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A B S T R A C T   

We investigate the time-varying effect of particulate matter (PM) on COVID-19 deaths in Italian municipalities. 
We find that the lagged moving averages of PM2.5 and PM10 are significantly related to higher excess deceases 
during the first wave of the disease, after controlling, among other factors, for time-varying mobility, regional 
and municipality fixed effects, the nonlinear contagion trend, and lockdown effects. Our findings are confirmed 
after accounting for potential endogeneity, heterogeneous pandemic dynamics, and spatial correlation through 
pooled and fixed-effect instrumental variable estimates using municipal and provincial data. In addition, we 
decompose the overall PM effect and find that both pre-COVID long-term exposure and short-term variation 
during the pandemic matter. In terms of magnitude, we observe that a 1 μg/m3 increase in PM2.5 can lead to up to 
20% more deaths in Italian municipalities, which is equivalent to a 5.9% increase in mortality rate.   
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1. Introduction 

The impact of the COVID-19 pandemic in relation to contagion and 
deaths in the first half of 2020 is markedly heterogeneous from a 
geographical perspective. Several studies have tried to identify the 
causal factors of this puzzling outcome. Epidemiological literature has 
identified the frequency of human physical interactions as a leading 
causal factor of contagions. However, even after controlling for these 
factors, a significant part of the observed variability of COVID-19- 
related outcomes remains unexplained. This paper aims to shed light 

on this issue by investigating the role of particulate matter (PM) in the 
pandemic’s high mortality rate. 

The theoretical background for our research hypothesis can be 
summarized into two main literature strands. The first strand deems 
long-term exposure to PM as a contributing factor to COVID-19-related 
deaths. The research hypothesis relies on the maintained assumption 
that PM inhalation induces inflammation and oxidative stress, thereby 
reducing lung efficiency and contributing to respiratory and pulmonary 
diseases (see Pope and Dockery, 2006). Over the years, several empirical 
papers have estimated the relationship between long-term exposure to 
PM and total mortality, and mortality from cardiovascular and respi
ratory diseases (Kim et al., 2015; Pelucchi et al., 2009; Pinault et al., 
2017; Faustini et al., 2011; Anderson, 2020; Ciencewicki and Jaspers, 
2007; Sedlmaier et al., 2009) as well as the effect of fine PM as a factor in 
cardiovascular and respiratory morbidity and mortality (McGuinn et al., 
2017; Jeong et al., 2017; Yin et al., 2017; Cakmak et al., 2018). 

Based on this literature strand, several researchers have tried to 
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ascertain if the effect of COVID-19 on respiratory and pulmonary dis
eases can be enhanced by PM exposure. Wu et al. (2020) found that an 
increase in exposure to PM2.5 is associated with increased COVID-19 
fatality in the US, Cole et al. (2020) find similar results for the 
Netherlands.1 Focusing on Italy, Cartenì et al. (2020) find that the 
number of days in 2019 in which the national PM10 exceeded the 50 μg/ 
m3 daily limit is positively correlated with the number of certified daily 
cases. Perone (2020) finds that the case fatality rate is affected by ozone 
and nitrogen dioxide beyond PM, while Becchetti et al. (2022) used 
mortality data at province level to confirm this relationship controlling 
for several concurring factors. Coker et al. (2020) found support for the 
relationship in Northern Italy, estimating that a 1 μg/m3 increase in 
PM2.5 is associated with a 9% increase in COVID-19-related mortality. 
Many other studies have been conducted using different geographical 
samples to confirm the positive relationship between long-term expo
sure to PM and increase in COVID-19-related deaths (Ogen, 2020; 
Magazzino et al., 2020; Yongjian et al., 2020; Travaglio et al., 2021; Setti 
et al., 2020; Comunian et al., 2020). 

The second strand of literature developed a theoretical hypothesis on 
the relevance of short term effects and on the role of PM as a carrier of 
the SARS-CoV-2 virus. Preliminary findings in this direction are found 
by Setti et al. (2020). The authors show the presence of SARS-CoV-2 
viral RNA by detecting highly specific RtDR gene on eight filters in 
two parallel PCR analyses on 34 PM10 samples of outdoor/airborne 
PM10 in Bergamo province. However, they state that it is impossible to 
assess the viral charge of the carried virus outside the human body. 
Following this hypothesis, Delnevo et al. (2020) find that the lagged PM 
Granger causes adverse COVID-19 outcomes in several Italian provinces 
located in the Emilia-Romagna region. Similarly, Zoran et al. (2020) find 
a correlation between daily average ground levels of particulate matter 
concentrations and new cases and deaths in Milan. Isphording and Pestel 
(2020) conduct the same analysis for German regions. In the same vein, 
Austin et al. (2020) find that contemporary variation in PM significantly 
affects COVID-19 contagions and deaths in US counties, while Becchetti 
et al. (2020) use daily atmospheric data from the European regional 
level provided by the Copernicus Atmosphere Monitoring Service 
(CAMS) and find that PM2.5 and PM10 concentration positively affects 
confirmed cases and deaths. They estimated that the effect peaks at the 
6th to the 8th day lag for confirmed cases and the 13th day lag for 
deaths. In the opposite direction, Bontempi (2020) find, after assessing 
data from Lombardia and Piemonte, that it is impossible to conclude that 
COVID-19 diffusion also occurs through the air using PM10 as a carrier. 

Our contribution is original with respect to the existing literature in 
several aspects. First, we disentangle the long-term exposure and the 
short-term effects to test the two aforementioned research hypotheses on 
the effect of PM on COVID-19 related outcomes in Italy simultaneously. 
Second, we control for heterogeneous pandemic dynamics and spatial 
correlation providing empirical evidence at both the municipality and 
province levels. Third, we control for the differential introduction of 
lockdown measures adopted by the Italian government. Fourth, we net 
out the effects of other unobservable time-invariant local confounders (i. 
e., municipal policies and regional health systems) at the finest and more 
disaggregated geographical level through municipality fixed effects. 
Last, we use instrumental variable approaches to mitigate endogeneity 
concerns. 

Our empirical findings show a positive and significant relationship 

between particulate matter and excess deaths in Italian municipalities 
and provinces during the first pandemic wave. Our results are robust and 
confirmed when using instrumental variables and when controlling for 
heterogeneous epidemics dynamics and spatial correlation. In terms of 
economic significance, we find that if conclusions from our IV estimates 
pointing at causality hold, a 1 μg/m3 increase in PM2.5 causes a 10–20% 
surge in excess deaths in Italian municipalities, depending on the model 
used. This is equivalent to an overall 3–6% increase in mortality rate. 

2. Data 

Our first data source is the Italian National Statistical Institute 
(ISTAT), which provides information on daily deaths in each munici
pality. We use the difference between daily deaths during the pandemic 
and the 2015–2019 five-year average of the corresponding days as the 
dependent variable (see Table A1 in the Appendix). This measure 
overcomes two well-known problems that arise when using official 
COVID-19 registered deaths. First, it is not always possible to ascertain 
whether victims died because of COVID-19 or with COVID-19, with Ita
ly’s independent local health systems, different municipalities, and re
gions that interpret this distinction differently. The resulting 
heterogeneity in death registration, therefore, creates an implicit mea
surement error. Second, at the peak of the pandemic in Italy—March and 
April 2020—hospitals were overcrowded and several COVID-19 victims 
could not access hospital care and died without a proper diagnosis. 

The second and third data sources are the Copernicus Atmospheric 
Monitoring Service (CAMS) and the Copernicus Climate Change Service 
(C3S), which provide data on air quality data and weather conditions.2 

The analysis conducted in this paper exploits the following C3S datasets: 
(i) the C3S ERA5-Land hourly data from 1981 to present, which contains 
measures on various land variables over several decades at a global 
scale3; (ii) the CAMS European Air Quality Forecast, which provides 
information on air quality in Europe.4 

We use the following variables:  

• [C3S – ERA5-Land] 2 m temperature [K]: Air temperature at 2 m 
(height) obtained by interpolating the lowest model level and the 
Earth’s surface; we converted temperature values to Celsius degrees 
by subtracting 273.15. 

• [C3S – ERA5-Land] Total precipitation [m]: Accumulated precipi
tation in millimeters, including rain and snow, that falls to the 

1 By collecting data up to April 22, 2020, Wu et al. (2020) showed that an 
increase of PM2.5 by 1 μg/m3 is associated with an 8% increase in the COVID-19 
death rate. Similarly, Cole et al. (2020) estimated the same relationship using 
data from 355 municipalities in the Netherlands. Their results provide evidence 
that an increase in PM2.5 concentrations by 1 μg/m3 is associated with an in
crease in COVID-19 deaths by 2.2 to 3%. In addition, they show that the same 
increase leads to a 9.4 to 15.1% rise in COVID-19 cases, and between 2.9 and 
4.4% in COVID-19 hospital admissions. 

2 The Copernicus European program is one of the leading programs taking 
into account the environmental and terrestrial ecosystem monitoring, and it is 
becoming a widely used tool for measuring economic developments. It provides 
daily earth’s information at different spatial resolution, varying from global to 
regional and even local scale, on a full, free, and open data policy. More in
formation about the Copernicus program is available at https://www.coperni 
cus.eu/en.  

3 The dataset combines model outputs with observation across the world by 
means of physics laws, providing an accurate description of the current and past 
climate starting from January 1981 to the present. Data distribution is on 
hourly basis using a fixed square grid with 0.1 degrees of spatial resolution. The 
dataset has a monthly update frequency with a delay of about three months.  

4 The CAMS European air quality forecasts dataset allows for evaluating air 
pollution levels on a daily basis with a remarkable spatial resolution of 0.1 
degrees in both latitude and longitude (approximately 10 km). Data production 
is based on nine air quality forecasting systems across Europe and a median 
ensemble calculated from their individual outputs, the combinations of these 
nine results provide a better performance than the individual model products 
on average. Model data are combined with observations provided by the Eu
ropean Environment Agency (EEA) into an integrated dataset using appropriate 
data assimilation techniques. The analysis is available at seven height levels at 
hourly time. We use ensemble method-based data, since this approach is useful 
and relevant for air quality analysis starting from a sample of individual model 
members (Galmarini et al., 2004). 
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Earth’s surface considering possible steps during a single day; we 
converted precipitation values to millimeters by dividing by 1000.  

• [CAMS – European Air Quality] Surface (average individual’s height 
level) particulate matter d < 2.5 μm [μg/m3]: Fine solid or liquid 
particles in the atmosphere emitted by natural and anthropogenic 
sources with a diameter less than 2.5 μm (PM2.5);  

• [CAMS – European Air Quality] Surface (average individual’s height 
level) particulate matter d < 10 μm [μg/m3]: Fine solid or liquid 
particles in the atmosphere emitted by natural and anthropogenic 
sources with a diameter less than 10 μm (PM10). 

The grid cover consists of points where the information is recorded 
spanning 0.1 degrees in latitude and longitude, i.e., the grid was made 
by the four points of the vertices. We use the Python-3 high-level pro
gramming language to download and process Copernicus data to extract 
the final dataset at the municipal level. Moreover, hour-specific filters 
were applied to get daily mean values averaging data available at 4-step 
hours during the day (8:00, 12:00, 20:00, 00:00) for the variables taken 
into account. 

We identify the municipal polygon’s centroid for each municipal 
area and define each municipal through its centroid. Since both weather 
and pollution variables are available according to a regular 10-km 
square grid, each centroid is associated with a variable’s value based 
on minimum distance. By using this procedure, we obtain an average 
mean distance of less than 4 km. In many cases, the distance between the 
centroid and the closest grid is less than 1 km, which represents a sharp 
characterization of the real observations in the proximity of the spatial 
coordinates. In the section that follows, we explain how we use inverse 
distance weights to account for these differences. 

Fig. 1 A–C provide clear descriptive evidence of the geographical 
distribution of PM2.5 and PM10 concentrations in relation to the 
geographical distribution of the high death rates. These figures show 
that the northern macroregion of Pianura Padana was the most affected 
area due to its higher economic activity and peculiar geographical 
conformation, i.e. a large plain surrounded by high mountains, where 
air tends to stagnate more than in other areas of the country. In general, 
the PM2.5 map shows that a large part of the country has dark brown 
areas above the World Health Organization’s threshold (10 μg/m3). 

3. Econometric model 

To test the impact of particulate matter controlling for potential 
concurring factors, we estimate the following equation: 

Excess Deathstm = ß0 + ß1 Pollution(MA)tm + ß2 t+ ß3 t2 + ß4 t3 

+ ß5 Days Since Lockdownt + ß6 Populationm + ß7 Densitym + ß8 Over65m 

+ ß9 Incomem + ß10 Employeesm + ß11 Essential Employeesm 

+ ß12 Temperature(MA)tm + ß13 Mobilitytp +Σrγr DRegionrm + utm (1)  

where our dependent variable (Excess Deathstm) is the difference be
tween total deaths in 2020 in municipality m on day t and the 2015–19 
total average deaths in the corresponding municipality and day of the 
year. The main independent variable of interest is Pollution(MA), 
calculated as a moving average from day t - 10 to day t of PM10 or PM2.5, 
measured in municipality m on day t.5 We introduce linear, quadratic, 
and cubic time trends (t, t2, t3) starting with the disease outbreak, which 

is conventionally fixed as February 24, 2020 (the beginning of our 
sample period) among control variables. These trends capture part of the 
deterministic evolution of the pandemic consistently with standard 
epidemiological modeling approaches (further robustness checks for 
heterogeneous pandemic dynamics are presented and discussed in sec
tion 6).6 Among other controls, Days_Since_Lockdown counts the days 
since the national lockdown, taking into account the three government 
decisions that progressively introduced mobility restrictions in Italian 
municipalities.7 Population is the number of residents in municipality m 
from the last Italian census (2011) (per 1000 inhabitants); Density is the 
population density in municipality m (per 1000 inhabitants); Over65 is 
the proportion of people aged 65 or above and living in municipality m 
(per 1000 inhabitants); Income is the total before-tax income in munic
ipality m (in billion euros); Employees and Essential-Employees are the 
number of employees operating in all sectors and in essential sectors 
only (per 1000 inhabitants) at the municipal level. The essential sectors 
are those on a list of activities that the Italian government allowed to 
operate during the lockdown.8 These last two variables capture 
lockdown-induced local differences in job commuting flows due to the 
different incidences of essential and non-essential sectors in each mu
nicipality. Temperature(MA) is the 11-day (from t− 10 to t) moving 
average of daily air temperature in each municipality. Last, we control 
for time-varying human interactions with a variable (Mobility) 
measuring transit in the subways, bus and train stations, seaorts, taxi 
stands, highway rest stops, and car rental agencies in Italian provinces. 
The variable is calculated in first differences, that is, as a change in the 
number of people in the above-mentioned transit areas compared to the 
baseline of the median value, for the corresponding day of the week, 
during the previous 5-week period. We also add region dummies 
(DRegion) to control for time-invariant features of the regions, such as 
urbanization rate or health system characteristics. In fact, health policies 
in Italy are run at the regional level, thereby making health capital en
dowments highly heterogeneous across regions.9 Standard errors are 
clustered at the municipal level. A detailed description of variables and 
their sources is given in Table A1 in the Appendix. 

Table 1 presents descriptive statistics of the variables used in our 
econometric specifications. As expected, the moving averages used in 
the estimates smoothen extreme values of pollution and atmospheric 
indicators, with maxima of moving averages of particulate concentra
tion reaching 45.71 and 61.72 μg/m3, respectively. Nonetheless, the 
mean value of the PM2.5 moving average (14.02 μg/m3) during the 
sample period is above the average yearly threshold suggested by the 

5 The window length is as broadly consistent with the combined expected 
long- and short-term effects of PM as additional factors of contagion and dis
eases. As is well known, the mean incubation period of the virus is estimated 
between 4 and 6 days (Li et al., 2020). The interval between the onset of the 
illness and hospitalization in the most serious cases around 4 days (Docherty 
et al., 2020) and the decease outcome for the most unfortunate events about 9 
days (Chen et al., 2020). With a sensitivity analysis we find that this window 
length provides the strongest effect in terms of magnitude. 

6 We perform Wald and Likelihood ratio test on nested hypotheses comparing 
the chosen specification with an alternative specification using only linear and 
quadratic terms. All tests confirm that the chosen specification is to be 
preferred. Our main findings are, however, robust also to this change (see the 
online Appendix). Findings of our robustness checks using day fixed effects are 
discussed in section 5.  

7 More specifically, based on the timeline of Italian government decision we 
have: i) Law Decree of 22 February establishing lockdown for eleven munici
palities from 23th February to 8th March 2020 (Codogno, Castiglione d’Adda, 
Casalpusterlengo, Fombio, Maleo, Somaglia, Bertonico, Terranova dei Passer
ini, Castelgerundo e San Fiorano) and Vo Euganeo; ii) Law Decree on 7th March 
2020 establishing lockdown for Lombardy and other 14 Center-North provinces 
(Modena, Parma, Piacenza, Reggio nell’Emilia, Rimini, Pesaro and Urbino, 
Alessandria, Asti, Novara, Verbano-Cusio-Ossola, Vercelli, Padova, Treviso, 
Venezia) since 8th March; iii) lockdown extended to all country since 10th 
March; iv) slowdown starting from 4th May to 14th June.  

8 The list of essential sectors has been created with DPCM (Decreto del 
Presidente del Consiglio dei Ministri) of 22nd March 2020 revised with DPCM 
25th March 2020). 

9 For instance, Veneto has a stronger network of local doctors, while Lom
bardia has strategically aimed to concentrate care in large hospitals; further
more, provinces in Lombardia have the lowest ratio of local doctors per 
inhabitant in Italy. 
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World Health Organization (10 μg/m3).10 Our sample period covered 
the end of winter and spring, and therefore we did not observe extreme 
hot temperature events (the single-day maximum is 28.86, while the 
moving average maximum 24.47). 

4. Results 

Before running our estimates, we perform panel stationarity tests and 
find that all our series are stationary. More specifically, we perform the 

Lein-Lin-Chu (2020) test for unit roots in panel datasets and find that the 
null of non-stationarity is rejected in all cases (p < 0.001 for all 
series)11. 

In Table 2, we present the results of our main econometric specifi
cation. Columns 1 and 2 display (unweighted) pooled OLS estimates of 
the effects of PM2.5 and PM10, respectively. In columns 3 and 4, obser
vations are weighted for the inverse of the distance from the centroid to 
give more importance to municipality centroids that lie closer to the 
geographical point of our meteorological observation of PM. 

Our empirical findings show that the high mortality in 2020 is 
significantly and positively related to both air pollution measures. In 
terms of magnitude, the effect of PM2.5 is larger than that of PM10, with 
results from weighted and unweighted estimates for the same pollution 
variable being quite similar. The estimated pollution effect in column 3 
implies that 1 μg/m3 of additional PM2.5 concentration creates an 
approximately 10% increase in the average value of the dependent 
variable, that is 0.113 extra deaths per day per 100,000 inhabitants, 
which corresponds to a 3.32% increase in mortality rate. The total effect 
over the 94 days of the pandemic considered in our sample is 1.07 extra 
excess deaths per 100,000 inhabitants. This implies that the effect over 
the entire Italian population is about 647.96 extra deaths per μg/m3. 
Based on our coefficient magnitude, we estimate that a difference of 
about 19 μg/m3between the municipalities with the highest and lowest 
PM2.5 average concentration in the sample would generate a difference 
of 1231.13 more deaths in the overall sample period. 

The linear, quadratic, and cubic trends are strongly significant 
among the control variables and with the expected sign, displaying non- 
linear pandemic dynamics during the first phase. The share of employees 
in essential sectors is positive and significant and likely to capture the 
positive effect of high death rates on economic activity in industries that 
could not stop their operations during the lockdown. Time-varying 

Fig. 1. A–C. Excess deaths, PM2.5 and PM10 in Italian municipalities. 
Note: Excess deaths is the daily difference of total deaths in 2020 and the 2015–19 average total deaths at municipality level (Source: Istat); PM2.5 is the 11-day (from 
t− 10 to t) moving average of particulate matter with diameter < 2.5 μm (μg/m3); PM10 is the 11-day (from t− 10 to t) moving average of particulate matter with 
diameter < 2.5 μm (μg/m3). 

Table 1 
Descriptive statistics.  

Variable Obs Mean St. Dev. Min Max 

Excess deaths 713244 0.011 0.252 − 14.708 14.925 
PM2.5* 713244 14.022 7.408 1.862 45.714 
PM10* 713244 18.679 8.948 2.522 61.715 
Rain* 713244 2.390 2.449 0.0002 18.331 
Days since 

lockdown 713244 35.307 26.684 0 98 
Population 713244 7.715 41.816 0.034 2617.175 
Density 713244 0.307 0.659 0.001 12.924 
Over 65 713244 1.79 10.70. 0.007 638.523 
Income 713244 0.108649 0.783832 0.542792 49314.36 
Employees 713244 2.248 17.862 0.001 1023.890 
Employees in 

essential sectors 711480 0.985 9.607 0.001 547.307 
Mobility 713244 − 3.092 15.927 − 79 65 
Temperature 

(MA)* 713244 11.376 4.862 − 11.15 24.47014  

* Contains modified Copernicus Climate Change Service Information 
[2017–2020], DOI: 10.24381/cds.e2161bac’. Contains modified Copernicus 
Atmospheric Monitoring Service Information [2017–2020]. 

10 https://www.who.int/news/item/02-05-2018-9-out-of-10-people-world 
wide-breathe-polluted-air-but-more-countries-are-taking-action. 11 Results available upon request. 
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mobility is, as expected, positive and significant as an increase in people 
in transit stations has a positive and significant effect on excess deaths. 
The negative sign of the density variable can be explained by the fact 
that, with population among the regressors, the variable captures the 
positive effect of municipality surface on excess deaths, likely to be 
explained by how far inhabitants are from institutions and less acces
sible health services. The positive and significant effect on excess deaths 
of the share of the elder population at the municipal level is also 
expected. 

We implement an instrumental variable approach from omitted 
variables and reverse causality to mitigate a possible estimation bias 
deriving from measurement error in the dependent variable (Table 3). 
We instrument the PM moving averages in Eq. (1) with the four-day 
lagged corresponding 11-day moving average of daily rainfalls con
trolling in our estimates for the mobility variable. We can confidently 

argue that the chosen instrument is relevant since rainfalls have a 
strongly significant and negative effect on PM concentrations in the first- 
stage estimation.12 The exclusion restriction is also likely to be satisfied 
in our case since—apart from its direct effects on pollution—it is 
implausible that four-day lagged rainfall moving averages significantly 
affect the difference in deaths between 2020 and the previous years on a 
given day. Rainfall may discourage mobility and reduce contagion or 
increase car vs. public-transport mobility (again reducing contagion), 
thereby potentially invalidating the exclusion restriction. However, 
these potential threats to the exclusion restriction can be excluded since 
we condition for mobility in all estimates. Furthermore, most of the 
mobility decisions made during the lockdown that cover most of our 
sample period were forced, with little impact on atmospheric conditions. 
The pairwise correlation between rain and mobility during lockdown is 
0.03, which supports our hypothesis. This is a positive (yet low in 
magnitude) and non-statistically significant correlation, which goes 
against the prediction of a potential negative association between the 
two variables. Furthermore, the instrument is not statistically significant 
if we introduce it in our baseline non-instrumented specification (Eq. 
(1)), further supporting its validity hypothesis. Our main findings 
remain unchanged and the coefficient magnitude is remarkably close to 
the non-instrumented estimates. 

In Table 4, we re-estimate our benchmark specification through OLS 
panel fixed effects. This allows for capturing unobservable time 

Table 2 
Pooled OLS estimates.  

Variables (1) (2) (3) (4) 

PM2.5 0.000966***  0.00113***   
(6.86e-05)  (9.95e-05)  

PM10  0.000590***  0.000660***   
(3.74e-05)  (5.59e-05) 

T (linear day 
trend) 

0.00282*** 0.00287*** 0.00286*** 0.00294***  

(0.000129) (0.000129) (0.000185) (0.000186) 
T2 (quadratic 

day trend) 
− 7.88e- 
05*** 

− 8.58e- 
05*** 

− 8.10e- 
05*** 

− 9.05e- 
05***  

(5.35e-06) (5.14e-06) (1.10e-05) (1.12e-05) 
T3 (Cubic day 

trend) 
4.80e-07*** 5.11e-07*** 4.87e-07*** 5.30e-07***  

(3.11e-08) (3.01e-08) (5.84e-08) (5.91e-08) 
Days since 

lockdown 
0.000686** 0.00100*** 0.000830 0.00123*  

(0.000281) (0.000272) (0.000645) (0.000652) 
Population − 8.03e-05 − 7.14e-05 − 0.000135* − 0.000122*  

(5.58e-05) (4.99e-05) (7.27e-05) (6.37e-05) 
Density − 0.00274*** − 0.00236*** − 0.00300*** − 0.00249***  

(0.000457) (0.000429) (0.000560) (0.000527) 
Over 65 0.000978*** 0.000875*** 0.00134*** 0.00118***  

(0.000357) (0.000313) (0.000484) (0.000418) 
Income − 0.0136*** − 0.0123*** − 0.0180*** − 0.0159***  

(0.00329) (0.00298) (0.00510) (0.00456) 
Employees − 0.000453** − 0.000382** − 0.000460 − 0.000323  

(0.000206) (0.000192) (0.000311) (0.000295) 
Employees in 

Essential 
Sectors 

0.00130*** 0.00112*** 0.00152** 0.00120**  

(0.000395) (0.000367) (0.000614) (0.000578) 
Temperature − 0.000333** − 0.000154 − 0.000263 − 1.02e-05  

(0.000162) (0.000163) (0.000337) (0.000342) 
Mobility 7.99e-05*** 6.80e-05*** 7.16e-05 5.84e-05  

(2.46e-05) (2.45e-05) (6.21e-05) (6.20e-05) 
Region 

dummies 
Yes Yes Yes Yes 

Constant − 0.0218*** − 0.0184*** − 0.0223*** − 0.0181***  
(0.00228) (0.00214) (0.00363) (0.00349) 

Observations 685,451 685,451 685,451 685,451 
Log 

Likelihood 
36,835 36,827 6369 6339 

Note: Columns (1) and (2) do not weight observations, while columns (3) and (4) 
use as weight the inverse distance of municipality centroids from the meteoro
logical point of observation. Standard errors clustered at municipality level in 
parentheses. Contains modified Copernicus Climate Change Service Information 
[2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus At
mospheric Monitoring Service Information [2017–2020]; *** p < 0.01, ** p <
0.05, * p < 0.1. 

Table 3 
Pooled IV estimates.  

Variables (1) (2) 

PM2.5 0.00117***   
(0.000297)  

PM10  0.000522***   
(0.000133) 

T (linear day trend) 0.00303*** 0.00329***  
(0.000227) (0.000189) 

T2 (quadratic day trend) − 6.52e-05*** − 8.14e-05***  
(1.01e-05) (6.49e-06) 

T3 (Cubic day trend) 3.98e-07*** 4.78e-07***  
(5.41e-08) (3.68e-08) 

Days since lockdown − 0.000155 0.000398  
(0.000386) (0.000291) 

Population − 8.73e-05*** − 7.46e-05***  
(1.95e-05) (1.89e-05) 

Density − 0.00291*** − 0.00227***  
(0.000392) (0.000281) 

Over 65 0.00104*** 0.000878***  
(0.000121) (0.000102) 

Income − 0.0143*** − 0.0121***  
(0.00149) (0.00113) 

Employees − 0.000497*** − 0.000369***  
(0.000121) (0.000105) 

Employees in Essential Sectors 0.00140*** 0.00110***  
(0.000246) (0.000203) 

Temperature − 0.000512* − 6.94e-05  
(0.000304) (0.000213) 

Mobility 1.01e-05 2.57e-05  
(2.79e-05) (2.66e-05) 

Region dummies Yes Yes 
Constant − 0.0289*** − 0.0244***  

(0.00317) (0.00268) 
Observations 670,865 670,865 
Log Likelihood 35,659 35,648 

Note: Contains modified Copernicus Climate Change Service Information 
[2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus At
mospheric Monitoring Service Information [2017–2020]; *** p < 0.01, ** p <
0.05, * p < 0.1. 

12 The null of weak identification is rejected with both Cragg-Donald Wald F 
statistic (58,131.46, p-value < 0.001) and Kleibergen-Paap Wald F statistic 
(76,201.84, p-value < 0.001) for the estimate in Table 3, Column 1. Findings are 
similar and the null hypothesis is rejected also for estimates in columns 2–4. 

L. Becchetti et al.                                                                                                                                                                                                                               

https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.e2161bac


Ecological Economics 194 (2022) 107340

6

invariant idiosyncratic factors at the finest geographical unit, e.g. the 
quality of local majors or local health governance at the municipality 
level. The significance of the PM2.5 and PM10 variables is also confirmed 
in this model. In Table 5, we instrument the PM moving average as the 
fixed-effect estimates with the instrument used in Table 3. Our results 
are again confirmed. 

5. Prolonged exposure vs. short term effects: decomposing the 
total PM effect 

The 11-day moving average used so far mainly captures the time- 
varying effect of PM on excess deaths. However, it is reasonable to as
sume that this measure is also influenced by a long-term component 
capturing long-term, pre-COVID exposure to PM. This component is 
regarded as the crucial factor affecting the negative consequences of 
COVID-19 infection, according to the first strand of the literature 
described in the introduction. 

To disentangle the effects deriving from these two—long-term 
structural and short-term time–varying—components, we propose the 
following decomposition. First, since the time-varying component can 
be correlated with historical levels of PM concentration, we regress the 
PM 11-day moving average, that is, Pollution(MA), on (time-invariant) 
average PM concentration in the two years before the pandemic, i.e., PM 
(2018–2019). More specifically, we estimate the following model: 

Pollution(MA)tm = ß0 + ß1 PM(2018–2019)m + εtm (2) 

Then, we compute the time-varying residuals ε̂tm, which can be 
interpreted as a “cleaner” measure of the time-varying effect, i.e., the 
variation Pollution(MA)tm that is not explained by the variation in the 
long-term PM component. 

We, therefore, run our benchmark model as in Eq. (1) by replacing 
Pollution(MA) with its time-varying residual component ε̂tm, and the 
two-year (time-invariant) average of PM concentration. The estimating 
model reads as: 

Excess Deathstm = ß0 + ß1 ε̂tm + ß2,PM(2017–2018)m + ß3 t+ ß4 t2 + ß5 t3 

+ ß6 Days Since Lockdownt + ß7 Populationm + ß8 Densitym + ß9 Over65m 

+ ß10 Incomem + ß11 Employeesm + ß12 Essential Employeesm 

+ ß13 Temperature(MA)tm + ß14 Mobilitytp +Σrγr DRegionrm + utm (3) 

The results from the OLS pooled estimates of Eq. (3) show that the 
coefficients of both components (ß1 and ß2) are positive and statistically 
significant (columns 1 and 2 of Tables 6 − 7 for PM2.5 and PM10, 
respectively). Our interpretation is that long-term exposure and time- 
varying effect significantly predict excess mortality. 

We also re-estimate Eq. (3) through an OLS fixed-effects model. The 
results are in columns 3 and 4 of Tables 6–7 for PM2.5 and PM10, 
respectively. Given the nature of this regression model, the effect of pre- 
COVID time-invariant exposure to PM is now absorbed by municipality 
fixed effects. The rationale of this last estimate is to check whether the 
time-varying PM component is statistically significant when local un
observed time-invariant characteristics are accounted for. Our findings 
confirm that this is the case. 

6. Robustness checks 

The first robustness check we perform features the use of an alter
native instrument calculated as the residual from the following regres
sion: 

Pollution(MA)tm=γ0+γ1 Mobilitytp+γ2 ExcessDeathstm t+γ3 Rain(MA)+ηtm

(4) 

The residual ηtm is, by construction, exogenous when used as an in
strument in our benchmark estimate in Eq. (1). The advantage of this 
instrument is that through Eq. (4), we control for the complex pattern of 
relationships through which rain and mobility can affect the relation
ship between pollution and excess deaths. 

The new IV findings confirm that this instrument is also relevant 
since first-stage regression coefficients are significant. Moreover, the 
falsification exercise of introducing the instrument in non-instrumented 
estimates confirms that the former has no significant direct impact on 
the dependent variable. In terms of magnitude, we note, however, that 
the coefficient size of the instrumented variable is much higher in the 

Table 4 
OLS panel fixed-effects estimates.  

Variables (1) (2) (3) (4) 

PM2.5 0.00123***  0.00145***   
(7.60e-05)  (0.000144)  

PM10  0.000644***  0.000713***   
(3.80e-05)  (5.87e-05) 

T (linear day 
trend) 0.00295*** 0.00298*** 0.00302*** 0.00307***  

(0.000131) (0.000131) (0.000195) (0.000196) 
T2 (quadratic 

day trend) 
− 5.59e- 
05*** 

− 7.10e- 
05*** 

− 5.33e- 
05*** 

− 7.35e- 
05***  

(5.52e-06) (5.28e-06) (8.85e-06) (9.41e-06) 
T3 (Cubic day 

trend) 3.54e-07*** 4.28e-07*** 3.33e-07*** 4.34e-07***  
(3.17e-08) (3.07e-08) (5.01e-08) (5.13e-08) 

Days Since 
Lockdown − 0.000670** 0.000134 − 0.000794 0.000251  

(0.000303) (0.000285) (0.000505) (0.000535) 
Temperature − 0.000409* − 0.000404* − 0.000425 − 0.000375  

(0.000219) (0.000221) (0.000419) (0.000427) 
Mobility 0.000107*** 8.00e-05*** 9.97e-05* 6.81e-05  

(2.49e-05) (2.46e-05) (5.70e-05) (5.88e-05) 
Constant − 0.0271*** − 0.0207*** − 0.0317*** − 0.0234***  

(0.00247) (0.00227) (0.00592) (0.00503) 
Number of 

municipalities 7260 7260 7260 7260 
Observations 685,451 685,451 685,451 685,451 
Log Likelihood 41,862 41,837 11,200 11,146 

Note: Columns (1) and (2) do not weight observations, while columns (3) and (4) 
use as weight the inverse distance of municipality centroids from the meteoro
logical point of observation. Standard errors clustered at municipality level in 
parentheses. Contains modified Copernicus Climate Change Service Information 
[2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus At
mospheric Monitoring Service Information [2017–2020]; *** p < 0.01, ** p <
0.05, * p < 0.1. 

Table 5 
IV panel fixed-effect estimates.  

Variables (1) (2) 

PM2.5 0.00158***   
(0.000270)  

PM10  0.000736***   
(0.000126) 

T (linear day trend) 0.00380*** 0.00385***  
(0.000194) (0.000192) 

T2 (quadratic day trend) − 3.02e-05*** − 5.36e-05***  
(1.06e-05) (7.15e-06) 

T3 (Cubic day trend) 2.10e-07*** 3.26e-07***  
(5.67e-08) (4.01e-08) 

Days since lockdown − 0.00282*** − 0.00161***  
(0.000563) (0.000409) 

Temperature − 0.000800*** − 0.000583**  
(0.000249) (0.000233) 

Mobility 4.84e-05* 4.80e-05*  
(2.63e-05) (2.63e-05) 

Constant − 0.0318 − 0.0231  
(3.473e+10) (3.473e+10) 

Wald χ2 1618.25 1618.07 
Observations 670,865 670,865 
Number of municipalities 7260 7260 

Note: Contains modified Copernicus Climate Change Service Information 
[2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus At
mospheric Monitoring Service Information [2017–2020]; robust standard errors 
in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 
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new IV estimates than in the non-IV ones. 
We also test whether the short-term effect estimated in our decom

position exercise presented in Tables 6 and 7 remains significant when 
instrumented under our two different IV approaches. We find this to be 
the case (Panel 8.5, columns 1 and 2). 

There are two additional potential concerns in our estimates: (i) 
heterogeneity of the pandemic dynamics at the municipal level; and (ii) 
spatial dependence of the pandemic. 

With regard to the first concern, we take two approaches. First, we 
estimate the Pesaran and Smith (1995) mean group estimator model 
where slope coefficients are separately calculated for each municipality 
and averaged across all municipalities. Our main variables of interest 
remain strongly significant. However, this approach corrects more for 
heterogeneity of PM impact than of the virus spread net of the PM effect. 
We, therefore, estimate this model with a mean group estimator speci
fication allowing for province-specific trends. Again, our main results 
are unchanged (Table 8, panel 8.5, column 4). Second, we test whether 
our findings are confirmed when data are aggregated at the province 
level as the problem of heterogeneous infection dynamics is particularly 
severe at the municipal level, but less so at the province level. Our main 
findings are confirmed in non-instrumented and instrumented specifi
cations with province-level data (Table 9). Finally, we check for the 
contemporaneous presence of PM between and within effects to test 
whether particulate matter has an impact through both effects at the 
municipal level. This is another way to address the heterogeneity of 
pandemic dynamics problem since PM between-effects cannot be 
affected by such a problem. To this purpose, we estimate hybrid models 
that split the effect of particulate matter into within- and between- 
municipality effects (Schunck, 2013; Schunck and Perales, 2017) using 
a Mundlak (1978) random-effects approach. The estimated findings 

show that both between and a within municipality variation in PM2.5 
and PM10 significantly matter in explaining variation in excess deaths. 
The within-effect, however, has more power since it accounts for three- 
fourth of the overall effect in the decomposition estimated in the hybrid 
model (Table 8, panel 8.5, column 3). Note that this decomposition al
lows us to disentangle contemporary between and within effects; this is a 
different approach from that proposed in section 4 Eq. (3), where the 
between effect is long term, lagged, and aims to capture previous long- 
term exposure to particulate matter. 

For the second concern, that is, spatial correlation, we run a spatial 
Durbin model for our panel with the province level data following the 
approach proposed by Belotti et al. (2017). 

Furthermore, to account for other possible endogeneity issues, we 
build a spatial panel IV model. First, we run the fixed-effects quasi- 
maximum likelihood estimator on the endogenous regressor against 
both the instruments and the exogenous covariates of the main model. 
Then, after getting the control function, ie., the prediction of the overall 
error component from this regression, we run the full spatial model 
again, controlling for this component. This allows us to further mitigate 
the remaining endogeneity of the PM variables (Table 9, panel 9.5, 
columns 1–3). 

To check whether our findings are robust to a more flexible control 
for the aggregate pandemic dynamics that do not assume any particular 
functional form, we repeat our estimates by introducing day fixed effects 
(Table 8, panels 8.1–8.4). Our main results remain significant and the 
coefficient magnitude do not vary significantly. 

In an additional robustness check, we calculate COVID-19 non-syn
chronous regional trends by assuming independent regional pandemic 
dynamics. To this purpose, we set the regional contagions at n = 100 and 
use this conventional number as the starting point of the pandemic 

Table 6 
Decomposition of the long-term and short-term effects.  

Variables (1) (2) (3) (4) 

PM2.5 (short term component) 0.000850*** 0.000872*** 0.00110*** 0.00119***  
(6.79e-05) (9.71e-05) (7.65e-05) (0.000114) 

PM2.5 (ex-ante component) 0.000945*** 0.00127***    
(0.000177) (0.000264)   

T (linear day trend) 0.00312*** 0.00327*** 0.00347*** 0.00368***  
(0.000157) (0.000226) (0.000162) (0.000237) 

T2 (quadratic day trend) -7.67e-05*** − 8.34e-05*** − 5.21e-05*** − 5.56e-05***  
(4.95e-06) (1.11e-05) (5.30e-06) (8.95e-06) 

T3 (cubic day trend) 4.60e-07*** 4.91e-07*** 3.27e-07*** 3.42e-07***  
(2.82e-08) (5.71e-08) (2.98e-08) (4.85e-08) 

Population − 8.02e-05 − 0.000135*    
(5.33e-05) (7.12e-05)   

Employees − 0.000434** − 0.000430    
(0.000200) (0.000307)   

Density − 0.00252*** − 0.00285***    
(0.000451) (0.000550)   

Employees in Essential sectors 0.00124*** 0.00144**    
(0.000383) (0.000605)   

Income − 0.0129*** − 0.0174***    
(0.00319) (0.00507)   

Over 65 0.000944*** 0.00131***    
(0.000341) (0.000475)   

Days since lockdown 0.000318 0.000598 − 0.00135*** − 0.00131**  
(0.000290) (0.000709) (0.000324) (0.000571) 

Temperature − 0.000252 − 0.000304 − 0.000515** − 0.000492  
(0.000182) (0.000368) (0.000219) (0.000407) 

Mobility 3.96e-05 2.86e-05 6.27e-05** 5.33e-05  
(2.49e-05) (6.56e-05) (2.50e-05) (6.28e-05) 

Constant − 0.0251*** − 0.0275*** − 0.0172*** − 0.0132***  
(0.00291) (0.00469) (0.00251) (0.00473) 

Municipality fixed effects No No Yes Yes 
Observations 685,385 685,385 685,385 685,385 
Log Likelihood 37,948 7547 42,993 12,422 
Number of Municipalities   7260 7260 

Columns (1) and (2) pooled estimates, columns (3) and (4) fixed effect estimates. Standard errors clustered at municipality level in parentheses. Contains modified 
Copernicus Climate Change Service Information [2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus Atmospheric Monitoring Service Infor
mation [2017–2020]; *** p < 0.01, ** p < 0.05, * p < 0.1. 
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trends in each region. This approach allows us to account for unobserved 
time-varying region-level characteristics. Our main findings do not 
change after attributing a specific regional trend to each municipal 
(Table 10, panels 3–5,8–10, 13 and 16).13 

We further refine our main instrument by ruling out episodes of 
extreme rainfalls from the sample. More specifically, we eliminate ob
servations where the instrument (rainfall moving average) is above the 
95th centile and can be suspected to directly affect excess deaths 
(Table 10, panels 2,4-5,7,9–10, 12 and 15). 

To test whether our findings are robust for “super-spreader” events 
during the pandemic, we consider the UEFA Champions League match 
between Atalanta and Valencia that took place February 19, 2020, when 
around 40,000 Atalanta supporters gathered in the San Siro stadium in 
Milan for the match.14 To do so, we repeat our estimates by removing 
data for the Bergamo and Milano provinces. Again, the results remain 
unchanged in terms of magnitude (the pooled estimate coefficient 
changes only at the fifth decimal digit) and statistical significance 
(Table 10, panels 1,4-5,6,9–10, 11 and 14). 

7. Discussion 

To compare the magnitude of our results with those of the existing 
literature, we calculate what our coefficients imply in terms of the 
impact of 1 μg/m3 of PM on mortality. For the magnitude of the PM 

effects, the estimated PM coefficients vary between different estimates 
that look at different sources of variability. However, presenting all of 
them at least as a robustness check is important to evaluate the 
robustness and extension of the significance of our findings. For 
example, the fixed-effect coefficient compared with its pooled estimated 
counterpart captures only the within-effect controlling for unobserved 
time-invariant municipality effects. The IV effect depends in turn on the 
quality of the instrument and corrects for endogeneity problems. 

Based on all our different estimates, we conclude that the overall 
non-instrumented PM2.5 effect can be reasonably estimated in a range 
between 0.001 and 0.002. The highest coefficient is that of the fixed 
effect estimates augmented for day fixed effects. The same numbers for 
the PM10 effect are between 0.0006 and 0.001, also when considering 
estimates of provincial data in Table 8 and robustness checks in Table 9. 
Given the average daily mortality rate in Italy in the last four years, the 
effect implies that one additional μg/m3 of PM2.5 is associated with an 
increase in mortality rate by 2.9 to 5.59%. This effect is in the range of 
findings made in other studies, slightly above that estimated in the 
Netherland (Cole et al., 2020) and below that obtained in the US (Wu 
et al., 2020) and Northern Italy (Cocker et al. 2020) (see introduction). 

Note that the severe lockdown measures adopted at the beginning of 
March 2020 significantly contributed to air quality. The lockdown, 
therefore, reduced the short term effect of PM on high mortality rate 
during the pandemic. To understand to what extent this occurred, we 
calculated the difference between the average daily PM concentration 
during the pandemic’s first wave (February 2020 to May 2020) and 
during the corresponding days in the previous two years (2018–2019 

Table 7 
Decomposition of the long-term and short term effects.   

(1) (2) (3) (4) 

PM10 (short term component) 0.000494*** 0.000489*** 0.000563*** 0.000577***  
(3.60e-05) (5.24e-05) (3.79e-05) (5.28e-05) 

PM10 (ex-ante component) 0.000666*** 0.000955***    
(0.000149) (0.000226)   

T (linear day trend) 0.00313*** 0.00329*** 0.00342*** 0.00363***  
(0.000158) (0.000230) (0.000161) (0.000236) 

T2 (quadratic day trend) − 8.24e-05*** − 8.95e-05*** − 6.60e-05*** − 7.22e-05***  
(4.80e-06) (1.07e-05) (5.00e-06) (9.19e-06) 

T3 (cubic day trend) 4.84e-07*** 5.18e-07*** 3.94e-07*** 4.23e-07***  
(2.76e-08) (5.53e-08) (2.85e-08) (4.89e-08) 

Population − 7.63e-05 − 0.000132**    
(5.01e-05) (6.68e-05)   

Employees − 0.000394** − 0.000361    
(0.000193) (0.000303)   

Density − 0.00233*** − 0.00266***    
(0.000438) (0.000550)   

Employees in Essential sectors 0.00114*** 0.00129**    
(0.000368) (0.000597)   

Income − 0.0122*** − 0.0165***    
(0.00303) (0.00486)   

Over 65 0.000892*** 0.00125***    
(0.000317) (0.000443)   

Days since lockdown 0.000630** 0.000925 − 0.000532* − 0.000364  
(0.000280) (0.000692) (0.000304) (0.000582) 

Temperature − 0.000225 − 0.000293 − 0.000423* − 0.000354  
(0.000187) (0.000361) (0.000220) (0.000414) 

Mobility 3.53e-05 2.51e-05 5.26e-05** 4.41e-05  
(2.49e-05) (6.58e-05) (2.50e-05) (6.30e-05) 

Constant − 0.0220*** − 0.0247*** − 0.0155*** − 0.0132***  
(0.00285) (0.00450) (0.00250) (0.00473) 

Municipality fixed effects No No Yes Yes 
Observations 685,385 685,385 685,385 685,385 
Log Likelihood 37,941 7532 42,969 12,384 
Number of Municipalities   7260 7260 

Columns (1) and (2) pooled estimates, columns (3) and (4) fixed effect estimates. Standard errors clustered at municipality level in parentheses. Contains modified 
Copernicus Climate Change Service Information [2017–2020], DOI: 10.24381/cds.e2161bac. Contains modified Copernicus Atmospheric Monitoring Service Infor
mation [2017–2020]; *** p < 0.01, ** p < 0.05, * p < 0.1. 

13 Table 10 presents a summary of the empirical findings from these final 
robustness checks. Full findings are in the online Appendix.  
14 https://www.wsj.com/articles/the-soccer-match-that-kicked-off-italys-cor 

onavirus-disaster-11585752012. 
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Table 8 
Robustness checks: day effects and alternative specifications.  

Panel 8.1 (1) (2) (3) (4) (5) (6) 

Pooled OLS Pooled IV Pooled IV (second instrument*) OLS panel fixed effects IV panel fixed effects IV panel fixed effects (second instrument*)  

Day effects       
PM2.5 0.00141*** 0.00174*** 0.00284*** 0.00178*** 0.00203*** 0.00692***  

(8.20e-05) (0.000281) (0.000478) (9.39e-05) (0.000238) (0.000911) 
PM10 0.000907*** 0.000645*** 0.00182*** 0.00101*** 0.000824*** 0.00271***  

(4.60e-05) (0.000104) (0.000290) (4.84e-05) (9.72e-05) (0.000367)  

Panel 8.2 
Day effects (with inverse distance weights)     
PM2.5 0.00158***   0.00201***    

(0.000123)   (0.000185)   
PM10 0.00101***   0.00111***    

(7.40e-05)   (9.20e-05)     

Panel 8.3 (1) (2) (3) (4) 

Pooled OLS 
decompositition 

OLS panel fixed effects 
decomposition 

IV panel fixed effects 
decomposition 

IV panel fixed effects decomposition (second 
instrument*) 

Day effects     
PM2.5 (short term 

component) 
0.00148*** 0.00173*** 0.00202*** 0.00678***  

(8.48e-05) (9.42e-05) (0.000242) (0.000911) 
PM10 (short term 

component) 
0.000847*** 0.000956*** 0.00212*** 0.00775***  

(4.41e-05) (4.76e-05) (0.000252) (0.00106) 
PM2.5 (ex ante 

component) 
0.00118***     

(0.000187)    
PM10 (ex ante component) 0.00101***     

(0.000162)     

Panel 8.4 
Day effects (with inverse distance weights)  
PM2.5 (short term 

component) 
0.00156*** 0.00191***    

(0.000122) (0.000175)   
PM10 (short term 

component) 
0.000885*** 0.00102***    

(6.36e-05) (8.26e-05)   
PM2.5 (ex ante 

component) 
0.00150***     

(0.000270)    
PM10 (ex ante component) 0.00130***     

(0.000234)      

Panel 8.5 (1) (2) (3) (4) (5) (6) 

IV panel fixed effects 
decomposition 

IV panel fixed effects 
decomposition (second 
instrument*) 

Hybrid 
model 

Pesaran 
model 

Pooled IV (second 
instrument) 

IV panel fixed effects 
(second instrument*) 

Other specifications       
PM2.5    0.0006873*** 0.00300*** 0.00537***     

(0.0001148) (0.000472) (0.000727) 
PM10    0.0004479*** 0.00235*** 0.00383***     

(0.0000771) (0.000370) (0.000518) 
PM2.5 (Between 

Effect)   
0.000481***       

(0.000174)    
PM10 (Between 

Effect)   
0.000429**       

(0.000167)    
PM2.5 (Within Effect)   0.00123***       

(7.32e-05)    
PM10 (Within Effect)   0.000644***       

(4.20e-05)    
PM2.5 (short term 

component) 
0.00113*** 0.00583***      

(0.000247) (0.000712)     
PM10 (short term 

component) 
0.00134*** 0.00602***      

(0.000293) (0.000736)           

(continued on next page) 
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Table 8 (continued ) 

Panel 8.5 (1) (2) (3) (4) (5) (6) 

IV panel fixed effects 
decomposition 

IV panel fixed effects 
decomposition (second 
instrument*) 

Hybrid 
model 

Pesaran 
model 

Pooled IV (second 
instrument) 

IV panel fixed effects 
(second instrument*) 

PM2.5 (ex ante 
component) 

PM10 (ex ante 
component)       

Second instrument: instrument built as explained in Eq. (4) section 5. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 

Table 9 
Provincial specifications and robustness checks: day effects and other specifications.  

Panel 9.1 (1) (2) (4) (5) 

Pooled OLS Pooled IV OLS panel fixed effects IV panel fixed effects 

PM2.5 0.00113*** 0.00123*** 0.000783*** 0.00131***  
(0.000189) (6.73e-05) (0.000108) (6.39e-05) 

PM10 0.000766*** 0.000936*** 0.000516*** 0.000991***  
(0.000127) (5.30e-05) (6.85e-05) (4.94e-05)   

Panel 9.2 (1) (2) (4) (5) 

Pooled OLS Pooled IV OLS panel fixed effects IV panel fixed effects 

Day effects     
PM2.5 0.000740*** 0.00198*** 0.000800*** 0.00146***  

(0.000163) (0.000155) (0.000146) (0.000104) 
PM10 0.000475*** 0.000752*** 0.000407*** 0.000684***  

(1.00e-04) (5.88e-05) (7.12e-05) (4.89e-05)   

Panel 9.3 (7) (8) (9) 

Pooled OLS decompositition OLS panel fixed effects decomposition IV panel fixed effects decomposition     

PM2.5 (short term component) 0.000765*** 0.000783*** 0.00131***  
(0.000125) (4.82e-05) (6.39e-05) 

PM10 (short term component) 0.000584*** 0.000516*** 0.000991***  
(8.02e-05) (2.33e-05) (4.94e-05) 

PM2.5 (ex ante component) 0.00196***    
(0.000403)   

PM10 (ex ante component) 0.00159***    
(0.000397)     

Panel 9.4 (7) (8) (9) 

Pooled OLS decompositition OLS panel fixed effects decomposition IV panel fixed effects decomposition 

Day effects    
PM2.5 (short term component) 0.000733*** 0.000800*** 0.00146***  

(0.000161) (5.27e-05) (0.000104) 
PM10 (short term component) 0.000404*** 0.000407*** 0.000684***  

(7.25e-05) (2.48e-05) (4.89e-05) 
PM2.5 (ex ante component) 0.000953***    

(0.000334)   
PM10 (ex ante component) 0.000876**    

(0.000375)     

Panel 9.5 (1) (2) (3) 

Spatial panel fixed effects with time dependence Spatial IV panel fixed effects with time dependence Pesaran Model 

Other specifications  

Main Wx Direct Indirect Total Main Wx Direct Indirect Total  

PM2.5 0.00976 0.00369** 0.0146** 0.0653*** 0.0798*** 0.0217** 0.00334** 0.0277*** 0.0810*** 0.109*** 0.000661***  
(0.00668) (0.00147) (0.00602) (0.00967) (0.00844) (0.00897) (0.00148) (0.00879) (0.0120) (0.0163) (1.00e-04) 

PM10 0.00897** 0.00203** 0.0121*** 0.0419*** 0.0540*** 0.0161*** 0.00182* 0.0199*** 0.0513*** 0.0712*** 0.000350***  
(0.00408) (0.000948) (0.00363) (0.00637) (0.00525) (0.00565) (0.000955) (0.00551) (0.00778) (0.0103) (5.22e-05)  
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Table 10 
Robustness checks.  

Panel 10.1 Pooled estimates excluding super-spreader events (1) (2) (3) (4) 

PM10  0.000561***  0.000619***   
(3.89e-05)  (5.54e-05) 

PM2.5 0.000972***  0.00113***   
(7.24e-05)  (0.000101)  

Observations 650,491 650,491 650,491 650,491 
Log Likelihood 43,826 43,812 10,945 10,911 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.2 Pooled estimates excluding extreme rainfalls (1) (2) (3) (4) 

PM10  0.000592***  0.000659***   
(3.97e-05)  (5.84e-05) 

PM2.5 0.00102***  0.00119***   
(7.67e-05)  (0.000111)  

Observations 632,772 632,772 632,772 632,772 
Log Likelihood 30,652 30,639 274.6 240.9 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.3 Pooled estimates using nonsynchronous regional epidemic trends (1) (2) (3) (4) 

PM10  0.000826***  0.000907***   
(3.86e-05)  (6.20e-05) 

PM2.5 0.00136***  0.00152***   
(6.76e-05)  (0.000108)  

Observations 685,451 685,451 685,451 685,451 
Log Likelihood 36,645 36,615 6175 6119 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.4 Instrumental variable estimates Excluding super-spreader events Excluding extreme rainfalls Using nonsynchronous regional epidemic trends 

(1) (2) (3) (4) (5) (6) 

PM10  0.000554***  0.000698***  0.000411***   
(0.000134)  (0.000153)  (0.000132) 

PM2.5 0.00156***  0.00144***  0.00114***   
(0.000378)  (0.000317)  (0.000365)  

Observations 622,993 622,993 632,772 632,772 656,481 656,481 
Log Likelihood 38,810 38,797 30,632 30,636 31,428 31,309 
Robust standard errors in parentheses       
*** p < 0.01, ** p < 0.05, * p < 0.1.         

Panel 10.5 Instrumental variable estimates (using second instrument) Excluding super-spreader 
events 

Excluding extreme rainfalls Using nonsynchronous 
regional epidemic trends 

(1) (2) (3) (4) (5) (6) 

PM10  0.00215***  0.00256***  0.00369***   
(0.000690)  (0.000378)  (0.000194) 

PM2.5 0.00343***  0.00326***  0.00514***   
(0.00110)  (0.000481)  (0.000270)  

Observations 626,590 626,590 644,381 644,381 682,408 682,408 
Log Likelihood 39,767 39,661 34,319 33,712 35,885 34,972 
Second instrument: instrument built as explained in Eq. (4) section 5. Robust standard 

errors in parentheses       
*** p < 0.01, ** p < 0.05, * p < 0.1         

Panel 10.6 Fixed effect estimates excluding super-spreader events (1) (2) (3) (4) 

PM10  0.000589***  0.000659***   
(3.96e-05)  (6.13e-05) 

PM2.5 0.00118***  0.00143***   
(8.11e-05)  (0.000159)  

Observations 650,491 650,491 650,491 650,491 
Log Likelihood 48,363 48,338 15,317 15,261 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.7 Fixed effect estimates excluding extreme rainfalls (1) (2) (3) (4) 

PM10  0.000652***  0.000716***   
(4.08e-05)  (6.53e-05) 

(continued on next page) 
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Table 10 (continued ) 

Panel 10.7 Fixed effect estimates excluding extreme rainfalls (1) (2) (3) (4) 

PM25 0.00133***  0.00155***   
(8.72e-05)  (0.000172)       

Observations 632,772 632,772 632,772 632,772 
Log likelihood 35,963 35,931 5370 5310 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.8 Fixed effect estimates using nonsynchronous regional epidemic trends (1) (2) (3) (4) 

PM10  0.000844***  0.000918***   
(4.02e-05)  (6.96e-05) 

PM2.5 0.00156***  0.00174***   
(7.58e-05)  (0.000152)  

Observations 685,451 685,451 685,451 685,451 
Log Likelihood 41,799 41,744 11,128 11,040 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.9 Fixed effect instrumental variable estimates Excluding super-spreader events Excluding extreme rainfalls Using nonsynchronous regional epidemic trends 

(1) (2) (3) (4) (5) (6) 

PM10  0.00113***  0.00105***  0.000713***   
(0.000140)  (0.000145)  (0.000114) 

PM2.5 0.00223***  0.00199***  0.00166***   
(0.000274)  (0.000274)  (0.000264)  

Observations 643,646 643,646 632,772 632,772 656,481 656,481 
Log Likelihood 2436.33 2436.13 3484.09 3483.71 1773.10 1772.53 
Robust standard errors in parentheses       
*** p < 0.01, ** p < 0.05, * p < 0.1         

Panel 10.10 Fixed effect instrumental variable estimates (using second instrument) Excluding super-spreader 
events 

Excluding extreme rainfalls Using nonsynchronous 
regional epidemic trends 

(1) (2) (3) (4) (5) (6) 

PM10  0.00138***  0.00407***  0.00390***   
(0.000499)  (0.000518)  (0.000200) 

PM2.5 0.00190***  0.00564***  0.00565***   
(0.000688)  (0.000716)  (0.000289)  

Observations 647,448 647,448 644,381 644,381 682,408 682,408 
Log Likelihood 2381.78 2380.58 3465.80 3435.37 2204.38 2196.61 
Second instrument: instrument built as explained in Eq. (4) section 5. Robust standard 

errors in parentheses       
*** p < 0.01, ** p < 0.05, * p < 0.1         

Panel 10.11 Decomposition between fixed and time varying PM2.5 effects: exclusion of super spreader events     

Dep. Var.: diffsupop1819 (1) (2) (3) (4) 

PM2.5 (short term component) 0.000815*** 0.000835*** 0.00113*** 0.00123***  
(7.17e-05) (9.93e-05) (8.18e-05) (0.000124) 

PM2.5 (ex ante component) 0.00148*** 0.00163***    
(0.000183) (0.000258)   

Observations 650,425 650,425 650,425 650,425 
Log likelihood 44,962 12,242 49,517 16,652 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.12 Decomposition between fixed and time varying PM2.5 effects: exclusion of extreme rainfalls (1) (2) (3) (4) 

PM2.5 (short term component) 0.000795*** 0.000819*** 0.00105*** 0.00114***  
(6.91e-05) (9.81e-05) (7.85e-05) (0.000118) 

PM2.5 (ex ante component) 0.000909*** 0.00126***    
(0.000184) (0.000279)   

Observations 647,135 647,135 647,135 647,135 
Log Likelihood 34,708 3761 39,973 8806 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.13 Decomposition between fixed and time varying PM2.5 effects: nonsynchronous regional epidemic trends (1) (2) (3) (4) 

PM2.5 (short term component) 0.00124*** 0.00128*** 0.00147*** 0.00156***  
(6.89e-05) (9.57e-05) (7.57e-05) (0.000127) 

PM2.5 (ex ante component) 0.00152*** 0.00187***   

(continued on next page) 
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average). If we limit our analysis to the Northern regions,15 the differ
ence is above 1 μg. Hence, if we can interpret estimates in section 4 as 
causal, we may conclude that lockdown measures saved between 1 and 2 
extra deaths per 100,000 inhabitants. 

Extracting the PM concentration differential using fixed-effects es
timates do not change the significance and magnitude, thereby con
firming our previous analysis. 

This study has a number of caveats and limitations. First, our in
struments are relevant, but we cannot test their validity and have to 
prove that on logical grounds. However, the instruments’ lack of sig
nificance when included as explanatory variables in the main specifi
cation, the control for time-varying mobility, the robustness in the 
sensitivity analysis when excluding extreme rainfalls supports our 
exclusion restriction. 

Second, data at the municipal level are rarely available and, when 
available, come from the last census in 2011. Consequently, while our 
analysis controls for many variables like the share of population aged 
above 65 and the number of employees, we cannot control for other 
possible factors influencing COVID-19 contagion. For instance, we 
cannot control for the number of doctors in a given municipality. 

However, this characteristic is likely captured by municipality fixed 
effects at the finest level of geographical disaggregation. In our robust
ness checks described in section 5, we account for municipal heteroge
neous pandemic dynamics looking at between effects, using province 
trends in mean group estimators, and aggregating data at the province 
level. Note that the two above-mentioned and all other unobserved 
components were invariant during our 3-month sample period but 
updated in time to the 2011 census. Third, similarly to other papers (see 
Cocker et al. 2020), our dependent variable measures total deaths and 
does not discriminate between COVID-19 deaths and deaths caused by 
other diseases. This is because of the heterogeneity of COVID-19-related 
deaths registration, both over time and across regions, that we have 
explained when motivating the choice of our dependent variable. 

A final consideration relates to the interpretation of our findings on 
the decomposition between the two-year average and the time-varying 
component of PM. The first fixed component captures the ex-ante 
long-term exposure effect, while the second the effect of changes in 
PM during the pandemic. We do not explicitly and exclusively identify 
this last component in the “short term effect.” Therefore, it can be 
questioned whether the time-varying effect derives from the PM ca
pacity to increase survival outside the human body (short term effect) or 
it may further weaken the capacity of lungs and alveoli to resist respi
ratory and pulmonary diseases on top of the long-term exposure. While 
further research could clarify this point, this paper is the first, to the best 

Table 10 (continued ) 

Panel 10.13 Decomposition between fixed and time varying PM2.5 effects: nonsynchronous regional epidemic trends (1) (2) (3) (4)  

(0.000173) (0.000271)   
Observations 685,385 685,385 685,385 685,385 
Log Likelihood 37,745 7329 42,921 12,340 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.14 Decomposition between fixed and time varying PM10 effects: exclusion of super spreader events (1) (2) (3) (4) 

PM10 (short term component) 0.000756*** 0.000840*** 0.000996*** 0.00114***  
(6.58e-05) (9.17e-05) (7.25e-05) (0.000127) 

PM10 (ex ante component) 0.00119*** 0.00134***    
(0.000152) (0.000199)   

Observations 664,139 664,139 664,139 664,139 
Log Likelihood 47,740 14,379 52,244 18,705 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.15 Decomposition between fixed and time varying PM10 effects: exclusion of extreme rainfalls (1) (2) (3) (4) 

PM10 (short term component) 0.000863*** 0.000920*** 0.00111*** 0.00122***  
(6.80e-05) (8.95e-05) (7.65e-05) (0.000132) 

PM10 (ex ante component) 0.000792*** 0.00113***    
(0.000158) (0.000243)   

Observations 647,135 647,135 647,135 647,135  
34,724 3782 39,993 8833 

Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1       

Panel 10.16 Decomposition between fixed and time varying PM10 effects: nonsynchronous regional epidemic trends (1) (2) (3) (4) 

PM10 (short term component) 0.00115*** 0.00122*** 0.00132*** 0.00143***  
(6.31e-05) (9.38e-05) (6.79e-05) (0.000126) 

PM10 (ex ante component) 0.00121*** 0.00149***    
(0.000145) (0.000207)   

Observations 699,835 699,835 699,835 699,835 
Log Likelihood 40,745 9723 45,874 14,644 
Standard errors clustered at municipality level in parentheses     
*** p < 0.01, ** p < 0.05, * p < 0.1     

The table reports synthetic statistics for PM coefficients in three different robustness checks. In the first panel we remove provinces of Milan and Bergamo to account for 
the super-spreader event of the Champions League match Atalanta-Valencia. In the second panel we exclude from the sample observations where moving average 
rainfalls are above 95th centile. In the third panel we replace the national (linear, quadratic, cubic) trend variables measuring contagion dynamics with nonsyn
chronous regional trend variables starting from the day of the 100th contagion in the given region. For tables 10.1 to 10.3 and 10.6–10.8, columns (1) and (2) do not 
weight observations, while columns (3) and (4) use as weight the inverse distance of municipality centroids from the meteorological point of observation. For tables 
10.11 to 10.16, columns (1) and (2) presents pooled estimates, while columns (3) and (4) fixed effect estimates. 

15 Valle d’Aosta, Piemonte, Lombardia, Trentino-Alto-Adige, Friuli-Venezia- 
Giulia, Liguria, Emilia-Romagna, Marche, Toscana. 
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of our knowledge, to show that historical pre-COVID and contemporary 
time-varying effects matter. 

8. Conclusions 

Two research hypotheses in the literature on the impact of particu
late matter on COVID-19 contagion and deaths argue that prolonged pre- 
COVID exposure to, and contemporary levels of particulate matter can 
play a positive and significant role. 

To test these two hypotheses, we evaluate the impact of particulate 
matter concentration in Italian municipalities on daily deaths between 
the first COVID-19 outbreak in Italy and the previous five years. The 
specific contribution of this study to the literature hinges on the use of 
the geographically finest controls for concurring factors through mu
nicipality fixed-effects, instrumental variable estimates to tackle endo
geneity issues within a model taking spatial correlation into account, 
and the decomposition of the two effects, that is, long-term pre-COVID 
exposure and time-varying effect. 

Our findings show that the impact of both components is positive and 
significant. Our estimates control for standard time-trend components 
accounting for the non-linear deterministic evolution of the pandemic, 
the effects of lockdown measures, and several other controls, such as 
time-varying mobility. Additional results from province-level data 

accounting for spatial correlation and instrumental variable estimates 
addressing endogeneity problems further underline the robustness of 
our findings. More specifically, taking an average PM2.5 effect estimated 
across all our different models, we find that particulate matter concen
tration predicts more than 1231 more deaths if we consider the differ
ence between the municipalities with the highest and lowest average 
PM2.5 concentration during the first pandemic wave. 

Indeed, our instrumental-variable estimates are inevitably subject to 
discussion and limitations. However, if they can be interpreted as causal, 
our empirical results have relevant policy implications. They highlight 
an additional and important reason to contrast particulate matter 
beyond those already known. For example, beyond the impact of at
mospheric phenomena, the sources of PM depend on around 90% of 
human choices such as domestic heating systems, mobility, agriculture, 
and industrial production processes. Therefore, urgent steps should be 
taken to accelerate the transition to frontier technology, reducing each 
source’s contribution to PM. 
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Appendix A. Appendix  

Table A1 
Variable legend.  

Variable Description Source 

PM10 11-day (from t− 10 to t) moving average of particulate matter with diameter < 10 μm (μg/m3) Copernicus Atmospheric Monitoring 
Service (CAMS) - 

PM2.5 11-day (from t− 10 to t) moving average of particulate matter with diameter < 2.5 μm (μg/m3) Copernicus Atmospheric Monitoring 
Service (CAMS) - 

Excess Deaths Daily difference of total deaths in 2020 and the 2015–19 average total deaths at municipality level Italian National Statistical Institute 
Mobility Number of people in transit in subway, bus, train stations, sea port, taxi stand, highway rest stop and car rental 

agencies in the given Italian province (Change compared to the baseline of the median value, for the 
corresponding day of the week, during the previous 5-week period). 

Google: Community Mobility Report 

Population Number of residents in 2011 at municipality level per 1000 inhabitants. Italian National Statistical Institute 
Employees Number of employees operating in all economic sectors at municipality level per 1000 inhabitants. Italian National Statistical Institute 
Employees in Essential 

Sectors 
Number of employees operating in essential economic sectors (as defined by the Decree of the Italian President of 
the Municipality of Ministers, released on March 22nd and revised on March 25th), at municipality level per 1000 
inhabitants. 

Italian National Statistical Institute 

Density Population per municipality area per 1000 inhabitants. Italian National Statistical Institute 
Over 65 Share of people aged 65 or above per 1000 inhabitants. Italian National Statistical Institute 
Income Total municipality gross income (billion euros) Italian National Statistical Institute 
Rain 11-day (from t− 10 to t) moving average of total precipitation in mm at municipality level Copernicus Climate Change Service 

(CCCS) 
Temperature 11-day (from t− 10 to t) moving average of air temperature measure at the height of 2 m above ground, at 

municipality level. 
Copernicus Climate Change Service 
(CCCS) 

Region Italian regions.  
Days since lockdown Days since the start of the national lockdown considering the different starting days based on subsequent 

government decisions (see footnote 7).   

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolecon.2022.107340. 
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