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Abstract

Learning disentanglement aims at finding a low dimen-
sional representation which consists of multiple explana-
tory and generative factors of the observational data. The
framework of variational autoencoder (VAE) is commonly
used to disentangle independent factors from observations.
However, in real scenarios, factors with semantics are not
necessarily independent. Instead, there might be an under-
lying causal structure which renders these factors depen-
dent. We thus propose a new VAE based framework named
CausalVAE, which includes a Causal Layer to transform
independent exogenous factors into causal endogenous ones
that correspond to causally related concepts in data. We
further analyze the model identifiabitily, showing that the
proposed model learned from observations recovers the true
one up to a certain degree. Experiments are conducted on
various datasets, including synthetic and real word bench-
mark CelebA. Results show that the causal representations
learned by CausalVAE are semantically interpretable, and
their causal relationship as a Directed Acyclic Graph (DAG)
is identified with good accuracy. Furthermore, we demon-
strate that the proposed CausalVAE model is able to generate
counterfactual data through “do-operation” to the causal
factors.

1. Introduction

Disentangled representation learning is of great impor-
tance in various applications such as computer vision, speech
and natural language processing, and recommender systems
[9, 21, 8]. The reason is that it might help enhance the
performance of models, i.e. improving the generalizability,

*Corresponding author.

robustness against adversarial attacks as well as the explan-
ability, by learning data’s latent disentangled representation.
One of the most common frameworks for disentangled rep-
resentation learning is Variational Autoencoders (VAE), a
deep generative model trained to disentangle the underly-
ing explanatory factors. Disentanglement via VAE can be
achieved by a regularization term of the Kullback-Leibler
(KL) divergence between the posterior of the latent factors
and a standard Multivariate Gaussian prior, which enforces
the learned latent factors to be as independent as possible. It
is expected to recover the latent variables if the observation
in real world is generated by countable independent factors.
To further enhance the independence, various extensions of
VAE consider minimizing the mutual information among
latent factors. For example, Higgins et al. [6] and Burgess et
al. [3] increased the weight of the KL divergence term to en-
force independence. Kim et al. [13, 4] further encourage the
independence by reducing total correlation among factors.

Most existing works of disentangled representation learn-
ing make a common assumption that the real world observa-
tions are generated by countable independent factors. Never-
theless we argue that in many real world applications, latent
factors with semantics of interest are causally related and
thus we need a new framework that supports causal disen-
tanglement.

Consider a toy example of a swinging pendulum in Fig. 1.
The position of the illumination source and the angle of
the pendulum are causes of the position and the length of
the shadow. Through causal disentangled representation
learning, we aim at learning representations that correspond
to the above four concepts. Obviously, these concepts are not
independent and existing methods may fail to extract those
factors. Furthermore, causal disentanglement allow us to
manipulate the causal system to generate counterfactual data.
For example, we can manipulate the latent code of shadow to
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Figure 1. A swinging pendulum: an illustrative example

create new pictures without shadow even there are pendulum
and light. This corresponds to the ”do-operation” [25] in
causality, where the system operates under the condition
that certain variables are controlled by external forces. A
deep generative model that supports ”do-operation” is of
tremendous value as it allows us to ask “what-if” questions
when making decisions.

In this paper, we propose a VAE-based causal disentan-
gled representation learning framework by introducing a
novel Structural Causal Model layer (Mask Layer), which
allows us to recover the latent factors with semantics and
structure via a causal DAG. The input signal passes through
an encoder to obtain independent exogenous factors and then
a Causal Layer to generate causal representation which is
taken by the decoder to reconstruct the original input. We
call the whole process Causal Disentangled Representation
Learning. Unlike unsupervised disentangled representation
learning of which the feasibility is questionable [19], addi-
tional information is required as weak supervision signals to
achieve causal representation learning. By “weak supervi-
sion”, we emphasize that in our work, the causal structure of
the latent factors is automatically learned, instead of being
given as a prior in [15]. To train our model, we propose a new
loss function which includes the VAE evidence lower bound
loss and an acyclicity constraint imposed on the learned
causal graph to guarantee its “DAGness”. In addition, we an-
alyze the identifiablilty of the proposed model, showing that
the learned parameters of the disentangled model recover
the true one up to certain degree. The contribution of our
paper is three-fold. (1) We propose a new framework named
CausalVAE that supports causal disentanglement and “do-
operation”; (2) Theoretical justification on model identifiabil-
ity is provided; (3) We conduct comprehensive experiments
with synthetic and real world face images to demonstrate
that the learned factors are with causal semantics and can
be intervened to generate counterfactual images that do not
appear in training data.

2. Related Works

In this section, we review state-of-the-art disentangled
representation learning methods, including some recent ad-
vances on combining causality and disentangled represen-
tation learning. We also present preliminaries of causal
structure learning from pure observations which is a key
ingredient of our proposed CausalVAE framework.

2.1. Disentangled Representation Learning

Conventional disentangled representation learning meth-
ods learn mutually independent latent factors by an encoder-
decoder framework. In this process, a standard normal dis-
tribution is used as a prior of the latent code. A variational
posterior q(z|x) is then used to approximate the unknown
true posterior p(z|x). This framework was further extended
by adding new independence regularization terms to the orig-
inal loss function, leading to various algorithms. β-VAE [6]
proposes an adaptation framework which adjusts the weight
of KL term to balance between independence of disentangled
factors and the reconstruction performance. While factor
VAE [4] proposes a new framework which focuses solely
on the independence of factors. Ladder VAE [17] on the
other hand, leverages the structure of ladder neural network
to train a structured VAE for hierarchical disentanglement.
Nevertheless the aforementioned unsupervised disentangled
representation learning algorithms do not perform well in
some situations where there is complex causal relationship
among factors. Furthermore, they are challenged for lacking
inductive bias and thus the model identifiability cannot be
guaranteed [19]. The identifiability problem of VAE is de-
fined as follows: if the parameters θ̃ learned from data lead
to a marginal distribution equal to the true one parameterized
by θ, i.e., pθ̃(x) = pθ(x), then the joint distributions also
match, i.e. pθ̃(x, z) = pθ(x, z). Therefore, the rotation
invariance of prior p(z) (standard Multivariate Gaussian dis-
tribution) will lead the unindentifiable of p(z). Khemakhem
et al. [11] prove that there is infinite number of distinct mod-
els entailing the same joint distributions, which means that
the underlying generative model is not identifiable through
unsupervised learning. On the contrary, by leveraging a few
labels, one is able to recover the true model [22, 19]. Kulka-
rni et al. [16] and Locatello et al. [20] use additional labels to
reduce the model ambiguity. Khemakhem et al. [11] gives an
identifiability of VAE with additional inputs, by leveraging
the theory of nonlinear Independent Component Analysis
(nonlinear ICA) [2].

2.2. Causal Discovery & Causal Disentangled Rep-
resentation Learning

We refer to causal representation as ones structured by
a causal graph. Discovering the causal graph from pure
observations has attracted large amounts of attention in the
past decades [7, 35, 29]. Methods for causal discovery use
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Figure 2. Model structure of CausalVAE. The encoder takes observation x as inputs to generate independent exogenous variable ε, whose
prior distribution is assumed to be standard Multivariate Gaussian. Then it is transformed by the Causal Layer into causal representations z
(Eq. 1) with a conditional prior distribution p(z|u). A Mask Layer is then applied to z to resemble the SCM in Eq. 2. After that, z is taken
as the input of the decoder to reconstruct the observation x.

either observational data or a combination of observational
and interventional data. We first introduce a set of methods
based on observational data. Pearl et al. [25] introduced
a Probabilistic Graphical Models (PGMs) based language
to describe causality among variables. Shimizu et al. [29]
proposed an effective method called LiNGAM to learn the
causal graph and they prove the model identifiability un-
der the linearity and non-Gaussianity assumption. Zheng et
al. [36] proposed NOTEARs with a fully differentiable DAG
constraint for causal structure learning, which drastically
reduces a very complicated combinatorial optimization prob-
lem to a continuous optimization problem. Zhu et al. [38]
proposed a flexible and efficient Reinforcement Learning
(RL) based method to search over a DAG space for a best
graph with a highest score. When interventions are doable,
that is, one can manipulate the causal system and collect
data under interventions, methods are proposed for causal
discovery. Tillman et al. [33, 5] show the identifiability of
learned causal structure from interventional data. Peters et
al. [10, 26, 27] explores the structure invariance across mul-
tiple domains under interventions to identify causal edges.

Recently, the community has raised interest of combining
causality and disentangled representation. Suter et al. [32]
used causality to explain disentangled latent representations.
Kocaoglu et al. [15] proposed a method called CausalGAN
which supports ”do-operation” on images but it requires the
causal graph given as a prior. Instead of assuming inde-
pendent latent factors, Besserve et al. [1] adopts dependent
latent factors in the model. It relies on the principle of “in-
dependence mechanism” or modularity for disentanglement,
and design a layer containing a few non-structured nodes,
representing outputs of mutually independent causal mecha-

nisms [27], which contribute together to the final predictions
to achieve disentanglement. In our model, we disentangle
factors by causally structured layers (masking layer), and the
model structure is different from theirs. Schölkopf et al. [28]
claims the importance and necessity of causal disentangled
representation learning but it still remains conceptual. To
the best of our knowledge, our work is the first one that
successfully implements the idea of causal disentanglement.

3. Causal Disentanglement in Variational Au-
toencoder

We start with the definition of causal representation, and
then propose a new framework to achieve causal disentangle-
ment by leveraging additional inputs, e.g. labels of concepts.
Firstly, we give an overview of our proposed CausalVAE
model structure in Fig. 2. A Causal Layer, which essentially
describes a Structural Causal Model (SCM) [29], is intro-
duced to a conventional VAE network. The Causal Layer
transforms the independent exogenous factors to causal en-
dogenous factors corresponding to causally related concepts
of interest. A mask mechanism [23] is then used to propagate
the effect of parental variables to their children, mimicking
the assignment operation of SCMs. Such a Causal Layer is
the key to supporting intervention or “do-operation” to the
system.

3.1. Transforming Independent Exogenous Factors
into Causal Representations

Our model is within the framework of VAE-based dis-
entanglement. In addition to the encoder and the decoder
structures, we introduce a Structural Causal Model (SCM)
layer to learn causal representations. To formalize causal
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representation, we consider n concepts of interest in data.
The concepts in observations are causally structured by a
Directed Acyclic Graph (DAG) with an adjacency matrix A.
Though a general nonlinear SCM is preferred, for simplicity,
in this work, the Causal Layer exactly implements a Linear
SCM as described in Eq. 1 (shown in Fig. 2 1©),

z = AT z + ε = (I −AT )−1ε, ε ∼ N (0, I), (1)

where A is the parameters to be learnt in this layer. ε are
independent Gaussian exogenous factors and z ∈ Rn is struc-
tured causal representation of n concepts that is generated
by a DAG and thus A can be permuted into a strictly upper
triangular matrix.

Unsupervised learning of the model might be infeasible
due to the identifiability issue as discussed in [19]. To ad-
dress this problem, similar to iVAE [11], we adopt additional
information u associated with the true causal concepts as
supervising signals. In our work, we use the labels of the
concepts. The additional information u is utilized in two
ways. Firstly, we propose a conditional prior p(z|u) to reg-
ularize the learned posterior of z. This guarantees that the
learned model belongs to an identifiable family. Secondly,
we also leverage u to learn the causal structure A. Besides
learning the causal representations, we further enable the
model to support intervention to the causal system to gener-
ate counterfactual data which does not exist in the training
data.

3.2. Structural Causal Model Layer

Once the causal representation z is obtained, it passes
through a Mask Layer [23] to reconstruct itself. Note that
this step resembles a SCM which depicts how children are
generated by their corresponding parental variables. We will
show why such a layer is necessary to achieve intervention.
Let zi be the ith variable in the vector z. The adjacency ma-
trix associated with the causal graph is A = [A1| . . . |An]
where Ai ∈ Rn is the weight vector such that Aji encodes
the causal strength from zj to zi. We have a set of mild
nonlinear and invertible functions [g1, g2, . . . , gn] that map
parental variables to the child variable. Then we write

zi = gi(Ai ◦ z;ηi) + εi, (2)

where ◦ is the element-wise multiplication and ηi is the pa-
rameter of gi(·) (as shown in Fig. 2 3©). Note that according
to Eq. 1, we can simply write zi = AT

i z + εi. However,
we find that adding a mild nonlinear function gi results in
more stable performances. To show how this masking works,
consider a variable zi and Ai ◦ z equals a vector that only
contains its parental information as it masks out all zi’s non-
parent variables. By minimizing the reconstruction error,
the adjacency matrix A and the parameter ηi of the mild
nonlinear function gi are trained.

This layer makes intervention or ”do-operation” possible.
Intervention [25] in causality refers to modifying a certain
part of a system by external forces and one is interested in
the outcome of such manipulation. To intervene zi, we set
zi on the RHS of Eq. 2 (corresponding to the i−th node of z
in the first layer in Fig. 2) to a fixed value, and then its effect
is delivered to all its children as well as itself on the LHS
of Eq. 2 (corresponding to some nodes of z in the second
layer). Note that intervening the cause will change the effect,
whereas intervening the effect, on the other hand, does not
change the cause because information can only flow into
the next layer from the previous one in our model, which is
aligned with the definition of causal effects.

3.3. A Probabilistic Generative Model for Causal-
VAE

We give a probabilistic formulation of the proposed gen-
erative model (shown in Fig. 2 2©). Denote by x ∈ Rd the
observed variables and u ∈ Rn the additional information.
ui is the label of the i-th concept of interest in data. Let
ε ∈ Rn be the latent exogenous independent variables and
z ∈ Rn be the latent endogenous variables with semantics
where z = AT z + ε = (I −AT )−1ε. For simplicity, we
denote C = (I−AT )−1.

We treat both z and ε as latent variables. Consider the
following conditional generative model parameterized by
θ = (f ,h,C,T,λ):

pθ(x, z, ε|u) = pθ(x|z, ε,u)pθ(ε, z|u). (3)

Let f(z) denote the decoder which is assumed to be an
invertible function and h(x,u) denotes the encoder. We
define the generative and inference models as follows:

pθ(x|z, ε,u) = pθ(x|z) ≡ pξ(x− f(z)),

qφ(z, ε|x,u) ≡ q(z|ε)qζ(ε− h(x,u)),
(4)

which is obtained by assuming the following decoding and
encoding processes:

x = f(z) + ξ, ε = h(x,u) + ζ, (5)

where ξ and ζ are the vectors of independent noise with prob-
ability densities pξ and qζ . When ξ and ζ are infinitesimal,
the encoder and decoder can be regarded as deterministic
ones. We define the joint prior pθ(ε, z|u) for latent variables
z and ε as

pθ(ε, z|u) = pε(ε)pθ(z|u), (6)

where pε(ε) = N (0, I) and the prior of latent endogenous
variables pθ(z|u) is a factorized Gaussian distribution con-
ditioning on the additional observation u, i.e.

pθ(z|u) = Πn
i pθ(zi|ui), pθ(zi|ui) = N (λ1(ui), λ

2
2(ui)),

(7)
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where λ1 and λ2 are an arbitrary functions. In this paper,
we let λ1(u) = u and λ2(u) ≡ 1. The distribution has
two sufficient statistics, the mean and variance of z, which
are denoted by sufficient statistics T(z) = (µ(z),σ(z)) =
(T1,1(z1), . . . , Tn,2(zn)). We use these notations for model
idnetifiability analysis in Section 5.

4. Learning Strategy
In this section, we discuss how to train the CausalVAE

model in order to learn the causal representation as well as
the causal graph simultaneously.

4.1. Evidence Lower Bound of CausalVAE

We apply variational Bayes to learn a tractable dis-
tribution qφ(ε, z|x,u) to approximate the true posterior
pθ(ε, z|x,u). Given data set X with the empirical data
distribution qX (x,u), the parameters θ and φ are learned by
optimizing the following evidence lower bound (ELBO):

EqX [log pθ(x|u)] ≥ ELBO = EqX [Eε,z∼qφ [log pθ(x|z, ε,u)]

−D(qφ(ε, z|x,u)||pθ(ε, z|u))],
(8)

where D(·‖·) denotes KL divergence. Eq. 8 is intractable in
general. However, thanks to the one-to-one correspondence
between ε and z, we simplify the variational posterior as
follows:

qφ(ε, z|x,u) = qφ(ε|x,u)δ(z = Cε)

= qφ(z|x,u)δ(ε = C−1z), (9)

where δ(·) is the Dirac delta function. According to the
model assumptions introduced in Section 3.3, i.e., generation
process (Eq. 4) and prior (Eq. 6), we attain a neat form of
ELBO loss as follows:

Proposition 1 ELBO defined in Eq. 8 can be written as:

ELBO =EqX [Eqφ(z|x,u)[log pθ(x|z)]

−D(qφ(ε|x,u)||pε(ε))
−D(qφ(z|x,u)||pθ(z|u))]. (10)

Details of the proof are given in the Appendix A. With this
form, we can easily implement a loss function to train the
CausalVAE model.

4.2. Learning the Causal Structure of Latent Codes

In addition to the encoder and decoder, our CausalVAE
model involves a Causal Layer with a DAG structure to
be learned. Note that both z and A are unknown, to ease
the training task and guarantee the identifiability of causal
graph A, we leverage the additional labels u to construct the
following constraint:

lu = EqX ‖u− σ(A
Tu)‖22 ≤ κ1, (11)

where σ is a logistic function as our labels are binary and κ1
is the small positive constant value. This follows the idea
that A should also describe the causal relations among labels
well. Similarly we apply the same constraint to the learned
latent code z as follows:

lm = Ez∼qφ

n∑
i=1

‖zi − gi(Ai ◦ z;ηi)‖2 ≤ κ2, (12)

where κ2 is the small positive constant value. Lastly, the
causal adjacency matrix A is constrained to be a DAG. In-
stead of using traditional DAG constraint that is combinato-
rial, we adopt a continuous differentiable constraint function
[36, 37, 24, 34] . The function attains 0 if and only if the
adjacency matrix A corresponds to a DAG [34], i.e.

H(A) ≡ tr((I +
c

m
A ◦A)n)− n = 0, (13)

where c is an arbitrary positive number. The training pro-
cedure of our CausalVAE model reduces to the following
constrained optimization:

maximize ELBO,
s.t. (11)(12)(13).

By lagrangian multiplier method, we have the new loss func-
tion

L = −ELBO + αH(A) + βlu + γlm, (14)

where α, β, γ denote regularization hyperparameters.

5. Identifiability Analysis
In this section, we present the identifiability of our pro-

posed model. We adopt the ∼-identifiable [11] as follows:

Definition 1 Let ∼ be the binary relation on Θ defined as
follows:

(f ,h,C,T,λ) ∼ (f̃ , h̃, C̃, T̃, λ̃)

⇔ ∃B1,B2,b1,b2|
T(h(x,u)) = B1T̃(h̃(x,u)) + b1,T(f−1(x))

= B2T̃(f̃−1(x)) + b2,∀x ∈ X ,

(15)

where C = (I−AT )−1. If B1 is an invertible matrix and
B2 is an invertible diagonal matrix with diagonal elements
associated to ui. We say that the model parameter is ∼-
identifiable.

Following [11], we obtain the identifiability of our causal
generative model as follows.

Theorem 1 Assume that the data we observed are generated
according Eq. 3-4 and the following assumptions hold,
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1. The set {x ∈ X |φξ(x) = 0} has measure zero, where
φξ is the characteristic function of the density pξ de-
fined in Eq. 5.

2. The decoder function f is differentiable and the Jaco-
bian matrix of f is of full rank 1.

3. The sufficient statistics Ti,s(zi) 6= 0 almost everywhere
for all 1 ≤ i ≤ n and 1 ≤ s ≤ 2, where Ti,s(zi) is the
sth statistic of variable zi.

4. The additional observations ui 6= 0.

Then the parameters (f ,h,C,T,λ) are ∼-identifiable.

Although the parameters θ of true generative model are
unknown during the learning process, the identifiablity of
generative model given by Theorem 1 guarantees the parame-
ters θ̃ learned by hypothetical functions are in an identifiable
family. This shows that the learned parameters of the gener-
ative model recover the true one up to certain degree.

In addition, all zi in z align to the additional observation
of concept i and they are expected to inherent the causal
relationship of causal system. That is why that it could
guarantee that the z are causal representation.

The identifiability of the model under supervision of ad-
ditional information is obtained thanks to the conditional
prior pθ(z|u). The conditional prior guarantees that suffi-
cient statistics of pθ(z|u) are related to the value of u. A
complete proof of Theorem 1 is available in Appendix B.

6. Experiments
In this section, we conduct experiments using both syn-

thetic dataset and real human face image dataset and we
compare our CausalVAE model against existing state of the
art methods on disentangled representation learning. We
focus on examing whether a certain algorithm is able to
learn interpretable representations and whether outcomes
of intervention on learned latent code is consistent to our
understanding of the causal system.

6.1. Dataset, Baselines & Metrics

6.1.1 Datasets:

We conduct experiments on a synthetic datasets and a bench-
mark face dataset CelebA.

Synthetic: We build two synthetic datasets which include
images of causally related objects. The first one is named
Pendulum. Each image contains 3 entities (PENDULUM,
LIGHT, SHADOW), and 4 concepts ((PENDULUM AN-
GLE, LIGHT ANGLE) → (SHADOW LOCATION, SHADOW
LENGTH)). The second one is named Flow. Each image
contains 4 concepts (BALL SIZE → WATER SIZE, (WATER

1(rank equals to its smaller dimension)

SIZE, HOLE)→ WATER FLOW). Due to page limitation, main
text only shows the results on Pendulum, and experiments on
Flow and more details of two datasets are given in Appendix
C.1.

Real world benchmark: We also use a real world dataset
CelebA2[18], a widely used dataset in the computer vision
community. In this dataset, there are in total 200k human
face images with labels on different concepts, and we choose
two subsets of causally related attributes. The first set is
CelebA(SMILE), which consists of GENDER, SMILE, EYES
OPEN, MOUTH OPEN. The second one is CelebA(BEARD),
which consists of AGE, GENDER, BALD, BEARD. Main text
only shows results on CelebA(SMILE), and more experimen-
tal results on other concepts are provided in the Appendix
D.

Baselines: We compare our method with some state of
the arts and show the results of ablation study. Baselines are
categorized into supervised and unsupervised methods.

CausalVAE-unsup, LadderVAE [17] and β-VAE [6] are
unsupervised methods. CausalVAE-unsup is a reduced ver-
sion of our model whose structure is the same as CausalVAE
except that the Mask Layer and the supervision conditional
prior p(z|u) are removed.

Supervised methods include disentangled representation
learning method ConditionVAE [30], which does not include
causal layers in the model structure and causal generative
model CausalGAN [15], which needs the true causal graph
to be given as a prior.

As CausalGAN does not focus on representation learning,
we only compare our CausalVAE with CausalGAN on in-
tervention experiment (results given in Appendix D.3). For
these methods, the prior conditioning on the labels are given,
and the dimensionality of the latent representation is the
same as CausalVAE.

Metrics: We use Maximal Information Coefficient (MIC)
and Total Information Coefficient (TIC) [14] as our evalua-
tion metrics. Both of them indicate the degree of information
relevance between the learned representation and the ground
truth labels of concepts.

6.2. Intervention experiments

Intervention experiments aim at testing if a certain dimen-
sion of the latent representation has interpretable semantics.
The value of a latent code is manipulated by ”do-operation”
as introduced in previous sections, and we observe how the
generated image appears. Intervention is conducted by the
following steps:

• A generative model is trained.

• An arbitrary image from the training set is fed to the
encoder to generate a latent code z.

2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Figure 3. The results of Intervention experiments on the pendulum dataset. Each row shows the result of controlling the PENDULUM ANGLE,
LIGHT ANGLE, SHADOW LENGTH, and SHADOW LOCATION respectively. The bottom row is the original input image. More intervention
results on other synthetic dataset are shown in Appendix D.3.

Figure 4. Results of CausalVAE model on CelebA(SMILE). The controlled factors are GENDER, SMILE, EYES OPEN and MOUTH OPEN

respectively. More intervention results are shown in Appendix D.3.

• We manipulate the value of zi corresponding to a con-
cept of interest. For CausalVAE, as Fig. 2 4© and Fig. 6
show, we need to manipulate both the input and output
nodes of the SCM layer. Note that the effect of ma-
nipulation to a parental node will be propagated to its
children.

• The intervened latent code z̃ passes through the decoder
to generate a new image. In the experiments, all images
in the dataset are used to train our proposed model
CausalVAE and other baselines.

Hyperparameters (α, β, γ) = (1, 1, 1) for all experiments
unless specified.

We first conduct intervention experiments on the Pen-
dulum dataset, with 4 latent concepts and results are given
in Fig. 3. We intervene a certain concept by setting the

corresponding latent code value to 0. We expect that the
pattern of the manipulated concept will be fixed across all
images under the same intervention. For example, when we
intervene the pendulum ANGLE as shown in the first line
of Fig. 3 (a), the ANGLE of pendulum of different images
are almost the same. Meanwhile, we also observe that the
SHADOW LOCATION and SHADOW LENGTH change in a
correct way that aligns with the physics law. Note that this is
also related to the concept of modularity, meaning that inter-
vening a certain part of the generative system usually does
not affect the other parts of the system. Similar phenomenon
is observed in other intervention experiments, demonstrating
that our model correctly implements the underlying causal
system. The results of ConditionVAE, a supervised method
without considering the causal structure, are given in Fig.
3 (b). There exists a problem that manipulating the latent
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Figure 5. The learning process of causal matrix A. The concepts include: GENDER, SMILE, EYES OPEN, MOUTH OPEN (top-to-bottom
and left-to-right order); (c) converged A, (d) ground truth .

Table 1. The MIC and TIC between learned representation z and the label u. The results show that among all compared methods, the learned
factors of our proposed CausalVAE achieve best alignment to the concepts of interest. (Note: the metrics include mean ± standard errors in
table.)

CausalVAE ConditionVAE β-VAE CausalVAE-unsup LadderVAE

Metrics(%) MIC TIC MIC TIC MIC TIC MIC TIC MIC TIC

Pendulum 95.1 ±2.4 81.6 ±1.9 93.8 ±3.3 80.5 ±1.4 22.6 ±4.6 12.5 ±2.2 21.2 ±1.4 12.0 ±1.0 22.4 ±3.1 12.8 ±1.2

Flow 72.1 ±1.3 56.4 ±1.6 75.5 ±2.3 56.5 ±1.8 23.6 ±3.2 12.5 ±0.6 22.8 ±2.7 12.4 ±1.4 34.3 ±4.3 24.4 ±1.5

CelebA(SMILE) 83.7 ±6.2 71.6 ±7.2 78.8 ±10.9 66.1 ±12.1 22.5 ±1.2 9.92 ±1.2 27.2 ±5.3 14.6 ±4.2 23.5 ±3.0 10.3 ±1.6

CelebA(BEARD) 92.3 ±5.6 83.3 ±8.6 89.8 ±6.2 78.7 ±7.7 22.4 ±1.9 9.82±2.2 11.4 ±1.5 20.0±2.2 23.5 ±3.0 8.1±1.2

Intervene each concept

		𝑧# 	𝑧$ 	𝑧% 	𝑧&

		z# 		z$ 		z% 		𝑧&

After Mask Layer

Before Mask Layer

Figure 6. Intervention method

codes of effects sometimes has no influence to the whole im-
age. This is probably because they do not explicitly consider
causal disentanglement.

We also design another synthetic dataset Flow and do
the same comparative experiments on that and the results
support our claim. Because of page limitation, we show the
results in Appendix D.

Fig. 4 demonstrates the good result of CausalVAE on real
world banchmark dataset CelebA, with subfigures showing
the experiments on intervening concepts GENDER, SMILE,
EYES OPEN and MOUTH OPEN respectively. We observe
that when we intervene the cause concept SMILE, the sta-
tus of MOUTH OPEN also changes. In contrast, interven-
ing effect concept MOUTH OPEN does not cause the cause
concept SMILE to change. Table 1 records the mutual infor-
mation (MIC/TIC) between the learned representation and
the ground truth concept labels of all compared methods.
Our model achieves best alignment with the concept labels,
justifying the effectiveness of our proposed method. On the

contrary, factors learned by those compared methods have
low correlation with the ground truth labels, indicating that
those factors are at least not corresponding to the causal
concepts of interest.

In addition, we show in Fig. 5 the learned adjacency
matrix A. To learn a precise causal graph, we design a pre-
train process by optimizing augmented Lagrangian method
[34] on Eq. 11, details are shown in Appendix C.3. As the
training epoch increases, we see that the graph learned by our
model quickly converges to the true one, which shows that
our method is able to correctly learn the causal relationship
among the factors.

7. Conclusion

In this paper, we investigate an important task of learn-
ing disentangled representations of causally related concepts
in data, and propose a new framework called CausalVAE
which includes a SCM layer to model the causal generation
mechanism of data. We prove that the proposed model is
fully identifiability given additional supervision signal. Ex-
perimental results with synthetic and real data show that
CausalVAE successfully learns representations of causally
related concepts and allows intervention to generate counter-
factual outputs as expected according to our understanding
of the causal system. To the best of our knowledge, our
work is the first one that successfully implement causal dis-
entanglement and is expected to bring new insights into the
domain of disentangled representation learning.
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A. Proof of Proposition 1
Write the KL term in ELBO defined in Eq. 8 in the main

text as

D[qφ(ε, z|x,u)‖pθ(ε, z|u)]

=

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)

pε(ε)pθ(z|u)
dεdz

=

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)

pε(ε)
dεdz

+

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)

pθ(z|u)
dεdz

−
∫∫

qφ(ε, z|x,u) log qφ(ε, z|x,u)dεdz,

The third term in above equation could be rewritten as a
constant. Details are shown as below.

−
∫∫

qφ(ε, z|x,u) log qφ(ε, z|x,u)dεdz

=−
∫∫

q(ε|x, u)δ(z = Cε) log q(ε|x, u)dεdz

−
∫∫

q(ε|x, u)δ(z = Cε) log δ(z = Cε)dεdz

=H(qφ(ε|x, u))− 0 = H(N (µφ(x, u), sI)))

=const, (16)

In our method, we ignore this term in ELBO expression.
Then, based on Eq. 9 in the main text, we have∫∫

qφ(ε, z|x,u) log
qφ(ε, z|x,u)

pε(ε)
dεdz

=

∫
qφ(ε|x,u) log

qφ(ε|x,u)

pε(ε)

∫
δ(z = Cε)dzdε

+

∫
qφ(ε|x,u)

∫
δ(z = Cε) log δ(z = Cε))dzdε

=D[qφ(ε|x,u)‖pε(ε)] + 0

=D[qφ(ε|x,u)‖pε(ε)],

and∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)

pθ(z|u)
dεdz

=

∫
qφ(z|x,u) log

qφ(z|x,u)

pθ(z|u)

∫
δ(ε = C−1z)dεdz

+

∫
qφ(z|x,u)

∫
δ(ε = Cz) log δ(ε = C−1z)dεdz

=D[qφ(z|x,u)‖pθ(z|u)] + 0

=D[qφ(z|x,u)‖pθ(z|u)].

Adding up the above two terms leads to the desired form of
Proposition 1.

B. Identifiability
B.1. Proof of Theorem 1

The general logic of the proofing follows [11], but we
focus on both encoder and decoder. In our setting, we has
joint latent variables ε, z, and we prove identidfiabilty of
both of them.

Another different setting from iVAE is that we consider a
slighter transformation matrix, since our additional observa-
tions u of each concepts align to each causal representations
z.

Sketch of proof:
We analyze the identifiability of ε starting with

pθ(x|u) = pθ̃(x|u). Then we define a new invertible matrix
L which contains additional observation ui in causal system,
and use it to prove that the learned T̃ is the transformation
of T. Step 2: We take the inference model into considera-
tion and analyze the identifiablity of the inference model by
relating the inference model to the generative model.

Details:
At the begining of proof, we consider a simple condi-

tion that the dimension of observation data d equals to the
dimension of latent variables n.

The distribution has two sufficient statistics, the mean
and variance of z, which are denoted by sufficient statistics
T(z) = (µ(z),σ(z)) = (T1,1(z1), . . . , Tn,2(zn)). We use

10



these notations for model identifiability analysis in Section
5. To simplify proof process, we absorb the injective func-
tions g(·) into generate model f(·) since mask layer will not
influence the quality of disentangled representation z.

pθ(x|u) = pθ̃(x|u),

⇒
∫∫

z,ε

pθ(x|z, ε)pθ(z, ε|u)dzdε

=

∫∫
z,ε

pθ̃(x|z, ε)pθ̃(z, ε|u)dzdε,

⇒
∫
z

pθ(x|z)pθ(z|u)dz =

∫∫
z

pθ̃(x|z)pθ̃(z|u)dz,

⇒
∫
x′
pθ(x|f−1(x′))pθ(f−1(x′)|u)|det(Jf−1(x′))|dx′

=

∫
x′
pθ(x|̃f−1(x′))pθ̃(f̃−1(x′)|u)|det(Jf̃−1(x′))|dx′.

(17)

In determining function f , there exist a Gaussian distri-
bution pξ(ξ) which has infinitesimal variance. Then, the
pθ(x|f−1(x′)) can be written as pξ(x−x′). As the assump-
tion (1) holds, this term is vanished. Then in our method,
there exists the following equation:

pθ(f−1(x′)|u)|det(Jf−1(x′))| = pθ̃(f̃−1(x′)|u)|det(Jf̃−1(x′))|,
⇒ p̃θ(x) = p̃θ̃(x). (18)

Adopting the definition of multivariate Gaussian distribu-
tion, we define

λs(u) =

 λs1(u1)
. . .

λsn(un)

 . (19)

There exists the following equations:

log |det(Jf−1(x))| − logQ(f−1(x)) + logZ(u) (20)

+

2∑
s=1

Ts(f
−1(x))λs(u),

= log |det(Jh̃(x))| − log Q̃(f̃−1(x)) + log Z̃(u)

+

2∑
s=1

T̃s(f̃
−1(x))λ̃s(u), (21)

where Q denotes the base measure. In Gaussian distribution,
it is σ(z).

In learning process, Ã is restricted as DAG. Thus, the
C̃ exists which is full rank matrix. The item which is not
related to u in Eq. 21 are cancelled out [31].

2∑
s=1

Ts(f
−1(x))λs(u) =

2∑
s=1

T̃s(f̃
−1(x))λ̃s(u) + b,

(22)

where b is a vector related to u.
In our model, there exist a deterministic relationship C

between ε and z where C = (I −AT )−1. Thus we could
get equivalent of Eq. 22 as follows,

2∑
s=1

Ts(Ch(x))λs(u) =

2∑
s=1

T̃s(C̃h̃(x))λ̃s(u) + b‘,

(23)

where s denote the index of sufficient statistics of Gaussian
distributions, indexing the mean (1) and the variance (2).

By assuming that the additional observation ui is differ-
ent, it is guaranteed that coefficients of the observations for
different concepts are distinct. Thus, there exists an invert-
ible matrix corresponding to additional information u:

L =

[
λ1(u)

λ2(u)

]
. (24)

Since the assumption that ui 6= 0 holds, L is 2n× 2n invert-
ible and full rank diagonal matrix. Then, function of λ in
Eq. 22 and Eq. 23 are replcaed by Eq. 24, we could get:

LT(f−1(x)) = L̃T̃(f̃−1(x)) + b, (25)

T(f−1(x)) = B2T̃(f̃−1(x)) + b2, (26)

where

B2 =

 λ1,1(u1)−1λ̃1,1(u1)
. . .

λn,2(un)λ̃n,2(un)

 .
(27)

We replace f−1 with Ch and we could get the equations as
below:

LT(Ch(x)) = L̃T̃(C̃h̃(x))⇒ T(h(x)) = B1T̃(h̃(x)) + b1,
(28)

where B3 = CC̃−1 is invertible matrix which corresponds
to C and B1 = L−1B−13 L̃. The definition of L̃ on learning
model migrates the definition of L on ground truth.

Then we adopt the definitions following [11]. According
to the Lemma 3 in [11], we are able to pick out a pair (εi, ε

2
i )

such that, (T′i(zi),T
′
i(z

2
i )) are linearly independent. Then

concat the two points into a vector, and denote the Jacobian
matrix Q = [JT(ε), JT(ε2)], and define Q̃ on T̃(h̃◦Cf(ε))
in the same manner. By differentiating Eq. 28, we get

Q = B1Q̃. (29)

Since the assumptiom (2) that Jacobian of f−1 is full rank
holds, it can prove that both Q and Q̃ are invertible matrix.
Thus from Eq. 29, B1 is invertible matrix. Using the same
way as shown in Eq. 29, it can prove that B2 is invertible
matrix.

Eq. 26 and Eq. 28 both hold. Combining the two results
supports the identifiability result in CausalVAE.
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B.2. Extension of Definition 1

In most of scenarios, latent variable is a low dimensional
representation of the observation, since we are not interested
in all the information in observations.

Therefore, we usually have d > n. We called it
the reduction of dimension. We add auxiliary term as
λ(x) = {λ(u), λ′} In our model, Only n components of
the latent variable are modulated, and its density has the
form:

pθ(z|u) =
Q(z)

Z(u)
exp

n∑
i

Ti(zi)λi(ui) (30)

and the term e
∑d
n+1 T(zi)λi is simply absorbed into Q(z).

When we evaluate Eq. 21 by new definition (Eq. 30), the
dimension of p(z|u) is n, because the remaining part is
cancelled out.

Assume that pθ(x|u) equal to pθ̃(x|u). For all the obser-
vational pairs (x,u), let Jh denote the Jacobian matrix of the
encoder function. Following the definition in Theorem 2 in i
VAE [11], B will be indexed by 4 indicates (i, l, a, b), where
1 < i < d and 1 < l < s refer to the rows and 1 < a < d
and 1 < b < s refer to the columns. We define a following
equation:

v = C̃ ◦ h̃ ◦ f(z). (31)

The goal is to show that vi(z) is a function of only one zj .
We denote by vri := ∂vi

∂zr
and vrti := ∂2vi

∂zr∂zt
. By differentiat-

ing Eq. 26 with respect to zs, we could get:

T ′i,l(zi) =

d∑
a=1

s∑
b=1

B2,(i,l,a,b)T̃
′
a,b(va(z))vra(z). (32)

Lemma 1 (from Lemma 9 in Khemakhem et al. [12]): Con-
sider a distribution that follows a strongly exponential family.
Its sufficient statistic T̃ is differentiable almost surely. Then
T̃ ′i 6= 0 almost everywhere on R for all 1 ≤ i ≤ s.

For r > n, T ′i,l(zi) = 0, according to Lemma 1,
T̃ ′a,b(va(z)) 6= 0, since B2 is an invertible matrix, we can
conclude that vra(z) = 0 for all a < n and r > n. Therefore,
we can conclude that each of the first n components of v is
only a function of one different zj . Thus, when d > n, we
could get the same conclusion as Theorem 1.

B.3. Identifiability of Causal Graph

Consider the identifiability analysis in Appendix B.1. For
the framework of CausalVAE, in Causal Layer, the latent
code z is identified since B2 is a diagonal matrix which
corresponds to learnt z̃ and z. Since the true ε and learnt ε̃
are linearly related, B1, C and C̃ are in a linear equivalent

class. In other words, C or A is identifiable in Causal Layer
up to a linear equivalent class.

In our work, strict identifiability is guaranteed by the non-
linear mask layer. Details of the Mask Layer are shown in
Section 3.2 in main text. The Mask Layer uses non-linear
functions and additional supervision signal u (non-Gaussian)
to help the model to identify the true causal graph in a linear
equivalent class.

C. Implementation Details
We use one NVIDIA Tesla P40 GPU as our training and

inference device.
For the implementation of CausalVAE and other base-

lines, we extend z to matrix z ∈ Rn×k where n is the
number of concepts and k is the latent dimension of each zi.
The corresponding prior or conditional prior distributions
of CausalVAE and other baselines are also adjusted (this
means that we extend the multivariate Gaussian to the matrix
Gaussian).

The subdimensions k for each synthetic (pendulum, wa-
ter) experiments are set to be 4, and 32 for CelebA experi-
ments. The implementation of continuous DAG constraint
H(A) follows the code of [34] 3.

C.1. Data Preprocessing

C.1.1 Sythetic Simulator

𝜑!

𝜑"

①

②

③

④

Figure 7. Generate Policy of Pendulum Simulator

Fig. 7 shows our policy of generating synthetic Pendulum
data. The picture includes a pendulum. The angles of pendu-
lum and the light are changing overtime, and projection laws
are used to generate the shadows. Given the light POSITION
and pendulum ANGLE, we get the angles ϕ1 and ϕ2. Then
the system can calculate the shadow POSITION and LENGTH
using triangular functions. The causal graph of concepts is
shown in Fig. 10 (a). In Pendulum generator, the image
size is set to be 96× 96 with 4 channels. We generate about

3https://github.com/fishmoon1234/DAG-GNN
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Figure 8. Generate Policy of Flow Simulator

7k images (6k for training and 1k for inference), ϕ1 and
ϕ2 are ranged in around [−π4 ,

π
4 ], and they are generated

independently. For each image, we provide 4 labels, which
include light position, pendulum angle, shadow position and
shadow length. For light position, we use the value of center
of semicircle (Fig.7 1©) as supervision signal. For the pen-
dulum angle, we use the value of φ2 as supervision signal
(Fig. 7 2©). For shadow position and shadow length, we
use the length of Fig.7 3© and Fig.7 4© as supervision signal
respectively.

Fig. 8 presents our policy of generating synthetic Flow
data. Each image is of the 96×96×4 resolution, and consists
of a cup of water and a ball. The original water level, the
ball size (Fig.8 1©) and the location of hole (Fig.8 3©) vary
over time. Given the ball size Fig. 8 and the original water
level, we determine the WATER HEIGHT (Fig.8 2©). Then we
generate WATER FLOW according to the Parabola law, where
we additionally introduce a noise from N (0, 0.01) to the
gravitational acceleration. The causal graph of concepts
is given in Fig. 10 (b). We consider four semantically
meaningful concepts, BALLS SIZE, WATER HEIGHT, HOLE
POSITION and WATER FLOW, whose supervised signals are
given by the ball’s diameter (Fig.7 1©), the length of Fig. 7
2©, the length of Fig.7 3© and Fig.7 4© respectively. The

sample size is 8k with 6k for training and 2k for testing.

C.1.2 Data Preprocess of CelebA

CelebA dataset contains 20K human face images. We pre-
process the original dataset by following two steps:

(1) We divided the whole dataset into training dataset
85% and test dataset 15%.

(2) We only focus on facial features and resize the picture
to be squared (128× 128 with 3 channels).

C.2. Intervention Experiments

C.2.1 Synthetic

In synthetic experiments, we train the model on synthetic
data for 80 epochs, and use this model to generate latent

code of representations. The hyperparameters of baselines
are defined as default.

For CausalVAE, we set the α = 0.3 and (β, γ) = (1, 1).
We use N (u, |u|) as the condition prior pθ(z|u). In the
implementation of CausalVAE, |zmean| is used as the variance
of condition prior.

The details of the neural networks are shown in Table
2. We all follows the neural network design strategy of
Khemakhem et al. [12] to satisfy Theorem 1 assumption
(ii).

C.2.2 CelebA

We also present the DO-experiments of CausalVAE and
CausalGAN. In the training of the models, we use face labels
(AGE, GENDER and BEARD).

For CausalVAE, we set the α = 0.3 and (β, γ) = (1, 1).
We use N (u, I) as the condition prior pθ(z|u). For all the
baseline, default hyperparameters and one common encoder
and decoder structure are employed. For CausalGAN, we
use the publicly available code4.

For all the VAE-based methods, mean and variance of the
distribution of the latent variable are learned during training,
and the latent code z are sampled from Conditional Gaussian
Distribution pθ(z|u). In all experiments, we rescale the
variance of learned representation z by multiplying a factor
0.1 to the original one.

Training epoches for the model is set to be 80, and our
proposed CausalVAE has a pretrain step to learn causal graph
A, which takes 10 epochs.

The details of the neural networks are shown in Table 3.

C.3. The Pretrain Step for Causal Graph Learning

In our model, we need to learn the latent representation z
and causal graph A simultaneously, whose optimal solution
is not easy to find. Thus we adopt a pretrain stage to learn the
causal graph A in the Mask Layer. We adopt the augmented
Lagrangian to learn A in CausalVAE from the labels u in
Mask Layer first. During the pretrain process, we truncate
the gradient of other part of model and solve the optimization
problem in Eq. 34 to learn A.

The augmentation approach is widely used in causal dis-
covery method, like NOTEARS [29], DAG-GNN [34]. The
pretrain is a stage that learns the graph by optimizing the
following objective functions:

minimize lu = EqD‖u−ATu‖22
subject to H(A) = 0 (33)

Then, we define an augmented Lagrangian:

lpre = lu + λH(A) +
c

2
H2(A) (34)

4https://github.com/mkocaoglu/CausalGAN
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Figure 9. The results of Intervention experiments on the Flow dataset. Each row shows the result of controlling the BALL SIZE, WATER

HEIGHT, HOLE, and WATER FLOW respectively. The bottom row is the original input image.

where λ is the Lagrangian multiplier and c is the penalty.
The following policy is used to update the λ and c:

λs+1 = λs + csH(As) (35)

cs+1 =

{
cs = ηcs, if |H(As)| > γ|H(As−1)|
cs = cs, otherwise

where s is the iteration. In our experiments, we set η = 10
and γ = 1

4 .

D. Additional Experimental Results
In this section, we show more experimental results. Fig.

10 shows the causal graph among concepts in different
dataset respectively. We here show results including ex-
periments analyzing the properties of learned representation,
intervening results and the learning process of the causal
graph.

D.1. The Property of Learned Representation

We test our method and baselines on both synthetic data
and benchmark human face data. In the previous section, we
already show the relationships between the learned represen-
tation z̃ and the target representation z (related by a linear
transformation formed as a diagonal matrix). In this section,
we visualize it by scatter plot.

One of the important aspect of the generative model is that
whether the learned representation aligns to the conditional
prior we set. Our conditional prior is generated by the true
label of each concept. The results show that the learned
representations align to the expected representations. In
figures, points are sampled from the joint distribution, and
each color corresponds to one dimension.

The additional observations (labels) of Pendulum dataset
and those of CelebA dataset are different. In Pendulum, the

labels are values within a fixed range The labels in CelebA
dataset are discrete (in {−1, 1}). Thus the scatter plots are
different.

The results show that the performance of our proposed
method is better than all the baselines, including the super-
vised method and unsupervised method.

D.2. The Learned Graph

We demonstrate the learning process of causal graph in
this section. Fig. 14 shows the graph learned process of
CelebA (BEARD). In this process, we initialize all the entries
in A as 0.5. After 5 epochs, the graph converges. We observe
an almost correct graph in this group of concepts.

D.3. Intervention Results

Intervene each concept

		𝑧# 	𝑧$ 	𝑧% 	𝑧&

		z# 		z$ 		z% 		𝑧&

After Mask Layer

Before Mask Layer

Figure 16. Intervention method

The intervention operations are as:

• For the learned model, we first put an random observed
image x into the encoder. In this process we could get
ε and z.
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encoder decoder

4*96*96×900 fc. 1ELU concepts×( 4× 300 fc. 1ELU )
900×300 fc. 1ELU concepts× (300×300 fc. 1ELU)

300×2*concepts*k fc. concepts×(300× 1024 fc. 1ELU)
- concepts×(1024× 4*96*96 fc.)

Table 2. Network design of models trained on synthetic data.

encoder decoder

- (1×1 conv. 128 1LReLU(0.2), stride 1)
4×4 conv. 32 1LReLU (0.2), stride 2 (4×4 convtranspose. 64 1LReLU (0.2), stride 1)
4×4 conv. 64 1LReLU (0.2), stride 2 (4×4 convtranspose. 64 1LReLU (0.2), stride 2)
4×4 conv. 64 1LReLU(0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)
4×4 conv. 64 1LReLU (0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)
4×4 conv. 256 1LReLU (0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)

1×1 conv. 3, stride 1 (4×4 convtranspose. 3 , stride 2)
Table 3. Network design of models trained on CelebA.

• Then for i-th concept, we fix the value of zi and
gi(Ai ◦ z) as constants.

• Finally, we put the new z into the decoder and get x′.

Fig. 9 (a) demonstrates the intervention results of Causal-
VAE on Flow dataset. We see that when we intervene on
the cause concept BALL SIZE, its child concepts WATER
HEIGHT and WATER FLOW change correspondingly. Simi-
larly, when the cause concept HOLE is intervened, its child
concept WATER FLOW also changes. In contrast, intervening
on effect concept WATER HEIGHT does not influence the
causal concept BALL SIZE. Fig. 9(b) shows the results of
ConditionVAE on Flow. We observe that when we inter-
vene on BALL SIZE, WATER HEIGHT and WATER FLOW are
affected as expected. However when we intervene on the
effect concepts WATER HEIGHT and WATER FLOW, concept
BALL SIZE is also influenced, which makes no sense. In
general, the “do-intervention” of ConditionVAE performs
worse than CausalVAE. The results support that by simply
using a supervised model, one can not guarantee a causal
disentangled representation.

The Fig. 17 demonstrates the result of CausalVAE on
real world banchmark dataset CelebA (BEARD), with subfig-
ures (a) (b) (c) (d) showing the intervention experiments on
concepts of AGE, GENDER, BALD and BEARD respectively.
The interventions perform well that when we intervened the
cause concept GENDER, the BEARD changes correspond-
ingly. Similarly, when the cause concept AGE in intervened,
its child concept BALD also changes. In contrast, intervening
effect concept BEARD does not influence the causal concepts
GENDER and other unrelated concepts in Fig. 17 (d). Fig.
18 demonstrates the results of CausalGAN, with subfigures
(a) (b) (c) (d) showing the intervention experiments on con-
cepts CelebA (BEARD). We observe that when we intervene

GENDER, the BEARD are changed. But when we intervene
BEARD, concept GENDER is also changed in third line as
shown by Fig. 18 (d). In general, the ’do-intervention’ of
CausalGAN performs worse than CausalVAE.

The Fig. 19 demonstrates the result of CausalVAE on real
world banchmark dataset CelebA (SMILE), with subfigures
(a) (b) (c) (d) showing the intervention experiments on con-
cepts of GENDER, SMILE, MOUTH OPEN and EYES OPEN
respectively. The interventions perform well that when we
intervened the cause concept GENDER, not only the appear-
ance of GENDER but the eyes changed. When we intervened
the cause concept SMILE, not only the appearance of SMILE
but the MOUTH OPEN. In contrast, intervening effect con-
cept MOUTH OPEN does not influence the causal concepts
SMILE in Fig. 19 (d). Fig. 20 demonstrates the results of
CausalGAN, with subfigures (a) (b) (c) (d) showing the in-
tervention experiments on concepts CelebA (SMILE). We
find that when we control SMILE, the mouth is changed,
as shown in the second line of Fig. 20 (b). But we find
sometimes the control of SMILE influence other unrelated
concepts like GENDER (shown in first line of Fig. 20 (b)).
In this concepts group, CausalGAN also shows relatively
unstable intervention experiments compared to that of ours.
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1

GENDER2

AGE

BALD3

BEARD4

1

SMILE2

GENDER

EYES	OPEN3

MOUTH	OPEN4

1

LIGHT	POSITION2

PENDULUM	ANGLE

SHADOW	LENGTH3

SHADOW	POSITION4

(a) Pendulum (c) CelebA Group 1 (d) CelebA Group 2

1

WATER	HEIGHT

2

BALL SIZE

HOLE

3

WATER	FLOW4

(b) Flow

Figure 10. Causal graphs of three dataset. (a) shows the causal graph in pendulum dataset. The concepts are PENDULUM ANGLE, light
POSITION, SHADOW POSITION and SHADOW LENGTH. (b) shows the causal graph in CelebA, on concepts AGE, GENDER and BEARD and
BALD. (c) shows the causal graph in CelebA, on concepts GENDER, SMILE, EYES OPEN and MOUTH OPEN.
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Figure 11. The figure shows the alignment of ground truth p(z|u) and the learned latent factors q(z|x,u) on pendulum experiments.
Although ConditionVAE is also the supervised method, our proposed CausalVAE shows a better performance.
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Figure 12. The figure shows the alignment of ground truth p(z|u) and the learned latent factors q(z|x,u) on CelebA for the concepts
(BEARD). The ground truth is a discrete distribution over {−1, 1}, and the color of the points indicates different dimensions. The factors
learned by CausalVAE show the best alignment among all.
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Figure 13. The figure shows the alignment between ground truth p(z|u) and the learned latent factors q(z|x,u) on CelebA for 5 methods
(CausalVAE, ConditionVAE, β-VAE, CausalVAE-unsup, LadderVAE from left to right). The ground truth is a distribution with mean taken
from {−1, 1}, and the color of the points indicates different dimensions. The factors learned by CausalVAE show the best alignment among
all. The concepts include: 1 GENDER; 2 SMILE; 3 EYES OPEN; 4 MOUTH OPEN.
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Figure 14. Learning process of causal graph A in CelebA (BEARD). The concepts include: 1 AGE; 2 GENDER; 3 BALD; 4 BEARD.
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Figure 15. Learning process of causal graph A in CelebA (SMILE). The concepts include: 1 GENDER; 2 SMILE; 3 EYES OPEN; 4 MOUTH

OPEN.
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(a) AGE (b) GENDER

(c) BALD (d) BEARD

Figure 17. Results of CausalVAE model on CelebA (BEARD). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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(a) AGE (b) GENDER

(c) BALD (d) BEARD

Figure 18. Results of CausalGAN [15] model on CelebA (BEARD). The captions of the subfigures describe the controlled factors. From left
to right, the pictures are results obtained by varying the value of the controlled factors.
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(a) GENDER (b) SMILE

(c) EYES OPEN (d) MOUTH OPEN

Figure 19. Results of CausalVAE model on CelebA (SMILE). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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(a) GENDER (b) SMILE

(c) EYES OPEN (d) MOUTH OPEN

Figure 20. Results of CausalGAN model on CelebA (SMILE). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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