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Abstract

Background Neuro-axonal brain damage releases neurofilament light chain (NfL) proteins,

which enter the blood. Serum NfL has recently emerged as a promising biomarker for grading

axonal damage, monitoring treatment responses, and prognosis in neurological diseases.

Importantly, serum NfL levels also increase with aging, and the interpretation of serum NfL

levels in neurological diseases is incomplete due to lack of a reliable model for age-related

variation in serum NfL levels in healthy subjects.

Methods Graph signal processing (GSP) provides analytical tools, such as graph Fourier

transform (GFT), to produce measures from functional dynamics of brain activity constrained

by white matter anatomy. Here, we leveraged a set of features using GFT that quantified the

coupling between blood oxygen level dependent signals and structural connectome to

investigate their associations with serum NfL levels collected from healthy subjects and

former athletes with history of concussions.

Results Here we show that GSP feature from isthmus cingulate in the right hemisphere

(r-iCg) is strongly linked with serum NfL in healthy controls. In contrast, GSP features from

temporal lobe and lingual areas in the left hemisphere and posterior cingulate in the right

hemisphere are the most associated with serum NfL in former athletes. Additional analysis

reveals that the GSP feature from r-iCg is associated with behavioral and structural measures

that predict aggressive behavior in healthy controls and former athletes.

Conclusions Our results suggest that GSP-derived brain features may be included in models

of baseline variance when evaluating NfL as a biomarker of neurological diseases and

studying their impact on personality traits.
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Plain language summary
Neurofilament light chain (NfL) is a

marker released into the blood as a

result of central nervous system

damage or neurodegeneration. How-

ever, we know little about how NfL

levels relate to brain structure and

activity. Here, we use imaging data

and advanced statistical methods to

look at the relationship between brain

activity and structure in healthy

people and former athletes with a

history of multiple concussions, and

determine whether these can predict

NfL levels in the blood. We find the

relationship between brain activity

and structure and NfL levels is dif-

ferent between the two groups. Our

findings help us to understand how

brain injury might impact NfL levels

and their relationship with brain

activity, and could guide how NfL and

imaging data are used as tools in

research and in the clinic.
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Neurofilaments are cytoskeleton proteins of neurons and
are predominantly found in myelinated axons. NfL is one
of three subunits of neurofilament proteins that are

released into the cerebrospinal fluid (CSF) and eventually the
blood in significant quantities following axonal damage or
neurodegeneration1–4. Recent advances in immunoassay tech-
nologies have enabled reliable detection of NfL in blood and have
been utilized in multiple studies to demonstrate high correlation
between NfL levels in CSF and blood5. An increased concentra-
tion of NfL in blood (serum NfL level) or CSF has been reported
in numerous studies of neurodegenerative diseases6 as well as
concussion7,8. Since collecting blood-based biomarkers is more
practical and desirable for extensive clinical trials as compared to
CSF-based biomarkers, numerous studies have analyzed serum
NfL levels in the context of different neurological disorders such
as multiple sclerosis9,10, dementia11, progressive supranuclear
palsy12, traumatic brain injury (TBI)13, Parkinson’s disease14,
Alzheimer’s disease15, and Huntington’s disease16. Changes in
NfL levels have also been linked to aging9,17 and regional atrophy
in cortical brain areas15,18 and are therefore relatable to brain
atrophy in aging among people without a recognizable neurolo-
gical disease. While existing studies provide convincing evidence
that serum NfL level is a promising biomarker to detect neuro-
degeneration in a broad range of clinical applications, the inter-
pretation of these results has been limited by focusing analysis
only on detecting the abnormal increase in serum NfL levels and
by a lack of studies aimed at identifying the relevant underlying
features associated with serum NfL levels6,19. For instance, the
fundamental mechanism that links aging with serum NfL levels,
even among healthy subjects, is unknown6. Moreover, while
serum NfL levels have been studied in controlled groups in the
context of various neurological disorders, insight into the rela-
tionship between serum NfL levels and the onset of common
neurological symptoms in a healthy group is still lacking19.
Therefore, it is relevant to search for underlying features that can
help ongoing neurological studies model the variance in serum
NfL levels among healthy controls and thereby provide a better
understanding of both baseline serum NfL levels and how
abnormal variation in these levels is mechanistically linked to
neurodegenerative disease through these features.

The analysis of brain imaging data has been extensively utilized
in neuroscience for independent or joint studies of aging, cog-
nition, and neurological disorders20–22. The application of graph
signal processing (GSP) tools in neuroscience has recently gained
traction because they provide an analytical framework for subject-
specific decomposition of functional signals, wherein different
components are associated with varying degrees of conformity to
the subject’s own brain anatomical network23–25. The compo-
nents of the BOLD signal extracted from task-based functional
magnetic resonance imaging (fMRI) that are less aligned with, or
‘liberal’ with respect to, the underlying white matter architecture
have been linked with cognitive flexibility24. Furthermore, GSP
tools have been used to find discriminating features from resting
state fMRI and diffusion MRI (dMRI) in autism spectrum
disorder26 and traumatic brain injury27. GSP tools have also been
used to evaluate the extent of structure-function decoupling for
different brain regions28. Recent work has also applied GSP tools
for the statistical analysis of functional activity with functional
connectivity as the underlying graph, thereby implementing a
unimodal analysis29.

Our primary aim was to use statistical analyses to explore
whether the associated features extracted from structural and
functional brain imaging data are relevant in characterizing the
serum NfL levels of healthy controls (HC) vs. former contact
sports athletes with a prior history of concussions (ExPro). For
both cohorts of subjects, we analyzed energy distributions of

resting state fMRI after graph-informed filtering based on white
matter connectivity extracted from dMRI. We hypothesized that
measures of conformity of the BOLD activity with the underlying
white matter anatomy in specific brain areas might reveal asso-
ciations with serum NfL levels. GSP analytic tools leverage the
spectral properties of the graph that represents the white matter
anatomy to disentangle BOLD activity into components that
either conform to or deviate from it. Low graph frequency
components of the BOLD signal associated with a brain area
characterize strong alignment between the functional coupling of
this area to its underlying anatomical connectivity24. In contrast,
high graph frequency components of the BOLD signal energy for
an area signifies less intermodal alignment, i.e., loss or deviation
of the functional coupling of a brain region to its anatomical
connectivity23. The discriminating high and low graph frequency
features between the two groups have been previously studied in
Sihag et al.30, and our focus here was on exploring their rela-
tionships with serum NfL levels in HC and ExPro cohorts.

To explore the clinical and neurological interpretation of the
GSP features associated with serum NfL in our experiments, we
also tested their associations with cognitive scores and struc-
tural measures. The two cohorts differed significantly in terms
of aggression and depression related personality assessment
scores (discussed in Section II.A.1). Therefore, it was of interest
to explore the associations of GSP features with amygdala, since
this region is instrumental in a broader neural circuit respon-
sible for modulating aggression31,32 and has been implicated in
depression related disorders33–35. Furthermore, we hypothe-
sized that the links between white matter degeneration and
serum NfL levels might also be characterized by reduced cor-
tical thickness36. In this context, we hypothesized that those
GSP features aligned to our hypothesis of serum NfL being
associated with conformity of BOLD activity to white matter
anatomy might also be associated with cortical thickness
measures. In a broader context, cortical thinning is also neu-
rologically and clinically relevant, as it has been associated with
structural abnormalities after TBI37 as well as pathological
personality traits38.

Our results show that both low and high graph frequency
components from different brain areas are relevant as features for
the prediction of serum NfL levels in both HC and ExPro groups.
Even more importantly, GSP features have different associations
with serum NfL levels across the two groups and thus the sta-
tistical models for serum NfL levels are group specific: their per-
formances do not broadly generalize to the combined dataset of
HC and ExPro subjects. This observation is corroborated by our
experiments on the behavioral scores under the umbrella of
Personality Assessment Inventory (PAI) and structural metrics
for both cohorts. The most striking observation is observed for
the region of the isthmus cingulate in the right hemisphere, which
shows distinct behavior in predicting NfL and associations with
cognitive measures and structural measures in the two cohorts.
Specifically, the GSP feature from this region is significantly
associated with serum NfL levels in HC subjects but not in ExPro
subjects. Moreover, our experiments indicate that this GSP fea-
ture has a suppressing statistical effect on the relationship
between age and PAI Aggression score only among HC subjects.
In ExPro subjects, this GSP feature has significant correlations
with the volume of right amygdala (which is observed to be
moderated by serum NfL levels in this cohort) and thickness of
pericalcarine area in the right hemisphere (which is observed
to be negatively correlated with serum NfL only in HC cohort).
The two structural measures, volume of right amygdala
and thickness of pericalcarine cortex, are associated with
aggression as measured by PAI in both healthy subjects and
pathological contexts31,39,40, and therefore, our findings imply
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some significance to the GSP feature from isthmus cingulate in
the right hemisphere in understanding behavior.

Methods
Participants. The study was approved by the research ethics
boards of the University Health Network (IRB approval refer-
ence number: IRB 11-0088). Written consent was obtained from
all subjects before participating in the study. The male healthy
control subjects (number= 20, mean age = 49.38 years, stan-
dard deviation = 10.94 years) were recruited from the com-
munity. The subjects had no history of neurological disorders
(e.g., seizure disorder), systemic illnesses known to affect the
brain (e.g., diabetes and lupus), psychotic disorder, or known
developmental disorders (e.g., attention deficit disorder, dys-
lexia) nor any lesions appearing on MRI. The male former
athletes (number= 36, mean age = 50.64 years, standard
deviation = 11.36 years) were former professional football,
hockey or boxing athletes with history of multiple concussions
(mean= 4.14, standard deviation = 1.7). There was no sig-
nificant difference between the ages or serum NfL levels of the
two groups (Mann Whitney U tests at 0.05 significance level).
One subject each from the HC and ExPro group were excluded
from the study since their serum NfL level was more than three
deviations from the mean serum NfL level in their respective
groups. There was no significant difference between the years of
education for the two groups (HC: mean number of years of
education = 16.4 years, standard deviation = 1.81 years, ExPro:
mean number of years of education = 15.82 years, standard
deviation = 1.68 years). Furthermore, no significant difference
was observed in the cognitive scores in the contexts of memory,
language, and visuospatial function for the two cohorts. Dif-
ferences on inhibitory control, which is an executive function,
have been reported previously on this sample41.

PAI Assessments. The Personality Assessment Inventory (PAI) is
a widely used and well-validated tool to study personality and
psychopathology in brain injury42. It assesses Axis I and II dis-
orders, including personality disorder, depression, aggression and
anxiety, and includes indices of validity, such as positive and
negative impression management. PAI scores on different sub-
scales were evaluated for all participants. We observed statistically
significant differences (p-value < 0.05 after false discovery rate
(FDR) correction for multiple comparisons) in both raw and
T-normalized PAI scores of the two cohorts for the subscales of
somatic concerns, Depression, Schizophrenia and Aggression.
Among these subscales, the Aggression and Depression subscales
are considered valid in the context of TBI, as these were known to
be not confounded by transdiagnostic measures characteristic of
both psychopathology and neuropathology42. Table 1 sum-
marizes the raw scores for HC and ExPro cohorts on the two
subscales and the statistics for the Wilcoxon rank sum test for
statistical differences between them.

Diffusion magnetic resonance imaging acquisition and processing.
All structural and resting state scans were performed on a 3 Tesla

MRI Scanner (GE Signa HDx, Milwaukee, WI, USA) with a
standard 8-channel head coil. A high resolution T1-weighted
images were obtained using inversion recovery fast spoiled gra-
dient echo (IR-FSPGR), with the following parameters: 180 slices
with 1 mm thickness; 3 ms echo time (TE); 7.8 ms repetition time
(TR); 450 ms inversion time (TI); 15 flip angle; 25.6 cm field of
view (FOV); 256 × 256 matrix size; 1 × 1 × 1 mm3 voxel size. At
least one DWI scan was obtained with diffusion gradients applied
across 60 spatial directions (b= 1000 s/mm2) as well as 10 non-
diffusion weighted (B0) scans. The DWI had the following
parameters: 2.4 mm thick axial slices, TR= 14,000 ms, FOV= 23
cm, 2.4 × 2.4 mm2 in-plane resolution.

Diffusion MRI data were processed using the SCRIPTS pipeline
with parameters as described therein43. Pre-processing involved
correction for eddy-currents and head motions artifacts using
FSL. After alignment of the co-registered dMRI to the T1 image,
fiber tracking was performed using the MRtrix3 package. Fiber
orientation estimation was performed using Constrained Sphe-
rical Deconvolution, and tracks were seeded from the white-gray
matter interface. A propagation mask was applied through
Anatomically Constrained Tractography (ACT) and streamlines
were generated using a probabilistic algorithm using second-
order integration over fiber orientation distributions (iFOD2)
from 10 million seeds (step size 0.5 mm, maximum curvature 45,
length 5–250 mm, FOD amplitude threshold 0.1). Streamlines
were then selected using Spherical-deconvolution Informed
Filtering of Tractograms (SIFT) to improve the fit between
streamline reconstruction and the original dMRI image. The
connectome weights were defined by the number of tracks going
from one area of the parcellation mask to another, using the
Desikan-Killiany atlas44.

Functional magnetic resonance imaging acquisition and proces-
sing. The resting state functional MRI (rs-fMRI) scan
acquisition was 5 min 8 s using T2*-weighted echo-planar
imaging with the following parameters: TR= 2000 ms,
TE= 30 ms, 64 × 64 matrix, 20-cm FOV, flip angle = 85,
40 slices, 3.125 × 3.125 × 4 mm3 voxels. Prior to the resting-
state functional MRI scan, participants were instructed to close
their eyes, not think of anything in particular, and to not fall
asleep. Participants were spoken to between each sequence, and
prior to each rs-fMRI scan, they were asked if the session
could continue. The technicians did not proceed if the parti-
cipant didn’t respond. Functional MRI data were processed
using fMRIPrep, an open-source pipeline integrating multiple
state-of-the-art fMRI tools into a single software suite45.
Motion artifact correction and denoising were performed using
ICA-AROMA, and susceptibility distortion corrections were
performed using the SyN “fieldmap-less” correction method
implemented in Advanced Normalization Tools (ANTs).
Details on fMRIPrep processing are available in Supplementary
Note 1.

BOLD time series of length 308 s (154 time points) were
exported in CIFTI format, and the first 18 seconds were discarded
to remove initialization transient artifact. In addition, the BOLD
time series were pre-processed by removal of any linear trends
and constant offsets and passed through a band-pass frequency
domain filter with range 0.009 Hz–0.1 Hz. To account for any
variations in the fMRI data across the subjects due to physical and
physiological aspects of MRI scanning, the BOLD time series per
area were z-score normalized for all subjects.

Serum neurofilament light protein concentration acquisition.
Venous blood samples were collected from participants. Serum
NfL concentration was measured using the Human Neurology
4-Plex A assay (N4PA) on an HD-1 Single molecule array

Table 1 PAI Depression and Aggression subscale scores for
HC and ExPro cohorts.

PAI scale Score (HC) Score (ExPro) Rank sum
statistic

p value (FDR
corrected)

Depression 9.7 ± 10 17.81 ± 13 1218 0.0059
Aggression 9.2 ± 4.93 15.64 ± 9.54 1204.5 0.0234

Wilcoxon rank sum test (p value < 0.05 after FDR correction for multiple comparisons).
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(Simoa) instrument according to instructions from the manu-
facturer (Quanterix, Billerica, MA).

Data analysis
Graph signal processing-based feature extraction. We modeled
brain anatomical areas and connectivity using graph structures
whose nodes represent the 66 cortical regions of the Desikan-
Killiany atlas and whose edges were their pair-wise connections.
Connection weights were computed based on the number of
tractography streamlines connecting brain areas, a proxy for
alignment and density of fibers in the neuropil, such as axons46.
For every subject, we used the eigenmodes (i.e. the eigenvalue-
eigenvector pairs) of the graph adjacency matrix of the structural
connectome to decompose the BOLD signals into low and high
graph frequency components according to their conformity to the
underlying white matter anatomical network.

Graph Fourier transform (GFT) provides the necessary
framework to encode the spatial variability of a graph signal into
graph frequencies47 that are derived from the spectrum of the
graph connectivity matrix. In this study, for every subject, we
treated the BOLD time series over the brain structural
connectome as a graph signal over the brain anatomical network
and used the subject-specific spectrum of the brain connectivity
matrix to construct graph filters using GFT. The graph filters
allowed us to extract different components of the BOLD time
series in different brain areas according to their spatial variability.
For instance, the energy of the extracted component correspond-
ing to low spatial variability of the BOLD series in a brain area
represented the extent to which the BOLD time series in that area
conformed to the topology of the brain structural connectome24.

We next provide the mathematical framework behind the GFT
and its application for decomposition of BOLD time series. The
brain structural connectome can be represented by an undirected
graph G with n nodes, where each node is associated with
a distinct brain area. The adjacency matrix of G is given by A,
which is an n × n matrix whose off-diagonal entries is a proxy
for the number of axonal connections between different pairs of
brain areas. Since A is symmetric due to inherent limitations of
tractography, it can be decomposed as A ¼ VΛV�1, where the
eigenvectors of A form the columns of V ¼ ½v0; ¼ ; vn�1� and
the eigenvalues of A are the elements of the diagonal matrix
Λ ¼ diagðλ0; λ1; ¼ ; λn�1Þ, s.t., λ0 ≤ λ1 ≤ ¼ ≤ λn. The formal
definition of GFT based on the adjacency matrix is as follows25:
Given a graph signal x 2 Rn and the adjacency matrix
A ¼ VΛV�1, the GFT pair is given by

x̂ ¼ V�1x; and x ¼ Vx̂: ð1Þ
The eigenvectors of A form the spectral components of the

graph and the eigenvalues of A form the graph frequencies. The
eigenvector-eigenvalue pairs, ðvk; λkÞ; 8k 2 f0; ¼ ; n� 1g, of A
are termed as the eigenmodes of the graph G and are analytically
related to the spatial variation of the graph signal (see
Supplementary Note 2).

The application of GFT allows us to extract different
components of the BOLD time series according to their spatial
variation with the help of graph frequency filters of the form

F ≜ diagðf ðλ0Þ; ¼; f ðλn�1ÞÞ; ð2Þ
where f ðλkÞ is the frequency response for the eigenmode
k 2 f0; ¼ ; n� 1g. For a given spatial vector x over the graph,
its graph filtered output y is given by

y ¼ VFVTx :

As an example, the design of a high pass graph filter based on
the adjacency matrix that passes the component corresponding to

10 highest graph frequencies is given by

f ðλkÞ ¼
�
1; if k 2 f0; ¼ ; 9g
0; otherwise

: ð3Þ

Although the degree of spatial variability of the BOLD time
series with respect to the brain anatomical network varies over a
continuum of intermodal ‘alignment’23 or conformity with the
brain anatomy, previous studies have demonstrated that the
components of graph signals with low or high spatial variability
have better and more reliable performance in inference tasks
based on neuroimaging data23,25. Therefore, in this study, we
focused only on the components of BOLD time series with low or
high spatial variability.

For each subject, we used the subject-specific graph filter that
passed the 10 highest (or lowest) graph frequencies to extract the
high (or low) graph frequency components of the BOLD time
series. Note that the application of GFT leverages the connectivity
of the brain anatomical network to decompose the BOLD time
series signal in every TR and therefore, the output obtained after
application of a graph frequency filter at any brain area is
sensitive to the variation in the BOLD signal with respect to that
in the other brain areas23. For every area, the application of a low
pass graph frequency filter isolates the proportion of its BOLD
time series that conforms to the topology of the anatomical
network and that of a high pass graph frequency filter isolates the
proportion of its BOLD time series that deviates significantly
from the topology of the anatomical network. An example of
application of high and low pass graph filters on BOLD data is
illustrated in Supplementary Fig. 1.

For each brain area, we evaluated the energies of the
components with low spatial variability and high spatial
variability by calculating the ‘2 norm of the respective graph
frequency components of the BOLD time series. Therefore, two
features were associated with every brain area for each subject
leading to 132 GSP features (66 each from high and low graph
frequency analysis) per subject. The group differences between
the GSP features in this sample have been reported in our
previous study27.

Serum NfL level and GSP features. Prediction and inference form
the two paradigms of statistical analysis that provide distinct
insights into the relevance of variables depending on the actual
modeling goal48. Inference helps in isolating individual variables
that are significantly associated with the target variable (in this
case, serum NfL) whereas prediction driven analysis guides the
isolation of variables deemed relevant for predicting the target
variable in unseen data. In this study, we aimed to explore the
statistical correspondence of GSP features in the context of serum
NfL levels in the two cohorts under both statistical paradigms.
Due to lack of neuroimaging studies that link specific brain
regions with serum NfL, we adopted data-driven approaches to
isolate the GSP features that were most relevant to serum NfL
from the complete set of 132 features.

Association between GSP features and serum NfL: For the
inference paradigm, we adopted a standard linear model based
univariate feature selection approach to isolate the GSP features
most significantly associated with serum NfL49. This approach
results in an F-value and a p-value for each GSP feature, whose
statistical significance was determined after false discovery rate
procedure for correction due to multiple comparisons. Similar
approaches have been adopted previously to select the most
relevant features from features extracted using GFT of neuroima-
ging data for various statistical inference tasks50.

GSP features as predictors of serum NfL: Given the fact that the
number of GSP features (132) outnumbered the number of data
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samples in both cohorts (20 for HC and 36 for ExPro), we
adopted PLSR analysis in our study for prediction paradigm of
statistical analysis because of its recommended usage in the
neuroimaging literature for scenarios with high multicollinearity
among predictors and when the number of predictors outnumber
the number of data samples51,52.

The input and output features were z-score normalized for
PLSR analysis. For each group, the PLSR model that fit all the
GSP features to serum NfL levels of their respective groups was
investigated first. In this context, the number of components for
the PLSR model for a given set of features was selected based on
the estimated mean square prediction error (MSEP) as the
criterion which was evaluated by leave-one-out cross validation.
Since the total number of GSP features (132) far exceeded the
number of available observations for both groups, the PLSR
model with a full set of independent variables was prone to
overfitting, which was also confirmed by a nonparametric
permutation test of the explained variance R2. The nonparametric
permutation test for evaluating the significance of R2 for a PLSR
model is described next.

Nonparametric permutation test for PLSR: The nonparametric
permutation test was carried out by randomizing the serum NfL
levels among the subjects and fitting them to the predictors
using a PLSR model. The null distributions of R2 were obtained
by evaluating the explained variance for 5000 random
permutations of the NfL levels. The PLSR models were
considered to be overfit for a given set of predictors if the null
distribution of the explained variance R2 had a mean >0.5. The
statistical significance of R2 values for a PLSR model at a given
level was evaluated by counting the number of samples in the
corresponding null distribution that exceeded it.

Variable selection for prediction model: For both groups, we
adopted a variable importance in projection (VIP) based
approach for selecting a subset of GSP features that could
constitute the PLSR model that fits serum NfL without
overfitting53. VIP score quantifies the relative importance of
each predictor in fitting the PLSR model and was calculated for
each predictor based on the PLSR model that fitted the serum
NfL levels to 132 predictors for each group. A feature with a
high VIP score is typically considered relatively more significant
for the prediction performance of the PLSR model54. For each
group, we varied the threshold of the VIP score and used the
features with a VIP score greater than the selected threshold to
form the PLSR model with one component. The number of
components was set to one due to limited data size.

Prediction performance based on cross validation: We evaluated
the prediction performance of the models based on leave-one-out
cross validation procedure. In both cohorts, for every subject, the
non-overfitted model trained on the rest of the subjects with the
best prediction performance on that subject’s serum NfL was
selected as the ‘best’ model. For both cohorts, the following
procedure was followed to calculate the Q2 value for the model.
At every instance of cross validation, the serum NfL level for one
subject was estimated by the PLS model fitted to the data for the
rest of the subjects. The variable selection procedure described
above was performed within every instance of cross validation,
i.e., VIP scores were evaluated using the serum NfL levels and the
GSP features for the subjects in the training set at every cross-
validation instance. The set of features for which the PLSR model
was not overfitted was chosen to estimate the serum NfL level for
the test subject. Therefore, there were 20 PLS models for the HC
cohort corresponding to each instance of cross validation.
Similarly, there were 36 PLS models for the ExPro cohort
corresponding to each instance of cross validation in this cohort.
We report the prediction performance from this cross-validation
procedure for both cohorts which is quantified by their Q2 values.

For any GSP feature, its frequency of inclusion in the PLS models
for prediction of serum NfL for different subjects in cross
validation, and similar trends in its respective weights across
models, indicates its robustness as a predictor of serum NfL. An
overview of the statistical analyses to investigate links between
GSP features and serum NfL levels is provided in Fig. 1.

Clinical and neurological interpretations of GSP features linked
with serum NfL. We used partial correlation, mediation, and
moderation analyses to interpret the roles of GSP features that
were relevant for serum NfL for both inference and prediction
analyses in the two cohorts. Specifically, we investigated whether
the GSP features mediated any associations between age, serum
NfL, and PAI scores. We also investigated the relationships
between the GSP features and structural measures such as cortical
thickness and volumes of subcortical regions.

For mediation analysis, we used the mediation toolbox from
Wager et al.55. The significance of the mediation was established
using bootstrapping with 10000 samples. Moderation analysis
was conducted based on linear regression and moderation effect
was determined based on the significance of the interaction term
in the linear model. The reporting of methods and results in this
paper adhere to the STROBE guidelines56.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
GSP features are significantly associated with and predictively
relevant for serum NfL in HC and ExPro cohorts. Our results
for univariate feature analysis and PLSR analysis show that a
distinct set of GSP features are statistically relevant for serum NfL
in HC and ExPro cohorts (Fig. 2). Univariate feature selection
yielded 9 GSP features for HC cohort and 24 GSP features for
ExPro cohort that had an uncorrected p-value < 0.05 for their
respective F-scores (Fig. 2a, d). For HC cohort, low graph fre-
quency features from isthmus cingulate, caudal anterior cingulate,
and parahippocampus formed the set of the three most sig-
nificantly associated GSP features with serum NfL (Fig. 2b),
whereas the high graph frequency features were not as strongly
associated with serum NfL in this cohort (Fig. 2c). In contrast, we
observed that the set of GSP features associated with serum NfL
were dominated by high graph frequency features (18 out of 24
with uncorrected p-value < 0.05, see Fig. 2c), specifically in the
temporal lobe (transverse temporal, superior temporal and mid-
dle temporal areas), lingual and parahippocampus areas in the left
hemisphere, and entorhinal in the right hemisphere (Fig. 2f). The
low graph frequency features from superior frontal and posterior
cingulate areas in the right hemisphere were also significantly
associated (Fig. 2e). Therefore, there were significant differences
between the set of brain areas associated with serum NfL in the
two cohorts. The correlations of all GSP features with serum NfL
in the two cohorts are summarized in Supplementary Data 18.

After correction for multiple tests using false discovery rate
(FDR) procedure, the low graph frequency feature from isthmus
cingulate in the right hemisphere retained statistical significance
(FDR corrected p-value = 0.037) for HC cohort (Fig. 2a).
For ExPro cohort, FDR correction for multiple tests yielded 7
GSP features significantly associated with serum NfL (6 high
graph frequency and 1 low graph frequency, all with corrected
p-value = 0.0472) (Fig. 2d). The low graph frequency feature
from posterior cingulate area in the right hemisphere was
observed to be significant for ExPro cohort (Fig. 2d). These
observations clearly indicated that GSP features, which measure
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correspondence between functional activity and structure, can
link serum NfL levels to specific brain regions in a specific
context. Additional experiments also indicated that the associa-
tion of low graph frequency features from isthmus cingulate and
parahippocampal areas in the right hemisphere and high graph
frequency features from transverse temporal and lingual areas
with serum NfL were different in the two cohorts, thus, implying
distinct structure-function coupling profiles for serum NfL in HC
and ExPro cohorts (see Supplementary Note 2).

In PLSR analysis, we followed a cross validation procedure for
each cohort to investigate the within cohort prediction performance
of GSP features. Based on this cross validation, the GSP features
predicted 42.26% variance in serum NfL for the HC cohort. The 20
PLS models were evaluated in the leave-one-out cross validation
procedure. From these models, we observed that the low graph
frequency feature from isthmus cingulate in the right hemisphere
was the most robust predictor for serum NfL in the HC cohort, as it
was selected as a predictor in the best performing non-overfitted
PLS model in every iteration of cross validation. The low graph
frequency feature from parahippocampus in the right hemisphere
was the next most robust predictor in this cohort. The robustness of
different GSP features as predictors for the HC cohort is depicted in
the form of a carpet plot in Fig. 3a whose elements indicate the
presence of a GSP feature in the best PLS model for every subject. A
histogram of the number of subjects for whom the GSP feature was
selected as part of the best predicting model is pictorially projected
onto a standard cortical surface template in Fig. 3b, c. The
distributions of the weights associated with these features are shown
in Supplementary Note 3 and Supplementary Fig. 2 (source data
available in Supplementary Data 16).

For the ExPro cohort, the GSP features predicted 37.34%
variance in the serum NfL based on cross validation. The 36 PLS
models were evaluated in the leave-one-out cross validation
procedure. From these models, the low graph frequency features
from superior temporal and posterior cingulate areas and high
graph frequency feature from entorhinal in the right hemisphere,
and high graph frequency features from transverse temporal,
superior temporal, middle temporal, lingual, and parahippocampus

areas in the left hemisphere were the most robust predictors for
serum NfL in this cohort. The robustness of different GSP features
as predictors of serum NfL in this cohort is depicted by the carpet
plot in Fig. 3d and the histogram is pictorially represented in Fig. 3e,
f. The distributions of the weights associated with these features are
shown in Supplementary Note 4 and Supplementary Fig. 3 (source
data available in Supplementary Data 17). Note that the brain areas
revealed to be most robust as predictors of serum NfL in HC and
ExPro cohorts (Fig. 3) are consistent with those strongly associated
with serum NfL (Fig. 2).

We also investigated the variance explained by a PLS model
when trained either on the whole HC cohort or the whole ExPro
cohort. Our experiments indicate that each PLS model explains
more than 50% of the variance in serum NfL for its respective
cohort without overfitting (see Supplementary Figs. 4, 5 and
associated discussions in Supplementary Note 5).

We also note that the PLSR models trained on the GSP features
from the complete HC cohort did not have any significant
predictive ability for serum NfL levels for the ExPro cohort.
Conversely, a PLSR model trained on the GSP features from data
from all ExPro subjects predicted only 8.9% variance in the serum
NfL levels for HC subjects. When the subjects of the two groups
were combined to form a single dataset, the GSP features did not
explain any significant variance in serum NfL levels. These
observations reflect that there was a significant heterogeneity in
the brain imaging features extracted from the two cohorts and
that, while we could identify GSP features (and their associated
brain regions) linked to serum NfL levels within each cohort, the
variance in serum NfL levels was not explained by the same set of
GSP features across the two populations. This was not
unexpected, as TBI is linked to a variety of structural and
functional changes in the brain and to elevated serum NfL levels.
Moreover, the Kendall’s tau coefficient between the VIP scores for
the PLSR models (available in Supplementary Data 19) for the
two groups was −0.04, indicating that there was no significant
consistency between how the GSP features ranked in terms of
their relevance to the prediction of serum NfL levels across the
two groups. These observations implied that the prediction

Fig. 1 Pipeline for statistical analysis for serum NfL levels and GSP-based features. Brain imaging data (structural (dMRI) and functional (resting state
fMRI)), age, and serum NfL levels were recorded for every subject in the cohorts of 20 healthy subjects and 36 former athletes. For each subject, the dMRI
and fMRI were pre-processed to extract the structural connectome (in the form of a 66 × 66 adjacency matrix for 66 cortical brain areas) and BOLD signal
(in the form of a time series of length 308 seconds at each brain area considered), respectively. Subject-specific graph filters derived from the eigen-
decomposition of the structural connectome were constructed and used to extract different graph frequency components of the BOLD time series for all
subjects. The energies (EHI and ELO, evaluated by ‘2 norm) of the different graph frequency components at different brain areas were investigated (energies
of 2 graph frequency components per area for 66 brain areas per subject, i.e., 132 GSP-based predictors) for association with serum NfL levels using
univariate feature selection (UFS), and their prediction power evaluated using a rigorous statistical analysis of PLS regression models.
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Fig. 2 Univariate feature selection. GSP features with uncorrected p-value < 0.05 and corresponding F-values obtained by linear regression based
univariate feature selection for a HC cohort and d ExPro cohort. Higher F-value corresponds to a more significant linear association between GSP feature
and serum NfL. Features with corrected p-value < 0.05 after FDR correction for multiple tests are marked with asterisks (*). Panels b, c plot the F-values for
the low and high graph frequency features on a template cortical surface for HC cohort. Panels e, f plot the F-values for the low and high graph frequency
features on a template cortical surface for ExPro cohort.
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performance of PLS models was not transferable across the
groups (see Supplementary Note 6 for additional discussions).

Clinical and neurological interpretations of GSP features. We
focused our subsequent analysis on the set of features that were
deemed of interest by our experiments under both inference and

prediction paradigms of analysis. In this context, the low graph
frequency features from isthmus cingulate, superior frontal, and
posterior cingulate areas in the right hemisphere, and high graph
frequency features from transverse temporal, superior temporal,
middle temporal, lingual, and parahippocampus areas in the left
hemisphere and entorhinal in the right hemisphere were chosen.
Recall that high and low graph frequency features for a brain
region relate to the coupling between the functional activity and
underlying white matter anatomy (see Supplementary Fig. 1 for
an example of different graph frequency components of BOLD
data). Since some of these features also showed group differences
in terms of their associations with serum NfL in the two cohorts
(see Supplementary Note 2), we conjectured that these GSP fea-
tures may have distinct characteristics in the two cohorts, and
therefore we analyzed them in both cohorts for subsequent
experiments. However, the association of these GSP features with
serum NfL in the previous experiments did not imply their
relevance to association between serum NfL and age, personality
scores or structural measures investigated in the analyses that
follow.

GSP features complement and are independent of age in predicting
serum NfL levels. In this set of experiments, we explored the
relationships among age, serum NfL levels and GSP features. We
hypothesized that aging was a causal factor that affected a subset
of GSP features and serum NfL levels across the two groups, and
therefore it was treated as a confounding variable. We observed
that serum NfL was significantly correlated with the low graph
frequency GSP features from isthmus cingulate (ρ = 0.5425, FDR
corrected p-value = 0.04) in the right hemisphere after correction
for age, which indicated that this brain area had a significant
association with the serum NfL levels independent of age in the
HC group.

The statistics for mediation analysis for testing the mediation
of the low graph frequency feature from isthmus cingulate in the
right hemisphere on association between age and serum NfL are
summarized in Table 2, where the coefficient of path “a” is a

Fig. 3 Robustness of GSP features as predictors. a, d show the carpet
plots illustrating the presence of GSP features in the best performing model
in the leave-one-out cross validation process for predicting serum NfL for
every subject when it was excluded from the training of model. Each row
corresponds to a subject, identified by row ID where HC-X refers to subject
X in HC cohort in a and ExPro-Y refers to subject Y in ExPro cohort in d.
The column IDs are associated with GSP features present in the best
performing models for 8 or more subjects in the HC cohort in a and 18 or
more subjects in the ExPro cohort in d. Frequency of GSP features
associated with different brain areas in the cross-validation models is
plotted on the template cortical surface for HC subjects in b, c and for ExPro
subjects in e, f.

Table 2 Statistics for mediation analysis between age and
serum NfL with GSP feature from right isthmus cingulate as
mediator variable for HC subjects.

Coefficient Std. error p value
(uncorrected)

Path a −0.05 0.01 0.0038
Path b −2.20 0.84 0.0001
Path c’ (adjusted effect) 0.16 0.06 0.0292
Mediation (ab) 0.11 0.03 0.0014
Path c (total effect) (age ->
serum NfL)

0.2658 0.0646 0.0012
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measure of the association between age and the mediator variable,
i.e., GSP feature from isthmus cingulate, the coefficient of path
“b” is a measure of association between serum NfL and the
mediator variable, the coefficient path “c” is a measure of the
direct effect of age on serum NfL when adjusted for the mediator
variable, and the coefficient of path “ab” is a measure of the
indirect effect of age on serum NfL via the mediator variable.

Mediation analysis revealed that the low graph frequency from
the right isthmus cingulate had a significant partial mediating
effect (based on significance of path ‘ab’, FDR corrected p value =
0.0098) on the association between age and serum NfL (see
Fig. 4a). Clearly, all paths and the mediation effect were
statistically significant (p value < 0.05, Table 2) and the coefficient
for adjusted effect, i.e., path “c′” was smaller than that for total,
unmediated effect, i.e., path “c′” between age and serum NfL.
From the observations in the mediation analysis and partial
correlation analyses, we conclude that the low graph frequency
feature from isthmus cingulate in the right hemisphere captured
age-independent variation in serum NfL for HC group and also
partially explained the association between serum NfL and age in
HC subjects.

For the ExPro group, we observed that the low graph frequency
feature associated with the posterior cingulate area in the right
hemisphere did not have a significant correlation (p value > 0.05)
with serum NfL levels when age was used a confounding variable.
Furthermore, mediation analysis revealed no mediating effect for
these GSP features on the relationship between age and serum
NfL in the ExPro group. However, serum NfL levels had
significant partial correlation with the high graph frequency
features associated with the parahippocampus (ρ= 0.4564, FDR
corrected p value= 0.009), left transverse temporal area
(ρ= 0.475, FDR corrected p value= 0.016) and right entorhinal
area (ρ= 0.407, FDR corrected p value= 0.028) when corrected
for age. Furthermore, the GSP features from entorhinal in the
right hemisphere and transverse temporal from the left hemi-
sphere showed evidence of partial mediating effects on the
relationship between age and serum NfL (see Supplementary
Tables 1, 2). Therefore, our results suggest that the GSP features
captured the variation in serum NfL levels in both groups that
were independent of aging.

Thus far, we have established the utility of GSP features in
predicting serum NfL in the two groups. However, our
experiments indicate that the predictive performance of the
group-specific models in Fig. 3 does not translate across groups.
Since aging was a common factor that had an impact on serum
NfL for both groups, we also performed an exploratory analysis
aimed at building a model that had a significant prediction
performance for serum NfL levels across the two groups by
leveraging GSP features associated with age (see Supplementary
Note 7 and associated results in Supplementary Tables 3, 4). In
these experiments, we observed that a linear model with the low
graph frequency feature from isthmus cingulate in the right
hemisphere as the predictor and serum NfL as the response
variable predicted a significant amount of variance in serum NfL
for HC group (35.9%) when the model was trained using data
from ExPro group.

GSP features in NfL prediction models are associated with per-
sonality scores in healthy controls. In this set of experiments, we
evaluated the association of high and low graph frequency fea-
tures observed to be relevant for serum NfL in the two cohorts
with the PAI, which assesses a subject’s personality and
psychopathology56. We focused our subsequent analysis only on
the personality scores that were significantly different in the two
groups and considered valid for TBI, namely the Aggression and
Depression subscales. We used raw scores for our analysis, and
similar observations were made when scores were T-normalized.
We did not observe significant associations between GSP features
and Depression subscale scores. In contrast, our experiments
showed several differences in the association of PAI scores on
Aggression subscale (referred to as PAI Aggression score in the
rest of the paper) with GSP features in the two cohorts. Therefore,
in this section we present the results only from aggression.

Fig. 4 Clinical and neurological interpretations for GSP features based on
mediation and moderation analyses. (** p value < 0.01, * p value < 0.05, all
p values were FDR corrected for multiple comparisons) a Mediation path
diagram with GSP feature as mediator, age as predictor and serum NfL level
as the dependent variable. Partial mediation effect (significance determined
by p value of path “ab”) was observed for low graph frequency feature for
isthmus cingulate in right hemisphere (low r-iCg) for HC cohort.
b Mediation path diagram for HC subjects with age as predictor, PAI
Aggression score as dependent variable and iCg GSP feature as the
mediator. The indirect path of age on aggression score through the
mediator was opposite to the direct effect (see Table 3 for details).
Therefore, this GSP feature was observed to have a “suppression” or
inconsistent mediation impact on the relationship between age and
aggression score for HC subjects. c This panel plots cortical thickness of
pericalcarine area in the right hemisphere versus the low graph frequency
feature from isthmus cingulate (iCg) area in right hemisphere for ExPro
cohort. This GSP feature was positively correlated with the cortical
thickness of pericalcarine area in both hemispheres for ExPro subjects (ρ =
0.482, FDR corrected p-value = 0.0238) when adjusted for age. d This
panel illustrates moderation analysis for serum NfL on the relationship
between the volume of right amygdala and r-iCg feature in ExPro subjects.
mNfL and sdNfL are the mean and standard deviation of serum NfL. Larger
slope for mNfL+ sdNfL line indicates that subjects with high serum NfL had a
higher volume in right amygdala as a function of the r-iCg feature as
compared to those with average serum NfL (mNfL line) and low serum NfL
(mNfL–sdNfL line).

Table 3 Statistics for mediation analysis between age and
PAI Aggression score with GSP feature from right isthmus
cingulate as mediator variable for HC subjects.

Coefficient Std. error p value
(uncorrected)

Path a −0.052 0.0139 0.0035
Path b 4.353 1.217 0.0032
Path c’ (adjusted effect) 0.2193 0.0806 0.0029
Mediation (ab) −0.2326 0.0961 0.0122
Path c (total effect) (age->PAI
Aggression score)

−0.0133 0.0988 0.9761

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-021-00065-5 ARTICLE

COMMUNICATIONS MEDICINE |             (2022) 2:8 | https://doi.org/10.1038/s43856-021-00065-5 | www.nature.com/commsmed 9

www.nature.com/commsmed
www.nature.com/commsmed


We observed that PAI Aggression score was positively
correlated with the low graph frequency feature from isthmus
cingulate (ρ= 0.7052, p value= 7.45e–4) for HC subjects but not
for ExPro subjects (ρ= 0.1873, p value > 0.05) when age was used
as a covariate. These observations indicated that higher PAI
Aggression score was associated with a stronger structure-
function coupling in the isthmus cingulate area in the right
hemisphere for HC cohort. Notably, for ExPro subjects, we also
observed a statistically significant partial correlation between
serum NfL and PAI Aggression scores after correction for age
(ρ=−0.44, p value= 0.0076). No relationship was observed
between serum NfL and PAI aggression scores in HC subjects.
The lack of correlation between serum NfL and PAI aggression
score in HC cohort as compared to the significant positive
correlation among the ExPro cohort merits further neurological
exploration, which was not the focus of this work. However, the
concurrently observed decreased correlation between the GSP
feature from isthmus cingulate and PAI aggression score in ExPro
cohort in our experiments corroborates the relevance of GSP
features in understanding the brain mechanisms behind aggres-
sion and differentiation of serum NfL levels in the two
populations.

We observed that the PAI Aggression score had no correlation
with age (absolute correlation <0.05) in HC subjects. However,
when the correlation was corrected for the low graph frequency
feature from isthmus cingulate, we observed a positive partial
correlation between age and PAI Aggression score in this cohort
(ρ= 0.4866, uncorrected p value= 0.0346) which indicated
potential suppression effect of the GSP feature from isthmus
cingulate, i.e., reflected the canceling out of the positive direct
effect of age on aggression score through an indirect path linking
aging to the GSP feature from isthmus cingulate. To test this
interpretation, we performed mediation analysis for HC subjects
with age as a predictor, PAI Aggression score as the dependent
variable and low graph frequency feature from isthmus cingulate
in right hemisphere as mediator. We observed that the low graph
frequency feature from isthmus cingulate indeed had a significant
inconsistent mediating effect or suppression effect (uncorrected p
value for indirect path= 0.0122, FDR corrected p value= 0.0787)
on the association between age and PAI Aggression score (see
Fig. 4b and Table 3).

While exploring the causal association of GSP features with the
personality traits in the two cohorts was not the focus of this
paper, our observation regarding the suppression effect on
aggression score by a GSP feature which was negatively correlated
with serum NfL indicates that there may exist a novel pathway
using GSP features to assess interplay between neurodegeneration
and personality and could contribute to the understanding of
psychopathology.

GSP features are associated with structural measures. We explored
the association of the GSP features with structural measures
including volumes and thickness of different cortical regions.

Cortical thickness: There was no statistically significant
difference in the cortical thickness of different regions in the
two cohorts. We observed that for the HC cohort, the thickness of
pericalcarine region in the right hemisphere was negatively
correlated with serum NfL (partial correlation with correction for
age, ρ=−0.622, p value= 0.003), which was in line with our
hypothesis that cortical thickness may be negatively correlated
with serum NfL. The significant correlation after correction for
age indicated that this association may not be driven by aging in
HC cohort. We did not observe any other cortical thickness
measures to be correlated with serum NfL for ExPro or HC
subjects at 0.01 significance level (uncorrected). Interestingly,
cortical thinning of pericalcarine region is linked with impulsive

and risky tendencies in the existing studies39 which characterize
the behavioral impacts of TBI. Therefore, we further investigated
the association of the pericalcarine thickness with serum NfL and
GSP features in both cohorts.

For HC subjects, a non-significant positive correlation was
observed between the cortical thickness of pericalcarine region in
the right hemisphere and the low graph frequency feature from
isthmus cingulate in the right hemisphere (ρ= 0.357, p value=
0.1335). Since serum NfL is a marker of neurodegeneration, we
hypothesized the cortical thickness of pericalcarine to be a causal
factor for variation in serum NfL levels. The mediation analysis
hinted at a partial mediation effect for the low graph frequency
region from isthmus cingulate in the right hemisphere on the
association between the cortical thickness of pericalcarine region
and serum NfL (see Supplementary Note 8 and Supplementary
Table 5).

The low graph frequency feature from isthmus cingulate in the
right hemisphere was more significantly correlated with the
cortical thickness of pericalcarine area in right hemisphere for
ExPro subjects (ρ= 0.482, FDR corrected p-value= 0.0238) than
the HC subjects when adjusted for age (see Fig. 4c). Therefore, the
association of pericalcarine thickness with the low graph
frequency feature from isthmus cingulate in both cohorts must
be further explored. We also remark that we observed significant
correlation between the low graph frequency feature from caudal
anterior cingulate in the right hemisphere and cortical thickness
of postcentral area in both hemispheres for ExPro subjects
(Supplementary Note 10 and Supplementary Fig. 6). This GSP
feature was the third most significantly associated GSP feature
with serum NfL for HC cohort (Fig. 2a).

Subcortical volumes: Volume of amygdala in right hemisphere
had significant negative correlation with age (ρ = −0.6574, p
value = 1.37e-5) and serum NfL (ρ = −0.4194, p value = 0.0109)
for ExPro subjects but not for HC subjects. We further observed
that the volumes of right amygdala did not have a significant
correlation with serum NfL for ExPro subjects when age was used
as a covariate. Volume of amygdala in the left hemisphere was
significantly associated with age (ρ = −0.3926, p value = 0.0179)
for ExPro subjects but not for HC subjects. No significant
association with serum NfL was observed for volume of amygdala
in the left hemisphere for either cohort. We hypothesized that
aging was the driving factor behind the change in volume of
amygdala in both hemispheres for ExPro subjects. We focused
our subsequent analysis only the volume of amygdala in the right
hemisphere since it was observed to be relevant for serum NfL in
ExPro subjects.

We tested the association of aging related GSP features in the
cingulate gyrus with the volumes of right amygdala in both
cohorts. Our experiments revealed that the low graph frequency
feature from isthmus cingulate in the right hemisphere had a
significant positive correlation with the volume of right amygdala
for ExPro subjects (ρ = 0.4597, uncorrected p value = 0.0048,
FDR corrected p value = 0.0336).

Our analysis revealed that serum NfL moderated the interac-
tion between the volume of right amygdala and the low graph
frequency feature from isthmus cingulate in ExPro subjects (see
Fig. 4c and Table 4). Specifically, the rate at which volume of right
amygdala increased as a function of the low graph frequency
energy in isthmus cingulate for subjects increased with increasing
serum NfL levels in the population. Notably, age did not have a
similar moderating effect as serum NfL, thus disassociating the
interpretation of serum NfL levels from aging in ExPro cohort.
Similar observations were not present in the context of HC
subjects. Interestingly, reduced amygdala volume has been linked
with increasing aggressive tendencies in both healthy subjects and
pathological contexts31,40.
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Additional experiments also showed significant association of
the volume of choroid plexus with serum NfL and the low graph
frequency feature from posterior cingulate in the right hemi-
sphere in the ExPro cohort. We have discussed these observations
in Supplementary Note 9 and Supplementary Table 6. While the
analysis of choroid plexus is relevant in the context of studies of
neurodegenerative diseases57,58, this structure is not known to be
relevant to the functional connectome, and so the spuriousness of
these relationships could not be ruled out.

Discussion
The current study and results add a new dimension to the ana-
lysis of serum NfL levels in the context of traumatic brain injury
and, by association, neurodegenerative diseases by demonstrating
that brain activity patterns decomposed over the brain’s structure
are partially explanatory and predictive of serum NfL levels in
two distinct cohorts. For each cohort, we observed a convergence
between the findings from inference and predictive paradigms of
the statistical analyses. Our results showed that the low graph
frequency feature from isthmus cingulate in the right hemisphere
(which is positively correlated with structure-function coupling in
this area) had the strongest association and most robust pre-
dictive performance for serum NfL in healthy controls. In con-
trast, the low graph frequency features from superior frontal and
caudal anterior cingulate in the right hemisphere and high graph
frequency features from temporal lobe and lingual in the left
hemisphere (which are negatively correlated with structure-
function coupling in the corresponding areas) had both the
strongest association and predictive relevance for serum NfL in
the ExPro cohort. Therefore, our analyses clearly established the
significance and heterogeneity of neuroimaging biomarkers
associated with serum NfL in two different populations with
similar serum NfL levels.

Our findings further allow the possibility of mapping variation
in brain structure and functional networks beyond what is
expected by normal aging onto the variation in serum NfL levels
among different cohorts of patients. For both healthy controls
and former athletes, we investigated whether the GSP features
mediated the relationships between age and serum NfL. Age-
related atrophy in both cortical and white matter is well
established59,60. Therefore, it was expected that age had predictive
capacity of serum NfL levels. Moreover, existing studies show that
different brain areas may exhibit different levels of coupling
between the brain’s functional activity and structure28. Analyzing
how white matter alterations during normal aging characterize
the variation in the conformity of brain area BOLD signals to
underlying anatomical connectivity was beyond the scope of this
study. However, such an analysis is warranted to examine the
specific roles different brain areas have in the association between
their GSP features and serum NfL levels in the PLSR model, and
to disambiguate the causal ordering of changes in conformity of

BOLD to brain connectivity. Accelerated and distinct changes in
brain networks are often observed in the context of different
neurological disorders. For instance, the limbic system has been
shown to be affected in TBI61 and various other disease contexts,
such as Parkinson’s disease62, dementia63, and depression64. Our
results show an association of multiple brain areas of the limbic
system, such as the cingulate gyrus, the parahippocampal gyrus
and the amygdala with serum NfL levels, which in turn varies in
the aforementioned pathological contexts. Interestingly, our
results show that regions in the cingulate gyrus exhibit different
characteristic relationships with serum NfL levels and aging in the
two groups. This study is the first to our knowledge that combines
structural connectivity, functional networks and serum NfL levels
to extend today’s blood biomarkers towards including neuroi-
maging features. It follows then that, by way of example, if our
results are shown to generalize for other cohorts, the diagnosis of
neurodegeneration in a new patient might be facilitated by
identifying those GSP features obtained from their neuroimaging
data that are most strongly associated with their serum NfL levels
and then determining if these features constitute a normal age-
associated correlation or a pathological association.

Although not the primary focus of our paper, our analyses of
scores from the PAI and structural measures further supple-
mented the roles of GSP features from the limbic system beyond
serum NfL prediction to clinical observations in the two cohorts.
In healthy controls, the low graph frequency energy from isthmus
cingulate was associated with the PAI aggression subscale, which
reflects the utility of this GSP feature in further substantiating the
potential for temper and aggressive behavior-related complica-
tions in clinical treatment planning65. Our statistical analyses
show that the GSP feature from isthmus cingulate reflected a
suppressing effect on the causal relationship between age and
aggression in HC subjects. Specifically, our mediation analysis in
HC subjects revealed that the low graph frequency feature from
isthmus cingulate (1) decreases with age and (2) is directly pro-
portional to an increase in aggressive behavior when regressed to
PAI Aggression score jointly with age, therefore implying a
negative effect on aggression score by age via the path through the
low graph frequency feature from isthmus cingulate in the right
hemisphere (i.e., paths “a” and “b” in Fig. 4b). This negative effect
through the mediated path negated the direct, increasing effect of
age on aggression in the HC cohort (path “c′” in Fig. 4b) and
resulted in a non-significant total effect of age on aggression
score. The above phenomenon was not statistically significant in
ExPro subjects.

Interestingly, the GSP feature from isthmus cingulate was
positively correlated with the volume of right amygdala in ExPro
subjects, and statistical analysis showed that this association was
moderated by serum NfL levels, i.e., higher serum NfL level
implied a steeper positive correlation. The amygdala is a critical
brain region responsible for processing emotional responses to
sensory stimuli in humans66 and is known to suffer volume loss
post TBI67. Studies also reported that the volume of right
amygdala plays a modulating role on the aggressive trait in
healthy subjects31 and reduction in amygdala volume is asso-
ciated with increasing aggressive behavior, which is of relevance
to various clinical contexts40. Since right amygdala volume was
negatively correlated with age and serum NfL in ExPro cohort but
not HC cohort, we propose that our findings suggest the
mechanism of modulating aggression may be overwhelmed in
ExPro cohort. This conjecture is supported in part by a larger
slope of variation in the GSP feature-right amygdala volume
curve for high serum NfL in Fig. 4d. Furthermore, if the previous
finding that a smaller right amygdala volume is a cause of
increase aggression also applies to the ExPro cohort in our study,
our observations suggest that the effect of aging on increasing

Table 4 Statistics for moderation analysis for interaction
between GSP feature from right isthmus cingulate and right
amygdala volume for ExPro subjects.

Coefficient Std. error p-value
(uncorrected)

Age −11.092 25.51 0.0003
Serum NfL 8.0921 7.35 0.27
r-iCg GSP feature 30.249 27.869 0.28
Interaction (serum NfL X
r-iCg feature)

16.495 5.51 0.0054

Intercept 1679.6 65.84 7.07e–35
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aggression is compounded by more significant physiological
changes in right amygdala in ExPro subjects. We hypothesize that
the distinction in the characteristics of low graph frequency
energy in isthmus cingulate in the two cohorts coupled with
physiological changes in right amygdala could partly predict the
higher aggressive tendencies in the ExPro cohort as compared to
the HC cohort. Note that we also observed a statistically sig-
nificant negative correlation between serum NfL and PAI
Aggression scores, which was independent of aging and coun-
terintuitive to the hypothesized effect of reduction in right
amygdala volume on aggressive behavior in the ExPro cohort.
This observation indicates the presence of a distinct suppression
mechanism on the aggressive behavior in the ExPro cohort
involving serum NfL that must be explored further.

The cortical thickness of the pericalcarine region in the right
hemisphere is another structural measure linked to aggressive
tendencies. Specifically, reduced pericalcarine thickness has been
reported to be linked with impulsive personality traits and
engagement in risky behaviors39, which are known possible after-
effects of TBI, potentially persisting for years67,68. Therefore, the
observed negative correlation between serum NfL levels and
pericalcarine thickness and positive correlation between the low
graph frequency energy from isthmus cingulate in the right
hemisphere for HC subjects were along expected lines. Serum NfL
is a marker for neurodegeneration and, therefore, the negative
correlation between serum NfL and pericalcarine thickness in HC
subjects was also expected. For both HC and ExPro cohorts, we
observed a positive correlation between pericalcarine thickness
and the low graph frequency energy from isthmus cingulate in the
right hemisphere. However, serum NfL did not have a significant
correlation with pericalcarine thickness in the ExPro cohort.
These observations suggest that the loss in pericalcarine thickness
may have contributed significantly to serum NfL levels only in
HC subjects, indicating that other factors may be at play in ExPro
cohort aside from normal aging.

Personality traits are known to correlate with neuropsychiatric
symptoms69 and their role in predicting cognitive health is an
ongoing area of research70. Therefore, our observations that GSP
features from isthmus cingulate predict serum NfL levels and
associate with structural measures linked to aggressive tendencies
provide proof-of-concept that using our methodology, GSP fea-
tures can refine blood biomarkers of neurodegeneration and
augment their interpretation in terms of personality traits and
cognition by enhancing understanding of causal pathways from
structural measures alone. The emphasis on the right isthmus
cingulate among our results needs to be replicated in a larger
cohort of subjects with a variety of neurological conditions
affecting the brain.

Additional analyses show that the GSP features in the limbic
system were correlated with several structural measures in the
ExPro subjects that may be indicative of pathological outcomes
reported in the existing studies. For instance, our experiments
showed that for ExPro subjects, the low graph frequency feature
from right caudal anterior cingulate region was associated with
cortical thickness of postcentral regions in both hemispheres,
which has been revealed as a metric of interest in veterans with a
history of TBI and post-traumatic stress disorder71. Furthermore,
additional experiments showed that the low graph frequency
feature of posterior cingulate is correlated with the volume of left
choroid plexus in ExPro subjects. The choroid plexus produces
CSF and is part of the post injury mechanism to promote healing
and stabilize cognitive processes71,72. In a wider context, the
degeneration of structure and function of choroid plexus can
contribute to cognitive deterioration in neurodegenerative
diseases57,58. Although the existing studies suggest the impor-
tance of exploring choroid plexus as a region of interest in

different contexts, we remark that the results involving the
choroid plexus volume in our study could potentially be affected
by inaccuracy of choroid plexus segmentation by the Freesurfer
package, particularly in the ExPro cohort. We conjecture that if
valid, the changes in left choroid plexus volume observed in our
experiments are linked to aging related variation in serum NfL in
ExPro subjects and these findings merit further investigation.

In summary, our results suggest that both low and high graph
frequency features jointly provide key insights into the variance in
serum NfL levels among healthy control subjects and former
athletes with a history of concussion than does age alone. Inter-
estingly, deviations in the signs of the associations between serum
NfL levels and the high graph frequency energy of the right
paracentral area and low graph frequency energy of the left
pericalcarine area from their hypothesized behavior reaffirms that
structural anatomy may be an incomplete determinant of func-
tional activity in brain networks73,74, which our results indicate
even for resting state brain activity (see Supplementary Note 2).
Relationships of GSP features with volume measures and cortical
thickness of various brain regions revealed several associations of
GSP features with metrics of significant interest among clinical
and pathological studies of TBI. Further analysis may provide
additional information regarding changes that brain networks
normally undergo with age versus those due to other factors such
as concussion, thus leading to variations in serum NfL levels.

Data availability
The neuroimaging data that supports the findings of this study is subject to confidentiality
agreement and the patients have not consented to public release of their data. Access to the
neuroimaging dataset can be requested to M.C.T. (Carmela.Tartaglia@uhn.ca). GSP features
extracted from neuroimaging data and serum NfL levels for HC and ExPro cohorts that
support the results in Figs. 2, 3 are provided as Supplementary Data 1,2,3, and 4. The age data
for HC and ExPro cohorts are available in Supplementary Data 5 and 6. PAI aggression scores
for HC and ExPro cohorts are available in Supplementary Data 7 and 8. Cortical thickness
data for HC and ExPro cohorts are available in Supplementary Data 9 and 10. Source data
files for Fig. 2a–c are available in Supplementary Data 12, for Fig. 2d–f are available in
Supplementary Data 13, for Fig. 3a–c are available in Supplementary Data 14, and for
Fig. 3d–f are available in Supplementary Data 15. Source data for Fig. 4a is available in
Supplementary Data 1, 3, and 5. Source data for Fig. 4b is available in Supplementary Data 1,3,
and 7. Source data for Fig. 4c is available in Supplementary Data 2 and 10. Source data for
Fig. 4d is available in Supplementary Data 2, 4, and 11.

Code availability
The code to reproduce the analysis and figures in this paper is written in Matlab, python
and R. The univariate feature selection was performed using scikit-learn package in
python49. PLSR analysis and moderation analysis were performed using inbuilt functions
in Matlab. Mediation analysis was performed using mediation toolbox from Wager
et al.55. The brain surface plots in Figs. 2 and 3 were generated using ‘fsbrain’ package in
R75. The code for univariate feature selection and PLSR analysis is available online76 at
https://doi.org/10.5281/zenodo.5651347.
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