LEVERAGING RELATIONAL STRUCTURE
THROUGH MESSAGE PASSING FOR MODELLING
NON-EUCLIDEAN DATA

PETER MELTZER

THESIS
Submitted for degree of PhD

First Supervisor Peter J. Bentley
Second Supervisor Mark Herbster

Computer Science Department
Engineering Faculty
University College London (UCL)

I, Peter Meltzer, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I con-
firm that this had been indicated in the thesis.

Peter Meltzer: Leveraging Relational Structure through Message Passing for
Modelling Non-Euclidean Data, © July 2021

ABSTRACT

Modelling non-Euclidean data is difficult since objects for comparison
can be formed of different numbers of constituent parts with different
numbers of relations between them, and traditional (Euclidean) meth-
ods are non-trivial to apply. Message passing enables such modelling
by leveraging the structure of the relations within a (or between) given
object(s) in order to represent and compare structure in a vectorized
form of fixed dimensions.

In this work, we contribute novel message passing techniques that
improve state of the art for non-Euclidean modelling in a set of specif-
ically chosen domains. In particular, (1) we introduce an attention-
based structure-aware global pooling operator for graph classification
and demonstrate its effectiveness on a range of chemical property pre-
diction benchmarks, we also show that our method outperforms state
of the art graph classifiers in a graph isomorphism test, and demon-
strate the interpretability of our method with respect to the learned
attention coefficients. (2) We propose a style similarity measure for
Boundary Representations (B-Reps) that leverages the style signals in
the second order statistics of the activations in a pre-trained (unsuper-
vised) 3D encoder, and learns their relative importance to an end-user
through few-shot learning. Our approach differs from existing data-
driven 3D style methods since it may be used in completely unsuper-
vised settings. We show quantitatively that our proposed method with
B-Reps is able to capture stronger style signals than alternative meth-
ods on meshes and point clouds despite its significantly greater com-
putational efficiency. We also show it is able to generate meaningful
style gradients with respect to the input shape. (3) We introduce a
novel message passing-based model of computation and demonstrate
its effectiveness in expressing the complex dependencies of biological
systems necessary to model life-like systems and tracing cell lineage
during cancerous tumour growth, and demonstrate the improvement
over existing methods in terms of post-analysis.

IMPACT STATEMENT

This thesis has practical applications in three diverse yet important ar-
eas.

First, we address graph level representation learning in the context
of chemical property prediction. The ability to reliably predict molecu-
lar properties such toxicity and mutagenicity is of vital significance in
drug discovery and other pharmaceutical applications. Conventional
high throughput screening techniques are expensive and time consum-
ing, thus any computational methods able to reduce the number of
drug candidates by ruling out those that are harmful will help to re-
duce costs, save time and ultimately deliver new drugs more efficiently.

Second, we propose an unsupervised method for 3D style metric
learning for Boundary Representations (B-Reps). B-Reps are the in-
dustry standard representation for Computer Aided Design (CAD),
and are heavily relied on in product design industries where style is of
great importance. However, there is very little existing work applying
style learning (or even any machine learning) methods to B-Reps. Our
style metric may be used to provide feedback directly to designers by
indicating parts of a design that do no match the target style, as well
as by finding existing components that match intended style.

Finally, we propose a novel modelling technique for simulating com-
plex dynamic biological systems, which we investigate in the context
of cancerous tumour growth. Understanding how cells evolve during
division, and thus how tumours arise and develop is paramount in de-
termining which treatments may be effective, as well as aiding in the
design and understanding of new treatments.

ACKNOWLEDGMENTS

First and foremost I would like to thank my supervisor, Peter]. Bentley,
for always demanding the best from me, and supporting and challeng-
ing me (and sometimes my patience!) until I get there. It's been a long
tough ride, but I have grown so much as a result. I'd like to thank my
family, and in particular my brother Tom, for always believing in me
and helping me to believe in myself, and all my UCL friends, whether
from CS or Physics, for keeping me sane, letting me know I'm not alone,
and just being there for me. I could not have done this without you.

Thank you to my ex-Braintree colleagues (Marcelo, Kasia, Kyohei,
Laura, ...) for making my day-to-day in the office so much fun! In par-
ticular thanks to Arturo Araujo (my unofficial adopted second super-
visor) for being such a great support and role model.

Special thanks to Amir Khasahmadi for sanity checking my Intro-
duction and Literature Review chapters, to Victoria Clark for her out-
standing knowledge of chemistry that helped me to understand and
plot the molecules in Chapter 3, to Hooman Shayani and my other Au-
todesk collaborators for teaching me so much and being such a plea-
sure to work with, and to Braintree and UCL CS department for provid-
ing the funding for me to complete the work presented in this thesis.

Last, but by no means least, I would like to thank my loving part-
ner, Nick Pelly-Fry, for putting up with my stress, my ranting, my anxi-
eties, and all the rest, and supporting me to succeed. You are awesome,
thank you!

PUBLICATIONS AND OPEN SOURCE
CONTRIBUTIONS

PUBLICATIONS

Peer Reviewed:

o Peter Meltzer, Hooman Shayani, Amir Khasahmadi, Pradeep Ku-
mar Jayaraman, Aditya Sanghi, and Joseph Lambourne. “UVStyle-
Net: Unsupervised Few-Shot Learning of 3D Style Similarity Mea-
sure for B-Reps.” In: International Conference on Computer Vision
(ICCV) (2021)

e Joseph Lambourne, Karl D. D. Willis, Pradeep Kumar Jayaraman,
Aditya Sanghi, Peter Meltzer, and Hooman Shayani. “BRepNet:
A Topological Message Passing System for Solid Models.” In:
Computer Vision and Pattern Recognition (CVPR) (2021)

e Peter Meltzer, Marcelo Daniel Gutierrez Mallea, and Peter J. Bent-
ley. “PiNet: Attention Pooling for Graph Classification.” In: Neu-
ral Information Processing Systems (NeurIPS): Graph Representation
Learning Workshop. 2019

e Peter Meltzer and Peter J. Bentley. “Interacting Hierarchical Dy-
namic Networks.” In: The 2018 Conference on Artificial Life: A Hy-
brid of the European Conference on Artificial Life (ECAL) and the Inter-
national Conference on the Synthesis and Simulation of Living Systems
(ALIFE) (2018), pp- 582-589. por: 10.1162/isal_a 00108

ArXiv:

e Peter Meltzer, M.D.G. Marcelo Daniel Gutierrez Mallea, and Pe-
ter J. Bentley. “PiNet: A Permutation Invariant Graph Neural
Network for Graph Classification.” In: arXiv (2019)

e Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J. Bent-
ley. “Capsule Neural Networks for Graph Classification Using
Explicit Tensorial Graph Representations.” In: arXiv (2019)

Principle Supervisor for MSc Computer Science Student:

e Federated Learning with Graph ML Algorithms — Akash Bhat-
tacharya

OPEN SOURCE

e DeepGL: https://github.com/neo4j-graph-analytics/ml-models

https://doi.org/10.1162/isal_a_00108
https://github.com/neo4j-graph-analytics/ml-models

e IHDNSs: https://github.com/meltzerpete/IHDN
e PiNet: https://github.com/meltzerpete/PiNet

e UVStyle-Net: https://github.com/AutodeskAILab/UVStyle-Net

https://github.com/meltzerpete/IHDN
https://github.com/meltzerpete/PiNet
https://github.com/AutodeskAILab/UVStyle-Net

CONTENTS

1 INTRODUCTION 15
1.1 Why Message Passing? 17
1.2 Illustrated Example 19
1.3 Aim 23
1.4 Justification for MPNN Framework 25
1.5 Methodology 26

1.5.1 Chemical Property Prediction for Drug Discovery 27
1.5.2 Geometric Style Similarity 28
1.5.3 Biological Modelling for Healthcare 29
1.6 Contributions 29
17 Summary. 31
2 LITERATURE REVIEW 32
2.1 Challenges in Modelling Non-Euclidean Data 32
211 SingleDomain 33
2.1.2 Multiple Domains 34
2.2 Alternatives to Message Passing 35
221 SetProcessing 35
2.2.2 Spectral Methods 36
2.2.3 Language Inspired Methods 37
2.2.4 Vision Inspired Methods 41
2.3 Message Passing Methods 42
2.3.1 Weisfeiler-Lehman Isomorphism Test 43
2.3.2 GraphKernels. 45
2.3.3 Spectral Inspiration 45
23.4 MPNNs 47
2.4 Limitations of Message Passing 52
2.5 Applications o o L 55
26 Summary 56

3 PINET: ATTENTION POOLING FOR GRAPH CLASSIFICATION 59
3.1 Introduction o L L 59
32 Context 60
33 Method o 61

3.3.1 Learning Vertex Importance 61
3.3.2 Multi-Head Attention 62
3.3.3 Extended Message Passing Operator 63
3.3.4 Geometric Features of Molecules 63
3.4 Experiments & Results 64
3.41 Datasets 65
3.4.2 Hyper-Parameters 67
3.4.3 IsomorphismTest. 68
3.4.4 Message Passing Mechanism 70
3.4.5 Attention. 0oL, 71

4

CONTENTS

3.4.6 Benchmark 77
3.5 Summary 78
UVSTYLE-NET 8o
4.1 Introduction Lo 8o
4.2 Background & Related Work 83
421 IntroductiontoB-Reps 83
4.2.2 Geometric Feature Learning 84
4.2.3 Geometric Style Similarity 85
4.2.4 StyleTransfer 86
4.2.5 3DStyleTransfer 88
43 Method Lo o 88
4.3.1 Intuition Behind the Gram Matrices 92
4.4 Experiments & Results 92
4.41 Data L 95
4.4.2 Model Details & Hyperparameters 96
4.4.3 Measuring StyleSignal 97
4.4.4 Gradient Visualization 102
4.4.5 Few-shot Learning of User-Defined Style Measure 103
4.4.6 Unsupervised Pre-training 106
4.47 Ablation oL 111
4.5 SUMMATY v i 112
MESSAGE PASSING FORINTERACTINGDYNAMICNETWORKS115
51 Introduction 115
52 Background 117
5.3 Interacting Hierarchical Dynamic Networks 119
5.3.1 The Model of Computation 119
5.3.2 Implementation 123
5.4 Tracing Cell Lineage in Simulated Aneuploid Tumour
Growth 124
5.4.1 Biological Observations 124
54.2 TheModel, 125
54.3 Components. 125
5.4.4 Organisation. 127
5.4.5 Interaction 128
55 Experiment. 131
5.5.1 ReferenceModel 132
56 Results 133
5.6.1 Verification 133
56.2 CellLineage 136
5.6.3 Comparison 139
57 Summary 140
CONCLUSION 142
6.1 Aim 142
6.11 PiNet 142
6.1.2 UVStyle-Net 143

6.1.3 IHDNs 145

CONTENTS

6.2 Critical Evaluation 146
6.21 PiNet L. 146

6.22 UVStyle-Net 147

6.23 IHDNs 149

6.3 FutureWork 149
6.3.1 PiNet: Hard Masking & Hierarchical Pooling . . 150

6.3.2 UVStyle-Net: Feature Distribution Measure . . . 151

6.3.3 UVStyle-Net: Further Relational Structure. . . . 153

6.3.4 Further Directions 155
CHANGES 157

REFERENCES 158

10

LIST OF FIGURES

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

Differentiating GNNs, GCNs, and MPNNs . . 17
Isomorphic graphs with different orderings . . 18
Significance of relational structure 19
Example: Sample graphs 20
Example: One round of messages 21
Example: Graph representations 22
Message passing formal definition 24
Structural similarity 38
Weisfeiler-Lehman isomorphism test 44
Multi-set aggregation failure cases 49
Weisfeiler-Lehmen failurecase 52
Revisiting WL failurecases 54
Overviewof PiNet 61
Example isomorphism test graphs 66
Isomorphismtest 69
Message passing extension 70
Accuracy against number of attention heads . . 71
Single head attention coefficients 72
3D Views of moleucles 73
PCA on attention coefficients 74
8 Head attention: Molecule6. 74
8 Head attention: Molecule7. 75
8 Head attention: Moleculeg. 75
8 Head attention: Molecule3s 76
Explained variance of attention coefficients . . 77
Font as a weak stylelabel 82
The B-Rep data structure 83
Overview of UVStyle-Net 88
UV-Net encoder architecture 89
SolidMNIST dataset generation process 095
ABC style class examples 96
Linear probes on SolidMNIST 98
Top-5 queries with first % layers 99
Sampling bias advantage of UV-Net 100
Single layer queries on SolidMNIST 101
Gradient visualizations 103
Examples of fonts for few-shot evaluation . . . 104
Further few-shotresults 105
Few-shot evaluation on SolidMNIST 106
Top-5 querieson ABC 107

Top-5 queries for PSNet* with cosine distance . 108

11

Figure 4.17 Top-5 queries on ABC with different weights . 109

Figure 4.18 Top-5 queries on ABC with final layer only . . . 109
Figure 4.19 Few-shot content optimization 110
Figure 4.20 Ablation: Instance/face normalization 111
Figure 4.21 Ablation: Dimension reduction 112
Figure 5.1 The abstract IHDN system model 120
Figure 5.2 Hierarchies and operations on systems 121
Figure 5.3 Recursive IHDN computation 122
Figure 5.4 Chromosome distributions 126
Figure 5.5 Hierarchical system model 128
Figure 5.6 Message passing across hierarchical scales . . . 129
Figure 5.7 Example simulation output 132
Figure 5.8 Total livingcells 134
Figure 5.9 Chromosome diversity 135
Figure 5.10 Ratio of apoptosis to division genes 135
Figure 5.11 Relational cell configurations 136
Figure 5.12 Visual query result example 137
Figure 6.1 Extension to the UVStyle-Net architecture . . . 155

LIST OF TABLES

Table 2.1 Non-Euclidean applications 55
Table 3.1 Benchmark dataset details 65
Table 3.2 Chemical property prediction benchmark . .. 78
Table 4.1 Details of SolidMNIST dataset 94
Table 4.2 Manually labelled ABC style subsets 96
Table 4.3 Hyper-parameters 97
Table 4.4 Classification comparison of 3D encoders . .. 99
Table 4.5 Compute comparison of 3D encoders 101
Table 4.6 Quantitative evaluation on ABC style subsets . 111
Table 5.1 IHDN Systems for cell modelling 127
Table 5.2 Proportions of distinct evolutionary paths . . . 138

12

LISTINGS

Listing 5.1

Example Cypher query for cell lineage

13

ACRONYMS

ABM Agent-Based Model

API Application Programming Interface
CAD Computer Aided Design

B-Rep Boundary Representation

CNN Convolutional Neural Network
DGCNN Dynamic Graph CNN

DGI Deep Graph InfoMax

FLAG Free Large-scale Adversarial Augmentation on Graphs
GAN Generative Adversarial Network

GAT Graph Attention Networks

GCN Graph Convolutional Network

GG-NN Gated Graph Neural Network

GIN Graph Isomorphism Network

GNN Graph Neural Network

GRU Gated Recurrent Unit

IHDN Interacting Hierarchical Dynamic Network
OGB Open Graph Benchmark

MLP Multi-Layer Perceptron

MPNN Message Passing Neural Network

NLP Natural Language Processing

PCA Principal Component Analysis

PIC Power Iteration Clustering

PNA Principle Neighbourhood Aggregation
RNN Recurrent Neural Network

ReLU Rectified Linear Unit

WL Weisfeiler-Lehman

14

INTRODUCTION

Message passing is a fundamental abstraction in Computer Science
that has become ubiquitous in modern computing. While message
passing has a long history in concurrency and distributed systems,
even forming the basis of the Turing Complete 7r-calculus [7], its use
in data-driven settings is just as significant.

We provide a formal definition of message passing in Section 1.3,
however for the purposes of this introduction it is sufficient to consider
message passing as the exchange and/or update of state between sepa-
rate units connected according to some graph. Messages facilitate the
exchange of state between units and may only be sent and received be-
tween connected units; and based on messages received, units may up-
date their own state or otherwise. The vast uptake of message passing
in concurrent and distributed systems is likely due to the expressive
yet simple abstraction it affords, making it easy to reason about and
formalise the behaviour of systems of separate computational units
connected according to fixed, or even dynamic, physical or virtual net-
works.

The effectiveness and expressivity of message passing for Artificial
Intelligence applications can be seen in Cellular Automata as far back
as the 1950’s [8], in which a dense grid of units perform simple up-
date rules based on their local neighbourhoods, giving rise to emer-
gent properties and effects. However, it is not until much later that
this concept is applied in data-driven settings.

The efficiency advantages of message passing in leveraging sparsity

are of particular significance in Belief Propagation methods, which

15

INTRODUCTION

have been a popular technique since their introduction in the 1980’s [9].
In this context, sum-product message passing (messages are summed
or multiplied) enables efficient inference on graphical models such as
Bayesian networks and Markov Random Fields [10], where the graphs
express the conditional dependence structure between random vari-
ables.

Further advantages to message passing can be seen in algorithms
where the message passing graph is instead prescribed by the non-
Euclidean (not defined in n-dimensional linear space) relational struc-
ture of the given input data. The Page-rank algorithm [11] in which
vertices represent web pages with edges indicating hyperlinks between
them is an early example of this, and showcases the trivial scalability
and efficiency typically afforded by message passing algorithms.

Since the fusion of message passing with deep neural networks, i.e.
Message Passing Neural Networks (MPNNs), there has been an explo-
sion in techniques and applications, especially in the areas of computer
vision and chemo/bio-informatics, with MPNNs obtaining state of the
art performance on a wide range of tasks [12]. Itis precisely these areas
that this work contributes to.

The power in MPNNs is largely due to their relational inductive biases,
which enable the networks to learn not only about isolated entities,
but also their relations and composition [13]. For example, through
local aggregations and pooling in pixel coordinate space, conventional
Convolutional Neural Networks (CNNs) provide a strong inductive bias
for the hierarchical composition of edges, textures and objects [14].
Similarly, for MPNNS, relations between entities provide strong induc-
tive biases for the hierarchical composition of these related entities, for
example atoms to molecular substructures/motifs, words to concepts,

or people to social groups and subcultures.

16

1.1 WHY MESSAGE PASSING?

Note, the terms MPNN, Graph Neural Network (GNN), and Graph
Convolutional Network (GCN) are used inconsistently in recent works.
For example, Zou et al. [15] draw a distinction between GCNs and self-
attention methods, whereas others such as Zhang et al. [16] include
attention methods under the GCN category. The term GCN is also fre-
quently used to indicate the specific instance of Kipf et al. [17], i.e. [18],
and other times as a general collection of convolution methods [16].

For clarity, in this work GNN is used to describe any neural network
architecture that operates on graphs, GCN for any convolutional ar-
chitecture for graphs, and MPNN to describe any neural network that
passes messages according to the local relational structure of its in-
put(s). Thus, all MPNNs and GCNs are GNNs; however, the converse
is not the case (see Figure 1.1). For referring to the specific instance of

the GCN from [17] we provide the reference each time, i.e. “The GCN

[17]...”.

MPNNs

GCNs

Patchy-SAN [21]
Graph Capsule
Networks [6]

GAT [29]
GGNN [25]
GraphSAGE [26]

Graph Tranformer
Networks [73]

Figure 1.1: Differentiating GNNs, GCNs, and MPNNs, with examples of each.

1.1 WHY MESSAGE PASSING?

While the message passing abstraction has obvious advantages for rea-
soning about and implementing concurrent and distributed systems,
message passing algorithms offer further advantages for handling non-

Euclidean structured/relational data. In addition to their relational in-

17

1.1 WHY MESSAGE PASSING?

ductive biases discussed above, message passing algorithms are permu-
tation equivariant.

In this work, a function f is permutation equivariant iff f (P, -X) = P -
f(X), and permutation invariant iff f (P - X) = f(X), where P, € RN*N
is any permutation matrix and X € RN*4,

By definition, the vertices of a graph form a set meaning that there is
no explicit ordering to them, yet to represent them in computer mem-
ory and thus to process them requires applying some order. For ex-
ample, the most common formats for storing and processing graphs
include adjacency matrices, edge lists and linked lists, all of which as-

sume an ordering on the vertices.

1 2 3 4 1 2 3 4
1 0 1 0 0 1 0 1 1 0
2 1 0 1 1 2 1 0 1 0
3 0 1 0 1 3 1 1 0 1
4 0 1 1 0 4 0 0 1 0

Figure 1.2: The two graphs shown are obviously isomorphic (colours indicate
vertex correspondence), yet their adjacency matrices are not so
clearly equivalent. While it is possible to permute the rows and
columns of one matrix to exactly match the other, identifying ex-
actly how is non-trivial and for arbitrary input graphs there exist
no known polynomial time solutions [19].

As shown in Figure 1.2, isomorphic graphs can have completely dif-
ferent permutations of vertices. Thus, in order to recognise equivalent
graphs and process them equivalently, there are two possibilities: ap-
ply a canonical labelling procedure as a pre-processing step to sort the
vertices in a consistent way, or use permutation invariant or equivari-

ant functions.

18

1.2 ILLUSTRATED EXAMPLE

Due to the complexity of the graph isomorphism and sub-graph iso-
morphism problems (the sub-graph isomorphism problem is known
to be NP-Complete [20]) and problems encountered with symmetries,
canonical vertex labelling algorithms are either approximate or expen-
sive to compute. Thus using message passing, which does not require

such labellings, is clearly advantageous.

1.2 ILLUSTRATED EXAMPLE

Consider the molecules in Figure 1.3. Treating each molecule as a set
of atoms is not enough to distinguish the two as the atoms in each are
the same, thus the relational structure (i.e. which atoms are connected

to which) is clearly of significance.

H H H H
| | |
H—C—C—O0—H H—C—O0—C—H
| | |
H H H H
(a) Ethanol — boils at 78.4°C (b) Dimethyl Ether — boils at —24°C

Figure 1.3: Both molecules are formed of exactly the same number of car-
bon, hydrogen and oxygen atoms; yet the molecules have differ-
ent properties due to the difference in their arrangement, i.e. their
relational structure.

To illustrate the utility of message passing algorithms in capturing
this relational information, we will consider the task of chemical prop-
erty prediction. Suppose we have four graphs A, B, C, and D (see Fig-
ure 1.4) with arbitrarily assigned vertex ids.

In order to process the graphs with a conventional neural network
we must first find a way to order the vertices canonically, not only to
ensure that isomorphic graphs appear in exactly the same order, but

also so that similar graphs appear in similar/sensible orders. Failure

19

1.2 ILLUSTRATED EXAMPLE

[0]1]0] [0]1]0]

0 [1]o]o] [2]ofo] [2]ofo] [ofol2 e [1]ofo] [1]ofo] [1]ofo] [ofol2

[0]2]0] [0]2]0]

001

Figure 1.4: Four graphs representing chemical compounds. One-hot vertex
vectors indicate type of atom.

to do so would be equivalent to feeding images to a 2D CNN with all
of the pixels randomly shuffled.

We must then find a way to express each graph as a vector in a single
vector space, i.e. a fixed number of dimensions. Common non-message
passing techniques for this would be to either sample parts of larger
graphs, zero pad smaller graphs, or to use some combination of both,
i.e. [21]. However, for message passing we require neither sampling or
padding, nor canonical ordering.

As a very trivial demonstration, suppose each vertex sends a mes-
sage to its neighbours containing its associated state (the one-hot vec-
tor). If each vertex updates its new state to be the sum of its previous
state (Figure 1.4) and the mean of all incoming messages, it would re-
sult in the vertex states shown in Figure 1.5.

To aid this discussion, let G{’ represent vertex v of graph G at time
step ¢, i.e. Aéo) represents the green vertex of graph A att = 0 (before
message passing), and Aél) the same vertex at t = 1 (after one round
of message passing).

Already, even with such a trivial algorithm, a powerful property
emerges. Namely, we observe that vertex roles with respect to local

structure become apparent. For example, while all blue vertices at

20

1.2 ILLUSTRATED EXAMPLE

200 JEEEIEE L 0 1

Figure 1.5: Each vertex updates its state to be the sum of its previous state
with the mean of the incoming messages.

t = 0 (Figure 1.4) share the state (1,0,0), at t = 1 (Figure 1.5) we
observe that vertices with shared local structure now share their rep-
resentations, i.e. Aél) = Bfll) = Cé” = Dil) = Df,}), but differ from
vertices with different local structure, i.e. Aél) +* Afll) etc. This is signif-
icant, since it demonstrates that through passing messages according
to the relations between entities (in this case atoms), we have leveraged
the relational structure to implicitly capture structural information.

To consider each graph as a single vector, we now only require an
aggregation function that is invariant to the ordering of the vertices, for
example summation. Summing the resulting vertex representations in
each graph, ie.)’ G, produces the vectors shown in Figure 1.6.

First, we observe that the isomorphic graphs A and B receive exactly
the same vectors. This property is in fact guaranteed by this algorithm
due to the permutation equivariance of the message passing combined
with the permutation invariance of the sum aggregation. Second, due
to the fact that they differ by only one vertex, we observe that A and B
are closer in Euclidean distance to C than D — a result that would also
be obtained if we were to consider the graph edit distance [22]. Third,

we see that C differs from A and B in only the x dimension; however,

21

1.2 ILLUSTRATED EXAMPLE

C=(6.1,2.3,1.5)
*1>~<Al=B=+B.1, 2.3, 115
o]

5.0
5.5
6.0 6.5

7.0 7.5

X "~ 8.0 8.5 2.5

9.0

Figure 1.6: Resulting graph representation vectors — summation of all vertex
states att = 1: We see that A = B, ||[A — Cll, < IlA — Dl and that C
differs from A and B only in the x dimension.

in this dimension, due to the shared chain of three blue vertices, A and
B are in fact closer to D than C.

It is clear that despite the simplicity of this algorithm, the resulting
vector representations capture the similarities and differences between
these examples, i.e. they would be useful representations upon which
a neural network could learn the relative importance of each dimen-
sion in discriminating the target property. Of course, the use of more
complex, learnable message and update functions, along with more
rounds of message passing and a greater number of dimensions would
increase the expressivity and discriminative power significantly. For
an example of this, Kipfet al. [17] demonstrate that a GCN with random
weights (without training) is able to produce meaningful embeddings,

which are then improved significantly with training.

22

1.3 AIM

1.3 AIM

Following the discussion above, the aim of this work is

to develop novel message passing techniques that leverage
relational structure in order to improve on existing state of

the art methods for modelling non-Euclidean data,

according to the definitions below.

Given a graph G = (V,E), with vertices V = {1, ...,|V|} and edges
E C V?, we adapt the MPNN framework [23] to define message passing
to be the update of vertex states i, Vo € V at time step t, according to

messages mit!, such that

b = @, (M, ht, e, 4 € N(0))) (11)
W = U, (hE, mtr 1) (1.2)

where M, and U; may be arbitrary message and update functions re-
spectively, &), is a set aggregation function, e, is the state associated
with edge (u,v), and N(v) = {u, VY (v,u) € E}, see Figure 1.7.

Following Wang ef al. [24], we deviate from the definition given in
[23], by generalizing), to arbitrary aggregation functions instead of
only summation. However, contrary to existing works, we also relax
the requirement that M; and U, be differentiable to allow any arbitrary
functions. While differentiability is desirable, or even essential in many
deep learning/optimization situations, it is not a necessity for message
passing in general and is not required in the modelling approach ex-
plored in Chapter 5. We provide justification for this choice of frame-
work and further detail on its universality in Section 1.4.

We define relational structure as the edges E which represent the re-
lations between entities and thus prescribe the connections by which

messages may be sent/received.

23

1.3 AIM
U2
/ Mt(,O,D)
______ ®t Mt()))
Mt() 9)
hf)+1 = Ut(a.)
\
\
us
A (v)

Figure 1.7: Message Passing: For incoming messages to vertex v, first the mes-
sage function M, is applied to each vertex and induced edge in the
neighbourhood of v. The results are aggregated by),, then the
vertex state is updated according to U;. This process is applied to
all vertices at each timestept € 1, ..., T.

Adapted from [25], we define modelling as the translation of prob-
lems from an application area into tractable mathematical or compu-
tation formulations, whereby analysis or execution of the models pro-
vides insights, answers or guidance useful for the originating applica-
tion.

Finally, we define non-Euclidean data as data whose underlying struc-
ture is not Euclidean (not defined in n-dimensional linear space). For
example graphs and manifolds.

Since the field of MPNNs has progressed so quickly since this work
was started, we consider state of the art methods at the time each piece
of research was conducted, and while we may review more current
methods in Chapter 2, we do not perform comparisons against meth-

ods published after the creation of this work.

24

1.4 JUSTIFICATION FOR MPNN FRAMEWORK

1.4 JUSTIFICATION FOR MPNN FRAMEWORK

In the past few years there have been an abundance of GNN architec-
tures proposed with various convolution operators, i.e. [17, 18, 26—31].
The variety of notations and frameworks makes it difficult to compare
and contrast these methods and to understand their nuances despite
their commonalities. To solve this problem, [23] proposed the MPNN
framework and reformulated a substantial number of existing meth-
ods to follow their framework. Recognising the potential for a unified
language for all GNN architectures, many recent works have already
adopted this framework [32-34].

An important property when choosing a message passing frame-
work is of course its generality, i.e. how general is the framework and
what can it (not) describe. The MPNN framework, under certain condi-
tions, has been shown to be Turing universal [35]. This means that a
MPNN can compute any function on its input that is computable by a

Turing machine, providing the following conditions hold:

e Each layer must be sufficiently powerful, i.e. the message and up-
date functions should be general vector to vector functions such

as Multi-Layer Perceptrons (MLPs)

o The network must have sufficient depth (at least as many layers

as the graph diameter) and width (units per layer is unbounded)

e Each vertex should have access to discriminative attributes that

identify it uniquely.

In practise the width and depth requirements for universality may
not always be tractable; however, we are adopting this framework for
its universality in describing existing algorithms, thus theoretical uni-

versality is sufficient.

25

1.5 METHODOLOGY

While we make some generalisations to the MPNN framework (de-
tailed in Section 1.3), we note that these are not necessary for univer-
sality, but purely for simplicity and ease of notation, and allow us to
include non-differentiable functions beyond neural networks. We also
note that extension to directed graphs and those with temporal edge
state are trivial [23], and asynchronous message passing is possible to

express, simply with the insertion of additional time steps.

1.5 METHODOLOGY

To realise the aim outlined in Section 1.3, we consider precisely three
practical use-cases: First, we consider how to utilize message passing
to perform graph level representation learning in the context of chemi-
cal property prediction for drug discovery. We then investigate the use
of message passing in performing geometric style representation learn-
ing for industrial and artistic Computer Aided Design (CAD) tasks. Fi-
nally, given the successes of message passing in data-driven settings,
we consider a novel message passing based approach to modelling dy-
namic biological systems.

These specific use cases are chosen in order to cover a range of non-
Euclidean data. First we consider molecules, which while existing in
3-dimensional Euclidean space everywhere in nature, require arbitrary
ordering to represent in computer memory, thus presenting the chal-
lenges of permutation invariance discussed in Section 1.1. Second, we
consider Boundary Representations (B-Reps) which contain a mixture
of adjacency information and non-manifold boundary information such
as parametric surfaces. Finally, we consider the case of a dynamic do-
main, specifically a dynamic gene regulatory network, which evolves

over time as a function of its own stochastic configuration.

26

1.5 METHODOLOGY

For validation, we focus on empirical evaluation of our methods,
adopting a range of quantitative and qualitative metrics as appropriate
in each use case. Further details for each use case are given below, and
further justification for our choice of validation metrics are provided

in each corresponding chapter (Chapters 3-5).

1.5.1 Chemical Property Prediction for Drug Discovery

We consider the task of supervised learning for the prediction of molec-
ular properties. Drug discovery is typically a very expensive process,
in which thousands of possible drug candidates need to be screened
for toxicity and other factors that may deem them unsuitable for med-
ical use. Conventional processes for drug candidate screening involve
many expensive wet lab procedures. Thus, efficient methods for de-
termining the properties of a given chemical compound are desirable,
both in terms of reducing costs and speeding up the process.

The field of GNNs and MPNNs has progressed very quickly over the
last few years. While there are now an abundance of vertex and graph
level network architectures achieving state of the art results on a va-
riety of tasks, the earliest networks were typically focussed on vertex
level tasks, and extended to graph level tasks using global uniform ag-
gregations of vertex representations such as summation [36], or mean
pooling [17].

In this work, we investigate the use of message passing in order to
perform more sophisticated global aggregations, whereby the relative
importance of each vertex in the final representation can be learned.

In this context, the relational structure is prescribed by the bonds be-
tween atoms, and we focus on discriminative graph classification. We

consider a range of common chemo-informatic benchmarks and per-

27

1.5 METHODOLOGY 28

form evaluation based on the standard metric of classification accuracy.

For baseline we compare against a range of state of the art methods.

1.5.2 Geometric Style Similarity

Quantifying and learning representations for geometric style is of rele-
vance to many CAD tasks. For example, a car manufacturer may wish to
ensure their new design is in-keeping with their existing range. They
may wish to identify specific parts that do not match, and adjust them
accordingly, or they may wish to search a database of exterior parts
that best match the style of parts already included. In this use case, we
investigate the use of MPNNs in defining a data-driven style similarity
metric that may be used for these purposes.

We consider B-Reps (the industry standard for CAD), as well as mesh
and point cloud representations. In the context of B-Reps, relational
structure is defined by face adjacency. For meshes, the relational struc-
ture is the edges between vertex samples, i.e. it is dependant on the
sampling strategy of the particular meshing algorithm used. For point
clouds, any relational structure must be inferred. As such, we hypoth-
esise that the semantic significance of the face adjacency information
in B-Reps makes them more suitable for style metric learning.

To evaluate our method quantitatively we use linear probing and
precision@k on a dataset of extruded characters from different fonts,
and binary classification weighted-F1 scores on manually labelled CAD
models. For qualitative evaluation we perform top-k queries on both
datasets, and visualize the gradients of our style distance metric on

pairs of extruded letters.

1.6 CONTRIBUTIONS

1.5.3 Biological Modelling for Healthcare

In many healthcare and medical applications, due to a lack of data
for training machine learning models, alternative methods are often
sought, i.e. models that emulate complex biological systems which al-
low us to ask “What if?” questions. These types of models, such as
Agent-Based Models (ABMs), are typically based on behavioural obser-
vations of constituent parts of a larger system, which are then executed
to allow the observation of emergent behaviours of the larger system
and draw useful conclusions.

In this work we propose a novel message passing-based model of
computation, that facilitates the modelling of complex dynamic sys-
tems. While our method is general for many applications, we consider
in particular the application of modelling gene regulatory networks. In
this context, relational structure is prescribed by the hierarchical com-
position of living tissue, cells, chromosomes, and genes. Note that in
this work, as a necessary condition, we consider the case that the mes-
sage passing graphs are dynamic, i.e. vertices and edges are created /re-
moved during execution non-deterministically.

We validate this work according to the methodology of [37], as well
as comparison against an existing biological model of cancerous tu-

mour growth [38].

1.6 CONTRIBUTIONS

Here we briefly outline the contributions made by this work for the

message passing and broader research communities:

e We introduce an attention-based structure-aware global pooling

operator for graph classification — Chapter 3/[3]

29

1.6 CONTRIBUTIONS

We demonstrate the effectiveness of our proposed approach on

a range of chemo-informatic benchmarks — Chapter 3/[3]

We show that our method outperforms state of the art graph clas-

sifiers on an isomorphism test — Chapter 3/[3]

We create a challenging synthetic dataset for graph isomorphism

testing — Chapter 3/[3]

We demonstrate the interpretability of our proposed approach
on a sample of chemical compounds from a widely used muta-

genicity dataset — Chapter 3/[3]

We show that the second order statistics (Gram matrix) approach
used in 2D image style literature can be generalized to 3D shapes

(B-Rep/mesh) using MPNNs — Chapter 4/[1]

We adapt an existing dataset of 3D extruded fonts to strengthen
the associated style labels and provide a useful tool for the de-
sign, debugging, and evaluation of 3D geometric style learning

techniques — Chapter 4/[1]

We demonstrate the advantages of using B-Reps for style repre-
sentation learning over mesh/point cloud alternatives as a con-

sequence of additional relational information — Chapter 4/[1]

We introduce a novel normalization technique, which leverages
relational structure (face groupings of samples) to improve style

representation learning on B-Reps — Chapter 4/[1]

We introduce a few-shot learning method for capturing a subjec-
tive end-user’s definition of 3D style and demonstrate its effec-

tiveness on B-Reps — Chapter 4/[1]

We demonstrate the effectiveness of our proposed method quan-
titatively and qualitatively when no style or content labels are

available for encoder pre-training — Chapter 4/[1]

30

1.7 SUMMARY

e We introduce a novel message passing-based model of computa-

tion — Chapter 5/[4]

e We demonstrate the effectiveness of our approach in expressing

the complex dependencies of biological systems necessary to model

life-like systems — Chapter 5/[4]

e We show the benefit of our approach over a conventional method
with respect to simplified post-analysis, by maintaining a non-

Euclidean representation throughout simulation — Chapter 5/[4].

1.7 SUMMARY

Motivated by the history of success of message passing algorithms in
Computer Science, and their advantageous property of permutation
equivariance, the aim of this work is to improve on state of the art
methods for modelling non-Euclidean data through leveraging rela-
tional information with novel message passing techniques.

We have formally defined message passing according to a relaxation
of the MPNN framework [23], and justified the use of this framework
through its Turing universality and community adoption.

We have focussed this work to three important non-Euclidean mod-
elling use cases and outlined the key contributions we make in each:
chemical property prediction for drug discovery (Chapter 3) in which
we propose a new structure-aware global pooling operator for graph
classification, geometric style similarity for CAD (Chapter 4) in which
we propose a few-shot learning method for a 3D style metric using
MPNNs, and biological modelling for healthcare (Chapter 5) in which
we introduce a novel message passing-based model of computation
able to capture the complex dynamic dependencies of biological sys-

tems and trace the evolution of emergent gene distributions.

31

LITERATURE REVIEW

One of the most significant challenges to reasoning with relational struc-
ture is that the relations found in nature are non-Euclidean. The rela-

tions in any physical, biological, or even conceptual system may be ex-

pressed as a graph, and as such there is no global information such as

ordinality or a common coordinate system [39]. For example, in B-Reps

3D solids are modelled by the adjacencies of non-manifold partial en-
tities whereby partial edges and faces are parametrized according to

their own local coordinate systems [40], and for molecules there is no

global information to indicate the top or bottom, or to provide a canon-
ical order for the atoms.

Message passing algorithms offer one approach to working with non-
Euclidean data and thus reasoning about relational structure, however
they are not the only possibility. In this section, we first consider the
challenges to relational modelling for both single- and multi-domain
settings, we then consider how these challenges are tackled by both
message passing and non-message passing methods. Finally, we dis-
cuss some limitations to message passing algorithms, and provide a

brief overview of common non-Euclidean applications.

2.1 CHALLENGES IN MODELLING NON-EUCLIDEAN DATA

Non-Euclidean modelling problems can be generally split into two cat-
egories according to whether they are concerned with a single (gen-
erally fixed) domain, or multiple domains. The single domain case

is usually concerned with predicting vertex or edge signals on a fixed

32

2.1 CHALLENGES IN MODELLING NON-EUCLIDEAN DATA

graph, for example identifying fraudulent behaviour in financial net-
works [41], predicting unknown links in a protein-protein interaction
network [42], and question answering using a knowledge graph [43].

For the case of multiple domains, the most typical task is to predict
graph level signals, for example the mutagenicity of a molecule [44], or
to label a computer program as malware [45|; however, there are also
many cases where vertex and/or edge level signals may be predicted
when working with multiple domains. Examples of this include find-

ing shape correspondence [46] and protein interface prediction [47].

2.1.1 Single Domain

As discussed in Section 1.1, permutation equivariance is a critical prop-
erty for relational reasoning. When making predictions for vertex or
edge signals on a domain with relations that carry no natural ordering,
the predictions should not depend on the order in which the known re-
lations are presented. For example, in a social network we may wish to
identify bots. The predictions made should of course not be affected
by the order in which the users are considered, nor should they de-
pend on the order in which each user’s friends or posts/activities are
considered.

Permutation of entities and relations is however not the only impor-
tant consideration, it can often be necessary to consider other pairwise
relations. For example, in a given set of objects, each object may be af-
fected by the relations between other pairs of objects in the set [48]. In
our social network bot detection example for instance, we may wish to
consider the connections between a user’s friends to inform our deci-
sions about that user, i.e. “do any of this user’s friends know each other

or are they all disconnected?” Of course, this concept may be extended

33

2.1 CHALLENGES IN MODELLING NON-EUCLIDEAN DATA

to even higher-order relations such as larger rings of connected people
for the detection of terrorist cells [49] etc.

Furthermore, it is important to consider that connectivity may vary
greatly across the domain. In our social network example, this could
mean that some users will have very many friends, while others may
have few. Thus, it is important that we can handle and compare sets of

different sizes with different numbers of relations within them.

2.1.2 Multiple Domains

In addition to the challenges of single domain modelling, in order to
predict graph level signals requires the ability to handle inputs of dif-
ferent sizes, i.e. we require methods that can compare graphs with
varying numbers of vertices and/or relations, whether through explic-
itly mapping them to some fixed size representation [21], or by reason-
ing implicitly through Kernel methods [50], without loss of the impor-
tant, task-dependent information present in their relations.

It is clear that permutation invariance is critical to enable generaliza-
tion across different domains, but again it is not the only consideration.

In Euclidean settings such as 2D image classification, it is trivial to
scale, crop, or pad images to match in size [51]. However, for non-
Euclidean data such as graphs, the analogies are not so simple. For
example, up-scaling can be understood as representing an image on a
large bitmap from original data sampled on a smaller grid while pre-
serving the relevant image features [52]. In such a case, it is known a
priori that the new image will be a 2D grid, and the task is to find the
pixel values that preserve the image features. However, for a graph,
the up-scaled structure is not known. The key difference being that

2D images are discrete representations sampled from underlying con-

34

2.2 ALTERNATIVES TO MESSAGE PASSING

tinuous data, whereas graphs are discrete structures which represent
underlying discrete data.

One of the greatest strengths of conventional 2D CNNs is their abil-
ity to compose learned features hierarchically in order to learn higher-
order features at increasing scales moving from lines and corners to
complete objects [53]. This hierarchical prior is built into their archi-
tecture by pooling (or down-sampling) layers, in which an input is
projected into a coarser domain [54]. In the Euclidean setting of 2D im-
ages, the global properties such as boundaries and pixel order make it
trivial to perform such operations, however coarsening graphs is much

more challenging, and there are as of yet no standard methods for do-

ing so [39].
2.2 ALTERNATIVES TO MESSAGE PASSING

2.2.1 Set Processing

In [55], Zaheer et al. proposed that a permutation invariant function f
on the set X may be learned indirectly through decomposition of the

form

FX) =p(Z ¢<x>), (21)

xeX

providing suitable transformations p and ¢ can be found. This is pre-
cisely the way in which many Siamese networks work [56], and this
idea in fact underpins how almost all MPNNs work in how vertex neigh-
bourhoods are aggregated.

Relating this to our message passing framework in Section 1.3, we
see that Equation 2.1 is a particular instance of the message function
in Equation 1.1, where as with the majority of MPNNs, the aggregation

function), is summation, M, is ¢, and {(h, !, e, v),u € N(v)} is the

35

2.2 ALTERNATIVES TO MESSAGE PASSING

set X. In this instance, p becomes part of the update function (Equa-
tion 1.2), and would typically include some normalization factor and
non-linearity.

This idea is further specialised in [57]as Janossy Pooling, where p is
a normalisation function, and the summation occurs over the set of all
possible permutations of the input set. Due to the factorial complexity
of enumerating all possible permutations, the authors propose the use
of permutation sampling and canonical orderings to provide a trade-
off between learnability and computational cost.

More recently, [58] demonstrated that when working with sets of
elements which contain their own symmetries, the expressivity of the
architecture in [55] is unnecessarily restricted. In particular, [58] show
the benefit of summing a shared representation of all other elements

in the set to each processed item, i.e.

X
L(X); = LH(x)) +L§(ij), (2.2)
J#

where LI and LY are linear H-equivariant functions, and H is the trans-
formation group of interest, i.e. the group of circular translations in the
case of a set of images.

While set-based methods provide permutation equivariance/invari-
ance, they fail to capture pairwise relations between other members
of the set, and as such offer limited expressive power for processing

graphs of relational structure.

2.2.2 Spectral Methods

Spectral Graph Theory has provided a theoretical grounding for many
message passing algorithms, i.e. [17, 59], and prior to deep learning

provided state of the art methods for the analysis of relational struc-

36

2.2 ALTERNATIVES TO MESSAGE PASSING

ture. For example, Spectral Clustering [60] leverages relational struc-
ture through the eigenvectors of the graph Laplacian matrix, L = D—A,
where A is the Adjacency matrix, and D is the diagonal degree matrix
such that D;; =) J Ajj.

In addition to providing a foundation for many graph kernels, for
example random walk-based [61] and diffusion based [62], spectral
methods have also inspired many approaches to the generalization of
conventional 2D CNNs to non-Euclidean data [63].

The first case of this is seen in [64], where the spectrum of the graph
Laplacian is used to define filters based on the relational structure of
the input data. Following from this, [65] showed that recurrent Cheby-
shev polynomials could be used to avoid the explicit computation of
the Laplacian eigenvectors required in [64]. Further simplifications
were found in [17], in which simple filters are defined purely in terms
of the local 1-hop neighbourhood of each vertex — as a message pass-
ing method, we discuss this in further detail below.

While spectral methods have provided a theoretical foundation for
the analysis of relational structure and inspired many highly success-
ful message passing methods, a serious drawback to their use is that
any spectral definition of a convolution operator is dependent on the
Fourier basis, which is of course dependent on the domain [39]. What
this means is that the transfer of filters learnt in one domain are not triv-
ially applicable to other domains, i.e. these techniques are less suitable

for tasks such as graph level classification, or graph transfer learning.

2.2.3 Language Inspired Methods

Successes in natural language processing techniques have also inspired
many methods for representing relational structure. Deepwalk [66]

learns vertex representations by sampling random paths throughout

37

2.2 ALTERNATIVES TO MESSAGE PASSING

a graph, then minimizing the log probability of predicting the vertex
co-occurrence, analogous to Word2Vec [67] with word co-occurrence
in sentences. This idea is extended in [42], where the random paths
are directed with additional parameters which control the likelihood
of remaining local to the start/current vertex.

As with the spectral methods discussed above, these approaches are
targeted at the single-domain cases. Moreover, these methods provide
a technique for learning homophily, i.e. vertices that are close in terms
of geodesic distance will receive similar representations, but not for
learning structural similarity (see Figure 2.1). Ribeiro et al. [68] pro-
pose an extension to [66] in which the input graph is first transformed
into a multi-layer graph where each layer is weighted according to
structural similarities at an increasing number of hops. This results in
a graph whereby the geodesic distances of vertices now represent the
structural similarities of the original graph rather than homophily. In

practise however, this is very computationally expensive to compute,

both in memory footprint and additional processing time.

Figure 2.1: Vertices u and v are structurally similar (degrees 5and 4 connected
to 3 and 2 triangles, connected to the rest of the network by 2 ver-

tices), but are far apart in the network. Figure from [68].
Recurrent Neural Networks (RNNs) have also been used in several
methods for learning relational structure. For example, [69] propose
the Graph Attention Model in which an RNN is used to select an in-
formative sequence of vertices visit, at each step updating its current
global graph representation based on the new information available

and its previous state. GraphRNN [70] is another case, however this

38

2.2 ALTERNATIVES TO MESSAGE PASSING

time the RNN is used to predict the addition of vertices to a base graph
for the generation stage of an autoregressive model. In addition to
the problem that GraphRNN loses permutation invariance on larger
graphs [71], RNNs require a very large number of parameters and as
such are expensive to train.

Following the success of Transformers in Natural Language Process-
ing (NLP) settings [72, 73], there have been several attempts to general-
ize them for use with relational data, i.e. [73—77]. While it is possible to
argue that Transformers are already GNNs [78], in the fact that they op-
erate over fully connected graphs, it is this very same point that places
them in direct opposition to MPNNs.

By assuming a fully connected graph, graph-based Transformers are
able to identify long-range dependencies, however fail to leverage the
sparsity of the existing relational structure which provides a strong
inductive bias and enables efficient computation. In order to leverage
the existing relational structure, graph-based Transformers must either
represent existing edges with special edge types or provide some other
method for structural encoding, and to capture the relative positions
of vertices, graph Transformers must adopt some form of positional
encoding.

Sequence Transformers use sinusoidal functions added to the input
features to act as an absolute positional encoding [79], while general-
izing to sequences longer than those seen at training time. However,
defining positional encodings for vertices or edges in a graph is a chal-
lenging problem, since relating back to the issues of canonical labelling
discussed in Section 1.1 and 2.1.2, there is no concept of absolute posi-
tion within graphs that generalizes across different domains [80].

While sinusoidal functions do not trivially extend to non-Euclidean
data, Dwivedi et al. [75] have shown that positional vertex encodings

based on the eigenvectors of the Laplacian are somewhat analogous,

39

2.2 ALTERNATIVES TO MESSAGE PASSING

and despite not generalising across different graphs as a true absolute
encoding, they are shown to be effective in practice. The analogy be-
comes evident when considering a sequence as a line graph for which
the Laplacian eigenvectors would produce an equivalent sinusoidal en-
coding [81].

An alternative approach is to use relative positional encodings. For
example, analogous to the relative positional encodings of [82], Mi-
alon et al. use the distance between vertices, which is computed accord-
ing to some kernel (i.e. Random Walk, Diffusion, etc.) and then used
to bias the attention scores given given by the attention heads [80].

Although positional encoding is often associated with Transformers,
it is also interesting to consider the effect of positional encoding on
MPNNs, which are also not inherently position-aware, i.e. two vertices
which share local structure will receive the same embeddings regard-
less of their position in the graph. For example, You et al. [83] have
proposed Position-aware GNNs, in which multiple random subsets of
anchor vertices are first sampled and the distances to all vertices are
computed. These distances are then used to weight a non-linear ag-
gregation function between the anchors and all other vertices forming
a position-aware embedding. By considering this positional informa-
tion, the authors show that it is possible to distinguish between ver-
tices that share local structure, and demonstrate an improvement on
many link prediction and vertex classification tasks on a single domain.
Dwivedi et al. [81] also show that while Laplacian eigenvector encod-
ings are more effect, even random indexing for positional encoding can
also improve the performance of MPNNs on many tasks.

While graph-based Transformers have achieved state of the art per-
formance on many tasks [74, 75], they bring a great cost in terms of

number of parameters and hyper-parameters, the assumption of fully

40

2.2 ALTERNATIVES TO MESSAGE PASSING 41

connected graphs, and difficulty in training, i.e. requiring complex train-

ing schedules [84].

2.2.4 Vision Inspired Methods

In addition to the spectral generalisations of CNNs [17, 64, 65] discussed
above, it can of course be argued that all GCNs, and even MPNNs, are
inspired by the successes of traditional CNNs on 2D images. To this
end, we discuss MPNNs below in Section 2.3, and consider only the non-
message passing alternatives here.

Patchy-SAN [21] is one such case, where rather than generalizing
the CNN architecture to fit non-Euclidean relational data, the data is
instead first converted into a Euclidean form. To do this, the input
graph(s) are labelled according to a canonical labelling algorithm (al-
though these may be approximate) to prescribe an order over the ver-
tices. A sequence of vertices is then sampled according to a given stride,
and local neighbourhoods are sorted (again with canonical labelling
algorithms) before being sampled or padded to fill a fixed size. The
result is that each graph is represented by a fixed size matrix where
each row indicates a vertex and its local neighbourhood.

In [6], we extended the work of [21] to employ the use of Capsule
Networks [85] instead of CNNs, an idea also seen in [86]. As a non-
message passing method, we do not present this work as part of this
thesis.

The problem with all of these methods however is that the process
of explicitly mapping the varying sized inputs to some fixed size repre-
sentation (involving sampling) is not driven by the downstream task.
What this means is that the ordering of vertices and their sampling
cannot be optimized for the task that is to be solved in an end-to-end

fashion, and so important information may be lost.

2.3 MESSAGE PASSING METHODS

Another approach to leverage the power 2D CNNs can be seen in
works that project higher dimensional objects into multiple 2D images.
For example, to predict protein structural classes, Nanni ef al. [87] take
13 different types of 3D protein visualisations and process each one
with a different CNN. Due to the non-Euclidean nature of this data, i.e.
the orientation of a protein is arbitrary, they rotate each representation
uniformly about the x, y, and z axes in order to capture 125 images
of each protein. A similar technique is used in [88], where 3D shape
classification is performed using a set of 12 2D views, each one rotated

about the z axis.

While it reasonably efficient to render objects such as B-Reps and meshes

into 2D views and process them with traditional 2D CNNs, rotation of
these views about only a single axis requires consistent axis orientation
across all the data, which cannot always be assumed. For example, the
ABC dataset [89] contains some y-up and some z-up data, without la-
bels for which is which. In such a case, additional views with rotation
in more axes would be required, thus significantly increasing the com-
plexity.

Moreover, the best viewing angles may be task dependant. For exam-
ple, in the case of style representation learning of cars, viewing angles
of the front, sides and back (i.e. where the cars are usually observed
from) would be much more important than from the top or under-
neath. And for more complex structures such as proteins and large
molecules, it may not be possible to see all parts of an object no matter

which viewing angle is selected.

2.3 MESSAGE PASSING METHODS

Having considered a variety of alternatives to message passing and the

challenges they face, we now review message passing algorithms in-

42

2.3 MESSAGE PASSING METHODS

cluding some notable graph kernels, and in particular MPNNs. In many
works MPNNs, and often GNNs in general, are categorized according to
their expressive power in terms of the Weisfeiler-Lehman (WL) isomor-

phism test [29, 90—92], thus we provide a description of this first.

2.3.1 Weisfeiler-Lehman Isomorphism Test

The WL isomorphism test is an heuristic message passing algorithm
for approximating the isomorphism of multiple graphs [93]. It does
so by providing a canonical form for a given input graph. Multiple
graphs may be reduced to their canonical form in parallel, and if at
any stage the canonical forms differ, then the graphs are known to be
non-isomorphic.

Correspondence of two graph’s canonical forms, however, is a nec-
essary but insufficient condition to indicate isomorphism, i.e. if the
graphs have different canonical forms, they are guaranteed to be non-
isomorphic, but if they have the same canonical form, they are only
possibly isomorphic. In other words, there exist non-isomorphic graphs
that share a canonical form (failure cases). In practice however, failure
cases for the WL test are few, and from a random graph perspective, the
WL test works for virtually all graphs [94].

Figure 2.2 shows an example graph reduced to its canonical form

using the WL isomorphism test, the steps can be described as follows:

1. Label all vertices with the same colour (i.e. a discrete label).

2. Update each vertex v’s colour c(v) with an injective hashing func-
tion on the tuple (c(v), {{c(u),u € N(v)}}), where {{ }} indicates
a multi-set (an unordered set which may contain repeated ele-

ments), and N (v) is the 1-hop neighbours of vertex v.

43

2.3 MESSAGE PASSING METHODS

hash(0 {{C) ()}} hash ,{{ , }})
hash {O o, O}} Z hash y y

\

rash(e, {2, ©}}) carorieal - 111

Figure 2.2: Example of the WL isomorphism test: In this case convergence is
reached after 3 iterations, thus the canonical form for this graph
is found. Figure adapted from [95].

3. Repeat step 2 until convergence. Convergence is guaranteed in

at most |V| steps, where |V] is the number of vertices.

As first proposed in [91], through the types of graph structures it can
and cannot distinguish, the WL test provides a useful bound for which
to classify and compare the expressivity of MPNNs, and more generally
GNN.

To consider bounds beyond the WL test, higher order tests have been
proposed. For example, the k-WL [96] test defines a similar colour-
ing procedure over k-tuples of vertices, thus increasing the expressive
power but also the computational complexity. Since non-local k-tuples
of vertices are considered, pure message passing algorithms are unable
match the power of k-WL tests beyond k = 2 without some form of pre-
processing or data-augmentation (discussed further in Section 2.4).
Note, the expressive power of k-WL tests is strictly increasing as k in-
creases, with the exception of 2-WL tests which are equally as powerful
as 1-WL tests (the variant presented above). For this reason, we do not
provide further details on higher-order WL tests, but provide further
discussion on the limitations of the 1-WL bound that message passing

algorithms face below in Section 2.4.

44

2.3 MESSAGE PASSING METHODS

2.3.2 Graph Kernels

Graph kernels have largely been superseded by deep learning models,
however, we consider the WL Subtree Kernel [50] here due to its rel-
evance to message passing and the fact that, because of its expressive
power and runtime efficiency, it still frequently appears as a baseline
for new state of the art methods, i.e. [76, 86, 91].

The WL Subtree Kernel, as its name suggests, is based on the 1-WL iso-
morphism test; and at its introduction in [50], demonstrated massive
improvements over existing state of the art methods, in both computa-
tion time and accuracy. With existing methods based on features such
as counting graphlets [97], shortest paths [98] and random walks [79],
the use of the highly scalable WL test to generate features has obvious
computational advantages since it is trivially parallelisable, and has
such low memory footprint, that many graphs can be computed at the
same time.

The authors demonstrate a runtime complexity of O(Nhm + N 2hm),
where N is the number of graphs, / is the number of iterations required,
and n is the number of vertices. Comparing this to the O(N 2n%) com-
plexity of the Shortest Path Kernel of [98] for example, we see a factor

of approximately O (NT#) improvement.

2.3.3 Spectral Inspiration

We discussed some significant spectral methods above in Section 2.2.2;
here we focus on message passing methods developed to exploit useful
spectral properties.

Power Iteration Clustering (PIC) [59] is one such algorithm, that pro-
vides a highly scalable approximation to the eigendecomposition of

spectral clustering. Rather than requiring explicit computation of the

45

2.3 MESSAGE PASSING METHODS

eigenvectors of the graph Laplacian, PIC initialises a random vertex
state vector v € R!VI, where |V| is the number of vertices and v; in-
dicates the state of vertex i. This vector is then repeatedly updated for
T steps, such that each vertex’s new state is the normalized weighted
average of its 1-hop neighbours, where the weights are defined by the
graph or assumed to be 1 if the graph is unweighted.

As T — oo, v converges to a constant vector corresponding to the
largest eigenvalue of the Laplacian; however, more usefully, the rate at
which each component of v converges is related to the smaller eigenval-
ues. Thus, if the algorithm is stopped before convergence, the resulting
v will be largely piece-wise constant, with each “piece’ corresponding
to clusters within the graph.

Not only does PIC significantly reduce the complexity of spectral
clustering through the use of message passing updates, the authors
also demonstrate greater robustness to noise [59].

One of the most influential graph algorithms of the last decade, the
GCN as proposed in [17], is a spectrally inspired graph convolution
architecture that uses only information from 1-hop neighbourhoods in
each vertex update layer. Therefore, while not originally expressed as
a message passing algorithm, it can be computed as such, and comes
with all the advantages of a message passing algorithm.

In [17], a graph convolution is defined by the layer-wise update rule

HU+) = (D—%AD—%HmWU)) (2.3)

where A = A +1 is the adjacency matrix with added self-loops, I is the

identity matrix, D;; = 3" J Ay, HD is the vertex states at layer [, W is

46

2.3 MESSAGE PASSING METHODS

a learnable weights matrix, and ¢ is a non-linear activation function.

Considering this in a vertex update form

Wt = o (Y %h;”vwb) , (2.4)
jeN@mU(i} i

we see the parallels between this and Deepsets [55] (see Equation 2.1),

demonstrating the invariance to permutation of local neighbourhoods,

and thus graph level permutation equivariance, which is an essential

property for any single- or multi-domain graph algorithm. As shown

in [23], the GCN [17] also fits our message passing framework in Sec-

tion 1.3, with a message function of

M, (h, 1) = Loty (2.5)
and an update function of

Uy (ht, mbry = o (WH Tm!+1) (2.6)

where L is the graph Laplacian, T is the matrix transpose, and ¢ is a
non-linear activation function.

As with the spectral methods discussed in Section 2.2.2, both PIC and
the GCN [17] are intended for use within a single domain. The GCN was
in fact intended as a semi-supervised method, i.e. in transductive set-
tings. Despite its dependence on the domain dependent Fourier basis,
the GCN has in fact been shown to be successful in inductive settings

such as graph classification across domains, i.e. [99, 100].

2.3.4 MPNNs

The MPNN framework was proposed in [23], however as demonstrated

by the authors, the GCN [17] discussed above and many other existing

47

2.3 MESSAGE PASSING METHODS

works can be understood as specific MPNN instances. Another early ex-
ample of this can be seen in Gated Graph Neural Networks (GG-NNs)
[26], which, inspired by RNNs in NLP settings, perform local vertex up-
dates based on Gated Recurrent Units (GRUs) [101].

The use of GRUs is significant, since they allow a model to learn when
to retain previous state, and despite their use in some of the earliest
MPNNS, they are still widely used in state of the art methods [23, 32,
57].

At roughly the same time as [23], Hamilton et al. proposed Graph-
SAGE [27] as an alternative framework for vertex feature learning. Con-
trary to existing transductive works, GraphSAGE was designed with
inductive learning in mind, and achieved state of the art performance
on vertex classification tasks across multiple domains. In order to gen-
eralise to unseen graphs, GraphSAGE learns a set of aggregator func-
tions that each learn to aggregate information from a different number
of hops, and for scalability vertex neighbourhoods are sampled to a
fixed size in order to enable fixed size batches.

For unsupervised learning, the authors provide a random walk based

learning objective that enables homophily based embeddings to be learned

without labels. However, since this objective is based on vertex co-
occurrence in short random walks, the learned embeddings do not re-
flect structural similarity for distance vertices, thus are not useful for
tasks such as molecule classification or protein interface prediction etc.

Addressing the issue of learning vertex representations in unsuper-
vised settings where structural information is important, [102] pro-
posed Deep Graph InfoMax (DGI) as a generalization of Deep Info-
Max [103] to non-Euclidean data. The general principle behind these
methods is the maximization of mutual information between local and
global representations of the input data, which forces the network to

learn global summaries which capture the local details, and in the con-

48

2.3 MESSAGE PASSING METHODS

text of DGI allows distant vertices with shared local details (i.e. sub-
graph structure) to recieve similar representations.

While effective in learning unsupervised vertex representations, due
to the use of the transductive GCN [17] as its encoder and mean pooling
for global representations, DGI is not so effective for graph level repre-
sentation learning. These shortcomings are addressed in [104], where
the inductive Graph Isomorphism Network (GIN) encoder [91] (dis-
cussed below) is adopted and sum pooling is applied, demonstrating

improvements in downstream tasks such as graph classification.

=TI @b Lo
— 17 1% @le Lw

Mean: x J x x
Min: J X X J
v o 2 X v
o X v 2

Figure 2.3: Examples of failure cases for common neighbourhood aggrega-
tion functions: Incoming messages for each green vertex indicated
on blue neighbourhood vertices. Checkmarks indicate the ability
of each aggregator to differentiate between graph 1 and 2. ¢ is
standard deviation. Figure adapted from [32].

GIN was proposed in [91] in response to the observation that many
popular neighbourhood aggregation functions such as mean, sum and
max are not injective multi-set functions, meaning that vertices with
different neighbourhoods could receive the same representations (see

Figure 2.3). To address this issue, Xu et al. [91] extend the DeepSets

49

2.3 MESSAGE PASSING METHODS

result [55] and show that any function g over the pair (c, X) may be

decomposed as

g(c,X>=(p(<1+€) flo) + Zf(JC)) (2.7)

xeX

and that for infinitely many choices of € and some function ¢ there
exists a function f such that g is unique for each pair (¢, X), where c €
X, X C X is a multi-set of bounded size, and X is countable.

To realise this result in GIN, Xu et al. [91] use MLPs for the learnable
function ¢ and show that although the constant € can also be learned,
in practice setting € = 0 is equally effective. With an injective multi-set
neighbourhood aggregator, this network is maximally powerful for a
message passing algorithm (i.e. equally as powerful as the 1 or 2-WL
test) in determining non-isomorphic graphs [91]; however, is limited
to discrete vertex features [32]. To extend this result to continuous
vertex features, Corso et al. [32] propose Principle Neighbourhood Ag-
gregation (PNA) whereby they use an outer product of multiple aggre-
gators and degree-based scalers (identity, amplification, attenuation).

Inspired by advances in with self-attention in sequence modelling
architectures [72, 105, 106], Veli¢kovic et al. proposed Graph Attention
Networks (GAT) [30]. Due to the ability to learn which neighbours
of a vertex should be aggregated into the new vertex state, GAT pro-
vides a more powerful means for inductive vertex representation learn-
ing compared to equally weighted neighbourhood aggregators such
as GCN [17] or GraphSAGE [27], which the authors demonstrate on a
range of transductive and inductive benchmark tasks. As a message
passing algorithm operating purely on 1-hop neighbours, GAT is com-
putable in parallel for all vertices at once, thus remaining efficient to
compute.

The use of self-attention is extended further in [107], whereby addi-

tional attention coefficients are added to the multiple attention heads

50

2.3 MESSAGE PASSING METHODS

of [30], providing further gains in inductive classification tasks on mul-
tiple domains.

The methods discussed thus far in this section, as per the majority of
research on GNNs and MPNNs, were largely designed for vertex feature
learning. For graph level representation learning, any vertex learn-
ing method may be used followed by a global pooling method such
as mean [36] or max pooling [65] to provide a permutation invariant
graph representation. However, such functions ignore the structure of
the graph [108].

This issue is precisely the motivation for our work PiNet [3], which
will be presented in detail in Chapter 3.

Addressing the same problem, [109 | proposed a sort pooling method,
in which learned vertex representations at each layer are sorted with
only the top k being carried through to the next layer. Seeking to lever-
age hierarchy and mimic the pooling process of conventional 2D CNNs,
[110] proposed DiffPool, in which at each layer learned vertex repre-
sentations are clustered, with each cluster forming a vertex in a new

coarser graph. At each layer the graph becomes coarser until finally

some global pooling method is applied. A similar idea is seen in Dynamic

Graph CNN (DGCNN) [24], which although intended for use on point
clouds, aggregates points at each layer according to proximity in the
learned feature space, again defining a new graph for each layer.
Finally, in [111] Li et al. proposed an alternative graph level represen-
tation learning method based solely on message passing, in which a
‘dummy super vertex’ is added to the graph and connected to all other
vertices with a directed incoming edge. While in [111] the authors also
propose specialized convolutions and pooling functions, the dummy
vertex approach is general and has been shown to boost graph clas-
sification performance with many models [112]. The dummy vertex,

which holds a state vector of greater dimensions than the ‘real” vertices,

51

2.4 LIMITATIONS OF MESSAGE PASSING

enables global graph level information to be learned through aggrega-
tion of all vertex features during each layer of the network, while the

real vertices learn purely local features.

2.4 LIMITATIONS OF MESSAGE PASSING

We discussed the theoretical Turing universality of message passing
algorithms in Section 1.4; however, the conditions for universality are
rarely met in practice. For example, both network width and depth
must exceed polynomial functions of the graph size [35], and vertices
must be uniquely identifiable which is not the case for graphs such
as molecules in which atoms have no canonical ordering from which
to assign consistent identifiers. Thus, MPNNs without unique vertex
identifiers, referred to as anonymous MPNNs, are bounded by the 1-WL
isomorphism test [29, 91]. Interestingly, however, [113] demonstrated
that despite being bounded by the 1-WL test, degree aware MPNNs such
as the GCN [17] and also our parametrized GCN extension in [3] are
one step head of the 1-WL test, since the first round of message pass-
ing in the 1-WL test simply acquires the vertex degrees which are al-
ready available in degree aware methods, meaning that a 2 layer de-
gree aware MPNN has the discriminatory power bound of 3 steps in a

1-WL test.

| e /]

Figure 2.4: Example of two graphs not distinguishable by the 1-WL test, i.e.
G, And G, are not isomorphic but share a canonical form. Figure
adapted from [92].

While failure cases for the 1-WL isomorphism test are few, these fail-

ures are not limited to large complex graphs. For example, Figure 2.4

2.4 LIMITATIONS OF MESSAGE PASSING

illustrates two very simple graphs that are indistinguishable to the 1-
WL test, and thus any anonymous MPNNs.

This shortcoming of anonymous MPNNs has provided the motiva-
tion for many higher order (in terms of the k-WL test) GNNs, although
these come at a higher computational cost, and while provably more
powerful than 1-WL MPNNs, they do not always outperform the simpler
and more efficient MPNNs, i.e. [91, 92], suggesting that for some tasks
the increase in power is not worth the trade-off with model complexity.

The way in which these methods provide theoretical bounds greater
than the 1-WL test varies greatly. For example, Beaini et al. [34] revisit
spectral graph theory to use Laplacian eigenvectors to provide global
direction over the input graphs, and Brossard ef al. [33] extend the re-
ceptive field of each vertex beyond the 1-hop neighbourhood to enable
the detection of small cycles.

Taking a different approach, Bevilacqua et al. [114] recently demon-
strated that the expressive power of MPNNs can be increased beyond
the 1-WL bound, through representing each input graph as a bag of sub-
graphs. The subgraphs are selected according to a pre-defined policy,
e.g. one subgraph for each vertex in the input graph with all edges to
that vertex removed, and then processed according to a set-based ar-
chitecture such as DeepSets [55] or DSS [58] with a MPNN encoder.
Thus use of a MPNN ensures permutation equivariance to vertex order
(assuming subgraphs are indexed consistently), while the set-based
architecture provides equivariance to the order of the subgraphs, with
an architecture such as DSS [58] also taking into account shared in-
formation across all subgraphs (see Section 2.2.1). While considering
all possible subgraphs for larger input graphs could become computa-
tionally intractable, the complexity of the encoder is not significantly
increased, since unlike methods such as [33, 34], it preserves the local-

ity and sparsity of computation afforded by its use of an MPNN encoder.

53

2.4 LIMITATIONS OF MESSAGE PASSING

Moreover, the result extends beyond 1-WL MPNN encoders, such that
this framework can increase the power of a 3-WL encoder to distinguish
graphs indistinguishable by a 3-WL test.

To improve scalability and thus makes these models more useful in
real-world settings, approximation and sampling methods have been
proposed. For example, Murphy et al. [57] sample random permuta-
tions during training instead of considering all possibilities, Brossard
et al. [33] sample different width receptive fields, and Bevilacqua et al.
[114] sample subgraphs according to the chosen policy.

Additionally, we note that in cases such as molecules, positional in-
formation can increase the expressive power of MPNNs beyond the 1-WL
test. For example, revisiting the WL failure cases shown in Figure 2.4,
we see that by assuming the graphs exist in Euclidean space, simply
labelling the vertices with the angles between the edges as shown in

Figure 2.5 results in distinguishable graphs [115].

180O 90° — 45° 45°
‘ / @ / ‘
180° 45° 45° — 90°

Figure 2.5: Example of two graphs that become distinguishable by the 1-WL
test with the inclusion of positional information in the form of an-
gles.

Another issue faced by MPNNss is that they are limited in depth, typi-
cally achieving best results with only 2 to 3 layers, i.e. [17, 27, 30]. This
is contrary to their 2D image CNN inspirations, which frequently ben-
efit from many more additional layers [14]. There are several reasons
that MPNNs fail to benefit from greater depth including over-smoothing,
in which all vertex representations tend toward the same value as depth
increases [116], as well as increased likelihood of over-fitting, and van-

ishing gradients.

54

2.5 APPLICATIONS 55

To overcome these issues, borrowing from early CNN literature, [116]

proposed the use of residual connections and dilated convolutions. Other

strategies have included new forms of normalization, for example Pairnorm

[117] and MsgNorm [118]. However, while demonstrating significant

improvement in performance, these deeper MPNNs are still outperformed

by shallower alternatives on a range of benchmark tasks [112]. To tackle

over-fitting, [119] proposed Free Large-scale Adversarial Augmenta-

tion on Graphs (FLAG) which is a flexible method compatible with any

GNNs, which iteratively augments vertex features with gradient-based

adversarial perturbations during training time, and demonstrated boosts

in performance across a range of vertex and graph classification bench-

mark tasks [112].

2.5 APPLICATIONS

Single Domain

Multiple Domains

Classification/regression: Disambiguation
[17], information retrieval (question/answer-
ing) [43], paper/blog subject prediction [27,

Classification/regression: Protein interface
prediction [47], protein function prediction

[27, 30]

IHDNs [3] (Chapter 5)

— 102] Correspondence: Shape/image correspon-
£ Link prediction: Recommendations (movies, dence [46]
4 products, recipes, friends, etc.) [120], protein ~ Structural similarity: Bug (software) detec-
& interaction prediction [42] tion [123]
"g Ranking: Search engines [11]
»> Community detection (homophily clus- Our Contributions:
tering): Consumer profiling [121], semi- PiNet [3] (Chapter 3), UVStyle-Net [1]
supervised image classification [122] (Chapter 4)
Structural similarity: Fraud detection [41]
Network analysis (graph diameter, Hamil- Classification/regression: Chemical prop-
tonian circuit detection, spanning trees etc.): erty prediction [23, 44, 50, 91], malware
~ Logistics (delivery, supply chains, routing detection [45], image classification [65, 126],
5 etc) [124], computer/communications graph isomorphism [93]
: networking [125] Similarity: Shape retrieval [127]
Q
S Our Contributions: Our Contributions:

PiNet [3] (Chapter 3), UVStyle-Net [1]
(Chapter 4)

Table 2.1: Applications

2.6 SUMMARY

Table 2.1 provides an overview of common non-Euclidean modelling
applications, organised according to the domain(s) on which they op-
erate, and whether they are for vertex level or graph level predictions.

At the time of starting this body of work, the vast majority of existing
literature focussed on vertex level tasks on a single domain, with some
attention turning towards inductive methods for vertex level tasks on
multiple domains. Thus, we identify the need for improvements in
graph level tasks on single or multiple domains.

In Chapter 3 we tackle the problem of utilizing the existing vertex
level message passing methods to perform graph level predictions, in
particular we focus on chemical property prediction for drug discov-
ery, and as a vertex level task, we demonstrate the interpretability of
our method in visualizing vertex attention coefficients. In Chapter 4
we again focus on graph level tasks (with a minor focus on vertex level
gradient visualizations), with the application of geometric style sim-
ilarity for B-Reps, for which there are no existing methods. Finally, in
Chapter 5 we consider a graph and vertex level task on a single domain;
however, unlike many of the existing methods we have discussed, our

work simulates a dynamic domain.

2.6 SUMMARY

Reasoning with non-Euclidean relations and structure is challenging
for several reasons. Foremost, is the requirement for permutation equiv-
ariance for vertexlevel algorithms, and permutation invariance for graph
level algorithms. For working with multiple domains, it is also impor-
tant to be able to represent and compare different numbers of relations
and entities within a common space.

Set processing methods such as [55, 57] provide permutation in-

variance through symmetric aggregation functions, yet fail to capture

56

2.6 SUMMARY 57

higher order relations within the sets. Canonical labelling methods
have also been applied to transform non-Euclidean data such as graphs
into fixed sized tensor representations [6, 21], which can then be fed
to traditional CNNs, however canonical labelling algorithms are either
expensive to compute or approximate and thus may fail in particular
cases. Moreover, to enable fixed size representations, these methods
use sampling, which is not driven by the task at hand thus important
information can be lost.

Language models such as [67] have been adapted for use on graphs
[42, 66], with vertices replacing words, and random walks replacing
sentences. These methods however are restricted to single domain
modelling and are unable to capture structural equivalences [68]. Trans-
formers [72] have also been applied to a variety of non-Euclidean prob-
lems (75, 76], yet by assuming a fully connected dense graph, these
methods fail to leverage the sparsity of graphs thus significantly in-
creasing computational complexity.

Permutation equivariant spectral methods [60-62], including non-
Euclidean generalisations of 2D CNNs [17, 65], have been successfully
applied to many single domain vertex level problems. However, their
dependence on the Fourier basis render these methods difficult to ap-
ply in multi-domain settings [39]. Also inspired by the success of
2D CNNs, several inductive non-Euclidean CNN generalisations have
been proposed [27, 30]. In particular, MPNNs overcome the problem of
transferring to different domains, while remaining efficient to compute
and offering permutation equivariance without the need for canonical
labellings.

MPNNs have been shown to be Turing universal in theory [35], how-
ever in practice their anonymous formulations with limited network
capacities mean such universality is not obtainable. For anonymous

MPNNs, the WL isomorphism test provides an upper bound on expres-

2.6 SUMMARY

sive power with respect to distinguishing non-isomorphic graphs [91],
however, the failure cases for the WL test are few, and the inability of
provably more powerful, higher order methods to consistently outper-
form MPNNs [91, 92] suggests that the increase in power is not always
worth the trade-off with model complexity. Moreover, labelling small
cycles a priori can increase the expressive power, without an signifi-
cant increase in model complexity [33].

While the WL test provides an upper bound for MPNNs, in order to
meet that bound requires injective vertex aggregation functions [91].
Many existing MPNNs are built on the foundation of Deepsets for their
aggregation functions, however for the case of graphs, many injective
set aggregation functions are no longer injective when operating on
the multi-sets prescribed by vertex neighbourhoods. To overcome this,
several injective multi-set aggregation functions have been proposed
[32,91,92].

While there have been many generalisations for convolutions to non-
Euclidean domains, there has been less focus on how to pool vertex
level representations into graph level representations. Based on the
success of message passing in tackling vertex level tasks, there is a

strong motivation for further work in addressing graph level problems.

58

PINET: ATTENTION POOLING FOR GRAPH
CLASSIFICATION

The following chapter includes work published in [3]. The reviewers
recognised that our approach “builds on previous work” and that the
core idea is “intuitive and natural to explore”. The main criticism of
this work was that the proposed model “does not seem to outperform
the chosen baselines” and that this work would be improved by iden-
tifying the benefits of our method. We addressed this with demon-
stration of the interpretability of the learned attention coefficients (see

Section 3.4.5). We thank all reviewers for the contribution to this work.

3.1 INTRODUCTION

Starting with the multiple domain case for graph level tasks, here we
consider graph classification — the task of labelling each graph in a
given set, which has applications in many diverse application areas
ranging from chemo-informatics [128] and bio-informatics [129], to
image classification [130] and cyber-security [131]. In this work we
focus in particular on the task of chemical property prediction for drug
discovery.

In recent years, CNNs have led the state of the art in many forms of
pattern recognition, i.e. in images [132] and audio [133]. Essential to
the success of CNNs in representation learning is the process of pooling
[134], in which a set of related vectors are reduced to a single vector (or
smaller set of vectors). As discussed in Chapter 2, an important prop-

erty of a pooling operator for non-Euclidean data is invariance to dif-

59

3.2 CONTEXT

ferent orderings of the input vectors. In vertex level learning tasks such
as link prediction and vertex classification, GCNs achieve invariance
by pooling neighbours’ feature vectors with symmetric operators such
as feature-weighted mean [17], max [27], and self-attention weighted
means [30].

Standard approaches to use these permutation equivariant models
for graph level classification are to use symmetric global operators such
as as mean [36] or max pooling [65]. As discussed in Section 2.3.4,
while such pooling operators do provide graph level permutation in-
variance, they fail to take into account the relational structure of the
graph [108], thus treating all vertices with equal significance.

To enable graph classification with MPNNs whereby the structure of
the graph is used to inform the pooling process we propose PiNet, a
differentiable pooling mechanism with which any permutation equiv-
ariant MPNN may be extended for graph level tasks. Inspired by the
attention mechanisms of RNNs [135] and GAT [30], PiNet consists of an
attention-based aggregation method which weights the importance of

each vertex in the final graph representation.

3.2 CONTEXT

We have reviewed the relevant related works in Chapter 2. At the time
of starting this research, there was little attention to utilising MPNNs for
graph level tasks, with a typical approach being to take a global mean
of vertex embeddings to form a graph level representation [18].

For fair comparison of our method, we compare against the best
available methods at the time, i.e. [21, 110, 136]. Based on advances
since this work was done, we propose a possible extension to PiNet in

Section 6.3.1.

60

3.3 METHOD

3.3 METHOD

3.3.1 Learning Vertex Importance

PiNet is a generalised end-to-end deep neural network architecture
that utilizes the vertex-level permutation invariance of graph convo-
lutions in order to learn graph representations that are also invariant
to permutation, while taking into account the structure of each graph
when pooling to a single representation. We provide an overview of

the architecture in Figure 3.1.

Attention Coefficients

Vertex Features Graph Embedding
s O ~
——— I /yl_l
0 = § e
X D
D X

Prediction

Figure 3.1: Overview of PiNet: One message passing network learns vertex
features, the other learns attention coefficients. The final graph
representation is a sum of the learned vertex features weighted by
the attention coefficients. For multiple attention dimensions per
vertex, the graph embedding becomes a matrix where the rows
are concatenated to form a single vector.

Let G = (A, X) be a graph from a set (; with adjacency matrix A €
RN*N and vertex features matrix X € RN*F, and ¢y : (RN*N, RNxF)

RN*F be any message passing convolution network (i.e. the GCN [17]).

PiNet may then be defined by the output for a single graph,
z(G) = (TS[IX - Px (A, X) WD] € RE, (3.1)

where g is the softmax activation function, - is a matrix product, W, €
RF'*C is a weights matrix for a fully connected dense layer (bias terms

are omitted for brevity), C is the number of target classes, and « is

61

3.3 METHOD

the learned vertex attention coefficients representing the importance

of each vertex in the final graph representation such that
a =05 (Pa(A,X)T) € RN (3.2)

where 94 is a separate message passing network for learning the at-
tention coefficients. Note, ¢4 and 1y do not share weights and may
contain any arbitrary numbers of layers. The softmax in Equation 3.4
constrains the attention coefficients such that), #; = 1 and prevents
them from all falling to 0, while the softmax in Equation 3.3 may be

replaced with sigmoid for mult-label classification or regression tasks.

3.3.2 Multi-Head Attention

The method proposed above can be considered a single-headed atten-
tion mechanism, whereby a single vertex coefficient is learned per ver-
tex. This may be easily extended to multi-headed attention by adapting
4 to learn multiple coefficients per vertex in parallel, and concatenat-
ing the result as per [72] and [30]. Using multi-head attention allows
the model to jointly consider information from different representation
subspaces at different positions [72], i.e. in this case, at different ver-
tices.

To realise the multi-headed attention, we modify ¢4 such that ¢4 :
(RNxN RNxFy _, RNxH where H is the number of attention heads,

and replace Equation 3.1 such that

z(G) = og [g(tx Py (A,X))WD] € RE, (3-3)
with Equation 3.2 becoming

w=05(Pa(A,X)T) € RN (3-4)

62

3.3 METHOD

where ¢ : RFXF . RHF jg a flattening function that concatenates
the rows of a matrix to form a vector, and W € RHF'*C js a fully

connected dense layer (again bias terms omitted for brevity).

3.3.3 Extended Message Passing Operator

We extend the message passing matrix of [17] in which we add two
additional trainable parameters, thus vector state is propagated by the

matrix
A= (pl + <1—p>D>‘%(A+qI><pI+ 1 —P)D)_%, (35)

where [is the identity matrix, D is the diagonal degree matrix, and A
is the graph adjacency matrix. p allows the model to optimise the ex-
tent to which to apply symmetric normalisation of the adjacency ma-
trix, and ¢ (as originally supposed for further work in [17]) allows the
model to optimise the trade-off between keeping a vertex’s own state
and aggregating the states of its neighbours. Note that p and q are
learned indirectly through optimising p" and 4" with sigmoid to give

0<pq<l

3.3.4 Geometric Features of Molecules

The architecture presented in this work is general to many domains,
however, we are motivated by the use case of predicting molecular
properties. Thus in the interest of applying this method in practical
settings, we now discuss how the geometric features of molecules may
be incorporated.

Since a molecule has no canonical orientation, and many bonds (typ-

ically single bonds) are free to rotate, it is not possible to provide canon-

63

3.4 EXPERIMENTS & RESULTS 64

ical absolute positions for atoms that generalize across different molecules,
even when considering a molecule’s lowest energy state. While rela-
tive positions between atoms would provide invariance to rotations or
translations of a complete molecule, they would not provide invariance

to rotation of bonds within a molecule. However, distances between
atoms would satisfy all required invariances.

It is also possible to include labels for the types of bonds. Thus each
edge should have a feature vector containing the distance between the
atoms, as well as a one-hot representation of the bond type.

Since PiNet is general to all message passing operators, an encoder
which incorporates edge features could be used. For example, GIN
[91] (since it is a maximally powerful MPNN) could be used with edge
features embedded and added to node embeddings as proposed by
Huetal. [137].

While encoding distances between atoms provides the required in-
variances to translations and rotations, two pieces of information are
lost: the angles between atoms, and the chirality. While chirality can
be labelled as a vertex feature a priori, encoding the angles is more
complex. We refer the reader to [115] for an example of how this may

be achieved.

3.4 EXPERIMENTS & RESULTS

To evaluate the effectiveness of our proposed method, we investigate
four aspects. First, using a synthetic dataset described below, we per-
form an isomorphism test in order to measure how well each method
is able to distinguish isomorphic graphs. Second, we measure the ef-
fectiveness of our proposed extension to the GCN [17] as a vertex ag-
gregation method for graph level learning, considering both a manual

parameter search and learning values for p and 4. Third, for the MU-

3.4 EXPERIMENTS & RESULTS

TAG dataset we investigate the effect of the number of attention heads
on overall classification performance as well as the interpretability of
the learned attention coefficients «. Finally, we compare our proposed
method against existing state of the art methods on a set of chemo-
informatic benchmark datasets.

All hyper-parameters are detailed in Section 3.4.2.

3.4.1 Datasets

For the isomorphism test (3.4.3) we use a generated dataset available
from our repository. To generate the data we sample 5 unique undi-
rected Erdds-Rényi graphs [138] with edge creation probability 0.15,
and ensure equal vertex degree distributions (we discard and regen-
erate the graphs until the degree distributions match) - this ensures a
high level of challenge and prevents trivial classification. Each graph
contains 50 vertices, and each vertex is assigned one of two classes uni-
form randomly. The 5 unique graphs are then copied 99 times each
and the vertex ids are permuted randomly on all of the graphs since
we wish to test the ability to recognise isomorphic graphs even with
different vertex orderings. We show a sample of the generated graphs

in Figure 3.2.

MUTAG NCI-1 NCl-1o09 PTC PROTEINS

Gl 188 4110 4127 344 1113
Max. N 28 111 111 109 620
Mean N 18 29.8 29.6 25.56 39.06
d 7 37 38 18 3
% of +ve 66.49 50.05 50.38 139.51 59.57

Table 3.1: Benchmark binary classification molecule datasets. |g| is the num-
ber of graphs, N the number of vertices, and d the dimensions of
the vertex features.

65

3.4 EXPERIMENTS & RESULTS 66

Class 0

Class 1

Class 2

Class 3

Class 4

S

VAXDZ

Figure 3.2: Example graphs from our generated Isomorphism dataset. Each
row contains three isomorphic graphs of a different class. Colours
indicate vertex labels.

3.4 EXPERIMENTS & RESULTS

We note that the graphs generated in our isomorphism test dataset
are all distinguishable by the 1-WL Isomorphism Test. Since we are
comparing MPNNs, the use of graphs not distinguishable by the 1-WL
test would mean that all methods tested would fail to outperform a
random classifier. Thus the graphs are theoretically distinguishable by
an MPNN, while remaining challenging.

All other experiments are performed using a standard set of chemo-

informatic benchmark datasets* detailed in Table 3.1.

3.4.2 Hyper-Parameters

In all experiments we use categorical cross-entropy for loss, and fix
learning rate to 10~3. For the imbalanced datasets MUTAG, PTC and

PROTEINS, we weight the loss inversely proportional to the class sizes.

e PiNet (GCN): hidden sizes {32,64} for each layer in each head

(two layers).

o GCN + Dense & GCN + Mean: hidden sizes {32, 64} for each

layer (two layers).

e DiffPool: assign-ratioin {0.1, 0.2, 0.3}, hidden layer sizes in {30, 40, 50}

(for two layers)

e DGCNN: hidden sizes in {64,96,128} and 3 sort pooling values

selected according to the size of each dataset.

e Patchy-SAN: labelling procedures: NAUTY [139] and Between-

ness Centrality [140].

1 Available at https://1sll-www.cs.tu-dortmund.de/staff/morris/
graphkerneldatasets.

67

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

3.4 EXPERIMENTS & RESULTS
3.4.3 Isomorphism Test

We start by testing the ability of our proposed method to distinguish
isomorphic graphs. While PiNet is a general framework that may uti-
lize any permutation equivariant graph convolution operator, here we
opt for the simplest case and use the GCN [17] (see Section 2.3.3). In

detail we set

px = oR(A- (A XWQ) W) (3.6)

Y = og(A- oA XWY) WD) (3.7)

where A = D_%AD_%, D is the diagonal degree matrix of AA=A+I,
I is the identity matrix, and oy is the Rectified Linear Unit (ReLU) ac-
tivation function. Then ¢y and 1, may be substituted into equations
3.3 and 3.4 respectively. We refer to this as PiNet (GCN). To evalu-
ate the performance of our proposed architecture directly, we compare
against a GCN [17] with a dense layer applied to the concatenated ver-
tex vectors and a GCN [17] with a dense layer on the mean of its vertex
vectors.

We also compare with three state of the art graph classifiers: DiffPool
[110], DGCNN [136], and Patchy-SAN [21] (see Section 2.3 for details).
We vary the number of training examples using stratified sampling and
report the mean validation accuracy of 10 trials.

Figure 3.3 shows the mean classification accuracy of each model as
we vary the number of training examples per class. Our result demon-
strates that PiNet is able to distinguish the isomorphic graphs even
with as few as 2 examples per class while many of the other methods
fail. With the exception of DiffPool, all models improve as the number
of examples of each class increases, with the surprising result that the

GCN [17] with only a mean pooling operator shows the greatest rate of

68

3.4 EXPERIMENTS & RESULTS

/%‘ X
0.8 4 Re SNl TN
o X==X N
’,—)(- SO X
/X X AN
3074 X /’ === X
o S e == PiNet (GCN)
S <
3 - DGCNN
- bd
2 0.6 /)“--x -»~- DiffPool
S % -%- GCN + Dense
g 0.5 - X/ =%~ GCN + Mean X
] =X~ Patchy-SAN
® Hemeg”
P Pt =X
©04d x Va3 e
© SS s
[9] \X~ V4 X
= 03 \\)(X 7T~
- SSa”
/’x x
7
SeFE——ye
021 BT T T o e mmxmm o m - e mm e m = X mm

2 4 6 8 10 12 14 16 18 20
No. of Training Examples per Class

Figure 3.3: Mean classification accuracy over a range of training set sizes on
the isomorphism dataset.

increase. This is likely due to the simplicity of the model. Interestingly,
this data presents a worst-case scenario for DiffPool which is unable to
distinguish the different graph classes at all.

While PiNet outperforms all other tested methods at all numbers of
training examples per class, the relative improvement over the other
methods is most apparent as the number of training examples is small-
est, indicating that PiNet is more sample efficient than the other meth-
ods.

We note that PiNet is not theoretically more powerful than the other
methods tested with respect to the 1-WL isomorphism test. Thus, a
likely reason for the improvement of PiNet (GCN) over the other meth-
ods tested is in the optimisation of its loss function. We hypothesise
that PiNet’s aggregation method is able to amplify the necessary sig-
nals in order to better avoid local minima in this classification task,
while the other methods tested become trapped more easily. This would
explain why increasing the number of examples per class generally im-
proves the performance of each of the methods, while PiNet performs

well with few examples.

69

3.4 EXPERIMENTS & RESULTS
3.4.4 Message Passing Mechanism

To evaluate our proposed extension to the message passing mechanism
of [17] in the context of graph level learning (Section 3.3.3), we com-
pare the classification accuracy of the extreme cases of pand g (A, A+1,
D_%AD_%, and D_% (A + I)D_%) against the learned p and g for each
layer in each head on the set of benchmark datasets detailed above. We
use the extreme values of p and g in order to consider all possible dis-
crete components of Equation 3.5. Following the methodology of [31]
and [110] we perform 10-fold cross validation, reporting the mean val-

idation accuracy for the single best epoch across the folds.

PROTEINS MUTAG
0.85 1.00
0.80 0.95 — D 3A+/)D3
0.90 Arl
0.75 _ —— DTIAD:
0.85 1% = A
0.70 0.80 —— Learnp and g
0.65 0.75
PTC NCI-1 NCI-109
0.70]]]
] 0.75'_ 0.75'_
0.65]]]
0.60 0.70 1 0.70 1
0.55]]]
0.65 - 0.65 -

Figure 3.4: Mean classification accuracy for each message passing matrix
within PiNet. Dashed lines indicate mean accuracy of manual
search.

Figure 3.4 shows that while the optimal parameters p and q are not
always found, the result of learning p and g offers better performance
than the average of a manual search over the extreme values in all cases
thus suggesting it is a suitable technique to reduce hyper-parameter

searching.

70

3.4 EXPERIMENTS & RESULTS

3.4.5 Attention

Next we consider the effect of the number of attention heads on overall
classification performance. We focus the experiments of this section
purely on the MUTAG dataset due to its smaller size, which enables us
to visualize and interpret our results in the original problem domain
of predicting the chemical property of mutagenicity.

We use PiNet (GCN) with p and g as trainable parameters, and re-
port the mean validation accuracy for each number of attention heads
in {1,2,4,8,16,32,64}. As above we perform 10-fold cross validation

and select the single best epoch across all trials.

0.95 1

o

©

o
L

o

o0

o
L

e

9

a
L

Mean Classification Accuracy
o
[or]
o

e
N
o

0 10 20 30 40 50 60
No. of Attention Heads

Figure 3.5: Mean classification accuracy for a range of number of attention
heads for MUTAG dataset.

As demonstrated in Figure 3.5, using multiple attention heads over
a single head improves the classification accuracy significantly, with 8
heads showing an improvement of approximately 18%.

To understand this improvement and investigate the interpretability
of the learned attention coefficients, we select 4 visually similar aro-
matic amines (two positive and two negative) from the dataset, and
plot the graphs corresponding to each compound. Since PiNet (GCN)

does not consider edge information, we plot all bonds as a single undi-

71

3.4 EXPERIMENTS & RESULTS 72

rected edge regardless of the bond type/valency. Vertex (atom) types
are shown with text labels for Carbon (C), Nitrogen (N), and Oxygen
(0).

idx: 6, label: 0, pred: 1 idx: 7, label: 1, pred: 1
QAo Qo
0.7
? 06 0.5
[Ot
0.5 0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1 N
idx: 9, label: 1, pred: 1 idx: 35, label: 0, pred: 1
Qo Qo
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
N 0.2
Q/ N \Q 0.1 é c 01

Figure 3.6: Attention coefficients for MUTAG molecules 6, 7, 9 and 35 trained
with a single attention head.

As shown in Figure 3.6, in each case approximately 60-70% of the
attention is placed on the nitrogen atom, with the rest of the attention
shared uniformly across all remaining vertices. In the context of mu-
tagenicity, this is an interesting result since nitrogen groups (a nitro-
gen connected to a ring and two other atoms) are reactive functional
groups [141] and are known to attack DNA [142].

In the case of compounds 7 and 9, it is the presence of the nitrogen

group that causes these compounds to be mutagenic, however there is

3.4 EXPERIMENTS & RESULTS

also another necessary factor that the model has missed causing it to
misclassify compounds 6 and 9 as false positives, i.e. steric hindrance,
which is the congestion caused by the physical presence of the sur-
rounding atoms, which may slow down or prevent reactions at the
atom in question [143]. As shown in Figure 3.7, while the nitrogen
group is in itself reactive, to bind with DNA requires sufficient physi-

cal space around it to allow to get close enough into the DNA structure

[144].

This methyl group takes up too much physical
space around the nitrogen group, thus is a
highly probably factor in preventing it from
reacting with DNA [138]

With sufficient space around the
~. reactive nitrogen group, this molecule
hARET T is able to attack DNA

Figure 3.7: 3D views of molecules 7 (left) and 6 (right) including hydro-
gen atoms demonstrating steric hindrance [145]. Diagram created
with [146].

To interpret the attention coefficients learned with 8 heads, we first
perform Principal Component Analysis (PCA) on the attention coef-
ficients across all graphs (see Figure 3.8), and select the three most
diverse cases (attention heads o, 5, and 7) alongside the most centred
case (head 1).

As shown in figures 3.9-3.12, the model now correctly classifies com-
pounds 6 and 9. In each case, heads o, 1 and 7 rank the importance of

the methyl groups (CHj groups bonded to ring) highly, while heads

73

3.4 EXPERIMENTS & RESULTS

PCA on attention coefficients

0.100 -

0.075 A

0.050

0.025 -

0.000

—0.025 A

—0.050 1

—0.075

o

-0.4

Figure 3.8: PCA on the learned vertex attention coefficients across all graphs.

-0.2

0.0 0.2

idx: 6, label: 0, pred: 0

0.4

0.080

0.075

0.070

0.065

0.060

0.055

0.050

0.045

ay

N
© o {
0.06 I \
c
N
0.05 B—(C
0.04
0.03

c—c¢
[\
c
et

Figure 3.9: Attention coefficients for molecule 6 at most diverse attention

heads (trained with 8 heads).

0.070

0.065

0.060

0.055

0.050

0.045

0.040

0.035

74

3.4 EXPERIMENTS & RESULTS 75

idx: 7, label: 1, pred: 1

as
0.10
0.065
0.09
0.060
0.08
0.055
0.07
0.050 0.06
0.045 0.05
0.04
0.040
N
o e
0.035
Qo a
0.065
0.055
© 0.060 c—C
0.055 /./ 0.050
®—(C
\
0.050 c/ c
R Y 0.045
0.045 c—C
/ \
c - £ 0.040
0.040 o T~ -
1 1
0.035 ¢ C
~¢c~ 0.035
0.030 1
N
s | © @ 0.030

Figure 3.10: Attention coefficients for molecule 7 at most diverse attention
heads (trained with 8 heads).

idx: 9, label: 1, pred: 1

as az
0.11
0.075 c
0.10
0.070
0.09
0.065
0.08
0.060 0.07
0.055 0.06
0.050 0.05
N 0.045 0.04
0.040
Qo ay
0.065
c 0.07 /C
c——— C\ 0.060
0.06 C/ g
: N / 0.055
c—C
N
005 C/ ® 0.050
| c / T c /
\ 0.045
\ ¢
0.04 f— o 0.040
\
N
0.03 Q/ \Q 0.035

Figure 3.11: Attention coefficients for molecule 9 at most diverse attention
heads (trained with 8 heads).

3.4 EXPERIMENTS & RESULTS

idx: 35, label: 0, pred: 0

Qs az

Qp ay
0.09 0.080

0.075
0.070
\ : \ ~ 0.065
N/ N/
C C
\ \ 0.055
0.050

‘4 ~e 1. J\@

0.040

Figure 3.12: Attention coefficients for molecule 35 at most diverse attention
heads (trained with 8 heads).

1 and 5 rank the nitrogen highly. This result suggests it is an aware-
ness of stereo hindrance that enables this model to correctly classify
compounds 6 and g as negatives, while the single head version failed.
While this result clearly indicates the importance of the methyl groups
in determining the mutagenicity of these compounds, it is their rela-
tive position to the nitrogen group that determines the stereochemistry
and thus is of significance. Since our formulation of PiNet in this ex-
periment is formed of two 2-layer GCNs, the information available in
any vertex’s representation before pooling can only contain informa-
tion of other vertices at most 2-hops away. Thus, the information in
the nitrogen vertex and methyl group vertex representations alone are
not enough to determine their relative distances. Therefore, the ver-
tices in the path between them will also need to be considered. We

hypothesize that this is why the attention heads o and 5, for example,

76

3.4 EXPERIMENTS & RESULTS 77

also allocate a fair amount of attention on the joining (ortho and meta)
carbon atoms.

To understand why the trend of correlation between number of heads
and classification accuracy does not continue beyond about 8 heads,
we plot the mean explained variance (10 cross-fold trials) of the two

principle components of the attention heads across all graphs.

0.08 1 —»— Component 1
Component 2

o 0.06
1)
C
.©
=
< 0.041
e
(7]
£
©
S 0.02 W\
X
w
5
@ 0.004
=

—0.02 4

0 10 20 30 40 50 60

No. of Attention Heads

Figure 3.13: Mean explained variance for top two principle components of at-
tention coefficients across all MUTAG graphs.

As shown in Figure 3.13, in all cases there is only one dominant
source of variation and as the number of heads increases beyond 8 the
diversity in these learned attention coefficients actually begins to re-
duce, with new heads learning more similar coefficients. This result is
of course limited to this dataset of small compounds, thus it is possi-
ble that with a larger dataset of larger compounds and a more difficult
task, increasing the number of heads beyond 8 may bring further gains

in classification performance.

3.4.6 Benchmark

Finally, to compare our proposed method against the existing state

of the art on realistic data we benchmark the performance of PiNet

3.5 SUMMARY

with the original [17] and extended GCNs (3.4.4), on the benchmark
datasets described above. For baseline we again compare against the
GCN [17] with a dense layer and mean pooling, and for state of the
art we compare against Patchy-SAN [21], DGCNN [136] and DiffPool
[110].

Asabove, we perform 10-fold cross validation and adopt the method-

ology of [31] and [110] reporting the mean validation accuracy for the

78

single best epoch.
MUTAG NCI-1 NClI-109 PROTEINS PTC
GCN + Dense 0.86 +0.06 073+0.03 0.72+0.02 0.71+0.04 0.63+0.07
GCN + Mean 0.84 +0.07 0.68+0.03 0.67 +0.03 0.744+0.02 0.63 +0.04
Patchy-SAN 0.85+0.06 0584002 0.58+0.03 0.704+0.02 0.58 +0.02
DGCNN 0.86 +£0.07 0.73+0.03 0.724+0.02 0.734+0.05 0.61+0.06
DiffPool 091+0.08 073+0.02 0724003 0.80+0.05 0.64+0.07
PiNet (GCN) 0.85+0.07 0.71+0.03 0.69+0.03 0.74+0.05 0.62+0.05
PiNet (GCN¥) 0.87+0.08 0.74+0.03 0.73+0.03 0.754+0.06 0.63+ 0.06
PiNet (GCN**) 0.88+0.07 074+002 0.71+0.04 0.754+0.06 0.63+0.04

Table 3.2: Benchmark results. * indicates GCN [17] with extended message
passing with manual p and g, and ** with learned p and 4.

As shown in Table 3.2, we observe competitive performance with
(within one standard deviation or better than) all of the state of the art

methods for all datasets.

3.5 SUMMARY

We have introduced PiNet, a generalised attention-based pooling mech-
anism for utilizing vertex-level convolution operators for graph level
representations. We have demonstrated its ability to distinguish 1-wL
distinguishable isomorphic graph classes with greater accuracy than
existing state of the art methods on our generated isomorphism test

dataset, and demonstrated results competitive with current state of

3.5 SUMMARY

the art methods on standard benchmark datasets. Moreover, the in-
terpretability of the learned attention coefficients demonstrates a clear
advantage to our method over the alternatives.

For further work we propose further study of PiNet with different
convolution operators, as well as the use of skip connections to add
greater flexibility to the learned vertex representations prior to graph
level pooling, and as detailed in Section 6.3.1 we propose an adaptation
to the attention process to enable hierarchical pooling.

Having investigated our proposed method for graph level pooling,
we have shown PiNet to be effective in the multiple domain graph level
task of graph classification as well as the multiple domain vertex level
task of generating meaningful visualizations of vertex significance in
interpreting the model’s predictions. Next, we continue the investiga-
tion considering multiple domains for graph and vertex level tasks, but

in the entirely different context of CAD.

79

UVSTYLE-NET: UNSUPERVISED FEW-SHOT
LEARNING OF 3D STYLE SIMILARITY MEASURE
FOR B-REPS

The following chapter presents work published in [1]. The reviewers
gave recognition of “extensive experiments” with “solid experimental
results and excellent method analysis (both quantitatively and qual-
itatively)”. They also recognise B-Rep style as an “interesting prob-
lem” and that our “method presents good retrieval results compared
to other representations ... as well as baseline networks”. Finally, they
note that a clear discussion of limitations “makes it a reliable work to
follow with”.

The key criticism of this work identified in the review process was
the lack of an intuitive explanation of the Gram matrices in the context
of B-Reps, which we addressed with Section 4.3.1. Prior to submission at
this venue, a previous review process rejected parts of this work on the
grounds of lacking quantitative comparison against baselines on real-
world data, which we addressed for this submission with Table 4.6. We

thank all reviewers for their contribution to this work.

4.1 INTRODUCTION

Continuing in the multiple domain case for graph level tasks, here we
consider the use case of style similarity for B-Reps, also with a focus on
the vertex level task of producing helpful gradient visualizations for

feedback to designers.

8o

4.1 INTRODUCTION 81

B-Reps are the de facto standard for industrial design, and the repre-
sentation most widely used in the consumer product and automotive
industries where style is of great importance [147]. B-Reps offer un-
paralleled editability in a compact, memory efficient representation,
they are not discretized/sampled (as per mesh/point cloud) offering
precise boundaries with continuous smooth surfaces/edge curves. For
example, to represent a sphere, a B-Rep would only need to store a ra-
dius and centre, whereas a mesh or point cloud would need to store
the coordinates for many discrete sampled points from the sphere’s
surface.

As a widely used, compact non-Euclidean representation for solid
models rich with relational structure, B-Reps are a highly suitable, yet
relatively unexplored data structure for the application of message pass-
ing algorithms and thus a pertinent choice for investigation in this the-
sis.

There are many use cases for a B-Rep style similarity measure, i.e. find-
ing architectural parts that are inkeeping with the style of a building, or
selecting parts for a car that fit with the manufacturer’s existing range.
Moreover, the gradient of a style similarity measure can be used to gen-
erate helpful visualizations or modify the input 3D shape a la Gatys et
al. [148].

Geometric style is inherently subjective and may have a different
meaning in different object class domains, i.e. the boundary between
style and content is unclear. For example, in the context of chair de-
signs, number of legs could be considered either style or content de-
pending on the particular use case. Thus, an effective geometric style
measure must cater for these different interpretations of the end user.

While existing methods use hand-crafted features [149, 150] or crowd-
sourcing [151-154] to pre-define and measure geometric style, we pro-

pose a user-defined few-shot style metric learning method that lever-

4.1 INTRODUCTION

CiArsz

Figure 4.1: Lower case examples from font ‘Viaoda Libre’. While 4" and ‘t’
share some stylistic features, they are not obviously similar to ‘c’, ‘s’
or ‘'z, i.e. font classes provide a ground truth for style compatibility
(as perceived by their designers) yet only a weak label for style

itself.

ages the range of style signals available in the activations of a pre-trained

3D object encoder through second order statistics (Gram matrices).

The relative importance of each layer’s Gram matrix is then learnt through

selection of just a few examples of what style means to an end user (see
Figure 4.3).

Despite the abundant use of B-Reps in industrial settings, there is a
fundamental lack of publicly available B-Rep data for training machine
learning models — in particular, at the time of writing, there are no
existing B-Rep datasets that include a reliable ground truth for style.
To overcome this challenge, we provide an adaptation to SolidMNIST
[127], which improves the style consistency within font classes for the
evaluation test set. The font classes, however, still provide only a weak
label for style (see Figure 4.1), and as such we propose an unsuper-
vised method and use the font labels purely for quantitative evaluation
to justify design choices of our method. For comparison against exist-
ing state of the art on real-world data we also provide evaluation with
the unlabelled ABC dataset [89] and a manually labelled subset of it.

In summary, we introduce a geometric style similarity measure for
3D solids that may be used in completely unlabelled settings for arbi-
trary object classes, with user subjectivity handled by few-shot learn-
ing given only a very small number of examples. While our method is

adaptable for all 3D input types, we demonstrate the benefits of our ap-

82

4.2 BACKGROUND & RELATED WORK

proach with B-Reps (over meshes and point clouds) both quantitatively

and qualitatively.

4.2 BACKGROUND & RELATED WORK

Since this chapter focuses on the specific application of style similarity
for B-Reps, we provide additional background and related work rele-
vant to this domain here. We start with a brief introduction to B-Reps
(4.2.1), we then review 3D geometric feature learning methods (4.2.2),
traditional 3D geometric style similarity methods (4.2.3), conventional

2D style transfer methods (4.2.4), and finally 3D style transfer meth-

ods (4.2.5).

4.2.1 Introduction to B-Reps

Figure 4.2: The B-Rep data structure: Faces are defined by parametric surfaces,
bounded by loops of trimming curves. Each trimming curve is
owned by a topological entity called a coedge, which stores adja-
cency relationships between faces. Figure from [155].

B-Reps are loosely analogous to 2D Scalable Vector Graphics (SVGs)

for 3D. The precise implementation details vary between different CAD

83

4.2 BACKGROUND & RELATED WORK

software packages, below we describe the general principles relevant
to all B-Reps.

As shown in Figure 4.2, B-Reps are collections of parametric curves
and surfaces along with topological information which describes the
adjacency relationships between them [155]. They are typically used
to describe closed volumes (solids), but can also represent 2D mani-
folds (sheets) and curve networks (wire bodies). Each face of a B-rep
body is defined by a parametric surface which is divided into “visi-
ble” and “hidden” regions by a series of trimming loops. The loops
comprise an ordered cycle of coedges, which store pointers to “mat-
ing” coedges on adjacent faces. The loop ordering and coedge-coedge
adjacency information provides a full description of the bodies topol-
ogy, while the parametric curves and surfaces provide the geometric
information [156].

B-Reps differ from point clouds and meshes since the are precise rep-
resentations with continuous smooth surfaces and edge curves — they
are not sampled/discrete. Consequently, complex solids may be ex-
pressed with low memory requirements without loss of detail [40].

The relational structure in the underlying graphs which define the
topology of connected geometric parts makes B-Reps a prime candidate
for message passing techniques, and thus is a key motivation for the
work in this chapter.

For further information on B-Reps see [40, 155, 156].

4.2.2 Geometric Feature Learning

Geometric feature learning has seen many successes for both Euclidean
representations, i.e. multi-view [88], projections [157], volumetric [158],
and non-Euclidean representations, i.e. point clouds [24, 159, 160] and

mesh [161, 162]. For a detailed review of geometric feature learning we

84

4.2 BACKGROUND & RELATED WORK

refer the reader to [39, 163, 164]. Despite the prevalence of B-Reps in in-
dustrial and creative design applications, however, geometric feature
learning for parametric representations remains largely unexplored.

In addition to their wide use, there are many advantages to working
with B-Reps as 3D geometric representations. Not only do B-Reps typ-
ically require less memory than point clouds or meshes (depending
on the sampling resolution/detail of the model), but they also provide
richer information about a solid, including the precise boundaries of
every surface and the topology of these surfaces. It is this rich rela-
tional information that makes B-Reps particularly suitable for message
passing algorithms.

The benefits of B-Reps over discretized representations are demon-
strated in Jayaraman et al. [127], where each face is sampled uniformly
in its parameter domain to form a regular grid then passed through a
2D CNN. The CNN face representations are then fed to a GNN which

uses the face adjacency matrix of the original B-Rep.

4.2.3 Geometric Style Similarity

Existing geometric style similarity learning methods are typically trained
in a supervised setting, requiring a set of hand-labelled triplets (A, B, C)
in which the pair A and B are believed to be closer in style than A
and C [149-154]. To account for style subjectivity, examples are la-
belled through crowd-sourcing methods and thus result in a generally
accepted definition for style.

For example, Liu ef al. [150] use hand-crafted features (i.e. curvature
histograms) with a supervised triplet loss to learn furniture compati-
bility, while Lun et al. [149] apply a similar method by first segmenting
input models into sub-parts to compute geometric features for inde-

pendently.

85

4.2 BACKGROUND & RELATED WORK

Geometric style feature learning has been demonstrated by Lim et al.
[151] and Pan ef al. [152] whereby 3D meshes are first projected into
multiple 2D views which are then processed with a traditional triplet
image CNN. Polania et al. [153] adopt a similar approach, where the
learned style representations are then passed to a GNN for compatibil-
ity prediction.

Rendering 3D solids into 2D (even with multiple views) is problem-
atic since stylistic features can be lost or occluded and selecting the
best views without making assumptions on the orientations of the data
is non-trivial. Pan et al. [154] overcome this using curvature-guided
sampling directly from the solids to generate element-level style fea-
tures which are then aggregated to global style representations using
a triplet network.

The reliance of these methods on crowd-sourced, hand-labelled style
triplets creates two problems: Firstly, there is limited labelled data
available in 3D style domain, and no labelled B-Rep data. Secondly,
and more importantly, the definition of style (an inherently subjective
concept) is pre-defined according to a consensus, hence may not be

compatible with an end-user’s particular taste or application.

4.2.4 Style Transfer

Contrary to the geometric style learning methods above, the style trans-
fer literature has largely adopted the use of first and second order ac-
tivation statistics from deep pre-trained image classifiers in order to
represent and quantify style. Gatys et al. [148] showed that feature
co-occurrence in the different layers of a CNN effectively captures el-
ements of style at different scales of abstraction. In the finest layers
where features are most local, the style representation given by the

Gram matrix captures color and texture information, yet deeper into

86

4.2 BACKGROUND & RELATED WORK

the network, the Gram matrices capture higher level structure and pat-
terns eventually crossing into semantic content.

Following from this, Huang et al. [165] and Babaeizadeh et al. [166]
demonstrate that first order activation statistics (channel-wise mean
and variance) are also able to capture elements of style through the use
of Adaptive Instance Normalization (AdalN). Karras et al. [167] illus-
trate the relationship between layer depth and the style/content trade-
off by swapping the inputs to a generator at varied depth. Swapping at
lower layers renders image interpolations of low level texture/colour
information, and swapping at deeper layers interpolates semantic con-
tent.

Many further works utilize and extend the use of first order statistics
of network activations to improve style transfer results, e.g. Generative
Adversarial Network (GAN) based methods [168—170]; however, these
methods rely on a generator to align the activations to these statistics
while generating an output image, with the main focus on the quality
of the output images rather than the interpretability of the statistics
in defining an explicit style distance metric for arbitrary inputs. To
explicitly disentangle style and content for arbitrary inputs Park et al.
[171] propose an auto-encoder architecture that adopts the technique
of swapping inputs at various layers and a GAN based encoder and
discriminator that is able to effectively separate structure and texture.

Azadietal. [172] propose a few-shot learning approach for font style
transfer in which stacked conditional GANs are used to generate unseen
characters in a target style from a small number of observed examples.
This method is, however, specific to font generation and relies on su-

pervised pre-training using the style labels.

87

4.3 METHOD 88

4.2.5 3D Style Transfer

Recently, Liu et al. [173] showed that style could be learned from one
mesh model and transferred to another using a neural subdivision sur-
face scheme. Cao et al. [174] generalised the second order statistics
approach of [148] to 3D point clouds, adopting the use of a Pointnet
[159] encoder pre-trained for classification on ShapeNet [175]. Follow-
ing the trend of 2D style transfer Segu et al. [176 | extend this work using
GAN methods to produce a generative model with better disentangle-
ment of content and style. There are no existing style transfer/unsu-

pervised approaches to style metric learning for B-Reps.

4.3 METHOD

L
Query Nearest Neighbours Zszyie (a, b) = Zw; - Di(a,b)

Style Signals

85004800340

Content Embedding

7 8

— tri ! LT
Gi(x) = triu (¢ (x)¢'(x)) End user selects positive and/or negative examples for few-shot user defined style metric learning

® w* = arg min %,
© <7 RS
50596000908
Q 1 3 3 7 B 7 B B 0

B-Rep Input X

Figure 4.3: Overview of UV-StyleNet: Grams of activations are normalized
and extracted for each layer. The weights applied to each layer de-
fine the meaning of style. (a) Top-10 query results using uniform
layer weights w (b) Top-10 query results using w* based on the
user-selected examples (positive in green, negative in red). In this
example, w* ~ [0,0,0,1,0,0,0]". (We recommend zooming in to
see stylistic details such as fillets/bevels.)

Based on our hypothesis that the relational structure present in B-Reps
will provide a rich source of information for learning geometric and
topological features suitable for representing style, we propose an ap-
proach that combines a pre-trained message-passing B-Rep encoder with

techniques adapted from image-based style-transfer literature. Specifi-

cally, our approach uses second order statistics of the activations from

4.3 METHOD

the pre-trained B-Rep encoder to form a flexible style representation.
We provide an overview of the architecture in Figure 4.3, with a de-
tailed description below.

For the encoder we use UV-Net [127], which processes each face of
a solid with 3 layers of 2D convolutions, and propagates the projected
pooled features of each face in a face-adjacency graph using 2 GIN [91]
layers. Each face is represented by a 10 x 10 grid (image) of 7 dimen-
sions containing the absolute 3D position (xyz) of each UV sample, the
normal for each sample, and a mask indicating whether each sample
lies within or outside of the trimmed face. We use UV-Net due to its
state of the art performance on B-Rep classification and its parallels to
conventional 2D CNNs. We also hypothesise that the use of a message
passing network over encoded face representations will force a greater
separation of low and high level features which will be advantageous

in separating style from content (see Figure 4.4).

[CNN shares weights Face adjacency

accross all faces

graph
Input solid Embedding for
complete solid

E

v

A B

Lower level surface features Higher level topology features

Figure 4.4: General overview of UV-Net encoder architecture. A shared CNN
is first used to encode each B-Rep face (A), with the face repre-
sentations then passed through an MPNN according to the face-
adjacency graph (B). Encoding each face prior to passing mes-
sages between the faces introduces additional inductive biases
which enable the separation of low level surface details from
higher level features such as face composition. Figure adapted
from [127].

For B-Rep model x, we extract the normalised, flattened upper trian-

gle of the Gram matrix for each layer I

Gy (x) = triu (¢! () ¢! (x)T) (4.1)

89

4.3 METHOD

where ¢'(x) € RN is the normalised feature map of a pre-trained
classifier given input x such that gbﬁj (x) is the normalized activation of
filter i at position j in layer /, d; and N; are the number of distinct filters
and non-masked samples in layer [respectively, and triu : R%*% —

dl(dl+1)
R ™27 returns the flattened upper triangle of a matrix.

For the first (features) layer, samples corresponding to the positions
that do not lie on the surface of a trimmed face are masked, and the
gram matrix is calculated accordingly. In the GIN layers, we have a
single vector per face (i.e. vertex), thus instance normalization [177] is
applied across the solid prior to computing the Grams. For each of the
features (non-masked positions and normals) and activations of each
convolution layer’s filters, we leverage the grouping of samples into
faces which is unique to B-Reps (compared to meshes and point clouds),
whereby we re-center (subtract the mean of) the UV samples by face.
This can be interpreted as per-face instance normalization without di-
vision by the standard deviation.

Face re-centering/instance normalization are applied to the activa-
tions after extraction from the encoder, but the raw (un-normalized)
activations are passed to the next layer of the encoder, thus imposing
no requirements on the encoder architecture in terms of normalization
strategies.

Analogous to style-transfer with 2D images [148], for a pair of B-Reps

a and b we define the style distance:
L
o(Dstyle (a/b) = Z w; - Dy (a,b), (4.2)
=1

where

G;(a) - Gy(b)

D;(a,b)=1— —~—+——— .
1 (a/b) 1G, @G, (D)1 (4-3)

90

4.3 METHOD

and w is a weights vector that controls how much each layer contributes
to the style distance measure. We deviate from Gatys et al. [148] in use
of the cosine distance (rather than Euclidean) due to simplified nor-
malization and an observed improvement in our initial experiments.
Given a set of user selected examples from a target style (i.e. positive
samples) T, and a set of user selected counter-examples (i.e. negative

samples) T’, we define the user-defined loss:

L
Lyser = Zwl -E; (4-4)
=1
where
Er=ci- Y Diltyt)—co- Y Dyt t) (4.5)
ti,t]ET (t,t’)ETXT’
i#]

is a layer-wise energy term, c; and c, are normalization constants, and
to prevent trivial solutions w is constrained such that Zlel w; = 1and
w > 0. Due to these constraints, we note that even with only positive
examples T (i.e. T' = @), E; is sufficiently determined, and in such a
case the second term may be omitted. However, to reduce the risk of
overfitting, a large number of negative examples may be drawn ran-
domly from the remaining dataset. This is of particular benefit in real
world settings without access to labelled datasets, where an end user
may select only a handful of positive examples that share style as they
perceive it.

We find the optimal weights for an end-user

L
w* = arg“r’nin Z wy - E; (4.6)
=1

g1

4.4 EXPERIMENTS & RESULTS

subject to the above constraints, and substitute them into Eq. (4.2) to
produce the final user style distance metric.

We observe that E; is constant w.r.t. w, thus Eq. (4.6) is simply a lin-
ear combination and its intersection with the hyperplane Zlel w; =1
results in a twice-differentiable convex optimization which we solve us-

ing Sequential Least Squares Quadratic Programming (SLSQP) [178].

4.3.1 Intuition Behind the Gram Matrices

Analogous to [148], we may understand the Gram matrices extracted
from the pre-trained B-Rep encoder as follows: At the features layer (in-
put of the encoder), the Gram matrix models the distribution of the
position and surface normal of the sample points on the faces with
second order statistics. Looking at the filter receptive fields, the 1st
layer Gram is modelling the distribution of local simple curvatures (e.g.
flat/saddle/doubly curved), and the next layer capturing correlations
between more complex curvatures (e.g. s-shaped), then leading into
correlations of patterns of these lower level features and eventually
into content. Adjustment of weights for each layer’s Gram in the loss
enables subjective control over the definition of style [166] by control-
ling the contribution of shared local curvatures versus more complex

surface features.

4.4 EXPERIMENTS & RESULTS

We start by testing if our message passing-based 3D generalization of
2D style techniques for B-Reps is able to capture 3D style signals (4.4.3),
and quantify the presence of this information at each layer. We also
compare our approach against other encoders that operate on point

clouds and mesh, where the information regarding the relational struc-

92

4.4 EXPERIMENTS & RESULTS

ture of surface primitives is not present. Next, we evaluate our pro-
posed method for disentanglement of style from content with a vertex
level gradient visualization (4.4.4), thus demonstrating a practical use-
case in which a designer may utilize the feedback from the model. We
then test few-shot learning of our style metric in its ability to capture
an end-user’s subjective requirements (4.4.5). Finally, we assess the ef-
fectiveness of our approach when content labels are not available with
completely unsupervised encoder pre-training (4.4.6). For ablation,
we consider the effect of our proposed face re-centering normalization,
which is only applicable for B-Reps given the relational information in-
cluded in the representation, as well as the effect of dimension reduc-
tion on the extracted Gram matrices (4.4.7).

For quantitative evaluation we use SolidMNIST [127], which is a col-
lection of extruded letters from a variety of fonts including labels for
both content (i.e. letter class) and style (i.e. font class) (Table 4.1). This
is a good choice of data for initial validation of our design decisions,
as the 2D nature of the elements of style in 3D shapes simplifies the
analysis and debugging while the generation process of these 3D let-
ters mirrors the most typical CAD modelling approach — drawing a 2D
wire body, then extruding to 3D and potentially filleting/bevelling the
edges.

In all cases (for SolidMNIST) we pre-train the classifier on the train-
ing set to predict the letter classes, and perform model selection for
the content classifier with the validation set. Following the methodol-
ogy of Cohen et al. [179] and Jayaraman et al. [127], we perform pre-
training using 26 classes (combining upper and lower case examples).
The dataset provided by Jayaraman et al. [127] includes randomness in
the fillet size, and extrusion depth and angle. For the held-out test set
used in all our evaluations, we regenerate the letters to remove sources

of randomness (extrusion angle/amount and fillet size) within font

93

4.4 EXPERIMENTS & RESULTS

classes, hence strengthening the style labels. For further detail, see Sec-

tion 4.4.1.1.
Train Validation Test
Examples 40,402 10,100 13,339
Letter Classes 26 26 26
Font Classes 1,664 1650 378
Random Extrude/Fillet v v X

Table 4.1: Details of SolidMNIST dataset [127]. The test set is regenerated
without sources of randomness within font classes to strengthen
the associated style labels used for evaluation.

After pre-training, all experiments are performed using the held-out
test set. We note in particular that no examples of the test fonts are
included in the training/validation sets, and that font style labels are
used purely for evaluation and not during pre-training.

For comparison with other representation types and encoders, we

use MeshCNN [161] for meshes, and Pointnet++ [180] for point clouds.

We use Pointnet++ over DGCNN [24] or Pointnet [159] since we are
drawing upon 2D style literature. DGCNN aggregates intermediate
layer activations according to locality in feature space rather than coor-
dinate space, and Pointnet does not perform hierarchical pooling, thus
Pointnet++ is a closer point cloud generalization of the 2D CNN ap-
proach used in [148]. In mesh and point cloud representations, there
is no information regarding local grouping of samples, thus it is not
possible to apply face-wise re-centering, so we use instance normaliza-
tion for the extracted activations throughout.

For comparison against existing state of the art, knowing of no exist-
ing unsupervised B-Rep style learning methods, as a baseline we use the
geometric style embedding of PSNet [174], without the colour inputs,
which we refer to as PSNet*. PSNet performs geometric and colour
style transfer on point clouds without surface normal. Its use of a pre-

trained encoder allows us to adapt it to completely unsupervised set-

94

4.4 EXPERIMENTS & RESULTS 95

tings by pre-training the encoder through point cloud reconstruction
rather than content classification as proposed. Further details in Sec-

tion 4.4.2.

4.4.1 Data

4.4.1.1 SolidMNIST Test Set Generation

For SolidMNIST, the training data is generated as per [127] using code
and font wires provided by the authors. The key steps are illustrated
in Figure 4.5.

The held-out test set is regenerated to strengthen the associated style
labels by removing inconsistent sources of randomness within font
classes. The extrusion depth and angle are fixed across all fonts. Fillet-
ing size is also fixed, and is applied only to fonts where it possible to
apply it to all examples of that font. Filleting is not possible for some
examples due to the complexity of the solids. If filleting is unsuccessful

on any example, all examples of that font are left without fillets.

(b) Select random ex-
(a) 2D Font wire trude angle (c) Extrude (d) Fillet

Figure 4.5: Steps for generation of SolidMNIST dataset. For test set, extrude
angle and fillet amount are fixed. Figure from [127]

4.4.1.2 ABC Style Labels

There is a fundamental lack of publicly available labelled B-Rep data,
with no existing B-Rep datasets containing style labels. To enable quan-
titative evaluation of our method and promote further work in this area

we contribute a set of manually assigned style labels for a subset of the

4.4 EXPERIMENTS & RESULTS

ABC solid models. We selected categories with distinct styles while
containing diverse content. Examples of each category are shown in

Figure 4.6 and details of the class sizes in Table 4.2.
Flat 1 a l -— L ﬁ

@ P
rresrorm |) ~— E @
ol ST
anguier | 2 Al ‘ y 4
Q@ & & —

Figure 4.6: Examples of each ABC style subset classes. Each style is selected
to be visually distinct, and while some classes contain the same
types of objects, i.e., “Tubular’, the overall shapes (the content) are
diverse.

ABC Subset Examples

Flat/Electric 389/58
Free Form/Pipe 241/24
Angular/Rounded 834/106

Table 4.2: Manually labelled ABC style subsets.

4.4.2 Model Details & Hyperparameters

For MeshCNN [161] we use the authors’ code from https://github.
com/ranahanocka/MeshCNN, for Pointnet++ [180] weuse https://github.
com/erikwijmans/Pointnet2 PyTorch. All experiments performed on
AWS p3.2xlarge.

Table 4.3 shows details about the model hyper parameters and meta

information. For MeshCNN, we remeshed each solid to 15000 edges

96

https://github.com/ranahanocka/MeshCNN
https://github.com/ranahanocka/MeshCNN
https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch
https://aws.amazon.com/about-aws/whats-new/2017/10/introducing-amazon-ec2-p3-instances/

4.4 EXPERIMENTS & RESULTS

and for Pointnet++ we used the multi-scale grouping (MSG) setup.

Other parameters and architecture choices not mentioned here, are set

to default.
Model LR N F BS Opt
UV-Net 1e-4 BN 7 128 Adam
PSNet* 1e-4 BN 3 128 Adam
Pointnet++ 1e-3 BN 6 32 Adam
MeshCNN 2e-4 GN 5 4 Adam

Table 4.3: Hyper-parameters and meta information about the models for
SolidMNIST runs. LR denotes learning rate, N type of norm (i.e.
batch norm or group norm), F input feature dimension, BS batch
size and Opt, the type of optimizer used.

For PSNet* [174] we use the Pointnet [159] implementation from
https://github.com/WangYueFt/dgcnn and extract the Gram matrices
from the first 4 layers as detailed in [174]. While PSNet works with ge-
ometry and color, we use only the geometric part in our comparisons.

All point clouds are sampled with 1024 points.

4.4.3 Measuring Style Signal

We adopt the Linear Probe methodology [181] to measure the amount
of style signal present in the Gram matrices of each layer of the pre-
trained network. We train a linear classifier on each layer’s Gram ma-
trix G; with ground truth font labels on a subset of the SolidMNIST
test set. We select four visually distinct fonts in order to strengthen
the style labels with respect to style over style compatability (see Fig-
ure 4.1), and due to many fonts in the test set containing almost iden-
tical variants. Each encoder is pre-trained with only letter classes as
labels, and the four test fonts used in this evaluation are previously
unseen. Since the dimensions of the Gram matrices are very large (i.e.

in some cases > 219), but we have only 137 examples, we perform lo-

97

https://github.com/WangYueFt/dgcnn

4.4 EXPERIMENTS & RESULTS

gistic regression with L2 regularization and 5-fold cross-validation to

prevent overfitting. We report the mean validation accuracies.

1.0

UV-Net
PSNet*
PointNet++

RN DR N
I AN RO NN
A A NN
LLLLLLLLLLLLLLLLL
VNUTNVTNNNNNNNNNNV —am

(V]
L A 0 e e o N
AANMN<FINONROOOANMS INON0

Figure 4.7: Linear probe classification accuracy scores for each encoder using
font labels for evaluation (no fontlabels used during pre-training).
All fonts used here are previously unseen by the networks. Ran-
dom baseline: 0.25.

Figure 4.7 shows the mean validation accuracy using the extracted
Gram matrices from each layer in all four pre-trained models. Com-
pared to random baseline at 0.25, we observe significant indication of
style being present in the signals extracted from all layers (including
features) for all models. For UV-Net we see the greatest amount of
style information in the lowest layers, with the signal reducing deeper
into the network. This aligns with our assumption that second order
activation statistics transition from style to content representations as
network depth increases, as shown for 2D images in [148, 167].

Comparing the distributions of classification accuracy over each layer
with the median as shown in Table 4.4, we see a clear separation of
UV-Net and MeshCNN which perform message passing over exist-
ing relational structure, from PSNet* and Pointnet++ which do not.

For Pointnet++, the relational structure over which to perform mes-

98

4.4 EXPERIMENTS & RESULTS

Encoder Relational Structure Median Accuracy Rank
UV-Net FG + FA 0.99 1
PSNet* None 0.81 4
Pointnet++ Inferred 0.92 3
MeshCNN Mesh 0.98 2

Table 4.4: Comparison of classification accuracies for each pre-trained en-
coder with attention to the relational structure which defines the
message passing. UV-Net and MeshCNN leverage existing struc-
tural information, whereas Pointnet++ must infer the structure,
and PSNet* treats all points as a set with no relational information.
FG = Face-grouping of sampled points, FA = Face adjacency.

sage passing must be inferred from the points” xyz positions, whereas
MeshCNN leverages the relational structure prescribed by the topol-
ogy of the mesh, and UV-Net leverages both the relational information
of which samples belong to which B-Rep face as well as the topological
information prescribed by the face-adjacency graph. PSNet*, which
does not perform any message passing over relational structure, per-

forms substantially lower than all three message passing methods.

>
c
<,
<
>
<

UV-Net

Pointnet++

~ONS
VNS E R
10D ™ & >4
AW
0> R
SN
MONS X
“ MR
S N/=
SON&

MeshCNN

OIMN &< oMN S

PSNet*

oMN S<| ~MNS <
=

=10 || &
N | s | 2B |
wNRE <
=1 O -
o074 X< | [P<
= ™ RA
M) Y &
w8 &M
AN -
WMC|R|R <

Figure 4.8: SolidMNIST Font Subset: Top-5 queries for a letter from each font,
with all weight distributed uniformly over the first % layers. Red
box indicates result does not match query font.

For a qualitative evaluation of our design choices, we perform a top-

k query for an example from each font distributing all weight uniformly

99

4.4 EXPERIMENTS & RESULTS

over the first % layers. As shown in Figure 4.8, with this particular style
definition, the style features provided by the pre-trained Pointnet++
model suggest the ‘Z’ from another font is close in style to the query ‘L,
while all UV-Net query results match the target font, and MeshCNN
makes only one less obvious mistake. PSNet* has the highest number

of errors.

B-Rep UV-Net Point Cloud Mesh

New,

Figure 4.9: Visualization illustrating the sampling bias advantage of UV-Net,
whereby the details in the long surfaces of the ‘L’ are sampled
more densely (each face in the B-Rep is sampled with a uniform
10x10 grid) than the simple flat surface of the ‘Z” making it much
easier to differentiate between the different styles than with the
uniformly sampled point cloud.

In addition to the differences in the amount of relational informa-
tion utilized by each encoder, we hypothesize that this result may be
partly due to the sampling strategy of each method. As Figure 4.9 il-
lustrates, UV-Net samples a fixed size grid for each face, thus large
faces (such as the long diagonal stem of the ‘Z") will contribute less to
the style features extracted than in PSNet* and Pointnet++ where the
point cloud is sampled with uniform density. Therefore, the large diag-
onal faces have larger influence with Pointnet++ features as network
depth increases. Lack of a CNN hierarchy and surface normal inputs
may explain the lower performance of PSNet* versus PointNet++.

Figure 4.10 shows the top-k query for the same letter ‘L’ using the
style distance from single layers (I = 0, = %, and [= %) Supporting
our hypothesis above, we see that in this particular scenario, the font
is better matched by Pointnet++ in the lower layers. Within the first

layer of the network, the features extracted will contain more informa-

100

4.4 EXPERIMENTS & RESULTS

e
St

UV-Net

<G, iy

2

S 00/7"3

< Q,%e

2

PSNet*

oo, iy

0,
’h,e
n

e

SINNN NN

ALTEZ): N2 7 EZT Y
L2735 :02e722r 7
Z4£8205%\22 (774
1 2 3 4 5 s Q 1 2 3 4 5
THE 7 : [Z e A7 RIA
AIAE|2 S, 24 Snhw
2JAIE| LN L NI
1 2 3 4 5 Q 1 2 3 4 5

2

Figure 4.10: SoOlidMNIST Font Subset: Top-5 queries for the same letter for
I=0I= %, and [= % Red box indicates result does not match

query font.

tion about low level structure, i.e. bumpy rather than smooth surfaces.

Interestingly, for [< %, MeshCNN performs worst with the features

(I = 0). We hypothesise this is due to the rotation and scale invari-

ance in the MeshCNN features, whereas UV-Net/Pointnet++ features

contain global information.

Encoder L Parameters Time Size
UV-Net 7 645,596 93min/88s 199 KB
PSNet* 5 813,914 165min/1155 1.08MB
Pointnet++ 22 1,746,420 43min/603s 13.32 MB
MeshCNN 5 1,322,982 29hr/38min 305 KB

Table 4.5: Comparison of 3D encoder methods. L is total number of layers
(including features), times given are pre-training/style inference
on complete SolidMNIST test set. Size is the memory required for a
single style embedding (containing one Gram per layer) for a single
solid - note this is not dependent on the size of the input solid. For
style inference UV-Net is the most compute and memory efficient.
MeshCNN suffers from small batch size due to necessarily large
meshes, and Pointnet++ suffers from larger Gram matrices.

Finally, comparing with the computational costs of PSNet*, Point-

Net++, and MeshCNN we observe that the UV-Net encoder with only

645K parameters is 23, 85, and 96 percent faster for style inference, and

101

4.4 EXPERIMENTS & RESULTS

the Gram matrices require 82, 94, and 35 percent less memory per solid
respectively. The superior inference speed of the UV-Net encoder is
likely due to the sparsity of the face adjacency graph over which mes-
sages are propagated. Whereas the Pointnet++ and MeshCNN mes-
sage passing graphs are relatively large compared to the number of
points or edges in the input solids, the face adjacency graphs of B-Reps
are substantially smaller, as even complex faces can be represented effi-
ciently with a single vertex. Full detailsin Table 4.5. Based on the above
results and computational costs, we perform further experiments us-

ing the UV-Net encoder only.

4.4.4 Gradient Visualization

In Figure 4.11 we visualize our proposed pairwise style distance metric

for each B-Rep x by computing

aacstyle
Viyz = . € RNox3 (4.7)
xXyz

where Ny is the grid size (number of unmasked UV samples), and x,, ,
is the absolute positions of the UV samples. For easy interpretation, we
plot the vectors —k-V,, , centered at the samples x,,, with black lines to
indicate the direction in which a UV sample point should be displaced
in order to better match the style between the pair, and k is a constant
scaling factor that aids visualization.

In Figure 4.11 (left) we fix the content and compare different styles.
The xyz gradients suggest that the samples of the left example should
be moved outwards to match the squarish style on the right, and the
samples of the example on the right should be moved inside the solid to
match the curves on the left. Figure 4.11 (right) confirms our approach
is able to disentangle style from content, as we compare different con-

tent and different style. The gradients on the left example are similar to

102

4.4 EXPERIMENTS & RESULTS

Same Content Different Content

Different Style Different Style
a iy
S Q{*@
=3 =
”

x A
U ﬁ‘ﬁ‘ﬁ‘g %7}

Figure 4.11: Gradient visualizations of pairwise g, loss (Eq. (4.2)) with
uniform weight on the first 4 layers (including features), i.e. w =
[}1, %, }I, 4—11,0, 0,0]". Black lines show —k - Viyzs L€ the direction
in which to move the point to match the style between the pair.

(left), confirming that the style is matched despite a different content
example to compare with.

The ability of our method to generate these meaningful style gradi-
ents demonstrates a key advantage to our use of a message passing net-
work. As discussed in Chapter 2, alternatives to message passing for
representing non-Euclidean data, such as multi-view 2D projections,
would make it non-trivial to project the gradients back to the original
problem space (i.e. a 3D solid), whereas by adopting a message pass-
ing approach which operates directly on the non-Euclidean data we
are able to back-propagate the gradients directly to the solids in the 3D

coordinate space.

4.4.5 Few-shot Learning of User-Defined Style Measure

We evaluate few-shot learning of our user-defined style loss on the
complete unseen test set, by measuring the mean Precision@10 for each
example from a selected font for a range of number of positive and neg-
ative user-selected examples. We evaluate on 6 visually distinct fonts.
Examples of each font are given in Figure 4.12. Precision@1o0 is calcu-
lated as the proportion of top-10 neighbors that match the target font.
For baseline, we compare against the mean Precision@10 with uniform

layer weights (one positive and no negative examples). For computa-

103

4.4 EXPERIMENTS & RESULTS

tional reasons, we reduce the dimensions of each layer’s representation

G to min(d,, 70) using PCA.

Vampiro One Vast Shadow

3383
NnAL

Signika Viaoda Libre

Stalemate Wire One

=38
NN &

|

Figure 4.12: Examples of fonts for few-shot evaluation.

As shown in Figure 4.1, the font name provides only a weak style
label, and as such we are concerned more with the improvement in the
mean Precision@10 score than the absolute values. We also consider
upper and lower case within the same font as separate labels to further
strengthen the associated label, yet also increasing the difficulty of the
task as the number of classes doubles to 756.

Positive examples are randomly drawn from the same font and case,
and negatives are drawn randomly from all remaining examples. For
each number of positives and negatives we perform 20 trials (different
positives and negatives each time). We report the mean Precision@10
across all examples of the positive font across all trials, i.e. for each
number of positives and negatives, every example of a chosen font is
queried and evaluated, and this process is repeated 20 times.

Figure 4.13 shows the absolute mean Precision@10 scores over a range
of number of positive and negative examples of each of the unseen
fonts we tested. 1 positive and o negative indicates baseline using equal
layer weights.

For the most visually distinct fonts (i.e. “Vampiro One” and ‘Vast
Shadow’), the equal weights baseline is highest. The amount of im-

provement is dependant on the self-consistency of style within the font

104

4.4 EXPERIMENTS & RESULTS

Signika_lower (20 Trials) Stalemate_lower (20 Trials)
0.15
10 - 0.14%% 0.15% 0.145 10 -[(OBKN 0.15%% 0.15%*

0.15% 0.15% | [014

0.140
5 - OBPAl 0.14+% 5-
0.135

0 @
[[
2 0130 3 4-JORIN 0.15% 0.15% 0.13
g 2
5 0125 5 LY 0.12% 0.14%
e s 37 0.12
= 0120 =2
12* 2 -JeRKN 0.14 0.15*
. 0.115 0.11
0.110 i 0.12 | 0.12
" D T 0.10
0 50 100
No. of Negatives No. of Negatives
Vast Shadow_lower (20 Trials) Vampiro One_lower (20 Trials)
10 - 0.28* 0.28* 10 - 0.49%* 0.49%*
0.26
0.45
5 -BOREEN 0.48** 0.50%*
3 3
2 2 4-JOEEN 0.49%% 0.48%* 040
wv n
o o
o o
Pt Pt
° © 3 -JEIN 0.47*% 0.47* 0.35
o o
=z =z
bR 0.31 . 0.39 0.30
J 0.38 | 0.29
0.25
i 0 5
0 50 100 0 50
No. of Negatives No. of Negatlves
Viaoda Libre_lower (20 Trials) Wire One_lower (20 Trials)

0.13%* 0.13** 1
0.125

. 0.13** 5
0.120

0 -JCRRl 0.14* 0.14* 0.140

0.14* 0.14*

-
[

0.135
[n
$:
S 4- 0.12%* 0.12%* S 4- 0.130
3 0115 &
o o
G G
5 3- 5 3- 0.125
=4 0.110 =
2 2 0.120
0.105
1- 0.115
0.100
No. of Negatives No. of Negatives

Figure 4.13: Mean Precision@10 score for each example of the specified font
after few-shot learning of w* given a range of number of posi-
tive and negative examples. 1 positive + o negatives provides
baseline using uniform weights. * and ** indicate a 10% and 5%
statistically significant improvement over baseline respectively.

and the number of similar fonts in the test set. We observe greater
self-consistency within “Vampiro One” and “Vast Shadow” while being
distinct from the rest of the test set. While the other fonts still show im-
provement, we expect lower results due to their inconsistency or lack

of distinct stylistic features, i.e. in ‘Stalemate” the ‘m” and ’s” appear to

105

4.4 EXPERIMENTS & RESULTS

Mean Gain (6 Fonts)

10 -ﬂ 1.27%% 1.27%* 1.25
1.20
5- 1.24%F 1,25%*
0 1.15
2 m 1.22%% 1.22%*
g 1.10
o
S 1.20%* 1.21%
5 : 1.05
=2
0.95
1

0
No. of Negatlves

Figure 4.14: Mean gain in Precision@10 (ratio to baseline) for all six fonts.
* and ** indicate a 10% and 5% statistically significant improve-
ment over baseline respectively.

be stylistically compatible, but the max curvatures of the ‘m” are much
greater than in the ‘s’ - the style is not obviously the same.

Figure 4.14 shows the mean gain in Precision@10 (ratio to baseline)
for all six fonts. For all combinations of number of positives and nega-
tives greater than 0, we observe a significant improvement in the mean
Precision@10 score over the uniformly weighted baseline. Moreover,
since negatives are selected randomly from the remaining dataset, we
also confirm that providing only positive examples is sufficient to ob-
tain a significantly improved style measure based on the end-user’s

requirements.

4.4.6 Unsupervised Pre-training

Another advantage of our method over existing approaches is that it
may be used in unsupervised settings. This is particularly important
for B-Reps, since there are no publicly available B-Rep datasets with style

labels. We evaluate our approach using the ABC dataset, which con-

106

4.4 EXPERIMENTS & RESULTS

tains no content or style labels. For the UVStyle-Net/PSNet* encoder
pre-training we use an auto-regressive approach with point cloud re-
construction [127]. Again, we reduce the dimensions of the style rep-

resentations G; to min(d;, 70) using PCA.

Query UVStle-Net PSNet*

‘go Q m 4 2
4 ‘0.06

b I
“

N

6 0

bR
\

&
4.59
.06
3

Vd
-
y ¥
3

ity =y

2

B

14 @B\ N

1%
14 @14

Figure 4.15: Top-5 query results for ABC dataset from UVStyle-Net and
PSNet* pre-trained (unsupervised) with point cloud reconstruc-

tion. For UVStyle-Net w = [%, %, %,O, 0,0,0]7. (We recommend

zooming to see important stylistic details such as bevels/fillets.)

Figure 4.15 shows a selection of top-5 queries in the style embedding
space, with uniform weight on only the lowest 3 layers. For PSNet*
queries we use Euclidean distance as this is the metric optimized in
[174]. We observe that UVStyle-Net matches surface style with more
variation in content, while in many cases PSNet* matches shapes that
roughly occupy the same regions in space as the query, i.e. the content.

For example, in row A: the UVStyle-Net results have more flat sur-
faces and similar angles matching the query, while PSNet* results have
more curved surfaces (not present in the query). For row C: UVStyle-
Net has more matching curved surfaces (cylindrical parts), and in row
D: UVStyle-Net matches more shapes with fillets (as per the query),
while PSNet*’s closest query result has the exact same content but with
a different (bevelled) style (this same bevelled example is in position
5 for UVStyle-Net rather than 1 for PSNet*). Finally, in row E: UVStyle-

Net finds blocks with the matching notch style (even with different

107

4.4 EXPERIMENTS & RESULTS

block size or numbers of notches), whereas PSNet* matches similar
sized blocks without the notched style. For completeness, we show
the same queries for PSNet* using the cosine loss in Figure 4.16.

The effectiveness of UVStyle-Net over PSNet* is most likely due to
the hierarchical feature learning architecture enable by message pass-
ing. In UV-Net, the composition of a CNN face encoder followed by 2
GIN [91] layers enables the CNN to focus purely on low level surface
features, with higher order features such as face composition learnt
higher in the network in the message passing layers (see Figure 4.4). In
this case, for matching style over content, being able to focus solely on
surface level details is clearly advantageous. Contrary to this, PSNet*
treats all points as a set with no relational information to assist in break-
ing the solid down into hierarchically composed parts, thus lacks this

key relational inductive bias.

Aﬁ i j j
0.00 0.01 0.04| "% 0 04 0.04 0.04

A 4F 47 4F AP -

0.00 0.03 0.04 0.04 0.04
Q 1

Sres
S5
i

Figure 4.16: Top-5 queries for PSNet* with cosine distance.

Figure 4.17 shows a comparison of the same queries for UVStyle-Net
with different layer weights. Of particular interest is row D column 5
(left) and column 2 (right). As discussed above, this solid is almost
identical to the query but with bevels instead of fillets. We observe
that adding weight to the fourth layer moves this result closer to the
query, while when only weighting the first three layers, the difference
in surface detail is enough for other filleted examples to be closer in

the embedding space to the query than the bevelled version.

108

4.4 EXPERIMENTS & RESULTS

Query UVStle-Net: 3 Layers UVStyle-Net: 4 Layers

N

1 1 .2 2

(Y1
%

0 .01

%
\
N
VA
\
N
AN

c\
o

o .
o

o

o

o

oo
"’\
o
c\
o

o

°

2

0 1

3

14 @R\ N

14 %

14198

{1y
1408 N\
14 @A
14 0%
14 &%

Figure 4.17: Comparison of top-5 queries with different weights for UVStyle-
Net on ABC dataset with unsupervised pre-training. 3 Layers:

w=[3,3,%,00,0,0]7, 4 Layers: w = [, +,7,%,0,0,01".

In Figure 4.18, we again show the same queries, however this time
with all weight on the final layer. As expected, we see that weighting
the upper layers of the network moves the definition of style closer to
content, where the distance measure is more about the general shape
and size and global features, and less about the fine details and local
features. Again, this is most likely due to the face-adjacency message
passing architecture, where each message in the MPNN layers contains
information regarding a larger local neighbourhood of adjacent faces

as depth increases.

W AT V. P alalls
||,

&P
S5

=3

2

18 @ |
14 @8

Figure 4.18: Top-5 query results for ABC dataset from UVStyle-Net with un-
supervised pre-training. w = [0,0,0,0,0,0, 177,

109

4.4 EXPERIMENTS & RESULTS

Positive :)
Examples p ’
0.00 0.00 0.01 ﬁ “ 0.01 0.01 0.01 0.02 0.02 0.02 ﬂ

Q 1 2 3 4 5 6 7 8 9 10

Figure 4.19: Optimizing ., .., with positive examples matching in content re-
sults in layer weight distributed over the upper layers. w* =

[0,0,0,0,0, 3,31

Evaluating our few-shot user-defined style measure, Figure 4.3 shows
the nearest neighbour queries for a given target after optimizing the

style loss for the user selected examples shown. Selecting filleted solids

for positive and a bevelled solid for negative improves the nearest neigh
bours to the target by pushing away the nearest neighbour of (a) which
matches closely in content but not the filleted style.

Figure 4.19 shows our few-shot loss optimized for examples with
matching content. Supporting our hypothesis that the Gram matrices
transition from style in the lower layers to content in the higher layers,
we observe that all weight is distributed in the last two layers, with the
majority of the weight on the final layer.

For quantitative evaluation on a real-world dataset, we use subsets of
ABC for which we manually curate style labels (details in Section 4.4.1.2).
For each model we perform logistic regression on the extracted style
embeddings from the pre-trained encoders. Again we train the en-
coders using point cloud reconstruction on the complete ABC dataset.
We perform 5-fold cross validation with L2 regularization and report
the mean validation weighted F1 scores for the best parameters, sum-
marised in Table 4.6 showing UVStyle-Net significantly outperforms
PSNet* on all subsets.

110

4.4 EXPERIMENTS & RESULTS 111

ABC Subset UVStyle-Net PSNet*
Flat/Electric 0.789 + 0.034** 0.746 + 0.038
FreeForm/Tubular 0.839 + 0.011** 0.808 + 0.023
Angular/Rounded 0.805 + 0.010** 0.777 + 0.020

Table 4.6: Weighted F1 scores for each manually labelled styles subset of ABC.
** indicates 5% statistical significance.

4.4.7 Ablation

0.3
B Gram
INorm
0.2 4 1 Face
— Re-centering
UV-Net
0.1- - Embedding

0.0 -

0 feats 1_convl2_conv23_conv3 4 fc 5 _GIN1 6_GIN2 UV-Net

Figure 4.20: Linear probe scores on complete SolidMNIST test set with and
without instance/face normalization. Dashed line indicates ran-
dom classifier baseline.

Figure 4.20 illustrates the impact of face re-centering and instance
normalization using the complete SoOlidMNIST unseen test set. Adopt-
ing the linear probe methodology as above, we compare the mean clas-
sification accuracy of each layer for predicting all fonts using 5-fold
cross-validation. While instance normalization is tested on all layers,
face re-centering is not possible beyond the third convolution layer
since each face is already represented by a single vector.

The significantly higher scores in the lower layers (excluding fea-
tures) confirms our assumption that style transitions into content deeper
in the network. We also see empirical justification for the use of in-
stance normalization, and in particular face re-centering, which is not
possible when working with meshes or point clouds. This supports
our hypothesis that the additional relational structure of B-Reps is ad-

vantageous for learning style representations. Comparison with the

4.5 SUMMARY

UV-Net content embedding shows than any of the layer-wise style rep-
resentations (G;) as proposed in our method are better suited to cap-

turing style information.

—— 0_feats (21)
0.25 1 1_conv1 (2,080)

—— 2_conv2 (8,256)
0.20 9 — 3 conv3 (32,896)

—— 4_fc (3,2896)
0.15 { — 5_GIN1 (2,080)

6_GIN2 (2,080)

0.10 A
0.05 A1
0.00 - L

Reduced Dimensions

Figure 4.21: Linear probe scores for each UV-Net layer on complete SolidM-
NIST test set as number of dimensions are reduced. Original di-
mensions shown in parentheses and marked with e.

Figure 4.21 shows the effect of PCA on the layer-wise style represen-
tations (G;) to test the significance of style as a source of variation in
each layer. Again, we use linear probes to quantify the style informa-
tion. In line with our assumptions, the lowest layers (I = 0...3) show
the greatest amount of style information when the dimensions are suf-
ficiently low, thus indicating that the font style signals are the most

significant source of variance in these layers.

4.5 SUMMARY

We have proposed UVStyle-Net, a 3D style similarity measure for B-Reps
which caters for the end-user’s subjective definition of style through
few-shot learning based on user selected examples, and a completely
unsupervised pre-trained encoder. As a purely data driven style mea-
sure for B-Reps, which does not require style or content labels yet is
adaptable to end-users’ requirements, our approach is unique from all
existing methods. Moreover, through leveraging the additional rela-

tional structure available in B-Reps through point sampling in the sur-

112

4.5 SUMMARY 113

face parameter domain and face re-centering followed by face-adjacency
message passing, we have demonstrated superior performance com-

pared to other non-Euclidean methods without access to this infor-
mation, or compared to B-Reps without utilizing the face membership

groupings of the samples.

Using the SolidMNIST font labels for evaluation, our results have
demonstrated the applicability of 2D image style principles and as-
sumptions for 3D shapes, and quantified the advantages of our method
with B-Reps over alternative methods on meshes and point clouds. In
particular, we have confirmed that even for non-Euclidean representa-
tions, the second order statistics of 3D encoder activations in the first
few layers contain style information as the greatest source of variance.
We have also shown that our method generates meaningful vertex level
style gradients, and that the UV-Net sampling strategy and leveraging
the face boundary information unique to B-Reps, particularly through
face re-centering, significantly improves the style measure.

For a range of 3D fonts and real-world CAD models, we have demon-
strated that our proposed method for few-shot learning of user-defined
style is effective in improving the style measure for a specific task, even
with a minimal number of positive (and optionally, negative) exam-
ples. We also demonstrate the benefits of our approach over an exist-
ing state of the art method on the real-world ABC dataset where even
content labels are not available for encoder pre-training.

Alimitation of our method can be seen when considering solids with
very similar content. Further work should consider stronger disen-
tanglement of style from content in such cases. We hypothesize that
other unsupervised methods for the encoder pre-training may capture
greater detail in the network activations, and therefore improve the

style measure on very similar content. We also observe that the cur-

4.5 SUMMARY

rent formulation of the few-shot learning often puts all weight on one
layer.

For future work, we propose investigation into regularization of the
few-shot user loss and further investigation into sophisticated distance
measures for comparing feature distributions, as well as incorporating
further relational structure regarding face-adjacency angles/edge fea-
tures, and the natural next step of B-Rep style transfer. We discuss some
of these areas in further detail in Section 6.3.

Having now investigated two application areas for message passing
with multiple domains on both vertex and graph level tasks, next we
consider the case of a dynamic domain in tracing cell lineage in cancer-

ous tumour growth.

114

MESSAGE PASSING FORINTERACTING DYNAMIC
NETWORKS

The following chapter presents work published in [4]. The reviewers
commended the use of a “popular graph database” as an execution
environment, as well as the ability to query the model post-execution.
They also note the novelty of our approach, and the relevance of the
problem domain. The most significant criticism of this work was a
“lack of clarity” in explaining the model architecture, which we ad-
dressed with the inclusion of additional figures and more detailed text.

We thank all reviewers for their contribution to this work.

5.1 INTRODUCTION

Having considered the multiple domain case for graph level tasks in-
cluding graph classification and style representation learning, and the
multiple domain task of gradient visualizations, we now consider the
single domain case on a dynamic domain of hierarchically composed
systems.

Hierarchy is overwhelmingly evident in every aspect of life, emerg-
ing in any imaginable circumstance as a direct consequence of evolu-
tion. Simple structural hierarchies can be seen in everything from the
organisation of the stars to object-oriented programs. However, in bi-
ological contexts, the hierarchies that emerge are often dynamic, and
involve complex dependencies between components that do not exist

at the same scales.

115

5.1 INTRODUCTION

A typical example of dynamic hierarchy is that of proteins, cells, and
biological organisms. In this case, the building blocks (proteins) have
a direct impact on the behaviour of the higher order entities (cells and
higher still, organisms), but higher order functions equally have an
impact on the configuration of the building blocks [182].

Moreover, interactions between the lower order entities may also af-
fect the entity indirectly, and its composition may change. For exam-
ple, it is the interaction of particular proteins that facilitate the pro-
tein aggregation mechanism by which the neuronal degeneration of
Huntingdon’s disease is caused [183]. These interactions within and
between biological hierarchical networks make them highly dynamic,
potentially changing every part of themselves from the organisation to
the functioning of the components.

Due to their abundance in nature, the utility in simulating complex
dynamic networks cannot be overstated; with modelling applications
in medicine, biology, macro-economics, and other ecological sciences.
However, capturing the complexities of interacting multi-scale systems
that are able to change their internal configurations and behaviours
dynamically in a computational model is not a trivial task.

In this chapter we propose an original, graph-based model of com-
putation for the simulation of Interacting Hierarchical Dynamic Net-
works (IHDNs), where the representation of components of different
scales combined with a novel cross-layer message passing system en-
ables the simulation of complex adaptive systems across any scales of
abstraction.

Message passing is an appropriate choice to enable the simulation of
such systems, since it offers a simple yet efficient way in which to lever-
age the dynamic relational structure within the networks to inform the
resulting behaviours. In this work, we leverage this relational structure

through voting messages which are aggregated and filtered according

116

5.2 BACKGROUND

to properties held by each vertex, as well as updating these vertex prop-
erties according to the messgaes that are recieved. In doing so, our
method enables a form of simulation that directly corresponds to the
original problem space, thus simplifying the process of post analysis.
In order to present the proposed model, first we review relevant liter-
ature not considered in Chapter 2. Then after presenting the concepts
and architecture of the model, we demonstrate its ability to emulate
the behaviour of living systems with the simulation and analysis of tu-
mour growth in a dynamic evolving cell network, thus demonstrating
the effectiveness of message passing in capturing the dynamic struc-
tural information required to model a biological system. We verify our
results against an existing model of this phenomenon [38], that has
also been used to test another unconventional model of computation
[184], then we show the advantages of the model for deeper analysis.
Source code for both the computational platform and the demon-
strated aneuploid tumour growth simulation are available for refer-

ence at github.com/meltzerpete/ihdn.

5.2 BACKGROUND

The modelling of complex dynamic systems has employed the use of
many solutions; including ABMs [185], and more recently Dynamic
Networks [186]. In this section we review a sample of these solutions.

Although emerging from the object-oriented programming paradigm,
ABMs have many parallels with Cellular Automata, which have also
been used to model complex systems [187, 188]. ABMs have been par-
ticularly popular in modelling complex social systems in order to ob-
serve emergent and collective behaviours [189].

The modelling methodology for ABMs typically begins with (deduc-

tive) observations of real world phenomena in order to derive agent

117

github.com/meltzerpete/ihdn

5.2 BACKGROUND

state update rules. With the agents” update rules defined, simulations
can be executed wherein (inductive) analysis of emergent properties
can be made. Consequently, [189] and [190] argue that ABMs offer a
distinct “third” scientific method i.e. generative science.

In more recent years, Multi-Agent Systems have been developed [191],
and ABMs have been combined with Reinforcement Learning [192], in
which agents’ policy functions are optimised to minimize the distance
between simulated and real-world observed data. In an attempt to
better capture the inherent hierarchy in naturally occurring complex
systems, models such as [193] and [194] define layers for hierarchical
organisation of agents. However, these models only allow for a finite
number of layers and configurations; and hence, as with ABMs in gen-
eral, are restricted in their representation of dynamic systems.

Different in their approach, Dynamic Networks have been applied
to modelling complex phenomena found in epidemics [195], social
networks [196], and neuroscience [197]. However, these applications
are typically concerned with either the changing states of fixed topol-
ogy networks (of which conventional Artificial Neural Networks are
a prime example), or the changing properties of a network based on
topological transformations alone.

Contrary to this, [186] provides a framework for the uniform repre-
sentation of state-topology co-evolution via graph-rewritings, with a
demonstration of automated rule discovery using real-world observed
network evolution data [198]. However, as a consequence of decou-
pling the representation of entities and their behaviours, these models
do not achieve the same expressiveness of ABMs in describing the ef-
fects of small changes in individual systems on the dynamics of the

whole [37].

118

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS

5.3.1 The Model of Computation

The purpose of this work is to apply message passing to leverage the
existing relational structure in dynamic hierarchical systems. In order
to do that we will create a useful model of computation, which relies
purely on message passing to inform the dynamic behaviours of the
entities in question. Thus we require a data model which expresses
hierarchical and compositional relations as a graph, therefore allowing
message passing to capture this structural information.

To enable simulation involving dynamic behaviours and emergent

effects we also have the following additional requirements:

e An efficient means of interpreting the graph-based data model

during computation

o The ability to update the functions of, and allow for the dynamic

creation and deletion of the simulated components

e The ability to model multiple scales of abstraction with a simple,

uniform data model.

To create a homogeneous yet general data model, we define a single
component of computation: the system (see Figure 5.1). As in a prop-
erty graph, a system S may have a set of any number of labels L°, and
a set of any number of properties P in the form of key value pairs. In
addition, a system may optionally be given a vote function Fy, a filter
vector I°, and a vote vector V°. An ordered set of all possible system
functions F is shared by all systems, with |F| denoting the total number
of defined functions.

The system may have a set of any number of child systems C° =

{C,C5,...} and (excluding ROOT systems) will have always at least one

119

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS 120

Labels: { |1, |2, }
Properties: { kq:vq, koivo, ... }

Vote function: F

Filter: (i1, ip, ..., ijF)
Vote: (v4, Vo ..., Vig)

Figure 5.1: The abstract THDN system model.

parent system PS. Relationships indicating compositional hierarchy
are labelled with the CONTAINS relationship type, while any other user
defined relationship types may exist between any pair of systems. Typ-
ical operations for topology mutation include deepClone and transfer
(see Figure 5.2).

Computation (here the update of system state - internal and /or struc-
tural), then proceeds via a depth-first traversal over the CONTAINS re-
lationships initiated at every ROOT system (in a random order), once
per iteration. The traversal facilitates a message passing system that
enables systems to influence the selected actions of others at different
levels in the hierarchy.

When each system is selected to perform an action, the functions are
selected from F probabilistically, according to the messages received by
that system. There are two types of message passed between systems
in the hierarchy: filters are passed down the tree; and votes are passed
upwards. The elements of both the filter and vote vectors correspond

directly to the functions of F.

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS

——>» Contains

User-defined
relationship

Figure 5.2: (A) Systems may have multiple parent systems, and user defined
relationships may exist between systems of the same or different
scales. (B) A deepClone operation on system S recursively copies
contained systems, while membership in higher order entities is
inherited. (C) The system S performs a transfer operation on S;
to the system T.

To select a function for a system S to perform, the filter vector from
the current parent system I”and the set of vote vectors VC® are both
considered. As filters are passed down the tree, they are combined
with the element-wise product, enabling a system to set any chosen
function’s probability of selection to 0 regardless of the received votes
and filters of lower level systems. Equally filters may introduce an over-

all bias to be applied to the received votes and to hierarchically bias

121

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS 122

START)T \
[emr]) =

system is
?
NO— ROOT*
l YES

combine system filter LYES :
with parent filter STOP 5
(element-wise product) | ____ J ________ '
L R Yoo . i

Pass down combined filter » foreachchild ;

; system: o .

\2 Collect child votes . recursive call |

system has defined
voteFunction?

z
o
<—

' reduce votes

H . using defined using default |:
+ from child . . '
' voteFunction voteFunction |
| systems :

R i e

DN

sum of select function

combined filter)-YES according to probability
>07? distribution
\ 4

perform

function

system is
ROOT?

Figure 5.3: Recursive compute algorithm executed at each ROOT system once
per iteration.

5.3 INTERACTING HIERARCHICAL DYNAMIC NETWORKS

the actions of lower constituent systems. The default behaviour is to

reduce VC° with addition to give
VS =V + VS 4. 4 VE

to then calculate the element-wise product V° © I”. The result is a
vector of length |F|, which is used as a probability distribution relative
to the sum of its elements to select with bias the function f € F to
perform.

While the default behaviour is to combine child systems” votes with
addition, and adding the system’s own vote before passing the vote up
the tree, the votes may be intercepted and reduced differently, or even
completely discarded by defining a new vote function for any chosen
types of system.

Figure 5.3 provides an outline of the recursive compute function,
and demonstrates the order in which filters and votes are combined

and how they are passed up and down the tree.

5.3.2 Implementation

The IHDN prototype implementation used for demonstration here is
written in Java and exposes a simple Application Programming Inter-
face (API) for the development of simulations on top of an embedded
Neo4j [199] instance. If votes and filters are not specified for a given
system, the defaults of (0,0,...) and (1,1,...) are used respectively,
contributing no bias or restriction on function selection. Likewise, any
ROOT systems are given the default filter of (1, 1, ...) as their parent filter
during computation.

On completion of a simulation, the graph database is stored and can

then be queried directly with Cypher [200], or visually using any ex-

123

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH 124

isting Neo4j compatible tools. The investigation that follows employs

the use of the Neo4j multi-platform desktop browser.

5.4 TRACINGCELLLINEAGEINSIMULATED ANEUPLOID TUMOUR

GROWTH

To investigate the utility of message passing in leveraging relational
structure in the context of biological modelling, we now consider the
specific use case of tracing cell lineage in aneuploid tumour growth.
This is a suitable use case for our investigation since the behaviour of
cells determining their growth is a function of the genes of which they
are composed, and there are existing baselines for comparison.

In particular we evaluate our method against an existing biological
model of cancerous tumour growth implemented on a conventional
computer [38], which was also used to test another unconventional
computing platform [184]. The rest of this section describes the simu-
lation according to the methodology given in [37].

The simulation is concerned with role of chromosome missegrega-
tion in cancerous tumour growth; and since cancer is progressive via
heritable change to cells, the relevance of tracing this change in under-
standing and hence treating cancer is especially evident. Better under-
standing of cell lineage affords greater understanding of how a partic-
ular cancer will progress, how susceptible it will be to treatment, and

the likely-hood of its return [201, 202].

5.4.1 Biological Observations

During normal mitotic cell division, each chromosome is duplicated
and the resulting set of chromosomes is segregated equally (in a direct

one to one correspondence) between the resulting new cells. However,

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH 125

it is estimated for human cells that an average of one in one hundred
cell divisions spontaneously missegregates [203], i.e. fails to separate
the chromosomes into two identical sets, resulting in one cell with extra
chromosomes (and hence extra copies of the contained genes), and the
other cell with fewer.

As a consequence of this phenomenon and the configuration of which
genes are present in the gained and lost chromosomes, cells with dif-
ferent properties and behaviours arise, which can lead to the evolution

of cancerous cells that divide highly and do not die naturally.

5.4.2 The Model

To explain the way in which aneuploid tumours develop requires four
main abstractions of physical systems: the tissue, the cell, the chromo-
some, and the gene. Contrary to previous implementations, here these
abstractions are adopted directly (each as a tree of systems in the hi-
erarchy), affording an intuitive correspondence between the problem

domain and the computational model.

5.4.3 Components

For this particular simulation, it is necessary to model three particular
gene abstractions - the apoptosis regulatory gene (a tumour suppres-
sor gene that regulates cell death), the cell division regulatory gene (an
abstraction of proto-oncogenes that promotes cell growth and progres-
sion), and the chromosome segregation regulatory gene (an abstrac-
tion of genes that control the fidelity of cell division and reduce the like-
lihood of chromosome missegregation). To capture the sensitivity of
the cell behaviours on the initial genetic configurations and gene link-

age (the membership of which genes are encoded in which chromo-

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH

somes), three different chromosome distributions are modelled (Fig-
ure 5.4).

Distribution A ; Distribution B i Distribution C

e N N | N N N N
CH2 ' CH3 ' CH5 CH6

CH1 CH4
Gene Seg. Apopt. Gene Div. Gene
Gene : Gene : Gene
Apopt. ! Div. ' Seg.
H Gene ' Gene

Gene
h
N\ J J 1\ RN AN J \C J

Figure 5.4: Three possible chromosome distributions, formed as combina-
tions of six unique chromosome configurations.

A complete list of the entities modelled in this experiment can be
seen in Table 5.1. As will be discussed below, each physical entity is
not represented by a single system, but rather the composition of a
hierarchy of systems. Thus each physical entity (i.e. the tissue, cell, etc.)
is actually represented by a tree of systems, with the corresponding
system as its root.

To simplify any analytical computation, the possible chromosome
configurations are labelled with CH1 to CH6 according to the six different
possible combinations (Figure 5.4). Additionally, upon completion of
the simulation each CELL system is given a genome property in the form
of a vector representing the number of each type of gene that it contains.
However, neither the additional labels or property are required during
the computation.

To capture the concepts of evolutionary heritage (i.e. cell lineage),
FROM and WAS relationships between CELL systems are used. These in-
dicate heritage of regular cell division and heritage of division in which
missegregation occurs respectively. Other metrics essential in tracing
the ancestry of evolved cells are recorded using the cell properties:
start, indicating the iteration in which a cell first came to exist; nDivs,

recording the number of times a cell has divided; and missegrega-

1 All filters, votes, and vote functions are set to the defaults unless otherwise stated.

126

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH

IHDN System Notes
Tissue Labels: TISSUE, ROOT
Cell Labels: CELL
Properties: start, nDivs
Vote function: cellVote
Dead cell Labels: CELL, INACTIVE
Properties: start, nDivs, inactiveAt
Cell copy Labels: CELL_COPY, INACTIVE
Properties: start, nDivs, missegregationAt
Chromosome Labels: CHROMOSOME, one of {CH1, .., CH6}
Filter: (0,0,0)
Apoptosis gene Labels: GENE, APOPT_GENE

Division gene

Segregation gene

Vote: (0,1,0)

Labels: GENE, DIV_GENE
Vote: (1,0,0)

Labels: GENE, SEG_GENE
Filter: (0,0,0)

Table 5.1: The set of all IHDN system types used in this simulation.

tionAt, indicating the iteration in which chromosome missegregation

has occurred.

5.4.4 Organisation

Figure 5.5 shows the hierarchy of a tissue system composed of cells

with chromosome distribution B. The TISSUE system groups the con-

tained cells to provide an entry point for the recursive algorithm. The

horizontal (in the context of the hierarchy tree) FROM and WAS relation-

ships are created between cell systems as shown in Figure 5.7.

127

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH 128

F = (divide, die, pass)

:CELL

:CELL

voteFunction: voteFunction: Identical
cellVote cellVote Copy
{start: 0} {start: 0}

{nDivs: 0} {nDivs: 0}

:CHROMOSOME

—)

\\

:GENE
:APOPT_GENE

:DIV_GENE

vote: (0, 1, 0)

vote: (1, 0, 0)

Figure 5.5: IHDN Tissue to Gene Model. Apoptosis and division gene systems
influence function selection according to their votes. The presence
of segregation genes is queried during cell division in order to cal-
culate the required probability of missegregation.

5.4.5 Interaction

While there are three cell behaviours to model in this simulation (cell
division, cell death, and chromosome missegregation), since missegre-
gation may only occur in the context of a division, it is not treated as a
distinct function, rather it is incorporated into the division function. To
enable cells to abstain from any behaviour in a given iteration, a pass

function is also given resulting in the ordered set
F = {divide, die, pass}

The divide function performs a deepClone of the current system,
such that any contained systems are recursively copied, and any in-

coming CONTAINS relationships are also copied (Figure 5.2). The result

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH 129

is an exact copy of the structural hierarchy and composition, without
duplication of any user-defined relationships (i.e. the FROM and WAS re-
lationships). After cloning, assuming no missegregation has occurred,
the start property of the clone is set to the current iteration and the
nDivs property in each system incremented.

For the die function, a inactiveAt property is set to the current it-
eration and the system is labelled INACTIVE to exclude it from further

computation.

cellVote B

Ceullar Level

Chromosome

@ Level
@ Gene Level

Figure 5.6: Demonstration of message passing system from lower to higher
scale systems in a diploid cell of Distribution A: (A) the votes of
the gene systems are summed with the chromosome system’s own
vote resulting in (1,1,0); (B) the cellVote function intercepts the
votes from the chromosomes, reduces them with the default vote
function, but then assigns the total of all elements to the position
corresponding to the pass function.

The cellVote vote function ensures that the probability of selecting
the pass function is always 0.5, independent of the number of con-
tained genes or their configuration (Figure 5.6). The remaining 0.5

is then shared (as per the default behaviour) between the divide and

5.4 TRACING CELL LINEAGE IN SIMULATED ANEUPLOID TUMOUR GROWTH

die functions proportionally to the number of votes for each, resulting

in the following probability distribution for cell function selection:

1
P(f = pass) = 5

P(f = divide | f # pass) = a:l-d
_ _a
P(f:d1e|f;épass)—a+d

where a and d are the number of contained ADOPT_GENE and DIV_GENE
systems respectively. We deviate from the reference model [38] un-
der advice from the authors, to provide conditional independence for
the divide and die functions given that pass has not been selected. In
the original reference model, cells are only considered for division af-
ter they have been considered for death, thus the cell division function
is selected according to a probability distribution which is also condi-
tioned on cell death. This change will decrease the required number
of iterations (which is arbitrary in the original reference model) to ob-
serve any emergent effects, while maintaining the key properties nec-
essary to compare the different starting chromosome configurations,
i.e. the purpose of this modelling technique is to investigate the differ-
ence in outcomes between the different configurations such as which
configuration leads to exponential growth the fastest, and the evolu-
tionary paths of the cells that lead to such growths, rather than the
exact number of iterations taken.

Since presence of the abstracted segregation gene does not bias func-
tion selection, but rather influences the extent to which the chromo-
somes are correctly segregated during cell division, the number of con-

tained SEG_GENE systems is queried via a Cypher call during the divide

130

5.5 EXPERIMENT

function directly without need for voting or an additional function. As
with [38], the conditional probability of cell missegregation used is:

1
P(missegregation|f = divide) = 700 * (4-59)

where s is the number of contained SEG_GENE systems. Note, s may
only change +1 per division, and only when P (missegregation) > 0, it
is therefore guaranteed that 0 < s < 4.

In the case that a cell division is subject to chromosome missegrega-
tion, a copy of the configuration prior to division is made. The resulting
system’s CELL label is replaced with CELL_COPY and INACTIVE to pre-
vent its inclusion in any further computation. The resulting pair of ane-
uploid cells are each linked to it with a WAS relationship (see Figure 5.7).
The iteration in which the missegregation occurred is recorded with
the missegregationAt property on the CELL_COPY system.

The TISSUE system is the single ROOT system, thus every contained

system is visited for computation once per iteration.

5.5 EXPERIMENT

We start by verifying that our novel message passing based form of
computation is able to effectively capture the relational information
present in the hierarchical graph, and that the expected dynamic be-
haviours emerge. To do this, we compare our tumour simulation against
the results of [38] (discussed below), considering cell count against
time, as well as genome diversity, and the ratio of apoptosis to divi-
sion genes for each of the three chromosome distributions. Then, as
an investigation into the additional capabilities of our model afforded
by a message passing system that directly maps the problem domain,
we analyse the evolutionary heritage (i.e. the cell lineage) of the most

prolific aneuploid tumour cells that arise during the simulations.

131

5.5 EXPERIMENT

B
:CELL
(2,22
A~ {start: 1}
‘CELL ... FROM "’ {nDivs: 1}
@22 <7
{start: 0}
{nDivs:2} . Cc
FROM
:(INACTIVE
(2,2,2)
{inactiveAt: 8}
{start: 3}
{nDivs: 3}
D FROM
.0 E F
:CELL
(2,2,2) :CELL_COPY
tart: 4y € .. JINACTIVE :CELL
{nDivs: 4 FROM - - 4 222) (- FROM. | (222)
{missegregationAt: 13} {start: 5}
({sltaa'n: 65}} {nDivs: 3}
nDivs:
. ~
WAS "
G : WAS
CELL 4 H
(2,3,3)
{start: 13} :CELL
{nDivs: 6} (2,1,1)
{start: 13}
{nDivs: 6}

Figure 5.7: Example simulation output graph demonstrating connections be-
tween systems on the cellular level of abstraction, where (a, d,s)
represents the number of contained apoptosis, division, and seg-
regation genes respectively. This particular graph implies the se-
quence of events: A divides producing B, A divides producing C,
C divides producing D, D divides producing E, C dies, E divides
producing F, E divides but missegregates resulting in G and H.

The simulation is started with 100 identical diploid cells, and exe-
cuted 20 times for each of the three possible chromosome configura-
tions (Figure 5.4). The simulation is executed until the tissue exceeds

7,000 living cells (cell count is monitored at the end of each complete

iteration), or 100 iterations are reached (whichever occurs first).

5.5.1 Reference Model

Graphs of reference model simulation included in Figures 5.8, 5.9 and
5.10 are reproduced here with permission and original data from the
author as used in [204] and [38].

The original simulation data recorded the total number of each cell

configuration at each time step for 100 steps. However, it does not

132

5.6 RESULTS 133

contain any information regarding the lineage of these cells, or any in-
formation regarding which exact cells died at any given time step.
Data and original C++ code are available upon request from Arturo

Araujo at arturo@cancerevo.org.

5.6 RESULTS

5.6.1 Verification

The simulation results (Figure 5.8 to 5.10) of the IHDN model show the
expected growth behaviours as demonstrated in the reference model
[38]. When the apoptosis and division genes are distributed in the
same chromosome (Distribution A), we see an expected homoeostasis
in the size of the tissue. However, when the cells are able to evolve
the number of contained copies of the apoptosis and division genes
independently, we see the tissue grow in size exponentially. This be-
haviour is due to the evolution of cells that are “fitter” (i.e. more prolific
and less likely to die) than the initial population of diploid cells. Thus,
we see the growth of a tumour.

While Distributions B and C both demonstrate exponential growth,
it is observed in the reference model that the rate of growth is faster in
C [204]. By comparing the mean number of iterations until the tissue
size exceeds 7,000 cells (dashed vertical line in Figure 5.8), we observe
the same result. As discussed in Section 5.4.5, due to the difference
in the probability distributions for the selection of the copy function,
the iteration numbers do not correspond, with our implementation re-
quiring less iterations as expected; however, the purpose here is to val-
idate the life-like evolutionary behaviour of the tissue and cells, and
to demonstrate the relative differences in the time taken to reach the

exponential inflection point in tumour growth as a consequence of the

mailto:arturo@cancerevo.org

5.6 RESULTS

1e2 Distribution A 1e2 Distribution A

Total Cells

1.0 T T
0 100 200

Distribution B
10 le3
5 5 -
e
0 .
0 20 40 0 50 100 150
le3 Distribution C le3 Distribution C
10 10
8 5 5.
/
g,
0 1 1
I ' ' 0 50 100 150
0 2It(ogration 40 Iteration
(a) IHDN (b) Reference Model

Figure 5.8: Tissue Size — Total number of living cells per iteration (left: IHDN,
right: Reference model). Dashed line indicates median iterations
to tissue size > 7,000 cells.

starting chromosome configurations, and not the precise figures of the
reference model.

Having verified our model of computation against the reference model,
we have demonstrated that message passing is in fact able to effec-
tively model dynamic biological systems. In each of the initial chro-
mosome configurations, the difference in the starting state of each sim-
ulation lies purely in the arrangement of the hierarchical relations —
each cell contains exactly two of each gene, however their arrange-

ment within the chromosome pairs differs, i.e. the chromosome to gene

134

Distribution A

Distinct Genomes

Distinct Genomes

Distinct Genomes

Iteration

(a) ITHDN

5.6 RESULTS

Distribution A

100 200

o

0 50 100 150

Distribution C

0 50 100 150

Iteration

(b) Reference Model

Figure 5.9: Chromosome Diversity — Number of distinct genome types per
iteration (left: IHDN, right: Reference model).

©c o o »~
4 ® © o
) A L !

/Division Genes

2 0.6

SIS,

Apop

0.5 A

0.4 1

0 20 40

Iteration

(a) IHDN

Apoptosis/Division Genes

1.0 4
0.9 1
0.8 1
0.7 4
0.6 1

0.5 1

0.4 4

Distribution
—_— A
— B
— C

(0] 50 100
Iteration

(b) Reference Model

Figure 5.10: Mean ratio of apoptosis to division genes (left: IHDN, right: Ref-

erence model).

135

5.6 RESULTS

CONTAINS relationships. Therefore, it is solely the difference in rela-
tional structure that is responsible for the change in behaviours (ex-
ponential cell growth vs. homeostasis), with this relational structure
captured through the voting and filtering messages sent between con-

nected components (see Figure 5.11).

Distribution A Distribution B Distribution C

Figure 5.11: Each cell configuration contains exactly the same set of genes, dif-
fering only in their relational composition. CH = Chromosome,
A = Apoptosis gene, D = Division gene, S = Segregation gene.

5.6.2 Cell Lineage

Having verified the behaviour of our model against an existing conven-
tional implementation and confirmed that message passing is a useful
tool in modelling dynamic biological systems, we now demonstrate its
advantages over conventional approaches. Throughout the remainder
of this section, (a,d,s) denotes the number of contained apoptosis, di-
vision, and segregation regulatory genes respectively.

A key advantage to our message passing approach over the refer-
ence model is that at any stage during the computation, not only does
the model have a direct correspondence back to the original problem
domain, but since we are operating directly on non-Euclidean data, it

is trivial to store additional non-Euclidean relations and information

136

5.6 RESULTS 137

alongside the model as it unfolds, significantly simplifying the process
of post-analysis and tracking the history of changes.

As an example of this, using graph matching algorithms (in our case
Neoyj Cypher queries) to search the graphs for particular patterns,
the complete evolutionary paths of any cell can be traced. Figure 5.1
demonstrates an example query (visual result in Figure 5.12) to show
three evolutionary paths from the start cell configuration, (2,2, 2), to
the highest occurring cell configuration (a particularly harmful cell) of

Distribution C, (0,2, 0).

match (c:CELL) where (not (c:INACTIVE)) and c.genome=[0,2,0]
with ¢ match p = (c)-[:FROM|WAS*]->(0)
where
((0:CELL) or (o:CELL_COPY))
and not (o)-[:FROM|WAS]->()
and not (c)<-[:FROM|WAS]-()
return p limit 3

Listing 5.1: Example Cypher query to return three distinct paths of genome
evolution from the initial (2,2,2) to the cancerous (0,2,0).

Cell Copy
Living Cell

Dead Cell

WAS FROM
-
FRO™ o
FRom,

FROM-

% FROM
0,

FROM o

UM

o
‘AQ‘:H

>
¥
S

FRow
%V*o\'\

#
Rop,

FROM

v‘@h

FROM

o
%S

& W
o, &

o™

Figure 5.12: Visual result of the example query (Figure 5.1). (Graphic pro-
duced by the Neo4j Browser).

5.6 RESULTS

Going further, for each of the configurations we query all distinct
genome evolutionary paths to each of the arising cell configurations,
where consecutive matching genomes are removed from the returned
sequences. We see that approximately two thirds of the (0,2,0) cells
of Distribution C followed the simplest possible route (Table 5.2); be-
cause of the higher probability of chromosome missegregation in these
cells, many demonstrate increased exploration and oscillation between
configurations in their genome ancestry. However, for the most pro-
lific arising cell configuration of Distribution B, (0,2,2), it can be seen
that a much greater proportion took the shortest evolutionary path, as
the probability for missegregation, and hence evolution, in these cells

is much lower.

138

Distribution B Distribution C
Path % Path

%

(2,2,2),(1,2,2),(0,2,2) 86.3 (2,2,2),(1,2,1),(0,2,0)
(2,2,2),(1,2,2),(1,1,1),(0,1,1),(0,2,2) 381 (2,2,2),(1,21),(0,2,0),(0,1,0),(0,2,0)

(2,2,2),(1,2,2),(0,2,2),(0,1,1),(0,2,2) 354 (2,2,2),(1,2,1),(0,2,0),(0,3,0),(0,2,0)

67.3
7.47
7.32

Table 5.2: Proportion of most abundant final cell configuration that followed
the most commonly occurring distinct evolutionary paths.

By considering the mean number of distinct paths, we also see that
ancestry of the arising (0, 2, 0) genome configurations (Distribution C)
is the most diverse (12.45) across all distributions, followed closely by
(0,3,0) with 12.05. While these forms of analysis require no additional
tooling with IHDNs, they were not possible in previous implementa-
tions (without O(|E|In|V|) additional work — see below) and could
help inform the open debate (for example, [205] and [206] are two

opposing views) over the evolution of such cells.

5.6 RESULTS

5.6.3 Comparison

A significant difference between our proposed approach and the ref-
erence model is that with THDNs, the model is non-Euclidean and di-
rectly maps the problem domain. Thus post processing involving non-
Euclidean results is simplified by keeping the data in a non-Euclidean
form.

For example, as can be seen in Figure 5.12 of the cell lineage experi-
ment, the number of times any cell can divide is not fixed, thus storing
and processing this type of cell ancestry query over a columnar repre-
sentation would require complex join operations or look-up queries to
reconstruct the non-Euclidean relations present in this data.

Alternatively, assuming the simplest possible conventional approach
of logging to file every time a cell divides to record which cell divided
and which cells were created, we can see that the computational com-
plexity of reconstructing the relations in a non-Euclidean form in order
to perform shortest path queries as above is of O(|E|In|V]) time com-
plexity, where |E| is the number of edges (in this case representing cell
ancestry), and |V| is the number of vertices (in this case cells). The
factor |E| is required in order to read every edge in the log, and the
factor In |V| since for each edge we must check the existence of the tail
vertex. This O(|E|In|V]) step is of course not required at all in our pro-
posed approach, as the new relations may be stored at the time of the
creation of the new vertices when all necessary references are already
held, therefore we can consider the complexity of our method as O(1)
for this stage.

Moreover, the pattern matching techniques we have demonstrated
in this use case are not restricted to post-analysis; any system func-
tions may take full advantage of the optimised pattern matching Neo4j

Cypher query engine during execution, thus enabling systems to in-

139

5.7 SUMMARY

teract or adapt their behaviour according to the detection of complex
network structures.

As an example of this, we consider an extension of this model in
which we incorporate the effects of particular treatments on the cells
during tumour growth. Thanks to the non-Euclidean structure of our
modelling technique, cells may be configured with physical location
coordinates, with additional relations indicating nearest neighbours.
Then it is trivial to update cells behaviours according to the states of
nearby cells, as well as model treatments such as surgery and/or radi-
ation treatments while being able to determine the distance between

cells and the incision/radiation points efficiently.

5.7 SUMMARY

We have introduced the ITHDN model for simulating complex dynamic
systems, and verified the effectiveness of its novel, cross-scale message
passing system in capturing the dynamic hierarchical dependencies of
living systems. Through demonstrating the difference in behaviours
(exponential growth vs. homeostasis) as a consequence of hierarchical
structure alone, we have proven that message passing is able to lever-
age the relational structure in order to dictate the expected resulting
behaviours. Moreover, by leveraging the relational structure present
in the original problem domain in order to simulate the dynamic emer-
gent behaviours, our method provides a direct correspondence from
the program outputs to the original problem space, thus aiding in post-
analysis, while also enabling the tracking of additional non-Euclidean
relations such as cell ancestry during computation.

Having demonstrated its application in simulating aneuploid tumour
development we observe the expected growth behaviours for all three

chromosome distributions. We have also shown that through integra-

140

5.7 SUMMARY 141

tion with a graph database the IHDN model facilitates powerful ‘out
of the box” analysis not possible in prior models, demonstrated here

through tracing the evolutionary paths of arising cell configurations.

CONCLUSION

6.1 AIM

As presented in Chapter 1, the aim of this work is

to develop novel message passing techniques that leverage
relational structure in order to improve on existing state of

the art methods for modelling non-Euclidean data.

Based on our review of existing solutions to non-Euclidean mod-
elling provided in Chapter 2, with the majority of existing message
passing methods having targeted single domain vertex level tasks, we
identified the motivation for three diverse applications beyond this.
First, in Chapter 3 we considered the multiple domain graph level task
of graph classification for predicting chemical properties, with the ver-
tex level task of interpreting the attention coefficients. Second, in Chap-
ter 4 we considered multiple domain graph and vertex level tasks for
style similarity in B-Reps, and finally, in Chapter 5 we considered single,
dynamic domain graph level tasks in modelling cell lineage in cancer
tumour growth.

Having investigated each of these application areas, we now relate

the contributions made in each chapter back to our central aim.

6.1.1 PiNet

With PiNet (Chapter 3), we introduced a new message passing based

global pooling operator, which unlike popular existing methods such

142

6.1 AIM

as global mean/max pooling takes into account the structure of the in-
puts. The novelty of our approach lies in the use of an auxiliary MPNN
which leverages the relational structure of each input graph in order
to learn vertex attention coefficients which weight the importance of
each vertex in the final graph representation.

We demonstrated superior performance over existing state of the art
graph classifiers on a graph isomorphism test with a synthetic dataset,
which was designed to be especially difficult by fixing node degree
distributions and providing only a small number of permuted training
examples.

Having benchmarked our proposed method on a range of widely
used chemo-informatic datasets, we observed competitive performance
with a range of state of the art graph classifiers. However, unlike the
state of the art methods compared against, due to the relational infor-
mation captured through our message passing pooling operator, we
were also able to demonstrate the utility of the learned attention coef-
ficients in interpreting the predictions made by the learned models.

In addition to the contributions detailed above which directly sup-
port our central aim, during the process of this investigation we also
recognise the following contributions: The creation of a challenging
graph isomorphism dataset that may be used for testing future mes-
sage passing methods as well as non-message passing methods, and
the analysis of a set of aromatic amines from the widely used MU-
TAG dataset including domain knowledge of steric hindrance nitrogen

groups with respect to predicting mutagenicity.

6.1.2 UVStyle-Net

With UVStyle-Net (Chapter 4), we introduced a new technique for un-

supervised style metric learning for B-Reps as well as a few-shot process

143

6.1 AIM

for learning to cater to an end user’s subjectivity. As a novel contri-
bution to message passing techniques we identified the benefit of us-
ing the additional relational information present in B-Reps over meshes
and point clouds in order to learn style representations. We lever-
aged this additional relational information in two ways: First, by us-
ing the UVNet encoder [127] we used the face boundary information
to perform 2D convolutions on points sampled from the surface pa-
rameter domains to represent each face, followed by an MPNN which
propogates face information across a face-adjacency graph in order to
learn higher order representations of the composition of these faces.
Second, we used the face boundary information to re-center the sam-
pled points of each face, to provide some invariances to the sampled
points prior to entering the MPNN.

Alongside our investigation of style metric learning for B-Reps, we
also considered a similar approach for working with mesh and point
cloud representations. In doing so we contributed to further under-
standing of the inductive biases of each approach. For example, we
showed that for UVStyle-Net (with face boundary information), large
flat surfaces contribute less to the final representation while more com-
plex surfaces formed of several smaller boundaries contribute more,
whereas for PointNet++ [180] and PSNet* [174] on point clouds large
flat surfaces dominate the representation despite their relative insignif-
icance compared to other details in the style of the object.

With no existing unsupervised style metric learning methods for
B-Reps, our approach is especially novel, thus we compared our pro-
posed method against the closest available state of the art method on
point clouds (PSNet* [174]) as well as against a similar method to
ours applied to point clouds and mesh using the Pointnet++ [180] and
MeshCNN [161] encoders respectively. We demonstrated improve-

ment over these baselines quantitatively in terms of the amount of style

144

6.1 AIM

information present in the 2nd order statistics of each layer of the en-
coders on SolidMNIST [127], as well as in terms of classifying several
subsets of the public industry-used ABC dataset [89]. We also demon-
strated the superior performance of our method qualitatively using a
range of nearest neighbour queries on both datasets.

With our investigation in Chapter 4, we also recognise several con-
tributions beyond our main aim. First, we demonstrate that the second
order statistics (Gram matrix) approach used in 2D image style liter-
ature can be generalized to B-Rep and mesh 3D shapes. Second, we
introduce a general few-shot learning method for capturing a subjec-
tive end-user’s definition of 3D style and demonstrate its effectiveness
on B-Reps. Finally, with respect to useful datasets for style, we create
and share a new version of the SolidMNIST [127] dataset in which we
strengthen the associated style labels in order to aid the design and
evaluation of 3D style methods, and we share a subset of the ABC
dataset [89] which we manually label for style in order to compare

3D style metrics quantitatively on real-world data.

6.1.3 [HDNs

With THDNs (Chapter 5), we proposed a novel message-passing based
model of computation able to simulate biological systems. Our method
improves over state of the art by enabling a direct correspondence be-
tween a non-Euclidean problem domain and the model domain by rep-
resenting related entities as a graph over which vote and filter mes-
sages are propagated in order to prescribe the behaviours of the mod-

elled systems.

Having simulated three different cell configurations in a tumour growth

model, we demonstrated that the differences in relational structure are

able to effectively produce the correct expected outcomes in terms of

145

6.2 CRITICAL EVALUATION

the tissue growth, as a direct consequence of the message passing pro-
cess.

Unlike the reference model [204], by keeping the simulation data
in a non-Euclidean form, our method was able to track cell lineage
throughout the simulation with O(1) additional work as opposed to
O(IE|In|V]) for the reference model in which this form of analysis was
not directly possible.

Additional contributions made in Chapter 5 include a novel form
a computation useful for simulating biological and complex systems,
and analysis of the evolutionary paths of the arising aneuploid cell con-
figurations in tumour growth, contributing to the open debate on how

such cells arise.

6.2 CRITICAL EVALUATION

6.2.1 PiNet

One of the key limitations of our work on PiNet is that the benchmark
dataset problems are not sufficiently difficult to effectively distinguish
the methods tested, making it hard to draw conclusions about which
method(s) is/are better. Also, with many of the datasets including
limited vertex features and the use of random train/val/test splits, the
datasets are limited in how realistic they are for real-world settings.
The datasets we used were the best available at the time and used
as standard in many works [21, 110, 207]. To help us distinguish the
methods, when creating the dataset for the isomorphism test, we fixed
the degree distribution across each unique generated graph in order to
increase the symmetries between the different graph classes and make

the task especially difficult. This worked well, in that we saw a much

146

6.2 CRITICAL EVALUATION

greater range between the best and worst methods in this task, making
it much easier to distinguish the stronger and weaker methods.

Since completing this research, addressing the same issue of insuftfi-
cient challenge for benchmark data, [112] ef al. proposed Open Graph
Benchmark (OGB) as a collection of realistic datasets with consistent

data splits. Future work could investigate PiNet with this data.

6.2.2 UVStyle-Net

Despite the fact that B-Reps are the standard representation used in in-
dustrial and product design, there is very limited existing research on
applying neural networks to them [127]. Consequently, aside from
having a strong motivation to inventing methods which operate on
B-Reps, our contribution is especially novel in addressing this gap.

Working with B-Reps, however, posed additional challenges that we
would not have faced for meshes or point clouds. First, there is limited
publicly available data, and at the time of starting this research there
were no publicly available B-Rep datasets with reliable labels for style.
Second, B-Rep data structures are more complex to work with and there
is not the ecosystem of libraries for processing them that there is for
mesh and point cloud etc.

We tackled the issue of data in three ways. To start, we adapted
SolidMNIST [127], a generated dataset of extruded fonts, to better suit
style metric evaluation. By removing sources of randomness within
font classes in the test set, we strengthened the style labels allowing
us to draw more meaningful conclusions from our results. This choice
of data was ideal for validating our design decisions, as it was formed
of small simple solids which were easy to debug if needed, and the
generation process reflects the most common modelling process of a

CAD designer — sketching in 2D then extruding.

147

6.2 CRITICAL EVALUATION

Next, to enable us to work with real world data and perform quan-
titative comparisons, we manually labelled three small subsets of the
public ABC dataset [89]. This was effective in allowing us to compare
quantitatively against existing state of the art, as well as providing a
benchmark to enable future research to build upon our contritions.
However, to provide the ideal realistic setting, data containing style
labels with solids such as car bodies, or other commercial products
would be desirable.

Finally, our recognition of the challenges in training models without
access to public labelled data is precisely what motivated our unsuper-
vised few-shot approach. End-users such as designers may only have
a few examples of their target style. For example, a car manufacturer
may have only 10 or so cars in their range, and would therefore be un-
able to train a deep neural network from scratch in a supervised setting.
Yet, with UVStyle-Net pre-training is possible on large publicly avail-
able datasets such as ABC, with the few-shot fine-tuning to tailor the
style metric to their domain.

For the few-shot user optimization, we started with the simplest pos-
sible approach, to learn a weighting of each layer’s style embedding

through a convex linear combination. Using a convex loss function al-

lowed us to guarantee finding a global minimum, and therefore strengthen

our conclusions and ease debugging in the case of unexpected results.
While in many cases we observed that all the weight would be applied
to a single layer, our approach showed statistically significant improve-
ment over the baseline.

Working without any existing libraries for machine learning with
B-Reps was challenging as we had to create pipelines involving differ-
ent languages, and any visualisation methods for debugging had to be
created from scratch. We hope that by sharing our code in the pub-

lic domain, we will help reduce the barrier to entry for research with

148

6.3 FUTURE WORK 149

B-Reps, since our work has demonstrated the advantages in computa-

tional efficiency and the ability to better capture stylistic detail.

6.2.3 [HDNs

Our work on IHDNs posed a different problem setup to the rest of this
thesis, in that we were aiming to model a complex phenomenom with-
out labeled training data. To build upon existing work in cancer tu-
mour growth and contribute to key questions around cell lineage we
devised a message passing based model of computation akin to agent-
based modelling that enables powerful graph-based queries to be per-
formed on the complete simulation history.

Working directly with a graph database was effective in efficiently
storing the graphs, as well as enabling powerful queries such as short-
est paths with highly optimized and efficient implementations built in
to the database.

We demonstrated that IHDN computational method is effective, and
the implementation we provided is highly parallelisable. At the time,
general message passing frameworks such as [23] (discussed in Sec-
tion 1.3) were not available, thus we designed the computational pro-
cess from scratch. Future work could combine the IHDN method with

a now standard message passing framework.

6.3 FUTURE WORK

For continuing the research presented in this thesis, we now propose
in detail several specific areas for further work. First we consider how
PiNet may be adapted to enable hierarchical pooling (graph coarsen-
ing), then we consider regularization of our few-shot user defined op-

timization method, and an extension to the UVStyle-Net architecture

6.3 FUTURE WORK 150

which takes into account further relational information. Finally, we
propose two general directions for further investigation into our aim

beyond the specific applications considered so far.

6.3.1 PiNet: Hard Masking & Hierarchical Pooling

The success of conventional 2D CNNs is in a large part due to their hier-
archical composition [134], in which multiple pooling layers provide
a relational inductive bias allowing long range interactions between lo-
cal information in the input signal [13]. Consequently, we hypothesise
that introducing hierarchical pooling into our PiNet architecture will
improve the performance. Thus, we now propose how our soft pooling
process could be replaced with hard pooling in order to enable hierar-
chical composition of pooling layers.

As detailed in Chapter 3, graph level pooling in PiNet is achieved via
learned vertex attention coefficients ¢ , which are then passed through
a softmax function to give the weighting of each node in the final rep-
resentation.

Let « € RNXF represent these weights,

a=05([pa(AX)]T) (6.1)

where o is the softmax function, ¢, : (RNxN RNxFy _, RNxF' jg

any message passing network, A € RNN

is the adjacency matrix, and
X € RN*F is the corresponding F-dimensional vertex features. Then
an alternative approach would be to convert these weights to a mask

Me RNXF’

1, if 0(1']' >,
= (6.2)

0, otherwise,

6.3 FUTURE WORK

where 0 < t < 1 is a threshold hyperparameter, and to then replace

Equation 3.3 with

2(G) = 05 [g (M- ¢x(A, X)) Wp] € RE. (6.3)

The threshold ¢ could be be tuned via a validation set, or alternatively
computed per graph (as a function of N) to allow a fixed proportion
of vertices to be kept (similar to the top-k stragety used in [208]).

We hypothesize that by removing vertices with small « and fully in-
cluding vertices with large a, we could improve performance for clas-
sification tasks. Moreover, as discussed above, by using a “hard” mask,
vertices not selected for the mask could be removed from the follow-
ing layer to enable hierarchical pooling (graph coarsening), whereby
the pooling process is repeated several times before finally the global

aggregation is applied.

6.3.2 UVStyle-Net: Feature Distribution Measure

As identified in Chapter 4 as a limitation of our approach, during few-
shot optimization of our user defined loss we observed that often all
weight is applied to a single layer (e.g. Figure 4.3). We can consider
this as a form of over-fitting, therefore, we hypothesize that our style
metric could be improved by regularizing the few-shot optimization.
Based on our understanding that the Gram matrices of adjacent lay-
ers capture more similar stylistic features than distance layers [148]
(i.e. there is a smooth transition from low level surface details in the
lowest layers to higher level patterns in the highest layers), one pos-
sible approach is to constrain the weights to fit a Gaussian bell curve.
This will ensure that the weight is shared among adjacent layers with

similar amounts.

151

6.3 FUTURE WORK

Recall that in our proposed method the optimal user-defined weights

w* are found

L
w* = arg min Z w; - E; (6.4)
W=
such that
El =C1- Z Dl<ti’ t]) —Cy - Z Dl(tlt’) (65)
ti YET (t)ETXT’
i#]

where D (-, -) is the cosine distance of the normalised activation Gram
matrices at layer I, T and T’ are the set of positive and negative user
selected examples respectively, and c; and ¢, are normalisation con-
stants.

Thus, we could instead optimize a single parameter u

L
W = argminZwl - E; (6.6)
o=
such that
1 _i(key?
W) = —e 2 F) (67)
o2

where y € [0, L], L is the number of layers, and ¢ > 0 is the amount of
regularization.

Based on this reparametrisation of our few-shot loss, setting ¢ close
to 0 would result in all the weight applied to the single layer in which
the feature distributions of the user selected positive/negative exam-
ples match/differ the most, with increasing ¢ causing the weight to be

shared among the adjacent layers with decreasing amounts.

152

6.3 FUTURE WORK

6.3.3 UVStyle-Net: Further Relational Structure

As shown in Figure 4.4, the UV-Net encoder [127] used in our pro-
posed method is comprised of an MPNN over the face-adjacency graph
of a B-Rep, where each face is first encoded with a conventional 3 layer
2D CNN over the masked 10 by 10 grid of UV sampled points. This ar-
chitectureis able to leverage the relational structure of the face-adjacency
graph as well as the groupings of each sampled point into the face
boundaries. However, by processing each face entirely separately prior
to entering the MPNN, this architecture does not capture information re-
garding the edges between faces, or the relative orientations of adjacent
faces, until entering the MPNN at layer 5.

As many of the stylistic details associated with style are best cap-
tured in the lowest layers of the network (see Figure 4.7), we hypoth-
esize that incorporating information regarding the edges at an earlier
stage would be beneficial to the learned style representations.

Since conducting the research presented in Chapter 4, the authors
of [127] have extended the architecture to include edge information by
encoding each edge curve with a 1D conventional CNN over 10 points
sampled from the UV domain of the edge [209]. These edge represen-
tations are then added as edge features to the face-adjacency graph be-
fore applying an MPNN as before, but this time considering edge prop-
erties as well as vertex features.

While this extension to UV-Net considers edge curve information
at earlier layers, it does still not take into account the relative orienta-
tions of adjacent faces (i.e. the angles between faces), since the curve
features only include the absolute xyz positions, tangent normals and a
trimming mask. Thus, we propose also including the estimated angle
between the adjacent faces at each of the sampled points as an addi-

tional feature.

153

6.3 FUTURE WORK

To provide fine control over the impact of the relative orientations of
faces within our style embeddings, we propose that the angle features
should be fed to a separate 1D CNN to the edge curve CNN and concate-
nated to the edge curve features when passed to the MPNN. Then, the
Gram matrices for the faces GF, edge curves GF and edge angles G! at
each layer / can be computed (see Figure 6.1) and weighted separately

to give the style distance:
"@style = Diow + ‘Q)high (6.8)

with
4
@low(alb) = Z(wf : D(Gf(a)/ G{(b))
=1

+wF - D(GF(a), GF (b)) (6.9)

+w,A-D<G;“(a),G;“(b>)>

and

L
Dhigh = Z wM, - D(G(a,b)) (6.10)
i=5

where D(, -) is the cosine distance, w', wf, w4 € R* are weights vec-

tors for the face, edge and angle Gram matrices respectively, w,,; €

RI~* is a weights vector for the MPNN layer Grams, w, wE, wf, wM >

0, and

ZwlF+ZwF+Zw{‘+wa\4 1. (6.11)

l l l l

We note that the optimization of our user defined loss as described in
Section 4.3 with the style distance defined in Equation 6.8 will remain
a convex optimization problem, thus can be solved using Sequential

Least Squares Quadratic Programming (SLSQP) [178] as before.

154

6.3 FUTURE WORK

Vertex
Features

Content
Embedding

MPNN

Graph

Encoder

Input Solid

A Edge
Encoder

Edge
Features

CONCATENATE
N S

E E
Gy, Gy

1D CNN

Angles
Encoder

A A
Ggs s G

Figure 6.1: Proposed architecture to incorporate further relational informa-
tion regarding edge curve features and adjacent face angles.

By factoring in the this extra relational structure of how faces are con-
nected, our style measure should be better equipped to match solids
with corresponding regions of similarly angled surfaces (i.e. cogs and

gears, saw teeth etc.).

6.3.4 Further Directions

Thus far, we have investigated three diverse applications in order to
realise our aim. To extend our work beyond these, we propose inves-
tigation into the lesser explored area of discriminative analysis on dy-
namic domains, i.e. time series graphs. Possible applications of this
include predicting user behaviours in social networks, predicting lev-
els of face-to-face proximity in dynamic human contact networks, and
predicting consumer purchases based on dynamic consumer-product
graphs.

With the applications investigated in the body of this thesis, we have

shown the advantages that arise when leveraging relational structure

155

6.3 FUTURE WORK

over treating the inputs as sets (for example UVStyle-Net vs the set-
based PSNet* in Chapter 4). Yet in many widely used methods on
graphs, the relational structure of the order in which vertices and edges
are created is ignored. For example, with collaborative filtering (a
widely-used industry choice for recommender systems [210]), static
snapshots of the dynamic consumer-product graphs are taken and pro-
cessed in order to provide recommended next purchases, thus not tak-
ing into account the order in which previous purchases were made.

In recognition of the utility in this temporal relational information,
some works have utilized RNNs in order to capture sequential patterns
[211, 212]; however, RNNs are very complex models with many param-
eters, and as such their use is dependant on large amounts of train-
ing data. Therefore, it seems a logical step to investigate the use of
MPNNs on graphs in which the temporal relations are made explicit,
especially given the current success of MPNNs as recommenders due to
their ability to capture extra external relational information in the form
of knowledge graphs and social relations among users [213].

Another important area for further investigation is that of graph gen-
eration, with possible applications in drug design, computer program
synthesis, and 3D design. While there have been many recent works
addressing the graph generation problem (i.e. [70, 71]), at the time
of writing there is not yet a definitive approach. As with discrimina-
tive graph models, again we hypothesise that modelling temporal re-
lational information explicitly could be valuable and is an important

area for investigation.

156

CHANGES

Changes as requested in examiner’s report:

o Check all the important claims you made (clearly temporality matters).
— see pages 23, 79

e Chapter 1, p. 23: generalized aggregation operator in eq 1.1 was previ-
ously used by Wang et al. in DGCNN. — see page 23

e Chapter 2: add a discussion on how your WL results compare with the
results in Bevilacqua ...Maron 2021 (https://arxiv.org/pdf/2110.02910.
pdf). — see page 53-54

e Chapter 2: discuss in a more extensive way the expressive power of
positional encoding. — see page 39-40, 54

e Chapter 3 discuss how the methodology could be extended to the use
of information on geometric coordinates of atoms. Also discuss in a
more clear way the expressivity of PiNet with respect to 1-WL/MPNN.

— see page 63-64, 65/67, 69,79

o Chapter 4: update info on accepted publications and discuss reviewers

comments. — see page 6, 59, 80, 115

e Chapter 5: describe in a more extensive way the data used and add
further relevant citations. — see page 117, 132-133

Description of changes by page number:

e p6: update list of publications based on publication of UVStyle-Net
e p23: credit Wang et al for generalization of aggregation operator
e p39—40: discuss positional encodings more extensively

o p44: clarify claim based on the results of Bevilacqua et al proposing a
method for using 1-WL methods with more power than 1-WL test

e p53-54: discussion of Bevilacqua et al result with respect to WL test

e ps54: further discussion of how positional information can increase ex-
pressivity beyond 1-WL test

e p59: discuss peer review feedback for PiNet

e p63-64: discuss use of geometric features in PiNet for molcules

® p65/67: discuss isomorphism test graphs distinguishability with 1-WL
test

e p69: discussion of PiNet with relation to 1-WL test and provide possible
interpretation of the difference between its performance compared to
the other methods tested

e p79: clarify/reduce the claim made that PiNet is more expressive than
the methods tested

e p8o: discuss peer review feedback on UVStyle-Net
e pi15: discuss peer review feedback on IHDNs

e p11y (and others): update reference to published paper (Araujo et al)
rather than thesis

e p132-133: discuss the data from the reference model and how to obtain
it

157

https://arxiv.org/pdf/2110.02910.pdf
https://arxiv.org/pdf/2110.02910.pdf

REFERENCES

[1]

Peter Meltzer, Hooman Shayani, Amir Khasahmadi, Pradeep
Kumar Jayaraman, Aditya Sanghi, and Joseph Lambourne. “UVStyle-
Net: Unsupervised Few-Shot Learning of 3D Style Similarity
Measure for B-Reps.” In: International Conference on Computer
Vision (ICCV) (2021).

Joseph Lambourne, Karl D. D. Willis, Pradeep Kumar Jayara-
man, Aditya Sanghi, Peter Meltzer, and Hooman Shayani. “BRep-
Net: A Topological Message Passing System for Solid Models.”
In: Computer Vision and Pattern Recognition (CVPR) (2021).

Peter Meltzer, Marcelo Daniel Gutierrez Mallea, and Peter J.
Bentley. “PiNet: Attention Pooling for Graph Classification.”
In: Neural Information Processing Systems (NeurIPS): Graph Rep-
resentation Learning Workshop. 2019.

Peter Meltzer and Peter]. Bentley. “Interacting Hierarchical
Dynamic Networks.” In: The 2018 Conference on Artificial Life:
A Hybrid of the European Conference on Artificial Life (ECAL) and
the International Conference on the Synthesis and Simulation of Liv-
ing Systems (ALIFE) (2018), pp- 582-589. por: 10.1162/isal
a_00108.

Peter Meltzer, M.D.G. Marcelo Daniel Gutierrez Mallea, and
Peter]. Bentley. “PiNet: A Permutation Invariant Graph Neural
Network for Graph Classification.” In: arXiv (2019).

Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J.
Bentley. “Capsule Neural Networks for Graph Classification
Using Explicit Tensorial Graph Representations.” In: arXiv (2019).

Robin Milner, Joachim Parrow, and David Walker. “A Calculus
of Mobile Processes, 1.” In: Information and Computation 100.1
(Sept. 1992), pp. 1—40. por: 10.1016/0890-5401(92)90008- 4.

A H Taub. “The General and Logical Theory of Automata.” In:
Design of Computers, Theory of Automata and Numerical Analysis

V (1951), pp. 1-41.

Judea Pearl. “Reverend Bayes on Inference Engines: A Distributed

Hierarchical Approach.” In: Proceedings of the National Confer-
ence on Artificial Intelligence. 1982, pp. 133-136. 1sBN: 0-86576-

043-8.

Jin HKim and Judea Pearl. “A Computational Model for Causal
and Diagnostic Reasoning in Inference Systems.” In: vol. 1. 1983,
PP- 190-193. ISBN: 0-86576-064-0.

158

https://doi.org/10.1162/isal_a_00108
https://doi.org/10.1162/isal_a_00108
https://doi.org/10.1016/0890-5401(92)90008-4

REFERENCES 159

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. “The PageRank Citation Ranking: Bringing Order to the
Web.” In: World Wide Web Internet And Web Information Systems

54.1999-66 (1998), pp. 1-17. 1ssN: 9781424433803.
William L Hamilton, Rex Ying, and Jure Leskovec. “Represen-
tation Learning on Graphs: Methods and Applications.” In: arXiv

(2017).
Peter W Battaglia et al. “Relational Inductive Biases, Deep Learn-
ing, and Graph Networks.” In: arXiv (2018).

Benjamin R Mitchell. “The Spatial Inductive Bias of Deep Learn-
ing.” PhD thesis. 2017.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph
Neural Networks: A Review of Methods and Applications.” In:
arXiv (2018), pp. 1—20.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learning on
Graphs: A Survey. 2018. por: 10.1109/tkde.2020.2981333.

Thomas N. Kipf and Max Welling. “Semi-Supervised Classifi-
cation with Graph Convolutional Networks.” In: International
Conference on Learning Representations (ICLR). Sept. 2016, pp. 1—
14.1SBN: 978-1-61197-068-5. por: 10.1051/0004-6361/201527329.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi
Zhang, and Philip S Yu. “A Comprehensive Survey on Graph
Neural Networks.” In: arXiv (2019). por: 10.1109/tnnls.2020.
2978386.

Uwe Schoning. “Graph Isomorphism Is in the Low Hierarchy.”
In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 247 LNCS. 1987, pp. 114-124. 1sBN: 978-3-540-17219-2. DOIL
10.1007/BFb0039599.

Stephen A. Cook. “The Complexity of Theorem-Proving Pro-
cedures.” In: Proceedings of the Third Annual ACM Symposium
on Theory of Computing. STOC "71. New York, NY, USA: ACM
Press, 1971, pp. 151-158. por: 10.1145/800157.805047.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov.
“Learning Convolutional Neural Networks for Graphs.” In: 1
(2016). 15sN: 9781510829008.

Alberto Sanfeliu and King-Sun Fu. “A Distance Measure be-
tween Attributed Relational Graphs for Pattern Recognition.”
In: IEEE Transactions on Systems, Man, and Cybernetics SMC-13.3
(May 1983), pp. 353-362. por: 10.1109/TSMC. 1983 .6313167.

https://doi.org/10.1109/tkde.2020.2981333
https://doi.org/10.1051/0004-6361/201527329
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1007/BFb0039599
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/TSMC.1983.6313167

[24]

[28]

[29]

[30]

[32]

REFERENCES

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,
and George E Dahl. “Neural Message Passing for Quantum
Chemistry.” In: International Conference on Machine Learning (ICML).
2017. ISBN: 978-1-5108-5514-4. por: 10 . 1021/ acs . jmedchem .
7b01484.

Yue Wang, Michael M Bronstein, Justin M Solomon, Yongbin
Sun, Ziwei Liu, and Sanjay E Sarma. “Dynamic Graph CNN for
Learning on Point Clouds.” In: ACM Transactions on Graphics
38.5 (Nov. 2019), pp. 1—12. por: 10.1145/3326362.

Arnold Neumaier. “Mathematical Model Building.” In: Model-
ing Languages in Mathematical Optimization. Springer, 2004, pp. 37—
43.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tar-
low. “Gated Graph Sequence Neural Networks.” In: Interna-
tional Conference on Learning Representations (ICLR). 2016. por:
10.1103/PhysRevlett.116.082003.

William L Hamilton, Rex Ying, Jure Leskovec, Zhitao Ying, and
Jure Leskovec. “Inductive Representation Learning on Large
Graphs.” In: Neural Information Processing Systems (NeurIPS).
Ed. by I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus,
S Vishwanathan, and R Garnett. Curran Associates, Inc., 2017,
Pp- 1024-1034.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bron-
stein. “CayleyNets: Graph Convolutional Neural Networks with
Complex Rational Spectral Filters.” In: (2017). 1ssN: 978-1-5386-
0457-1. por: 10.1109/CVPR.2017.576.

Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe.
“Weisfeiler and Leman Go Neural: Higher-Order Graph Neu-
ral Networks.” In: (2018).

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Li, and Yoshua Bengio. “Graph Attention
Networks.” In: International Conference on Learning Representa-
tions (ICLR). 2015. 2018, pp. 1-11. ISBN: 1710.10903V3. DOL 10.
4271/821240.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-
Ichi Ichi Kawarabayashi, and Stefanie Jegelka. “Representation
Learning on Graphs with Jumping Knowledge Networks.” In:
International Conference on Machine Learning (ICML). Vol. 12. 2018,
pp- 8676-8685. 1sBN: 978-1-5108-6796-3.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio,
and Petar Velickovi¢. “Principal Neighbourhood Aggregation
for Graph Nets.” In: Neural Information Processing Systems (NeurIPS)
(2020).

Rémy Brossard, Oriel Frigo, and David Dehaene. “Graph Con-
volutions That Can Finally Model Local Structure.” In: (2020).

https://doi.org/10.1021/acs.jmedchem.7b01484
https://doi.org/10.1021/acs.jmedchem.7b01484
https://doi.org/10.1145/3326362
https://doi.org/10.1103/PhysRevLett.116.082003
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.4271/821240
https://doi.org/10.4271/821240

[40]

REFERENCES 161

Dominique Beaini, Saro Passaro, Vincent Létourneau, William
L Hamilton, Gabriele Corso, and Pietro Lio. “Directional Graph
Networks.” In: arXiv (Oct. 2020).

Andreas Loukas. “What Graph Neural Networks Cannot Learn:
Depth vs Width.” In: arXiv (2019).

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael
Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P
Adams. “Convolutional Networks on Graphs for Learning Molec-
ular Fingerprints.” In: Advances in Neural Information Process-
ing Systems 28. Ed. by C Cortes, N D Lawrence, D D Lee, M
Sugiyama, and R Garnett. Curran Associates, Inc., 2015, pp. 2224—
2232.

P.]. Bentley. “Methods for Improving Simulations of Biological
Systems: Systemic Computation and Fractal Proteins.” In: Jour-
nal of The Royal Society Interface 6.Suppl_4 (2009), S451-5466.
ISSN: 1742-5689. por: 10.1098/rsif.2008.0505. focus.

Arturo Araujo, Buzz Baum, and Peter Bentley. “The Role of
Chromosome Missegregation in Cancer Development: A Theo-
retical Approach Using Agent-Based Modelling.” In: PLoS ONE
8.8 (2013). por: 10.1371/journal.pone.0072206.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,
and Pierre Vandergheynst. “Geometric Deep Learning: Going
beyond Euclidean Data.” In: IEEE Signal Processing Magazine
34.4 (July 2017), pp. 18—42. por: 10.1109/MSP.2017.2693418.

Sang Hun Lee, Kunwoo Lee, Sang Hun Lee, and Kunwoo Lee.
“Partial Entity Structure: A Compact Non-Manifold Boundary
Representation Based on Partial Topological Entities.” In: Pro-
ceedings of the Symposium on Solid Modeling and Applications 1.4
(2001), pp- 159-170. I1ssN: 1581133669. por: 10.1115/1.1433486.

Daixin Wang, Yuan Qj, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen
Wang, Yanming Fang, Quan Yu, Jun Zhou, and Shuang Yang.
“A Semi-Supervised Graph Attentive Network for Financial Fraud
Detection.” In: Proceedings - IEEE International Conference on Data
Mining, ICDM. Vol. 2019-Novem. Institute of Electrical and Elec-
tronics Engineers Inc., Nov. 2019, pp. 598-607. 1sBN: 978-1-72814-
603-4. por: 10.1109/ICDM.2019.00070.

Aditya Grover. “Nodezvec : Scalable Feature Learning for Net-
works.” In: (2016), pp. 855-864. 1sSN: 9781450342322.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. “Knowl-
edge Graph Embedding Based Question Answering.” In: WSDM
2019 - Proceedings of the 12th ACM International Conference on
Web Search and Data Mining. Vol. 19. 2019, pp. 105-113. ISBN: 978-
1-4503-5940-5. pOIL: 10.1145/3289600.3290956.

https://doi.org/10.1098/rsif.2008.0505.focus
https://doi.org/10.1371/journal.pone.0072206
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1115/1.1433486
https://doi.org/10.1109/ICDM.2019.00070
https://doi.org/10.1145/3289600.3290956

REFERENCES 162

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. “Computational Capabili-
ties of Graph Neural Networks.” In: IEEE Transactions on Neu-
ral Networks 20.1 (2009), pp. 81—102. por: 10.1109/TNN. 2008 .
2005141.

Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and
Terran Lane. “Graph-Based Malware Detection Using Dynamic
Analysis.” In: Journal in Computer Virology (2011). por: 10.1007/
$11416-011-0152-x.

Davide Boscaini, Jonathan Masci, Emanuele Rodola, and Michael
Bronstein. “Learning Shape Correspondence with Anisotropic
Convolutional Neural Networks.” In: Advances in Neural Infor-
mation Processing Systems. 2016, pp. 3197—3205.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. “Pro-
tein Interface Prediction Using Graph Convolutional Networks.”
In: Advances in Neural Information Processing Systems. Vol. 2017-
Decem. 2017, pp. 6531-6540.

Jason Hartford, Devon R. Graham, Kevin Leyton-Brown, and
Siamak Ravanbakhsh. “Deep Models of Interactions across Sets.”
In: 35th International Conference on Machine Learning (ICML). 2018.
ISBN: 978-1-5108-6796-3.

Belinda A Chiera and Belinda A Chiera. “On the Detection of
Hidden Terrorist Cells Immersed in Peer to Peer Networks.” In:
August (2011), pp. 1-2.

Nino Shervashidze and Karsten M Borgwardt. “Fast Subtree
Kernels on Graphs.” In: Neural Information Processing Systems
(NeurIPS). 2009, pp. 1660-1668. 1SBN: 978-1-61567-911-9.

Brian D. Ripley. Pattern Recognition and Neural Networks. 2014.
ISBN: 978-0-511-81265-1. por: 10.1017/CB09780511812651.

K Sreedhar Reddy. “Enlargement of Image Based Upon Inter-
polation Techniques.” In: 2.12 (2013), p. 10.

Kunihiko Fukushima. “Neocognition: A Self.” In: Biol. Cyber-
netics. 1980. ISBN: 0340-1200.

Nadav Cohen and Amnon Shashua. “Inductive Bias of Deep
Convolutional Networks through Pooling Geometry.” In: 5th
International Conference on Learning Representations, ICLR 2017 -
Conference Track Proceedings. 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barn-
abas P6czos, Ruslan Salakhutdinov, and Alexander] Smola.
“Deep Sets.” In: Neural Information Processing Systems (NeurIPS):
Graph Representation Learning Workshop. Vol. 2017-Decem. 2017,
PP- 3392—-3402.

Davide Chicco. “Siamese Neural Networks: An Overview.” In:

Methods in Molecular Biology. 2021. por: 10.1007/978-1-0716-
0826-5 3.

https://doi.org/10.1109/TNN.2008.2005141
https://doi.org/10.1109/TNN.2008.2005141
https://doi.org/10.1007/s11416-011-0152-x
https://doi.org/10.1007/s11416-011-0152-x
https://doi.org/10.1017/CBO9780511812651
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3

[62]

REFERENCES 163

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao,
and Bruno Ribeiro. “Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs.” In: International
Conference on Learning Representations (ICLR). 2019.

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. “On
Learning Sets of Symmetric Elements.” In: (Feb. 2020).

Frank Lin and William W Cohen. “Power Iteration Clustering.”
In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10) (2010), pp. 655-662. 1ssN: 9781605589077.

AY Ng,MJordan, and Y Weiss. “On Spectral Clustering: Anal-
ysis and an Algorithm: In Advances in Neural Information Pro-
cessing Systems 14.” In: (2001).

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. “Novel Ker-
nels for Error-Tolerant Graph Classification.” In: Spatial Vision
22.5 (Sept. 2009), Pp. 425-441. ISSN: 0169-1015. DOL: 10. 1163/
156856809789476119.

John Lafferty and Risi Imre Kondor. “Diffusion Kernels on Graphs
and Other Discrete Input Spaces.” In: ICML 02 Proceedings of
the Nineteenth International Conference on Machine Learning (2002),

PP- 315—322. I1SSN: 1558608737.

Kai Chen and Qiang Huo. Scalable Training of Deep Learning Ma-
chines by Incremental Block Training with Intra-Block Parallel Opti-
mization and Blockwise Model-Update Filtering. 1sBN: 978-1-4799-
9988-0.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. “Spectral Networks and Locally Connected Networks on
Graphs.” In: International Conference on Learning Representations
(ICLR). 2014, pp. 1-14.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst.
“Convolutional Neural Networks on Graphs with Fast Local-
ized Spectral Filtering.” In: Neural Information Processing Sys-
tems (NeurIPS) (2016). 1ssN: 978-1-5108-3881-9.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk:
Online Learning of Social Representations.” In: (2014). 1ssN:
978-1-4503-2956-9. DOL: 10.1145/2623330.2623732.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean.
“Efficient Estimation of Word Representations in Vector Space.”
In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR 2013) (2013), pp. 1-12. ISSN: 1532-4435. DOL
10.1162/153244303322533223.

Leonardo F. R. Ribeiro, Pedro H. P. Saverese, and Daniel R.
Figueiredo. “Struc2vec: Learning Node Representations from
Structural Identity.” In: (2017), pp. 385-394. IssN: 9781450335423.
porI: 10.1145/3097983.3098061.

https://doi.org/10.1163/156856809789476119
https://doi.org/10.1163/156856809789476119
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1162/153244303322533223
https://doi.org/10.1145/3097983.3098061

[80]

[81]

REFERENCES

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. “Graph Classi-
fication Using Structural Attention.” In: KDD (2018), pp. 1666—
1674. 1sSN: 9781450355520. por: 10.1145/3219819.3219980.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and
Jure Leskovec. “GraphRNN: Generating Realistic Graphs with
Deep Auto-Regressive Models.” In: 35th International Conference
on Machine Learning (ICML). Vol. 13. 2018, pp. 9072—-9081. ISBN:
978-1-5108-6796-3.

Tony Duan and Juho Lee. “Graph Embedding VAE: A Permu-
tation Invariant Model of Graph Structure.” In: (2019).

Ashish Vaswani. “Attention Is All You Need arXiv:1706.03762v5.”

In: Neural Information Processing Systems (NeurIPS). 2017. por:
10.1017/560952523813000308.

164

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova.

“BERT: Pre-Training of Deep Bidirectional Transformers for Lan-
guage Understanding.” In: NAACL HLT 2019 - 2019 Conference

of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies - Proceedings of the Con-
ference. 2019. 15BN: 978-1-950737-13-0.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang,
and Hyunwoo] Kim. Graph Transformer Networks. Tech. rep.

Vijay Prakash Dwivedi and Xavier Bresson. “A Generalization
of Transformer Networks to Graphs.” In: (2020).

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. “Uni-
versal Graph Transformer Self-Attention Networks.” In: (2019).
ISSN: 1909.11855V0.

Charlie Nash, Yaroslav Ganin, S. M.Ali Ali Eslami, and Peter
W Battaglia. “PolyGen: An Autoregressive Generative Model
of 3D Meshes.” In: arXiv (2020).

Chaitanya K. Joshi. “Transformers Are Graph Neural Networks.”
In: The Gradient (2020).

S. VN. Vishwanathan, Karsten M. Borgwardt, and Nicol N.
Schraudolph. “Fast Computation of Graph Kernels.” In: Ad-
vances in Neural Information Processing Systems. 2007. ISBN: 978-
0-262-19568-3. por: 10.7551/mitpress/7503.003.0186.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien
Mairal. “GraphiT: Encoding Graph Structure in Transformers.”
June 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking Graph Neural
Networks. 2020.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention

with Relative Position Representations.” In: arXiv:1803.02155 [cs|
(Apr. 2018). arXiv: 1803.02155 [cs].

https://doi.org/10.1145/3219819.3219980
https://doi.org/10.1017/S0952523813000308
https://doi.org/10.7551/mitpress/7503.003.0186
https://arxiv.org/abs/1803.02155

REFERENCES 165

Jiaxuan You, Rex Ying, and Jure Leskovec. “Position-Aware Graph
Neural Networks.” In: arXiv:1906.04817 [cs, stat] (June 2019).
arXiv: 1906.04817 [cs, stat].

Jack W Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe
Hillier, and Timothy P Lillicrap. “Compressive Transformers
for Long-Range Sequence Modelling.” In: arXiv (2019).

Geoffrey Hinton, Sara Sabour, and Nicholas Frosst. “Matrix
Capsules With EM Routing.” In: International Conference on Learn-
ing Representations (ICLR). 2018, pp. 1-15.

Saurabh Verma and Zhi-Li Zhang. “Graph Capsule Convolu-
tional Neural Networks.” In: (2018).

Loris Nanni, Alessandra Lumini, Federica Pasquali, and Sheryl
Brahnam. “iProStruct2D: Identifying Protein Structural Classes
by Deep Learning via 2D Representations.” In: arXiv (2019).

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. “Multi-View Convolutional Neural Networks for 3D Shape
Recognition.” In: 2015 EEE International Conference on Computer
Vision (ICCV). Vol. 2015 Inter. IEEE, Dec. 2015, pp. 945-953.

ISBN: 978-1-4673-8391-2. por: 10.1109/ICCV.2015.114.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams,
Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin,
and Daniele Panozzo. “ABC: A Big Cad Model Dataset for Ge-
ometric Deep Learning.” In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.
Vol. 2019-June. 2019, pp. 9593—-9603. 1SBN: 978-1-72813-293-8.
por: 10.1109/CVPR.2019.00983.

Ryoma Sato. “A Survey on The Expressive Power of Graph
Neural Networks.” In: arXiv (2020).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
“How Powerful Are Graph Neural Networks?” In: International
Conference on Learning Representations (ICLR). 2019. 1sBN: 1810.00826v3.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron
Lipman. “Provably Powerful Graph Networks.” In: arXiv (2019).

B Yu Weisfeiler and A. A. Lehman. “Reduction of a Graph to
a Canonical Form and an Algebra Which Appears in the Pro-
cess.” In: Nauchno-Technicheskaya Informatsiya, Ser. 2 9 (1968),
pp. 12-12.

Laszl6 Babai, Paul Erdo’s, and Stanley M Selkow. “Random
Graph Isomorphism.” In: SIAM Journal on Computing 9.3 (1980),
pp. 628-635. por: 10.1137/0209047.

Bronstein Michael. Expressive Power of Graph Neural Networks
and the Weisfeiler-Lehman Test. 2020.

https://arxiv.org/abs/1906.04817
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/CVPR.2019.00983
https://doi.org/10.1137/0209047

[100]

[101]

[102]

[103]

[104]

[105]

REFERENCES 166

Laszlo Babai and Eugene M. Luks. “Canonical Labeling of Graphs.”
In: Conference Proceedings of the Annual ACM Symposium on The-

ory of Computing. 1983. 1SBN: 0-89791-099-0. pOI: 10.1145/800061 .
808746.

Nino Shervashidze, S V N Vishwanathan, Tobias H Petri, Kurt
Mehlhorn, and Karsten M Borgwardt. “Efficient Graphlet Ker-
nels for Large Graph Comparison.” In: Proceedings of the 12th
International Confe- Rence on Artificial Intelligence and Statistics
(AISTATS). 20009.

Karsten M. Borgwardt and Hans Peter Kriegel. “Shortest-Path
Kernels on Graphs.” In: Proceedings - IEEE International Con-
ference on Data Mining, ICDM. 2005. 1sBN: 0-7695-2278-5. DOIL:
10.1109/ICDM.2005.132.

Zhao Min Chen, Xiu Shen Wei, Peng Wang, and Yanwen Guo.
“Multi-Label Image Recognition with Graph Convolutional Net-
works.” In: arXiv (2019).

Kaveh Hassani and Amir Hosein Khasahmadi. “Contrastive
Multi-View Representation Learning on Graphs.” In: Interna-
tional Conference on Machine Learning (ICML) (June 2020).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. “Learning Phrase Representations Using RNN Encoder—
Decoder for Statistical Machine Translation.” In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMINLP). Stroudsburg, PA, USA: Association for Com-
putational Linguistics, 2014, pp. 1724-1734. 1sBN: 978-1-937284-
96-1. por: 10.3115/v1/D14-1179.

Petar Velickovié, William Fedus, William L Hamilton, Pietro
Lio, Yoshua Bengio, and R Devon Hjelm. “Deep Graph Info-
max.” In: 7th International Conference on Learning Representations
(ICLR) (2019).

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan
Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio.
“Learning Deep Representations by Mutual Information Esti-
mation and Maximization.” In: International Conference on Learn-
ing Representations (ICLR). 2018.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang.
“InfoGraph: Unsupervised and Semi-Supervised Graph-Level
Representation Learning via Mutual Information Maximization.”
In: International Conference on Learning Representations (ICLR)
(July 2019).

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. “Neu-
ral Machine Translation by Jointly Learning to Align and Trans-
late.” In: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings. 2015.

https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.3115/v1/D14-1179

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]

[117]

REFERENCES 167

Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin.
“A Convolutional Encoder Model for Neural Machine Trans-
lation.” In: ACL 2017 - 55th Annual Meeting of the Association

for Computational Linguistics, Proceedings of the Conference (Long
Papers). Vol. 1. 2017, pp. 123-135. ISBN: 978-1-945626-75-3. DOL
10.18653/v1/P17-1012.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King,
and Dit Yan Yeung. “GaAN: Gated Attention Networks for Learn-
ing on Large and Spatiotemporal Graphs.” In: 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018. 2018. 1sBN:
978-1-5108-7160-1.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang.
“Graph Convolutional Networks with EigenPooling.” In: As-
sociation for Computing Machinery (Apr. 2019). por: 10 . 1145/
nnnnnNnn.nnnnnnn.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. “Deep Learning on
Graphs: A Survey.” In: arXiv (2018). por: 10.1109/tkde.2020.
2981333.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will
Hamilton, and Jure Leskovec. “Hierarchical Graph Represen-
tation Learning with Differentiable Pooling.” In: (2018), p. 11.

Junying Li, Deng Cai, and Xiaofei He. “Learning Graph-Level
Representation for Drug Discovery.” In: arXiv (2017).

Weihua Hu et al. “Open Graph Benchmark: Datasets for Ma-
chine Learning on Graphs.” In: arXiv (2020).

Floris Geerts, Filip Mazowiecki, and Guillermo A Pérez. “Let’s
Agree to Degree: Comparing Graph Convolutional Networks
in the Message-Passing Framework.” In: arXiv (2020). 1sSN: 23318422.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubrama-
niam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael
M. Bronstein, and Haggai Maron. “Equivariant Subgraph Ag-
gregation Networks.” In: arXiv:2110.02910 [cs, stat] (Oct. 2021).
arXiv: 2110.02910 [cs, stat].

Johannes Klicpera, Janek Grofs, and Stephan Giinnemann. “DI-
RECTIONAL MESSAGE PASSING FOR MOLECULAR GRAPHS.”
In: (2020), p. 13.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem.
“DeepGCNs: Can GCNs Go as Deep as CNNs?” In: Proceedings
of the IEEE International Conference on Computer Vision. Vol. 2019-
Octob. 2019, pp. 9266—9275. 1sBN: 978-1-72814-803-8. por: 10 .
1109/ICCV.2019.00936.

Lingxiao Zhao and Leman Akoglu. “Pairnorm: Tackling Over-
smoothing in GNNS.” In: International Conference on Learning
Representations (ICLR). 2020.

https://doi.org/10.18653/v1/P17-1012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1109/tkde.2020.2981333
https://doi.org/10.1109/tkde.2020.2981333
https://arxiv.org/abs/2110.02910
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1109/ICCV.2019.00936

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

REFERENCES 168

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem.
“DeeperGCN: All You Need to Train Deeper GCNs.” In: arXiv
(2020).

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu,
Bernard Ghanem, Gavin Taylor, and Tom Goldstein. “FLAG:
Adversarial Data Augmentation for Graph Neural Networks.”
In: (2020).

Yue Xu, Hao Chen, Zengde Deng, Junxiong Zhu, Yanghua Li,
Peng He, Wenyao Gao, and Wenjun Xu. “Single-Layer Graph
Convolutional Networks For Recommendation.” In: arXiv. 2020.

Zhengdao Chen, Lisha Li, and Joan Bruna. “Supervised Com-
munity Detection with Line Graph Neural Networks.” In: In-
ternational Conference on Learning Representations (ICLR). 2017.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. “Semi-
Supervised Learning Using Gaussian Fields and Harmonic Func-
tions.” In: Machine Learning-International Workshop Then Conference-
20.2 (2003), pp- 912—-912. ISSN: 9780262255899.

Xin Li, Lu Wang, Yang Xin, Yixian Yang, and Yuling Chen. “Au-
tomated Vulnerability Detection in Source Code Using Mini-
mum Intermediate Representation Learning.” In: Applied Sci-
ences (Switzerland) 10.5 (2020). por: 10.3390/app10051692.

Philip Rathle. Driving Innovation in Retail with Graph Technology.
Tech. rep.

Shiyuan Jin, Ming Zhou, and Annie S Wu. “Sensor Network
Optimization Using a Genetic Algorithm.” In: 7th World Multi-
conference on Systemics, Cybernetics and Informatics (2003), pp. 1—
6. 1ssN: 2251-6581 (Electronic) \r2251-6581 (Linking).

Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and Shuicheng
Yan. “Semantic Object Parsing with Graph LSTM.” In: Lecture
Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9ggos
LNCS. 2016, pp. 125-143. ISBN: 978-3-319-46447-3. DOI: 10. 1007/
978-3-319-46448-0 8.

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph Lambourne,
Thomas Davies, Hooman Shayani, and Nigel Morris. “UV-Net:
Learning from Curve-Networks and Solids.” In: (June 2020).

Nicola De Cao and Thomas Kipf. “MolGAN: An Implicit Gen-
erative Model for Small Molecular Graphs.” In: (2018).

Marinka Zitnik and Jure Leskovec. “Predicting Multicellular
Function through Multi-Layer Tissue Networks.” In: Bioinfor-
matics. Vol. 33.2017, pp.i190-i198. por: 10.1093/bioinformatics/
btx252.

https://doi.org/10.3390/app10051692
https://doi.org/10.1007/978-3-319-46448-0_8
https://doi.org/10.1007/978-3-319-46448-0_8
https://doi.org/10.1093/bioinformatics/btx252
https://doi.org/10.1093/bioinformatics/btx252

[130]

[131]

[132]
[133]

[134]

[137]

[139]

[140]

[141]

[142]

[143]

REFERENCES 169

Zaid Harchaoui and Francis Bach. “Image Classification with
Segmentation Graph Kernels.” In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition. 2007. 1SBN: 1-4244-1180-7. por: 10 . 1109 / CVPR . 2007 .
383049.

Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam
Wright, and Christos Faloutsos. “Polonium: Tera-Scale Graph
Mining and Inference for Malware Detection.” In: Proceedings
of the 11th SIAM International Conference on Data Mining, SDM

2011. 2011. ISBN: 978-0-89871-992-5.
Benjamin Graham. “Fractional Max-Pooling.” In: arXiv (2014).

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. “SoundNet:
Learning Sound Representations from Unlabeled Video.” In:
Advances in Neural Information Processing Systems. 2016, pp. 892—
900.

Yann LeCun and Yoshua Bengio. “The Handbook of Brain The-
ory and Neural Networks.” In: ed. by Michael A Arbib. Cam-
bridge, MA, USA: MIT Press, 1998, pp. 255-258. I1SBN: 0-262-
51102-9.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu.
“Recurrent Models of Visual Attention.” In: Advances in Neural
Information Processing Systems. 2014.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen.
“An End-to-End Deep Learning Architecture for Graph Clas-
sification.” In: The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18). 2018.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy
Liang, Vijay Pande, and Jure Leskovec. “Strategies for Pre-Training
Graph Neural Networks.” In: arXiv:1905.12265 [cs, stat] (Feb.
2020). arXiv: 1905.12265 [cs, stat].

P Erdés and A Rényi. “On Evolution of Random Graphs.” In:
Publications of the Mathematical Institute of the Hungarian Academy
of Sciences 5 (1960), pp. 17-61.

Brendan D. McKay and Adolfo Piperno. “Practical Graph Iso-
morphism, IL.” In: Journal of Symbolic Computation 60 (2014),
PP- 94-112. 1SSN: 0747-7171. DOL: 10.1016/j.jsC.2013.09.003.

Ulrik Brandes. “A Faster Algorithm for Betweenness Central-
ity.” In: Journal of Mathematical Sociology 25.2 (2001), pp. 163—
177. I1SSN: 0022-250X. Dor: 10.1080/0022250X.2001.9990249.

John E McMurry. Fundamentals of Organic Chemistry. Seventh.
Brooks/Cole CENGAGE Learning, 2011.

JM Berg, JL Tymoczko, and L Stryer. “Mutations Involve Changes
in the Base Sequence of DNA.” In: Biochemistry. Vol. 27.6. New
York: W H Freeman, 2002.

“Steric Hindrance.” In: (Aug. 2020).

https://doi.org/10.1109/CVPR.2007.383049
https://doi.org/10.1109/CVPR.2007.383049
https://arxiv.org/abs/1905.12265
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1080/0022250X.2001.9990249

[144]

[145]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

REFERENCES 170

Jonathan Clayden, Nick Greeves, Stuart Warren, and Peter Wothers.
“Organic Chemistry.” In: (2001).

Mojtaba Alipour and Faezeh Taravat. “Efficiency of Electro-
static and Steric Forces in Theoretical Appreciating Chemical
Reactivity-Related Phenomena.” In: Molecular Physics 117.2 (2019),
pp- 136-142.

Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Van-
dermeersch, Eva Zurek, and Geoffrey R Hutchison. “ Avogadro:
An Advanced Semantic Chemical Editor, Visualization, and
Analysis Platform.” In:]. Cheminformatics 4.1 (Dec. 2012), p. 17.
por: 10.1186/1758-2946-4-17.

Nikolay Golovanov. Geometric Modeling: The Mathematics of Shapes.
Reprint edition (24 Dec. 2014). CreateSpace Independent Pub-
lishing Platform, 2011. 1SBN: 1-4974-7319-5.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Im-
age Style Transfer Using Convolutional Neural Networks.” In:
2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Vol. 2016-Decem. IEEE, June 2016, pp. 2414-2423.
ISBN: 978-1-4673-8851-1. por: 10.1109/CVPR.2016.265.

Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. “Ele-
ments of Style: Learning Perceptual Shape Style Similarity.” In:
ACM Transactions on Graphics. Vol. 34. 2015. 1SBN: 978-1-4503-
3331-3. por: 10.1145/2766929.

Tiangiang Liu, Aaron Hertzmann, Wilmot Li, and Thomas Funkhouser.
“Style Compatibility for 3D Furniture Models.” In: ACM Trans-

actions on Graphics 34.4 (July 2015), pp. 1—9. por: 10 . 1145/
2766898.

Isaak Lim, Anne Gehre, and Leif Kobbelt. “Identifying Style of
3D Shapes Using Deep Metric Learning.” In: Computer Graphics
Forum 35.5 (Aug. 2016), pp. 207—215. por: 10.1111/cgf.12977.

Tse-Yu Pan, Yi-Zhu Dai, Wan-Lun Tsai, and Min-Chun Hu. “Deep
Model Style: Cross-Class Style Compatibility for 3D Furniture
within a Scene.” In: 2017 IEEE International Conference on Big
Data (Big Data). Vol. 2018-Janua. IEEE, Dec. 2017, pp. 4307-
4313. ISBN: 978-1-5386-2715-0. por: 10 . 1109 / BigData . 2017 .
82584509.

Luisa F. Polania, Mauricio Flores, Yiran Li, and Matthew Nok-
leby. “Learning Furniture Compatibility with Graph Neural
Networks.” In: (2020).

Xiang Pan, Jie Lu, and Fuchang Liu. “3D Patch-Based Sparse
Learning for Style Feature Extraction.” In: IEEE Access 7 (2019),
pPp- 172403-172412. por: 10.1109/ACCESS.2019.2954693.

Kevin] Weiler. “Topological Structures for Geometric Model-
ing.” In: (1986), pp. 340-340.

https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1145/2766929
https://doi.org/10.1145/2766898
https://doi.org/10.1145/2766898
https://doi.org/10.1111/cgf.12977
https://doi.org/10.1109/BigData.2017.8258459
https://doi.org/10.1109/BigData.2017.8258459
https://doi.org/10.1109/ACCESS.2019.2954693

[157]

[159]

[160]

[161]

REFERENCES

Hiroshi Masuda, Kenji Shimada, Masayuki Numao, and Shinji
Kawabe. “A Mathematical Theory and Applications of Non-
Manifold Geometric Modelling.” In: International Symposium on
Advanced Geometric Modelling for Engineering Applications. 1989,
pp- 89-103. 1sBN: 978-1-62623-977-7.

Zhangjie Cao, Qixing Huang, and Ramani Karthik. “3D Object
Classification via Spherical Projections.” In: 2017 International
Conference on 3D Vision (3DV). IEEE, Oct. 2017, pp. 566-574.
ISBN: 978-1-5386-2610-8. por: 10.1109/3DV.2017.00070.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. “3D ShapeNets: A
Deep Representation for Volumetric Shapes.” In: 2015IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). Vol. o7-

12-June. IEEE, June 2015, pp. 1912-1920. 1sBN: 978-1-4673-6964-
0.Dpor: 10.1109/CVPR.2015.7298801.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas] Guibas.
“PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation.” In: Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017. Vol. 2017-
Janua. 2017, pp. 77-85. 1sBN: 978-1-5386-0457-1. poI: 10.1109/
CVPR.2017.16.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and
Mohammed Bennamoun. “Deep Learning for 3D Point Clouds:
A Survey.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020), pp. 1—1. ISSN: 23201/20351. DOIL: 10 . 1109/
TPAMI.2020.3005434.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. “MeshCNN: A Network with
an Edge.” In: ACM Transactions on Graphics 38.4 (July 2019),
pp- 1-12. ISSN: 0730-0301, 1557-7368. por: 10 . 1145 /3306346 .
3322959. arXiv: 1809.05910.

Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling.
“Gauge Equivariant Mesh CNNss: Anisotropic Convolutions on
Geometric Graphs.” In: (Mar. 2020). ISSN: 2003.05425V1.

David Griffiths and Jan Boehm. “A Review on Deep Learning
Techniques for 3D Sensed Data Classification.” In: Remote Sens-
ing 11.12 (June 2019), pp. 1499-1499. por: 10.3390/rs11121499.

Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek, Kseniya

Cherenkova, Rig Das, Gleb Gusev, Djamila Aouada, and Bjorn
Ottersten. “A Survey on Deep Learning Advances on Differ-
ent 3D Data Representations.” In: arXiv:1808.01462 [cs] (Apr.
2019). arXiv: 1808.01462 [cs].

171

https://doi.org/10.1109/3DV.2017.00070
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://arxiv.org/abs/1809.05910
https://doi.org/10.3390/rs11121499
https://arxiv.org/abs/1808.01462

[170]

[171]

[172]

[173]

[174]

[175]

REFERENCES 172

Xun Huang and Serge Belongie. “Arbitrary Style Transfer in

Real-Time with Adaptive Instance Normalization.” In: 2017IEEE
International Conference on Computer Vision (ICCV). Vol. 2017-

Octob. IEEE, Oct. 2017, pp. 1510-1519. 1SBN: 978-1-5386-1032-9.

por: 10.1109/ICCV.2017.167.

Mohammad Babaeizadeh and Golnaz Ghiasi. “ Adjustable Real-
Time Style Transfer.” In: Deep Generative Models for Highly Struc-
tured Data, DGS@ICLR 2019 Workshop (Nov. 2018). 1ssN: 1811.08560v1.

Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Gen-
erator Architecture for Generative Adversarial Networks.” In:
2019 IEEE /CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (Dec. 2019), pp- 4396—4405. 1sSN: 978-1-7281-3293-
8. por: 10.1109/CVPR.2019.00453.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. “Analyzing and Improving the Im-
age Quality of StyleGAN.” In: (2019).

Yulun Zhang, Chen Fang, Yilin Wang, Zhaowen Wang, Zhe
Lin, Yun Fu, and Jimei Yang. “Multimodal Style Transfer via
Graph Cuts.” In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). Vol. 2019-Octob. IEEE, Oct. 2019, pp. 5942—
5950. ISBN: 978-1-72814-803-8. por: 10.1109/ICCV.2019.00604.

Liming Jiang, Changxu Zhang, Mingyang Huang, Chunxiao
Liu, Jianping Shi, and Chen Change Loy. “TSIT: A Simple and
Versatile Framework for Image-to-Image Translation.” In: arXiv
(2020).

Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu.
“Contrastive Learning for Unpaired Image-to-Image Transla-
tion.” In: arXiv (2020).

Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang,
Eli Shechtman, and Trevor Darrell. “Multi-Content GAN for
Few-Shot Font Style Transfer.” In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 7564-7573. 1SBN: 978-1-5386-6420-9. por: 10 .
1109/CVPR.2018.00789.

Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri,

Noam Aigerman, and Alec Jacobson. “Neural Subdivision.” In:
arXiv:2005.01819 [cs] (May 2020). arXiv: 2005.01819 [cs].

Xu Cao, Weimin Wang, Katashi Nagao, and Ryosuke Nakamura.
“PSNet: A Style Transfer Network for Point Cloud Stylization

on Geometry and Color.” In: IEEE Winter Conference on Appli-

cations of Computer Vision (WACV') (2020), pp. 3326—3334. ISSN:

9781728165530. DOI: 10.1109/WACV45572.2020.9093513.

Angel X Chang et al. “ShapeNet: An Information-Rich 3D Model
Repository.” In: arXiv (2015).

https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/ICCV.2019.00604
https://doi.org/10.1109/CVPR.2018.00789
https://doi.org/10.1109/CVPR.2018.00789
https://arxiv.org/abs/2005.01819
https://doi.org/10.1109/WACV45572.2020.9093513

[179]

[180]

[181]

[182]

[186]

REFERENCES

Mattia Segu, Margarita Grinvald, Roland Siegwart, and Fed-
erico Tombari. “3DSNet: Unsupervised Shape-to-Shape 3D Style
Transfer.” In: arXiv (Nov. 2020).

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Im-
proved Texture Networks: Maximizing Quality and Diversity

in Feed-Forward Stylization and Texture Synthesis.” In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Vol. 2017-Janua. IEEE, July 2017, pp. 4105-4113. 1sBN: 978-1-5386-
0457-1. por: 10.1109/CVPR.2017.437.

Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python.” In: Nature Methods 17.3 (Mar.
2020), pp. 261—272. por: 10.1038/541592-019-0686- 2.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. “EMNIST: An Extension of MNIST to Handwrit-
ten Letters.” In: arXiv (Feb. 2017).

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. “Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space.” In: Advances in Neural Information Processing
Systems 2017-Decem (June 2017), pp. 5100-5109.

Guillaume Alain and Yoshua Bengio. “Understanding Interme-
diate Layers Using Linear Classifier Probes.” In: (2016).

Tom Lenaerts, Dominique Grof3, and Richard Watson. “On the
Modelling of Dynamical Hierarchies : Introduction to the Work-
shop.” In: Proceedings of the Alife VIII workshop 31 (2002), pp. 37—
37

Mileidy W. Gonzalez and Maricel G. Kann. “Chapter 4: Protein
Interactions and Disease.” In: PLoS Computational Biology 8.12
(2012). 155N: 1553-7358 (Linking). por: 10.1371/journal.pcbi.
10028109.

Christos Sakellariou and Peter] Bentley. “Demonstrating the
Performance, Flexibility and Programmability of the Hardware
Architecture of Systemic Computation Modelling Cancer Growth.”
In: Bio-Inspired Computation 7.6 (2015).

Nigel Gilbert. “Agent-Based Social Simulation: Dealing with
Complexity.” In: The Complex Systems Network of Excellence 9
(2004), pp. 1-14. 155N: 9780203461730. pOL: 10.4114/1ia.v9i25.
771.

Hiroki Sayama. “Generative Network Automata: A General-
ized Framework for Modeling Complex Dynamical Systems
with Autonomously Varying Topologies.” In: Proceedings of the
2007 IEEE Symposium on Artificial Life, CI-ALife 2007 (2007),
pPp- 214—221. 1sSN: 142440701X. por: 10 . 1109 / ALIFE . 2007 .
367799.

173

https://doi.org/10.1109/CVPR.2017.437
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.4114/ia.v9i25.771
https://doi.org/10.4114/ia.v9i25.771
https://doi.org/10.1109/ALIFE.2007.367799
https://doi.org/10.1109/ALIFE.2007.367799

[187]

[188]

[190]

[191]

[192]

[193]

[194]

[195]

REFERENCES

M. Batty, Yichun Xie, and Zhanli Sun. “Modeling Urban Dy-
namics through GIS-Based Cellular Automata.” In: Computers,
Environment and Urban Systems 23.3 (1999), pp. 205-233. ISSN:
0198-9715. por: 10.1016/50198-9715(99)00015- 0.

M Webster and G Malcolm. “Hierarchical Components and
Entity-Based Modelling in Artificial Life.” In: Artificial Life XI:
Proceedings of the 11th International Conference on the Simulation
and Synthesis of Living Systems, ALIFE 2008 1991 (2008), pp. 678—
685. 15sN: 9780262750172.

Robert Axelrod. The Complexity of Cooperation: Agent-Ased Mod-
els of Competition and Collaoration. 1997, p. 248. 1sBN: 0-691-01567-
8. por: 10.1002/ (SICI)1099-0526(199801/02)3:3<46::AID-
CPLX6>3.3.C0;2-#.

Joshua M. Epstein. “Agent-Based Computational Models and
Generative Social Science.” In: Complexity 4.5 (1999), pp. 41—60.
1ssN: 9780387257464. por: 10.1002/(SICI)1099-0526(199905/
06)4:5<41::AID-CPLX9>3.0.C0;2-F.

Salman Ahmed, Mohd N. Karsiti, and Herman Agustiawan.
“A Development Framework for Collaborative Robots Using
Feedback Control.” In: arXiv (2006).

I. Arel, C. Liu, T. Urbanik, and A.G. Kohls. “Reinforcement
Learning-Based Multi-Agent System for Network Traffic Sig-
nal Control.” In: IET Intelligent Transport Systems 4.2 (2010),
pp- 128-128. 1ssN: 1751956 X. por: 10.1049/iet-1its.2009.0070.

Lorenzo Bortot, Bernhard Auchmann, Idoia Cortes Garcia, Ale-

174

jando M. Fernando Navarro, Michal Maciejewski, Matthias Mentink,

Marco Prioli, Emmanuele Ravaioli, Sebastian Schops, and Ar-
jan Verweij. “STEAM: A Hierarchical Co-Simulation Framework
for Superconducting Accelerator Magnet Circuits.” In: IEEE

Transactions on Applied Superconductivity 28.3 (2017). por: 10 .
1109/TASC.2017.2787665.

Yao Yao and Yves Van de Peer. “Simulating Biological Com-
plexity through Artificial Evolution.” In: 2017 3rd IEEE Interna-
tional Conference on Cybernetics (CYBCONF). IEEE, June 2017,
pp. 1-8. 1sBN: 978-1-5386-2201-8. por: 10.1109/CYBConf.2017.
79858009.

Thilo Gross, Carlos D'Lima, and Bernd Blasius. “Epidemic Dy-
namics on an Adaptive Network.” In: Physical Review Letters
96.20 (2006), pp. 208701-208701. por: 10.1103/PhysRevLett.
96.208701.

Sebastian Funk, Marcel Salathé, and Vincent a a Jansen. “Mod-
elling the Influence of Human Behaviour on the Spread of In-
fectious Diseases: A Review.” In: Journal of the Royal Society, In-
terface / the Royal Society 7.50 (2010), pp. 1247-56. ISSN: 1742-
5689. por: 10.1098/rsif.2010.0142.

https://doi.org/10.1016/S0198-9715(99)00015-0
https://doi.org/10.1002/(SICI)1099-0526(199801/02)3:3<46::AID-CPLX6>3.3.CO;2-
https://doi.org/10.1002/(SICI)1099-0526(199801/02)3:3<46::AID-CPLX6>3.3.CO;2-
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F
https://doi.org/10.1049/iet-its.2009.0070
https://doi.org/10.1109/TASC.2017.2787665
https://doi.org/10.1109/TASC.2017.2787665
https://doi.org/10.1109/CYBConf.2017.7985809
https://doi.org/10.1109/CYBConf.2017.7985809
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1098/rsif.2010.0142

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

REFERENCES

Barak A. Pearlmutter and Conor J. Houghton. “A New Hypoth-
esis for Sleep: Tuning for Criticality.” In: Neural Computation
21.6 (2009), pp- 1622-1641. 1ssN: 0899-7667 (Print)\ro899-7667
(Linking). por: 10.1162/neco.2009.05-08-787.

Hiroki Sayama, Irene Pestov, Jeffrey Schmidt, Benjamin James
Bush, Chun Wong, Junichi Yamanoi, and Thilo Gross. “Model-
ing Complex Systems with Adaptive Networks.” In: Computers
and Mathematics with Applications 65.10 (2013), pp. 1645-1664.
1SSN: 0898-1221. por: 10.1016/j.camwa.2012.12.005.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases.
O'Reilly, 2014, p. 46. 1sBN: 978-0-12-407192-6. DOL: 10 . 1016 /
B978-0-12-407192-6.00003-0.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Ry-
dberg, Petra Selmer, and Andrés Taylor. “Cypher: An Evolv-
ing Query Language for Property Graphs.” In: Proceedings of
the 2018 International Conference on Management of Data. Hous-
ton TX USA: ACM, May 2018, pp. 1433-1445. ISBN: 978-1-4503-
4703-7.por: 10.1145/3183713.3190657.

Steven a. Frank. “Cell Lineage History.” In: Dynamics of Can-
cer. Incidence, Inheritance, and Evolution. Princeton University
Press, 2007, pp. 1—378. 1sBN: ISBN-13: 978-0-691-13366-9. DOI:
10.1053/j.gastro.2010.01.058.

Helen Bolton, Sarah J.L. Graham, Niels Van Der Aa, Parveen
Kumar, Koen Theunis, Elia Fernandez Gallardo, Thierry Voet,
and Magdalena Zernicka-Goetz. “Mouse Model of Chromo-
some Mosaicism Reveals Lineage-Specific Depletion of Aneu-
ploid Cells and Normal Developmental Potential.” In: Obstet-
rical and Gynecological Survey 71.11 (2016), pp. 665-666. 1SSN:
2041-1723 (Electronic)\r2041-1723 (Linking). por: 10 . 1697 /
01.09x.0000508248.22573.8b.

T Cremer, C Cremer, Not at Dartmouth/Dhmclibraries, and re-
quest on interlibrary loan. “Chromosome Territories, Nuclear
Architecture and Gene Regulation in Mammalian Cells.” In:
Nature Reviews Genetics 2.4 (2001), pp. 292—301. ISSN: 1471-0056.

Arturo Araujo. “Modelling Chromosome Missegregation in Tu-
mour Evolution.” PhD thesis. 2013, p. 251.

Mel Greaves and Carlo C. Maley. “Clonal Evolution in Can-
cer.” In: Nature 481.7381 (2012), pp. 306—313. ISSN: 1476-4687

(Electronic) \noo28-0836 (Linking).por: 16.1038/naturel0762.

Andrea Sottoriva et al. “A Big Bang Model of Human Colorec-
tal Tumor Growth.” In: Nature Genetics 47.3 (2015), pp. 209—
216. 1ssN: 1546-1718 (Electronic) 1061-4036 (Linking). por: 10.
1038/ng.3214.

175

https://doi.org/10.1162/neco.2009.05-08-787
https://doi.org/10.1016/j.camwa.2012.12.005
https://doi.org/10.1016/B978-0-12-407192-6.00003-0
https://doi.org/10.1016/B978-0-12-407192-6.00003-0
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1053/j.gastro.2010.01.058
https://doi.org/10.1097/01.ogx.0000508248.22573.8b
https://doi.org/10.1097/01.ogx.0000508248.22573.8b
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/ng.3214
https://doi.org/10.1038/ng.3214

[207]

[208]

[209]

[210]

[211]

[212]

[213]

REFERENCES 176

Pinar Yanardag and S.V.N. Vishwanathan. “Deep Graph Ker-
nels.” In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining - KDD “15. 2015,
PP- 1365-1374. ISBN: 978-1-4503-3664-2. DoL: 10.1145/2783258.
2783417.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. “Self-Attention
Graph Pooling.” In: International Conference on Machine Learning
(ICML) (2019).

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G. Lambourne,
Karl D. D. Willis, Thomas Davies, Hooman Shayani, and Nigel
Morris. “UV-Net: Learning from Boundary Representations.”
In: arXiv:2006.10211 [cs] (Apr. 2021). arXiv: 2006.10211 [cs].

John S. Breese, David Heckerman, and Carl Kadie. “Empirical
Analysis of Predictive Algorithms for Collaborative Filtering.”
In: arXiv:1301.7363 [cs] (Jan. 2013). arXiv: 1301.7363 [cs].

Balazs Hidasi and Alexandros Karatzoglou. “Recurrent Neu-
ral Networks with Top-k Gains for Session-Based Recommen-
dations.” In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management (Oct. 2018), pp. 843—
852. por: 10.1145/3269206.3271761. arXiv: 1706.03847.

Yong Kiam Tan, Xinxing Xu, and Yong Liu. “Improved Recur-
rent Neural Networks for Session-Based Recommendations.”
In: arXiv:1606.08117 [cs] (Sept. 2016). arXiv: 1606.08117 [cs].

Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. “Graph Neu-
ral Networks in Recommender Systems: A Survey.” In: arXiv:2011.02260
[cs] (Apr. 2021). arXiv: 2011.02260 [cs].

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
https://arxiv.org/abs/2006.10211
https://arxiv.org/abs/1301.7363
https://doi.org/10.1145/3269206.3271761
https://arxiv.org/abs/1706.03847
https://arxiv.org/abs/1606.08117
https://arxiv.org/abs/2011.02260

	Leveraging Relational Structure through Message Passing for Modelling Non-Euclidean Data
	Abstract
	Impact Statement
	Acknowledgments
	Publications Open Source
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Why Message Passing?
	1.2 Illustrated Example
	1.3 Aim
	1.4 Justification for MPNN Framework
	1.5 Methodology
	1.5.1 Chemical Property Prediction for Drug Discovery
	1.5.2 Geometric Style Similarity
	1.5.3 Biological Modelling for Healthcare

	1.6 Contributions
	1.7 Summary

	2 Literature Review
	2.1 Challenges in Modelling Non-Euclidean Data
	2.1.1 Single Domain
	2.1.2 Multiple Domains

	2.2 Alternatives to Message Passing
	2.2.1 Set Processing
	2.2.2 Spectral Methods
	2.2.3 Language Inspired Methods
	2.2.4 Vision Inspired Methods

	2.3 Message Passing Methods
	2.3.1 Weisfeiler-Lehman Isomorphism Test
	2.3.2 Graph Kernels
	2.3.3 Spectral Inspiration
	2.3.4 MPNNs

	2.4 Limitations of Message Passing
	2.5 Applications
	2.6 Summary

	3 PiNet: Attention Pooling for Graph Classification
	3.1 Introduction
	3.2 Context
	3.3 Method
	3.3.1 Learning Vertex Importance
	3.3.2 Multi-Head Attention
	3.3.3 Extended Message Passing Operator
	3.3.4 Geometric Features of Molecules

	3.4 Experiments & Results
	3.4.1 Datasets
	3.4.2 Hyper-Parameters
	3.4.3 Isomorphism Test
	3.4.4 Message Passing Mechanism
	3.4.5 Attention
	3.4.6 Benchmark

	3.5 Summary

	4 UVStyle-Net
	4.1 Introduction
	4.2 Background & Related Work
	4.2.1 Introduction to B-Reps
	4.2.2 Geometric Feature Learning
	4.2.3 Geometric Style Similarity
	4.2.4 Style Transfer
	4.2.5 3D Style Transfer

	4.3 Method
	4.3.1 Intuition Behind the Gram Matrices

	4.4 Experiments & Results
	4.4.1 Data
	4.4.2 Model Details & Hyperparameters
	4.4.3 Measuring Style Signal
	4.4.4 Gradient Visualization
	4.4.5 Few-shot Learning of User-Defined Style Measure
	4.4.6 Unsupervised Pre-training
	4.4.7 Ablation

	4.5 Summary

	5 Message Passing for Interacting Dynamic Networks
	5.1 Introduction
	5.2 Background
	5.3 Interacting Hierarchical Dynamic Networks
	5.3.1 The Model of Computation
	5.3.2 Implementation

	5.4 Tracing Cell Lineage in Simulated Aneuploid Tumour Growth
	5.4.1 Biological Observations
	5.4.2 The Model
	5.4.3 Components
	5.4.4 Organisation
	5.4.5 Interaction

	5.5 Experiment
	5.5.1 Reference Model

	5.6 Results
	5.6.1 Verification
	5.6.2 Cell Lineage
	5.6.3 Comparison

	5.7 Summary

	6 Conclusion
	6.1 Aim
	6.1.1 PiNet
	6.1.2 UVStyle-Net
	6.1.3 IHDNs

	6.2 Critical Evaluation
	6.2.1 PiNet
	6.2.2 UVStyle-Net
	6.2.3 IHDNs

	6.3 Future Work
	6.3.1 PiNet: Hard Masking & Hierarchical Pooling
	6.3.2 UVStyle-Net: Feature Distribution Measure
	6.3.3 UVStyle-Net: Further Relational Structure
	6.3.4 Further Directions

	A Changes
	 References

