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Abstract

In order to survive, organisms must effectively respond to the challenge of maintaining their 

physiological integrity in the face of an ever-changing environment. Preserving this homeostasis 

critically relies on adaptive behavior. In this review, we consider recent frameworks that extend 

classical homeostatic control via reflex arcs to include more flexible forms of adaptive behavior 

and that take interoceptive context, experiences and expectations into account. Specifically, we 

define a landscape for computational models of interoception, body regulation and forecasting, 

address these models’ unique challenges in relation to translational research efforts, and discuss 

what they can teach us about cognition as well as physical and mental health.
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From reflexes to flexible, adaptive control

Organisms are constantly confronted with the challenge of maintaining their physiological 

integrity in the face of an ever-changing environment [1,2]. Behaviors aimed at preserving 

this homeostasis (see Glossary) and, therefore, survival critically need to be adaptive. To act 

adaptively, an organism has to translate information about the past and current environment 

acquired via its sensors into appropriately adjusted actions. Importantly, these actions will 

affect the environment and, thereby, future sensory inputs. Adaptive behavior thus forms a 
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closed loop between the environment, the sensors, and the effectors – the sensory-control 

loop (Figure 1A).

The simplest form of homeostatic sensory-control loop is the classical reflex arc. In reflexes, 

deviations between sensory inputs and internal setpoints trigger predefined ‘hard-wired’ 

(re)actions. A classic example is the baroreflex. Here, a detected increase in blood pressure, 

signaled via baroreceptors, triggers a reaction in the central nervous system (CNS) that 

results in a short-term down-regulation of blood pressure via barosensitive autonomic 

efferents [3,4] (Figure 1B)1.

Control via the simple reflex arc is adaptive but limited. This becomes a disadvantage when 

the environment is dynamic, and under specific contexts the default reaction is no longer 

beneficial. Accordingly, control mechanisms have been proposed that make reflexes more 

flexible by allowing an organism to temporarily move away from its setpoint (predictive 

homeostasis) or by changing the setpoints themselves (allostasis), e.g., in anticipation of a 

future perturbation[5]. This can be seen for instance when animals increase their body 

temperature in anticipation of a cold sensation [6]. In fact, there is substantial evidence that 

homeostatic control in humans and many animal species is more flexible than originally 

assumed, adjusting to the context [7–10], expected future events [6] or even abstract beliefs 

[11].

One of the key open questions is how the CNS achieves flexible homeostatic control. 

Specifically, what type of information needs to represented and what computations does the 

CNS perform? Several recent computational frameworks have begun to address these 

questions.

In this review, we use the sensory-control loop as a guiding principle to relate computational 

frameworks to one another and discuss what aspect of sensory-control they address. This 

will lead us from models that describe the perception of internal states based on sensory 

data (models of interoception), to models that describe the process of selecting the right 

action in different contexts (models of body regulation), to models that aim to predict the 

future consequences of these actions on the body (models of forecasting). Once these 

frameworks are outlined, we will then address key aspects of interoception and body 

regulation that we believe need to be addressed in current formulations. Finally, we ask what 

these computational models can teach us about cognition, mental health, and disease.

Computational models of interoception and body regulation

Internal states

Before describing the computational modeling landscape, let us first define the concept of an 

internal state. In the sensory-control loop outlined in Figure 1A, internal states produce 

sensory signals that lead to actions that, in turn, change internal states. This framework is 

very similar to how scientists have long thought about motor control [12]. Except that, in 

motor control, states are typically external, such as the position of a flying ball, while here 

1This represents a simplification; the baroreflex is not as straightforward as one might think [120].
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states are internal. They represent physiological conditions, such as body temperature, pain, 

itch, blood pressure, micturition, intestinal tension, heart rate, osmotic balance, or hormonal 

concentration, that evolve over time [3,13]. These conditions can thus be either directly 

observable from sensory data or more hidden or abstract, requiring the inference and 

integration of multiple sensory channels. The sensors signaling these internal states are also 

predominantly internal, including chemoreceptors, mechanoreceptors, baroreceptors, 

thermoreceptors, and many other molecularly-specified sensory afferents [14]. However, 

they may also include external sensory channels (vision, audition, touch, taste, smell, 

proprioceptors) if these carry relevant information about the internal state (e.g., see [15]). 

Similarly, actions typically represent internal control mechanisms, like hormone release, 

adjustments of sympathetic or parasympathetic activity, or the activation or inhibition of 

specific homeostatic reflex arcs. Importantly, actions can also include motor commands, if 

those affect the relevant internal state. For instance, getting up to close the window when 

feeling cold can be considered an elaborate form of thermoregulation. We refer to the overall 

process of selecting and executing actions that affect the internal state as body regulation.

The anatomy of computational models

The sensory-control loop can be divided into three stages (Figure 1A): (1) internal states 

cause sensory signals; (2) a regulatory action aimed towards maintaining or regaining 

homeostasis is selected and executed; (3) the action changes the internal state. While this is a 

representation of the ‘real world’, it is typically thought that the central nervous system 

(CNS) forms an implicit or explicit representation of this cycle or mappings between its 

different parts. We call this an internal model, because it refers to what the CNS computes 

and represents, not the contingencies in the real word. The idea that the CNS forms internal 

models has a long history [12] and relates to a central theme in Cybernetics suggesting that 

‘every good regulator of a system must be a model of that system’ [16].

A number of recent models can be roughly assigned to the three parts of the sensory-control 

loop: Specifically, we cover models that describe how an internal state could be inferred 

from the sensory information (models of interoception), how appropriate actions could be 

selected to regulate the body (models of body regulation) and how internal states evolve as a 

consequence of the chosen actions and as a function of their own internal dynamics (models 

of forecasting) (Figure 1A).

Although it may seem obvious, it is worth underscoring that these processes are highly 

interdependent; furthermore, certain models may cover more than one stage of the sensory-

control loop. However, emphasizing this separation provides a helpful guide through the 

forest of different modeling approaches. It also offers insight into the processing of 

ascending information and the signaling of downstream action signals in the anatomically 

distinct afferent and efferent neural pathways [14].

Computational models of interoception

Sensory information is noisy and often ambiguous. This means that the exact internal state 

that causes the sensory signals may not be known (it cannot be directly observed). The CNS 

could address this problem by inferring the internal state based on all available information 
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(different sensory modalities, context, prior experiences). Formally, this means it is inferring 

the internal states most likely to have caused its sensations, which is why this type of 

internal model is also called an inverse model (reverse arrow in Figure 2A) or generative 
model, because it guesses how the observed sensory data were generated [17–19]. The 

inferred internal state, which is really only an estimate of the real internal state, is what is 

typically called the percept (or in the case of internal states, the interocept). Interoception 

and exteroception can thus be distinguished based on the type of state that is being inferred 

– internal or external – rather than the specific sensory channels that contributed to the 

inference.

Another important aspect to consider is that the internal generative model is thought to 

include an organism’s general (explicit and implicit) knowledge about the structure and 

dynamics of the world and the body within. In a specific context, this knowledge expresses 

(although often in an unconscious way) prior expectations. For instance, human observers 

have implicit assumptions that light is coming from above, which shapes the way they 

interpret shadows [20]. In the context of interoception, these priors replace set points in that 

they define which internal states are likely to be occupied by an organism, e.g., which body 

temperature ranges are likely to be observed. Naturally, these likely states tend to coincide 

with the ones that promote an organism’s survival. The extent to which organisms are born 

with ‘hard-wired’ biological priors about basic bodily states such as temperature or 

osmolarity [21], and which priors are learned through experience remains an intriguing open 

question that might be resolved by developmental studies [22].

Interoceptive Bayesian inference—Interoceptive Bayesian inference addresses the 

question of how the CNS could compute its estimate of an internal state (Marr’s 

computational level [23]). Specifically, Bayes’ Theorem is a rule in statistics that describes 

how different types of noisy information could be combined in an optimal manner. In the 

context of perception it proposes how the CNS could combine the current sensory data, 

called likelihood, with a prior expectations, to arrive at an estimate of the internal state, 

called posterior [24] (Figure 2A). Importantly, it takes the uncertainty of each information 

source into account (Figure 2B). If sensory information is noisy, the prior will be assigned 

greater importance, and vice versa.

Bayes’ Theorem thus describes what an ‘ideal’ agent would do, which is why this is 

sometimes called an ideal observer model. As such, it has been used as a benchmark to 

which real behavior can be compared. There is significant evidence that in many situations 

humans behave close to what would be expected from an ideal observer, e.g., when 

combining different sensory information [25–27], integrating past experiences [28–30], or 

even abstract beliefs [20,31].

Interoceptive Predictive Coding—Bayesian inference does not come with a 

prescription of how the computations discussed in the previous section are implemented. 

Suggestions abound of how the CNS could approximate Bayesian inference with neuronal 

algorithms [18,32–34]. One of the most prominent ones is (Bayesian) Predictive Coding 

[35–38].
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Interoceptive Predictive Coding assumes the existence of specific neuronal populations, 

called prediction error units, which compute the difference between the a-priori expected, 

that is, the predicted, and the actual (sensory) inputs at multiple connected hierarchical 

layers [18,19] (Figure 2C). This prediction error is then propagated up the hierarchy and 

serves to update the original prediction of that level [35,37,39]. Prediction error units are 

thus similar to the comparator in a classical reflex arc, where deviations between inputs and 

setpoints trigger actions (except that here, the setpoint is a prediction) [35–37]. Furthermore, 

while prediction errors can trigger actions (see Active Inference), in Predictive Coding they 

are used as a learning signal to improve future predictions [35–37].

The hierarchical structure of Predictive Coding allows representation at various levels of 

abstraction: Low-level predictions are about the exact form of the sensory input, higher-level 

predictions are more abstract, integrating information across multiple sensory domains or 

information about the context. Predictive coding thus poses the hypothesis that the internal 

model is not represented in a single brain area, but in the connectivity of hierarchical 

populations of neurons from early sensory areas to higher level viscero-motor cortices, 

where each area processes a hierarchically distinct aspect of the internal state. To date, the 

full interoceptive brain network underlying this implementation has not been identified.

Computational models of homeostatic and allostatic body regulation

One of the most challenging tasks the CNS has to perform is selecting the right action under 

any given circumstance. Internal models of this kind are called forward models because they 

describe the process of moving from sensation to action. Here we focus on frameworks that 

extend classical feedback control [40], as in reflex arcs, by providing the means to adjust 

actions to the context or expected future events to subserve a specific goal. One of the 

primary goals for an organism (formally, its objective function) should be to keep its body 

alive (i.e., survival). In a concrete situation, this can be specified as reaching or maintaining 

desired internal states [41,42] (Figure 3A). A number of concrete formulations describe how 

organisms could learn to transition from their current internal state to the desired state, e.g., 

by minimizing the overall cost [43,44], maximizing long-term expected rewards [42,45–48] 

or minimizing surprise about sensory inputs [39,49–51]. Here, we will focus on two 

concrete frameworks to highlight their differences and commonalities: homeostatic 

reinforcement learning (HRL) and interoceptive active inference (IAI).

Homeostatic reinforcement learning—HRL proposes a way how actions that reduce 

the distance between the current and desired internal state – the drive – can be reinforced. 

Here, the concept of reward in classical reinforcement learning is redefined in a homeostatic 

manner, namely as a reduction in drive. This means that actions that are predicted to bring 

the internal state closer to the desired state are perceived as being rewarding [42,52]. 

Homeostatic action selection can then be conceptualized as the maximization of long-term 

expected rewards as in classical reinforcement learning schemes, except that here these 

actions will lead an organism towards a desired internal state (Figure 3A) (see [42] for a 

detailed formulation).
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Interoceptive Active Inference—IAI makes an alternative proposal in which agents 

minimize surprise to maintain homeostasis (based on the Free Energy Principle [53]). This is 

better understood in the context of the Interoceptive Predictive Coding scheme, introduced 

earlier. During interoception the prediction errors between predicted and actual sensory 

inputs are used to update an internal model of the body (learning) and infer the internal state. 

IAI extends Predictive Coding by suggesting that the predictions themselves represent a 

desired future internal state. Instead of updating the prediction, an organism can thus select 

actions that fulfill the predictions to bring the internal state closer to the desired state. (This 

corresponds to reversing the inverse model, turning it into a forward model again.) Both 

strategies, learning and action selection, thus reduce the prediction error and therefore 

minimize ‘the surprise’.

An important rationale behind IAI is that prior predictions are thought to represent internal 

states an organism is likely going to occupy and that are therefore congruent with survival, 

such as maintaining certain body temperatures or being hydrated. Choosing actions that 

fulfill these genetic and experience-dependent priors thus naturally provide a means to 

maintain homeostasis and allostasis. In other words, ‘Under active inference, agents stay 

alive by predicting the states that keep them alive, and act to fulfill those predictions.’[54] 

(Figure 3B) (see [39,49,55] for a detailed discussion).

Comparison and implementation—These frameworks can seem conceptually different. 

However, at a computational level they are quite similar, since the drive in HRL can be 

formally re-expressed as surprise in IAI [21,42]. Consequently, both frameworks are capable 

of explaining a range of control mechanisms that extend simple reflex arcs, such as adjusting 

reflexes in response to a learned context or in anticipation of predicted changes, 

incorporating Pavlovian, habitual and goal-directed homeostatic responses [42,49].

Nevertheless, there are important differences when considering the algorithmic and 

neuroanatomical implementation of these models. Predictive Coding and IAI assume that 

predictions and prediction errors are explicitly represented in neuronal populations (but see 

[56]), where the highest level of the hierarchy is represented in viscero-motor regions in the 

subgenual cortex, anterior/mid cingulate cortices, insular cortex and orbitofrontal cortex. 

Those areas project to subcortical control areas, such as the hypothalamus, the 

periaqueductal grey or the parabrachial nucleus [37,57]. Here, the descending predictions 

influence internal setpoints directly. This can result in an activation or suppression of low-

level reflex arcs via prediction error units that detect a discrepancy between the predictions 

and the sensory inputs (Figure 3B). In line with this, cortical neurons in the rostral insula, 

medial prefrontal cortex and the primary motor cortex were recently found to influence 

parasympathetic and sympathetic output to the stomach [58]. In contrast, reinforcement 

learning could also be performed in the absence of an explicit representation of internal 

states, e.g., via direct connections between sensors signaling internal states and areas 

involved in the computation of reward such as dopaminergic midbrain neurons. For instance, 

orexin neurons that project from the lateral hypothalamus to the ventral tegmental area 

(VTA) [59] and receptors for ghrelin, leptin or insulin in the VTA could provide interfaces 

for a direct influence of internal states on reward computations [60], while the expected 

drive reduction effects could be signaled via the opioid system [42]. Notably, this assumes 
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that internal states can be signaled directly and do not need to be inferred, raising the 

possibility that this type of control could be performed in the absence of an interocept. More 

complex (goal-directed) forms of HRL, e.g. when the framework is extended to emotions, 

will, however, likely require the inference and explicit representation of internal states. 

While different controllers (Reflexes, Pavlovian, Instrumental) thus compete or collaborate 

to achieve homeostatic control in an HRL framework, IAI proposes the integration of these 

control mechanisms in different hierarchical layers (for a more detailed comparison see 

[21,54]). While it has been difficult to arbitrate between competing models of homeostatic 

regulation at a computational level, these implementational differences may serve as the 

basis for future research programs aiming to delineate the most useful models of body 

regulation on the basis of experimental evidence.

Computational models of forecasting

The CNS predicts not only how internal states change as a consequence of actions, but also 

as a function of their own internal dynamics (forecasting). Certain forms of anticipatory 

processing indicate that many species engage in forecasting, for instance, when drinking is 

terminated minutes before any appreciable change in blood osmolarity [61]. One way to 

formalize forecasting is by suggesting that an agent is running an internal model of the body 

forward in time (e.g., from action to outcome), which corresponds to simulating the future 

sensory consequences of actions, but also the internal dynamics of the body. Another way of 

formulating forecasting would be to run the model backward (from outcome to action). This 

would involve assuming a future desired state and then simulating all the possible actions 

that would lead to that state to select the most promising one. The later makes forecasting 

part of an action selection process. Indeed, many models of body regulation implicitly 

assume that certain organisms are capable of forecasting, including HRL [42] and IAI [49]. 

Yet, there are few frameworks that have formalized forecasting [62,63], especially in the 

internal domain [64].

Building accurate models of interoception and body regulation

While the computational models discussed here are largely inspired by existing descriptions 

of exteroception, learning and motor control, there are a number of peculiarities of internal 

states that models of interoception and body regulation will need to address.

Receiver characteristics and multisensory integration

Internal organs are sparsely innervated relative to exteroceptive organs [65]. In addition, the 

nervous system is constantly fielding, sorting, classifying, and responding to signals from 

dozens of sensory sources that need to be integrated. Cardiovascular information, for 

instance, is spread across various sensors that separately encode the occurrence of a cardiac 

pulsation, the strength of pulsation, associated blood pressures, and neurovascular afferents 

that carry mechanical and chemical information ensuing from the pulsation [66,67]. 

Heartbeats are thus transduced in a distributed manner quite distinct from vision or audition. 

Moreover, multisensory signaling also occurs across different internal and external domains, 

e.g., cardiac and respiratory signals are highly intertwined during sympathoexcitation. 
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Adequate computational models thus need to be able to incorporate both the integration of 

multiple sensory signals and their possibly distributed representation.

Time scales and speeds

Internal signaling unfolds across a wide range of timescales and speeds [68,69]. Cardiac and 

respiratory processes occur at fast timescales (e.g. heart rate decelerations due to vagal input 

(seconds), accelerations due to adrenaline release (seconds to minutes), tachypnea due to 

sympathoexcitation (seconds)), whereas gastrointestinal processes occur over minutes to 

hours (e.g. blood glucose concentration modulation after food ingestion, blood osmolarity 

changes after fluid intake). Immunological processes are typically even slower, spanning 

minutes to weeks (delayed hypersensitivity reactions, chronic immune activation) but they 

can also occur within seconds (e.g. anaphylactic reactions). The interaction of signals across 

timescales poses a complex challenge to computational models, which often assume rapid 

stimulus-response associative learning over short timescales [62] (but see [42,70,71]).

Oscillations and neuro-vascular coupling: Several internal processes are controlled 

by their own intrinsic pacemakers that result in an oscillatory electrical activity which is 

signaled to the brain (e.g., heart: ~1Hz, breathing ~0.2Hz, gastrointestinal tract: ~0.05Hz) 

[72]. Recent work suggests that these regular sensory inputs directly influence brain 

dynamics and higher-order cognition [67]. At the local blood flow level, neuro-vascular 

regulation is typically thought of as being orchestrated by neuronal activity mediated largely 

via astrocytes [73]. However, predictions that hemodynamic influences can reciprocally alter 

the gain (and sensory discriminability) of cortical circuits [74] are supported by empirical 

evidence of neuronally-specific cardiovascular oscillations [75]. These alternative signaling 

pathways are typically not considered, although they could be integrated as gating signals at 

various computational stages [76].

Conscious perception and metacognition

Internal states and their regulation are largely unconscious. Still, they affect a wide variety of 

appraisal processes. For instance, the change in interoceptive signals (e.g. heart rate 

acceleration) and their conscious perception (e.g. interoceptive awareness) can combine to 

guide cognition [77]. Moreover, metacognitive beliefs about the efficacy of one’s own body 

regulation may influence both cognitive processes as well as the development of certain 

physiological symptoms [78], suggesting that modeling an individual’s response to internal 

states and their appraisal may be as important as modeling the signals themselves.

Addressing the potential and challenges of computational frameworks

What can be learned from these computational models? We believe that among their biggest 

contributions is their potential for informing comparative analyses and translational 

research: (1) across homologous systems in distinct species, (2) across different levels of 

description from cellular to systems levels, (3) in describing bidirectional influences of 

internal states on cognition and (4) in describing how maladaptive computations may result 

in disease. Each of these comparative and translational aspects poses unique challenges for 

the type of data and methodologies required in interoception research.
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Comparative analyses across species

To date, there is a chasm between animal and human studies on interoception and body 

regulation. This is partly due to previous arguments that interoception in humans is very 

different from interoception in simpler animals [79], and partly because human interoception 

studies have relied heavily on verbal self-reports, which cannot be obtained in animals.

Specifically, the revolution in molecular circuit-mapping tools and the development of opto-

and chemo-genetic tools to selectively manipulate specific cell-types has powered systems 

neuroscience preferentially in one model system, the C57BL/6J laboratory mouse. This 

affords the identification of many of the cellular and molecular mechanisms of interoception 

[66,80,81]. However, it is difficult to assess, for example, interoceptive awareness or mindful 

processing of respiratory sensation in a mouse. At the same time, common human 

neuroscience methods, such as electroencephalography, or functional magnetic resonance 

imaging do not allow access to the cellular and circuit levels ultimately necessary to 

understanding the computations carried out by specific neural populations. Computational 

models could help identify and evaluate processes that can be quantified via discrete 

parameter estimates (e.g. precision, learning rate or bias), across animal models and humans 

[82].

This type of research requires coordinated multidisciplinary efforts, including closely related 

manipulations across species, while remaining cognizant of their anatomical differences. For 

instance, there are direct connections from the parabrachial nucleus to the insula and 

ventromedial prefrontal cortex in rats [83], but not in monkeys [67,84]. It will therefore be 

necessary to include animal models that are more closely related to humans than mus 
musculus, e.g. macaque and marmoset non-human primates, and to compare them to 

humans experiencing similar experimental manipulations.

Linking levels of description

Computational frameworks can be used to describe processes across levels of granularity, 

from molecules to neural systems and behavior [82,85,86]. While no model currently links 

all levels of analysis, there are a few promising examples that have connected the activity of 

neuronal populations to behavior and symptoms leading to advances in the field of 

psychiatry [87] and neurology [88,89]. Little work exists, however, that aims at integrating 

the peripheral nervous system (PNS) into these frameworks. One key hurdle is a limited 

understanding of how physiological processes at the anatomical and cellular-levels can be 

validated using computational models, which makes it particularly hard to validate 

computational models with experimental evidence. In addition, while there are increasingly 

large-scale endeavors, like the cell census effort of the BRAIN initiative (www.biccn.org), to 

map and specify cell types in the various brain regions across species [90], there are 

currently no parallel endeavors for a functional map of the PNS. Such a cell-type based 

atlasing effort where all cells of the PNS—and their associated axons—are visualized 

throughout the body in situ within a whole-body common coordinate framework, including 

their connectivity to the CNS and their associated transcriptional cell types, will be 

imperative to build biophysically informed descriptions of body-brain interactions. This 

endeavor stands and falls with the development of more advanced recording- and 
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manipulation-techniques of the PNS using either optical or electrical strategies (e.g., multi-

photon, Neuropixels) and targeted perturbations (e.g., vagus nerve stimulation, 

thermostimulation, cardiac perturbations) [68,91]

Linking internal states to cognition

Lately, there has been a wealth of empirical studies that showed a much broader influence of 

internal signals on cognition than typically assumed [77], including effects on visual 

detection [92], the valuation of internal and external rewards [93,94], decision-making, 

attention [95,96] or the sense of selfhood [97,98]. Not surprisingly, computational models 

have begun to permeate these areas. Predictive Coding, IAI, and HRL have been used to 

formulate theories of emotions [35,99,100], a sense of self and embodiment [35,101] and 

value-based decision-making [52,102].

From health to disease: Clinical implications of models of interoception 

and body control

The application of computational models to understanding disease processes has given rise 

to the emerging field of Computational Psychiatry [82,103–105]. From a conceptual 

viewpoint, it seems plausible that failures to accurately represent one’s internal environment 

or choose appropriate actions may be linked to the expression of specific psychiatric 

conditions, including depression [78], schizophrenia [106,107], anxiety [50,68], or symptom 

expression across disorders [108] (See [109] for a detailed discussion). The pervasiveness of 

bodily symptom expression across the spectrum of psychiatric disorders has helped to 

motivate the extension of tools from Computational Psychiatry to address interoception and 

body regulation, via an approach termed Computational Psychosomatics [41]. Predictive 

coding, IAI, or HRL have been used to provide conceptual frameworks for understanding, 

for instance, anxiety and depression [50], somatic symptom disorders [110], chronic pain, 

fibromyalgia, as well as functional psychiatric [111], addictive [52,112,113] and 

neurological disorders [114].

One of the promises of the field is that computational models will yield individual and 

quantifiable markers of basic neural computations (e.g., in the form of parameter estimates) 

that are linked to illness pathophysiology. Akin to a blood test, the idea is that these 

‘computational biomarkers’ may point toward an individual maladaptive function useful for 

diagnosis, prognosis or treatment [115].

While the potential of computational models is considerable, at present there is little 

empirical work testing such models’ predictions [31,95,116]. To become clinically relevant, 

computational models of interoception will need to be rigorously translated through a 

development pipeline not unlike that employed during novel drug identification [117–119]. 

That is, effective computational biomarkers must demonstrate their utility in improving the 

diagnosis, monitoring, prediction, prognosis, risk susceptibility or treatment, ideally, in 

individual patients.
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Concluding remarks

We have charted a landscape of computational models of interoception, body regulation, and 

forecasting via the sensory-control loop. Doing so facilitates the combination of empirical 

tools with theoretical models to better understand how information about the world and the 

body optimally integrates to inform action selection and maintain health and survival. 

Nevertheless, this effort faces several challenges due to the unique structure and control of 

interoceptive signals. Future progress may depend on how well these existing methods 

improve our understanding of physical and mental health when combined with novel 

measurement and manipulation techniques (see Outstanding Questions).
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Glossary

Allostasis
The process of achieving stability, or homeostasis, by dynamically adjusting homeostatic 

setpoints through neural, physiological, or behavioral change. Allostasis is often associated 

with prospective control, where preemptive actions are taken e.g., by shifting the setpoints 

themselves, to adjust prior to an anticipated homeostatic perturbation and to avoid 

dyshomeostatic future states.

Body regulation
The overarching process of selecting and executing actions that affect the internal state 

(physiological condition) of the body. Body regulation includes internal control mechanisms, 

like hormone release, but can also include motor commands, if those affect the relevant 

internal state.

Central nervous system
the part of the nervous system consisting mainly of populations of nerve cells in the brain 

and spinal cord.

Exteroception
The process whereby the nervous system senses, interprets and integrates signals from the 

external world to form an estimate about continuously-evolving external states of the 

environment across conscious and unconscious levels (see also perception).

Forecasting
The process of predicting future internal and external states, by taking into account how 

states change as a consequence of actions and due to their own intrinsic dynamics.

Generative model
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In the context of perception, a generative model is an internal model that specifies how 

sensory data are generated from hidden states by incorporating prior knowledge about the 

structure of the environment and the body. Sometimes also referred to as model of the body 

in the world.

Homeostasis
The active processes by which a living organism maintains physiological states within a 

range conducive to survival in the face of environmental perturbations. Classical 

Homeostasis was original associated with reactive control in response to external 

perturbation. More recent descriptions suggest that homeostasis can also be predictive by 

selecting actions that shift the state of an organism away from the setpoint in anticipation of 

a predicted future deviation.

Internal/physiological state
A specific physiological condition of the body, such as temperature, blood pressure, or 

hormonal concentration, that continuously evolves over time. States can represent the 

condition of a single sensory modality, or the integrated result of multiple sensory signals. In 

many cases internal states may not be directly observable, which requires an organism to 

infer the state based on the available information (see definition of perception).

Interoception
The overall process of how the nervous system senses, interprets, and integrates signals 

about the body, providing a moment-by-moment mapping of the body’s internal landscape 

(internal states) across conscious and unconscious levels (see definition of perception).

Motor control
The processes concerned with the relationship between sensory signals and motor 

commands, including the transformation from motor commands to their sensory 

consequences and the transformation from sensory signals to motor commands.

Perception
The process of how the nervous system senses, interprets and integrates signals about the 

outside world and inside the body, providing a moment-by-moment representation of the 

state of an organism within its surrounding environment. Perception can be regarded as an 

(unconscious and conscious) inference process whereby an organism is inferring the state of 

the body and the world based on sensory data and its internal generative model of the body 

in the world. Exteroception and interoception can represent subareas of perception with a 

focus on either internal or external states, respectively.

Peripheral nervous system
the part of the nervous system consisting mainly of populations of neurons outside of the 

brain and spinal cord. It contains both the autonomic and somatic nervous systems.

Sensory signals
Signals related to an external or internal state after transduction by a sensory receptor (such 

as chemoreceptors, baroreceptors, photoreceptors etc).
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Outstanding Questions

• What aspects of body regulation are predetermined by evolutionary 

constraints and which ones are learned from experience?

• To what extent does body regulation require explicit representations of 

internal states?

• How do bodily signals affect neural computations in the peripheral and 

central nervous systems?

• What types of computational models are suitable to translate between animal 

and human studies?

• How can computational markers of interoception inform and improve 

physical and mental health?
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Highlights

• The sensory-control loop can be used as a guiding principle to align different 

computational models of interoception and body regulation.

• Recent computational frameworks focus on formulating body regulation via 

flexible, adaptive control mechanisms that extend classical reflex arcs.

• The perception and regulation of interoceptive signals poses tangible and 

unique challenges for computational modeling.

• Concrete computational frameworks of brain-body interactions hold great 

potential for translational research.

• Modeling approaches could be applied to develop testable ‘computational 

biomarkers’ to support diagnostic, prognostic or treatment efforts, particularly 

in individuals with symptoms originating from maladaptive brain-body 

interactions.
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Figure 1. Schematic of the homeostatic sensory-control loop.
A. Left: An organism translates incoming information about an internal state (red arrow) 

from its sensors into appropriately adjusted actions, executed by its effectors (blue arrow). 

Internal states can thereby be informed by both intero-sensors and extero-sensors. These 

actions, in turn, alter the internal state (state change, grey arrow) and, therefore, the future 

sensory inputs, resulting in a circular relationship between states, sensations and actions. 

Right: It is assumed that the CNS forms internal models of the sensory-control loop or 

specific parts of it. Here, we cover three types of internal models: (i) Models of interoception 
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that describe how internal states can be inferred from sensory signals, (ii) models of body 

regulation that describe how appropriate actions are selected based on internal states and (iii) 

models of forecasting that describe how actions lead to changes in the internal states. B. 

Example of a sensory-control loop: The reflex arc of blood pressure control via the 

baroreflex: Sensory signals from arterial and cardiopulmonary stretch receptors, 

baroreceptors, trigger responses in the CNS that result in short-term down-regulation of 

blood pressure via barosensitive autonomic efferents in the hypothalamus, brainstem, and 

spinal cord [3,4]. For example, excitatory efferents from the NTS (i) activate inhibitory 

efferents in the dorsal motor vagal nucleus leading to peripheral parasympathetic activation 

and (ii) stimulate medullary projections to hypothalamus which inhibit AVP release, 

collectively reducing blood pressure and heart rate. Abbreviations: CNS: central nervous 

system; PNS: peripheral nervous system; ParaSNA: Parasympathetic Nervous System 

Activation; SNA: Sympathetic Nervous System Activation; AVP: arginine vasopressin.
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Figure 2. Schematic of computational models of interoception.
A. Top left: Computational models of interoception are inverse models, as indicated by the 

black dotted arrow. Large circle: Schematic illustration of interoception: New incoming 

sensory information, which depends on the current internal state, the likelihood function, is 

combined with a-priori expectations about the internal state, the prior, to form a percept, the 

posterior. The prior thereby results from an internal model of the state of the body in the 

world – in short, a model of the body. B: Schematic representation of Bayes’ Theorem. The 

posterior can be computed in a statistically optimal manner by calculating the product of the 
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likelihood and the prior, here illustrated with the example of Gaussian distributions. 

Importantly, Bayes’ Theorem takes the uncertainty of information into account. Information 

with high prior precision (left) will be weighted more than information with low prior 

precision (right). C: Schematic representation of Predictive Coding: Brain areas at higher 

levels of the hierarchy send predictions about the expected input to lower levels. Every 

mismatch between predicted and actual input at lower levels will be processed as a 

prediction error that is propagated up the hierarchy. Predictive Coding requires a minimum 

of two classes of neurons: Representation neurons signaling predictions (green circles) and 

prediction error neurons (black triangle). At the lowest level of the hierarchy the input is the 

actual sensory data. Predictive Coding is hypothesized to be a general feature of many living 

organisms, and therefore, it could be interrogated across the spectrum of animal species.
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Figure 3. Schematic of computational models of body regulation.
A. Example of Homeostatic Reinforcement Learning (HRL) in the sensory-control loop. In 

HRL, actions that reduce the difference between current internal states and desired internal 

states (drives) are processed as being rewarding. By comparing the estimated reward value to 

the actual experienced reward, a reward prediction error (RPE) can be computed which is 

used to update future value estimates and inform action selection. Agents can thus learn to 

maximize rewards by minimizing drive to maintain homeostasis. See [21,42] for a detailed 

discussion. B. Example of Interoceptive Active Inference (IAI) in the sensory-control loop. 

IAI extends Predictive Coding to include action selection. Specifically, actions signaled by 

descending predictions are thought to represent desired internal states. Actions are then 

selected to fulfill predictions which bring the actual internal state closer to the desired one.
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