 8 for a detailed runtime comparison between the two protocols. We



Table 8: PSI computation runtime comparison between Feather and [40] (in sec.).

Protocols Elem. size
Set’s Cardinality Number of Clients

212 216 220 3 4 10 15

[40]

4
0
,

6
4
-b

it X 0.3 0.34 1.01 1.85

X 2.14 3.16 12.33 20.61

X 41.64 52.25 182.8 304

Feather
4
0
-b

it

X 4.29 4.32 4.45 4.64

X 86.56 87.38 88.14 88.78

X 1383.79 1414.39 1639.94 1945.24
6
4
-b

it

X 5.32 5.43 5.49 6.3

X 111.08 113.51 114.31 116.11

X 1817.5 1835.51 2143.33 2443.61

highlight that, [40] has not reported the runtime for more than 15 clients; but,
it is not hard to see that for a (relatively) large number of clients, e.g., 100-150,
our protocol will outperform [40]. We have also conducted experiments for the
case where a very large number of clients participate in our protocol, i.e., up
to 16000 clients. To provide a concrete value here, our protocol only takes 4.7
seconds to run PSI on 1000 clients each of which has 211 elements. See Table 9
for more detail.

Table 9: Feather’s PSI computation runtime for different number of clients (in sec.).
Elements size: 40-bit.

Protocol Set’s Cardinality
Number of Clients

10 20 100 1000 5000 6000 7000 10000 15000 16000

Feather
210 0.99 1 1.13 2.28 21.09 37.41 51.45 119.94 286.08 328.85

211
2.06 2.04 2.27 4.75 107.65 158.2 214.5 406.41 891.04 909.46

In Update. Now, we compare the runtime of Feather and the PSI in [1] during
the update. Note, the protocol and implementation in [1] do not provide any
mechanism for updating sets, but we have developed a prototype implementation
of this protocol that allows clients to securely update their outsourced data
by downloading and unblinding its entire outsourced data; updating a bin; re-
encoding the elements of it; re-blinding the entire set; and uploading it to the
cloud. The source code is available in [3]. For the update operation in Feather,
we measure the total runtime of four phases at the client-side: (a) computing an
update query, (b) unblinding and decoding a bin, (c) applying the update, and
(d) encoding and re-blinding the bin. For the update in [1], we measure the total
time when a client starts unblinding its set until it finishes re-blinding it.
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Fig. 8: Update runtime comparison between Feather and [1].

Figure 8 depicts the update runtime comparison between the two protocols.
As evident, the update runtime for Feather is much lower than that of in [1],
especially for a larger set size. Recall, we have provided a detailed update runtime
comparison between the two protocols in Table 3. As the table shows, the update
runtime of the PSI in [1], for 40-bit elements, grows from 0.07 to 27 seconds when
the set size increases from 210 to 220; whereas for Feather, the update runtime
remains 0.023 seconds for all set sizes. Hence, the update in Feather is from 3
to 1182 times faster than the one in [1], for 40-bit elements. The reason for this
huge difference in the performance is that in [1] the client needs to unblind and
re-blind all the bins in the hash table, but in Feather such operations are carried
out only on one bin.
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