Electron-Deficient Au Nanoparticles Confined in Organic Molecular Cages for Catalytic Reduction of 4-Nitrophenol

Yali Liu†, Hongliang Dong‡, Haowei Huang, Wei Zong†, Yue-E Miao†, Guanjie He‡, Ivan P. Parkin‡, Feili Lai*, Tianxi Liu†,*

1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China

2 Center for High Pressure Science and Technology Advanced Research Shanghai 201203, P. R. China

3 Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium

4 Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gorden Street, London WC1H 0AJ, UK

5 Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122, P. R. China
KEYWORDS: porous organic cage, metal nanoparticle, organic catalysis, 4-nitrophenol, pollutant degradation
ABSTRACT

Noble metal nanoparticles are regarded as one of the most promising catalysts to reduce the organic pollutant 4-nitrophenol (4-NP). However, inevitable agglomeration of noble metals nanoparticles and their poor distributions in catalytic systems limit their performance. Here, we propose a strategy to encapsulate Au nanoparticles inside porous organic cages (POCs) of soluble RCC3 and stabilize the size of Au nanoparticles at ~3.25 nm. Typically, the Au@RCC3 composite exhibits excellent 4-NP catalytic reduction performance, which is superior to the corresponding Au bulk catalyst and is also closely related to the size of Au nanoparticles. The normalized X-ray absorption near-edge structure (XANES) results indicate that the electron deficiency at the Au atoms in Au@RCC3 is due to the existence of RCC3 cage, which is beneficial to accelerating the electron transfer from BH$_4^-$ to 4-NP during the hydrogenation process. This is also shown by density functional theory (DFT), in which a low energy barrier of 1.03 eV exists for Au$_{12}$ cluster compared with 1.37 eV for Au$_{25}$ cluster. Therefore, the encapsulation of noble metal nanoparticles with soluble POCs is an effective way to design and develop stable active catalysts rationally.
1. INTRODUCTION

Nitrophenols are hazardous, non-biodegradable, and toxic compounds that cause many human diseases.1 As a typical nitro compound, 4-nitrophenol (4-NP) can be used as an intermediate in pesticides, dyes, and medicines.2 Due to its high water solubility and excellent chemical stability, 4-NP is easily enriched in living organisms and stays in the environment for a considerable time, leading to severe ecological problems and causing toxic or carcinogenic effects on humans and animals.3,4 As a result, it has been listed as one of the primary pollutants controlled by both China and the U.S. Environmental Protection Agencies (the concentration of 4-NP in water is not allowed to exceed 10 ng L-1).5 There is widespread attention on how to wisely and effectively remove 4-NP from wastewater.6

To date, various traditional methods have been developed to improve the efficiency of 4-NP removal from wastewater, such as adsorption,7 photocatalytic degradation,2 and oxidative degradation.8 However, these methods often suffer from high investment costs and long operation times and are susceptible to secondary contamination. Recently, the reduction of 4-NP to the less toxic and biodegradable 4-aminophenol (4-AP) with NaBH\textsubscript{4} has been reported to be an effective method for treating 4-NP.9 On the other hand, 4-AP is a widely used industrial material for preparing analgesic and antipyretic drugs, dyes, and antiseptic lubricants, which is of commercial importance.3 Therefore, the reduction of 4-NP to 4-AP plays a significant role in environmental protection and industrial application. At the same time, the method has the advantages of a simple operation process, mild reaction conditions, and complete conversion of 4-NP to 4-AP without the formation of byproducts.10-14 However, the reaction requires the addition of a catalyst to proceed. Therefore, it is of great significance to investigate catalysts that can be used for the effective degradation of 4-NP and formation of 4-AP.
To date, various heterogeneous and nanostructured catalysts have been developed and designed to reduce 4-NP into 4-AP, among which metal nanoparticles (MNPs) exhibit unique catalytic properties (especially in liquid phase systems) due to their high surface area-to-volume ratio and versatile electronic/geometric structures. Generally, the key point to modulate the catalytic activities of MNPs is by reducing their sizes, regulating their nanoscale morphologies, and modulating their microstructures. However, due to the high surface energy of ultrafine MNPs, they very easily coalesce into large particles with the generation of blocked surfaces, which makes catalytic activity and long-term stability drop sharply. To maintain the ultrafine size of MNPs and make the active sites as accessible as possible, two possible strategies have been proposed: (1) to protect ultrafine MNPs by using various stabilizers; however, these often prevent the diffusion of reactants to the MNPs, resulting in reduced catalytic activities; and (2) to find suitable supports with a high specific surface area to anchor MNPs; however, this approach is still restricted by the weak affinities between the MNPs and supports. Therefore, it is still a huge challenge to construct suitable MNP-support structures with both high stability and catalytic activity.

Since the discovery of organic molecular cages, the scientific community's research interest in these porous materials has steadily grown. Compared with most three-dimensional porous open frames, the vast majority of porous organic cages (POCs) possess very unique properties, which means they can be well dissolved in common organic solvents, with good stability and dispersibility. On the other hand, their excellent solubilities enable them to be well composited with various materials, which broadens their applications (e.g., small molecule separation, sensing, molecular components of polymers, and nanoparticle templates). Due to the inherent porous behaviors and guest-accessible cavities in POCs, the encapsulation of various MNPs inside POCs is a promising approach to developing stable and active catalysts. By
stabilizing MNPs in soluble and ultrasmall cages to construct MNPs@POC composites, thousands of ultrafine MNPs can be well confined in the cage cavities with a narrow size distribution, which could not only solve the problem of NP aggregation but also enhance the stability of the MNPs. As a result, the catalytic activity of MNPs@POC composites may be enhanced due to the isolated MNPs in the open and discrete cavities with abundant accessible metal active sites and high dispersibility in the solution.

In this study, we encapsulated a series of Au nanoparticles with POCs to reduce the size of the Au nanoparticles and facilitate the catalytic reduction reaction of 4-NP (vide infra). Taking the Au-5@RCC3 nanocatalyst as an example, its Au loading amount is 4.22 wt % with a particle size of ~3.25 nm and uniform distribution. This nanomaterial exhibits enhanced catalytic performance compared to the Au bulk. The reasons for the enhanced catalysis in Au-5@RCC3 were unveiled by the X-ray absorption near-edge structure (XANES) technology and density functional theory (DFT) calculations. Specifically, when the Au nanoparticles are are confined in the POCs, the Au nanoparticles will be lightly oxidized with the generation of electron deficiency in the Au atoms, leading to accelerated electron transfer from BH$_4^-$ to 4-NP during hydrogenation, which boosted the catalytic performance.

2. EXPERIMENTAL SECTION

2.1 Materials.

Except for 1,3,5-triformylbenzene (Zhengzhou Alpha Chemical Co. Ltd.), all other chemicals were purchased from Aladdin Reagent Co. Ltd and used as received.

2.2 Synthesis of CC3.

The synthesis of CC3 was carried out according to a previous method.47 First, CH$_2$Cl$_2$ (5 mL) was slowly added to solid 1,3,5-triformylbenzene (0.25 g) at room temperature without stirring.
Then, trifluoroacetic acid (5 μL) was added directly as a catalyst. Finally, a solution of (R,R)-1,2-diaminocyclohexane (0.25 g) in CH₂Cl₂ (5 mL) was added. The container of the mixed solution was covered and allowed to stand for one week. Crystals were grown on the side of the vessel, separated by filtration, washed with CH₃CH₂OH/CH₂Cl₂ (v/v, 95/5) solution, and dried under vacuum at 70 °C overnight.

2.3 Synthesis of RCC3.

RCC3 was synthesized according to a previous method.⁴⁸ The imine cage of CC3 (926 mg) was dissolved in a CH₃OH/CHCl₃ mixture (v/v, 1/1, 50 mL) to form a clear solution. Then, NaBH₄ (1.0 g) was added to initiate the reaction, which was further stirred at room temperature for 12 h. After adding 2 mL of deionized water, the solution was stirred continuously for 12 h. The solvent was then removed under vacuum. The resulting solid was washed with CHCl₃ (2 × 50 mL), and then the CHCl₃ phase was washed with deionized water (2 × 100 mL). The CHCl₃ phase was dried using anhydrous MgSO₄ before being removed under vacuum. RCC3 was purified by using the reversible reaction with acetone.⁴⁸ In a 100 mL flask, 400 mg of crude RCC3 was dissolved in 40 mL of acetone. The solution was covered and left to stand. Crystals started appearing on the wall of the flask after 30 min. Crystals (AT-RCC3) were collected after 24 h by filtration and then dissolved in 40 mL of CH₃OH/CHCl₃ mixture (v/v, 1/1) by continuous stirring. Deionized water (0.4 mL) was added to the solution, and the mixture was stirred for another 48 h. After the removal of the solvents, pure RCC3 was recovered.

2.4 Synthesis of Au@RCC3 catalyst.

Typically, 45.7 mg of purified RCC3 powder was stirred and dissolved in CH₃OH/CH₂Cl₂ mixed solution (v/v, 1/2, 18 mL). Subsequently, different amounts of AuCl₃ CH₃OH solution (4 mg/mL, 860 μL, 600 μL and 350 μL) were added to the mixed solution and stirred for 3 h to form
a homogeneous solution. Then, CH$_3$OH solutions containing different amounts of the reducing agent of NaBH$_4$ (51 mg, 36 mg and 21 mg) were immediately added to the solution under ice bath conditions and stirred for 3 h. After that, the products were removed from the solvent under vacuum, washed several times with deionized water, and vacuum dried at 70 °C overnight to obtain Au-7@RCC3, Au-5@RCC3 and Au-3@RCC3 catalysts.

2.5 Procedure for the reduction of 4-NP.

The reduction of 4-NP by NaBH$_4$ was chosen as a model reaction to test the catalytic activity of Au@RCC3 catalysts under ambient conditions. Typically, 2.5 mg of NaBH$_4$ was added to 4 mL of 4-NP (0.1 mmol L$^{-1}$) in CH$_3$OH/CH$_2$Cl$_2$ mixed solution (v/v, 1/2). A large amount of gas was immediately generated in the solution, and the color of the solution changed from light yellow to bright yellow with the shift of the absorption peak from 317 nm to 400 nm. After there is no generated gas in the solution, 0.2 mg of Au@RCC3 was added to the above mixed solution. After introducing the catalyst, the bright yellow solution gradually faded as the reaction proceeded. The catalytic hydrogenation process was monitored by UV-vis light measurements in the wavelength range of 250 - 500 nm. The rate constants for the reduction process were determined by measuring the change in the absorbance at $\lambda = 400$ nm as a function of reaction time.

2.6 Theoretical calculation details.

To understand the reduction pathway of 4-NP, density functional theory (DFT) calculations were performed by using the Vienna ab $initio$ simulation package (VASP).49,50 The ion-electron interactions were depicted by projector augmented waves (PAW) and the exchange and correlation potential described by the revised function of Perdew, Burke and Ernzerhof (revPBE)51 based on the generalized gradient approximation (GGA). In this work, $3 \times 3 \times 3$ Mamma k-point grids were used to sample the Brillouin zone for the supercell structures. Cutoff energy of 500 eV was adopted.
To avoid the interaction between neighboring slabs over the periodic boundary cell, the vacuum space was set to be at least 20 Å. The criteria of convergence were set to 1×10^{-5} eV and 0.01 eV/Å for the self-consistent field (SCF) and ion steps, respectively.

3. RESULTS AND DISCUSSION

To clarify the importance of Au nanoparticles size with catalytic activity, five Au models with different sizes (Au$_1$, Au$_{12}$, Au$_{18}$, Au$_{25}$, and Au$_{134}$) were constructed and anchored on a catalytically inert surface, as shown in Figure 1a. Notably, large Au clusters (e.g., Au$_{134}$ and Au$_{25}$) would result in severe nano-agglomeration due to the high surface energy in discrete Au atom, as well as a dramatically confined number of active sites for any catalytic processes. This phenomenon can also be proven from the perspective of density functional theory (DFT) calculations, where the corresponding density of states (DOS) of unsupported metal species with different sizes are shown in Figure 1b. It was found that decreasing the size of metal species is beneficial for changing the continuous metal valence band into relatively discrete electronic states and positively shifting the Fermi energy level (ε_F). As a result, a smaller metal cluster can facilitate its chemisorption to the adsorbates, which is due to the strong interactions between the adsorbate’s molecular orbitals and the s/d bands/states of metal clusters with abundant electron transfer from metal clusters to the antibonding orbitals of adsorbates, resulting in an enhanced catalytic process. Therefore, it proves to be an ideal strategy to boost the catalytic activity of Au-based catalysts by reducing their particle size.42,45
Figure 1. (a) Five representative Au models on a support from isolated Au atom (Au$_1$) and atomically dispersed nanoparticles (Au$_{12}$) to larger Au nanoparticles (Au$_{18}$, Au$_{25}$, and Au$_{134}$). (b) Schematic illustration for ideal density of states (DOS) of different Au models from isolated Au atom (left) to larger Au nanoparticles (right), where the DOS of the support was not taken into consideration.38,45

The amine cage RCC3 formed by the reduction of imine cage CC3 (more synthetic details of CC3 and RCC3 are provided in Figure S1) was used to confine and stabilize ultrafine Au nanoparticles. The structural characterizations for CC3 (Figure S2-S6) and RCC3 (Figure S7-S13) are provided in the Supporting Information. Attributed to the good solubility of RCC3 in organic solvents, various Au@RCC3 composites with different amounts of Au nanoparticles can be well-formed in a mixed solution of CH$_3$OH and CH$_2$Cl$_2$ (v/v, 1/2), as shown in Figures 2a and S14 (more details are provided in the Supporting Information). The solubility of Au@RCC3 with different Au loadings in CH$_3$OH/CH$_2$Cl$_2$ (v/v, 1/2) solvent was tested at room temperature. It can be found that with the increase of Au loadings, the solubility of Au@RCC3 decreases (Figure S15). This shows that the dispersibility of Au@RCC3 in the solvent is affected by Au loadings. As the scanning electron microscopy (SEM) images of various Au@RCC3 composites shown in Figures 2b and S16, the Au nanoparticles in RCC3 have negative effects on the spherical shape of RCC3 (Figure S12), where Au-5@RCC3 shows a uniform diameter distribution between 600 and
700 nm. The transmission electron microscopy (TEM) images of three Au@RCC3 (Figures 2c-d and S17) show that the average diameter of Au-3@RCC3, Au-5@RCC3, and Au-7@RCC3 are 2.9, 3.25, and 3.9 nm, respectively, which are all larger than the estimated pore size of the RCC3 cage (~0.7 nm). It demonstrated that the Au nanoparticles are confined inside by several RCC3 cages instead of single cage. Additionally, the energy-dispersive X-ray spectroscopy (EDS) elemental mappings (Figure 2e) and corresponding EDS spectrum (Figure S18) of Au-5@RCC3 composite further confirm the uniform distribution of Au inside RCC3 cages. The Au loadings in Au-3@RCC3, Au-5@RCC3 and Au-7@RCC3 composites are determined by thermogravimetric analysis (TGA, Figure S19) to be 2.43 wt %, 4.22 wt %, and 6.46 wt %, respectively. Through further analysis of TGA curves, we believe that Au@RCC3 composites can maintain good thermal stability in the air atmosphere below 300 °C without decomposition. The loadings of Au in three Au@RCC3 composites are also confirmed by the results from inductively coupled plasma emission spectrometry (Table S1). As the X-ray diffraction (XRD) patterns show in Figure 2f, various Au@RCC3 composites display broad peaks in the range of 10 - 30°, which are similar to the pattern of RCC3 cage. Meanwhile, it is easy to observe the pattern of Au nanoparticles (JCPDS No. 04-784) in Au-7@RCC3, without the detection of XRD pattern of Au nanoparticles in both of Au-3@RCC3 and Au-5@RCC3. This may be due to the poor dispersion of Au agglomeration outside the molecular cage of RCC3 in Au-7@RCC3. However, no pronounced diffraction peaks appear in Au-3@RCC3 or Au-5@RCC3, demonstrating the excellent dispersion of confined Au nanoparticles inside the molecular cage. The Fourier transform infrared (FTIR) spectra of various Au@RCC3 composites are almost the same as that of the RCC3 cage (Figure 2g), suggesting that the encapsulation of Au nanoparticle does not destruct the covalent bonds of RCC3. The signal at 3300 cm^{-1} and 1114 cm^{-1} indicated the existence of -NH₂- and -C-N-, respectively. The signals at
2926 and 2852 cm\(^{-1}\) indicate the existence of \(-\text{CH}_2\)-, and the signals at 1603 and 1448 cm\(^{-1}\) indicate the existence of \(-\text{C}≡\text{C}-\) in benzene ring. The structural preservations of RCC3 cages in various Au@RCC3 composites are also confirmed from their similar \(^1\text{H}\) and \(^{13}\text{C}\) nuclear magnetic resonance (NMR) spectra compared to that of RCC3 (Figures 2h and Figure S20). The peaks appearing at 3.83 and 3.61 ppm are assigned to the hydrogen signals in \(-\text{CH}_2\)- attached to the benzene ring. The peaks at 7.13, 2.23, and 0.95 - 1.98 ppm are assigned to the hydrogen signals in benzene ring, cyclohexane and \(-\text{CH}_2\)- attached to cyclohexane, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirms the existence of Au nanoparticles in Au-5@RCC3 with binding energies at 86.9 and 83.1 eV (Figure S21), corresponding to Au 4f\(_{5/2}\) and Au 4f\(_{7/2}\) of metal Au, respectively.\(^{52}\)

![Figure 2.](image)

Figure 2. (a) Schematic illustration of the encapsulation of Au nanoparticles with RCC3 cage. (b) SEM and (c) TEM image of Au-5@RCC3. (d) Histogram of particle size distribution of Au-5@RCC3. (e) TEM and corresponding EDS mappings of Au-5@RCC3. (f) XRD patterns, (g) FTIR spectra, and (h) NMR spectra of RCC3, Au-3@RCC3, Au-5@RCC3 and Au-7@RCC3.
To evaluate the catalytic activities of various Au@RCC3 composites, a hydrogenation reaction from 4-NP to 4-AP under a NaBH₄-contained liquid phase was selected and studied as an example. First, the reagent 4-NP solution shows a strong absorption peak at 317 nm from its Ultraviolet-visible (UV-vis) absorption spectrum (Figure S22), which positively shifts to 400 nm after adding reductant of NaBH₄ and forming the 4-NP ion. The NaBH₄ cannot reduce 4-NP to 4-AP alone without the existence of Au@RCC3 catalyst. After adding a certain amount of Au@RCC3 catalyst, the color of the solution quickly changed from bright yellow to colorless with the diminishment of the intensity of the absorption peaks at 400 nm. At the same time, a newly emerging absorption peak caused by the reaction product 4-AP appears at 300 nm, which could be used to quantificationally determine the catalytic efficiency of various Au@RCC3 catalysts. The complete hydrogenations of 4-NP to 4-AP in the presence of Au-3@RCC3, Au-5@RCC3 and Au-7@RCC3 catalysts require 24, 9, and 30 min, respectively (Figure 3b). A linear correlation between ln(Aₜ/A₀) and reaction time can be obtained using a proposed first-stage kinetic model (Aₜ and A₀ represent the absorbances of the interval and the initial phase of 4-NP ion, respectively). As shown in Figure 3c, the rate constant (k) of Au-5@RCC3 is 0.389 min⁻¹, which is higher than those of Au-7@RCC3 (k = 0.135 min⁻¹) and Au-3@RCC3 (k = 0.179 min⁻¹). Therefore, the Au-5@RCC3 catalyst has the best catalytic performance compared with the other two catalysts. This is because the Au-5@RCC3 has a moderate loading of Au nanoparticles, which makes it a larger number of active Au atoms (compared to Au-3@RCC3) and suppressive aggregation of Au nanoparticles (compared to Au-7@RCC3). Additionally, Au bulk was prepared as a counterpart with corresponding morphology and structure characterizations in Figure S23. The diffraction peaks of Au bulk in the XRD pattern (Figure S23a) are sharp and consistent with the Au phase. The SEM image (Figure S23b) shows that Au particles in Au bulk agglomerate severely without the
immobilization of RCC3 cage. Au bulk with large particle size becomes insoluble in the liquid phase, leading to a much lower k of Au bulk ($2.18 \times 10^{-3} \text{ min}^{-1}$) than the corresponding Au@RCC3 composites (Figure 3d). Additionally, RCC3 cage displays a negative catalytic performance, which is only used to adsorb the reagents (Figure 3d). Comparing with the turnover frequency (TOF) values of Au@RCC3, Au bulk, and RCC3 (Table S2), we find that the TOF value of Au-5@RCC3 is approximately 47 times higher than that of Au bulk. Meanwhile, Compared with the 4-NP reduction performance of other Au-based catalysts (Table S3), Au@RCC3 also has better catalytic performance. The stability and recyclability of Au-5@RCC3 are also examined using the reduction reaction of 4-NP. After recycled for six times, the Au-5@RCC3 catalyst still kept a high catalytic performance with stable activity (Figure 4e). The corresponding TEM image of the recovered material reveals that its average particle size (~3.5 nm) has increased slightly, which may be caused by the agglomeration of a tiny part of Au nanoparticles in Au-5@RCC3. These outcomes further approve that the finely dispersed Au nanoparticles are strongly attached to the porous architecture of organic cage and keep stable even after several catalytic cycles.
Figure 3. (a) UV-vis absorption spectra of 4-NP in CH$_2$Cl$_2$/CH$_3$OH (v/v, 2/1) in the presence of NaBH$_4$ without catalyst. (b) Comparative catalytic conversion of 4-NP over various Au@RCC3 catalysts, Au bulk and RCC3 at 298 k. (c) Plots of ln(A/A$_0$) of Au@RCC3 catalysts for the absorbance of 4-NP at 400 nm versus reaction time. (d) Plots of ln(A/A$_0$) of Au bulk and RCC3 for the absorbance of 4-NP at 400 nm versus reaction time. (e) Recyclability of Au-5@RCC3 during the hydrogenation of 4-NP at 298 k. (f) TEM image of Au-5@RCC3 after six cycles (inset: particle size distribution of Au nanoparticles).

To unveil the primary cause of the enhanced catalysis in Au-5@RCC3, the electronic properties of the Au-5@RCC3 and Au foil (reference sample) were evaluated by X-ray absorption spectroscopy (XAS). The normalized X-ray absorption near-edge structure (XANES) of the Au L$_3$ edge for Au-5@RCC3 with the reference sample of Au foil is shown in Figure 4a. The white line intensity of Au-5@RCC3 is much higher than that of Au foil, indicating electron deficiency of the Au atoms in Au-5@RCC3 due to the small size of Au nanoparticles inside the RCC3 cage. As a result, the lightly oxidized Au species originating from the interaction between RCC3 and Au NPs play a positive role in the reduction of 4-NP, which could be regarded as an electronic relay system to accelerate the electron transfer from BH$_4^-$ to 4-NP during hydrogenation, resulting in the better catalytic performance of Au-5@RCC3.
Figure 4. (a) Normalized XANES spectra at the Au L₃ edge of Au foil and Au-5@RCC3. (b) Hydrolysis mechanism of 4-NP to 4-AP on Au clusters of different sizes based on DFT calculations. The solid pink line shows the energetics with cluster-1 (Au₁₂), while the energetics with cluster-2 (Au₂₅) are shown as blue dotted lines. (c) Schematic diagram of the reaction pathways of 4-NP in Au₁₂ and Au₂₅ clusters.

Furthermore, the catalytic mechanism (size effect of Au nanoparticles) for the reduction of 4-NP in the presence of NaBH₄ was revealed by density functional theory (DFT) calculations on Au nanoparticles with different sizes, including Au₁₂ as cluster-1 (Au₁₂) and Au₂₅ as cluster-2 (Au₂₅). Despite the observation formation of the 4-NP ion during the experimental process, a protonated form of the phenolic group was applied for the following DFT calculations to maintain the neutrality of the simulated system. As the reaction center is located at the functional group of NO₂, the deprotonated phenolic group has a negative effect relative to the energy expected. For the reduction reaction from 4-NP to 4-AP, there are six steps in total. In detail, the hydride (H⁻) of NaBH₄ nucleophilically attacks the nitrogen atom to generate the NHO₂⁻ group as the first step. Then, 4-NP is generated after the dehydroxylation from the HNO₂⁻ group to NO group. A second due to the strong Brønsted acidity of HNO⁻ group, the NH₂O group of 4-hydroxyaminophenol is generated by the hydrolysis of the NHO⁻ group. After a third transfer of hydride from NaBH₄, the as-reduced intermediate of the NH₃O⁻ group is finally converted into the product of 4-AP by a further dehydroxylation process. For the two models of cluster-1 (Au₁₂) and cluster-2 (Au₂₅), the
energy values for the abovementioned steps are listed in Figure 4b and Table S4. In particular, the rate-determining steps for both cluster-1 (Au_{12}) and cluster-2 (Au_{25}) surfaces are the first transfer of hydride (HO-Ph-NO\textsubscript{2}* → HO-Ph-NO\textsubscript{2}H*) with energy barriers of 1.03 eV for cluster-1 (Au_{12}) and 1.37 eV for cluster-2 (Au_{25}). This significant energy difference between the two models indicates that the smaller nanoparticle favor hydride transfer for the reduction of 4-NP. This matches well with the prediction in Figure 1. This further indicates the importance of encapsulating MNPs with POCs to control their size and prevent clustering in the catalytic reaction.
4. CONCLUSIONS

In summary, we successfully confined ultrafine Au nanoparticles (~3.25 nm) inside porous organic cages to generate a Au-5@RCC3 nanocatalyst, which exhibits excellent catalytic reduction of 4-NP as compared to that of Au bulk. The performance enhancement originates from the dramatically reduced size of Au nanoparticles and good solubility of Au-5@RCC3 nanocatalyst in the reaction system, which can expose abundant active sites and facilitate the penetration of reagents during the catalytic process. As revealed by XANES results, the Au atoms in Au@RCC3 have been partially oxidized such that the electron-deficient state is beneficial for accelerating the electron transfer from BH$_4^-$ to 4-NP during the hydrogenation process. The DFT calculations further demonstrate that a decreased size of Au nanoparticles is beneficial for the reduction of 4-NP, where the Au$_{12}$ cluster shows a lower energy barrier of 1.03 eV compared with 1.37 eV for the Au$_{25}$ cluster. Therefore, our work provides guidance for the rational design of novel and efficient noble metal-based nanocatalysts by using porous organic cages as a matrix to stabilize ultrafine metal nanoparticles uniformly.

ASSOCIATED CONTENT

Supporting Information.

The Supporting Information is available free of charge at https://pubs.acs.org/doi/xx.xxxx/acsami.xxxxxx. Characterizations; Figure S1-S29: schematic illustration for the synthesis of RCC3 cage; SEM image of CC3; 1H NMR spectrum of CC3; XRD pattern of CC3; N$_2$ absorption/desorption isotherms of CC3, cumulative surface area and (inset) pore size distribution of CC3; Thermogravimetric analysis (TGA) profile of CC3; 1H NMR spectrum of RCC3; 13C NMR spectrum of RCC3; FTIR spectra of RCC3; XPS results of RCC3; XRD patterns of RCC3 cage with CH$_2$Cl$_2$ and the desolvated RCC3; SEM image of RCC3; TEM
image of RCC3; visual color change during the synthesis of Au-5@RCC3; solubility of Au@RCC3 in CH$_3$OH/CH$_2$Cl$_2$ (v/v, 1/2) solvents; SEM images of Au-3@RCC3, Au-5@RCC3 and Au-7@RCC3; TEM images and the corresponding particle size distribution of Au-3@RCC3 and Au-7@RCC3; the corresponding energy dispersive spectroscopy (EDS) spectrum of Au-5@RCC3; TGA profiles of three Au@RCC3 catalysts and RCC3; 13C NMR spectra of RCC3 and three Au@RCC3 catalysts; Au 4f XPS spectrum for Au-5@RCC3; UV-vis absorption spectrum of 4-NP in CH$_2$Cl$_2$/CH$_3$OH without NaBH$_4$ and any catalyst; XRD pattern of Au bulk, SEM image of Au bulk; catalytic hydrogenation of Au-7@RCC3; catalytic hydrogenation of Au-5@RCC3; catalytic hydrogenation of Au-3@RCC3; catalytic hydrogenation of Au bulk; catalytic hydrogenation of RCC3; UV-vis curves of 4-NP with known 4-nitrophenol ion concentration; tables summarizing mass ratios of C, H, N and Au in RCC3 and Au@RCC3 composites, TOF values of the catalysts for the hydrogenation reduction of 4-NP, the rate constant (k) of different catalysts for catalytic reduction of 4-NP, DFT calculated reaction energetics of each reaction step,

AUTHOR INFORMATION

Corresponding Authors

Tianxi Liu - State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

Feili Lai - Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium

Authors

Yali Liu - State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
Hongliang Dong - Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China

Wei Zong - State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

Yue-E Miao - State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

Haowei Huang - Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium

Guanjie He - Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gorden Street, London WC1H 0AJ, UK

Ivan P. Parkin - Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gorden Street, London WC1H 0AJ, UK

Tianxi Liu - Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China; https://orcid.org/0000-0002-5592-7386

Author Contributions

The manuscript was written through contributions of all the authors. All the authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest. †These authors contributed equally to this work.

ACKNOWLEDGMENT

We are grateful for the financial support from the National Natural Science Foundation of China (21674019), the Natural Science Foundation of Shanghai (20ZR1401400), the Shanghai Scientific and Technological Innovation Project (18JC1410600), the Program of Shanghai Academic Research Leader (17XD1400100), and the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program (LZB2021002). Theoretical work was carried out at the LvLiang Cloud Computing Center of China, and the calculations were performed on TianHe-2. We thank Y. Liu and Z. Zhang for their assistance and beamline 4B9A at the Beijing Synchrotron Radiation Facility (BSRF, Beijing, China).

REFERENCES

(4) Malengreaux, C. M.; Pirard, S. L.; Bartlett, J. R.; Heinrichs, B. Kinetic study of 4-nitrophenol photocatalytic degradation over a Zn²⁺ doped TiO₂ catalyst prepared through an environmentally

(12) He, Z.; Liu, R.; Xu, C.; Lai, Y.; Shan, W.; Liu, J. Black phosphorus hybridizing produces electron-deficient active sites on palladium nanoparticles for catalysis. *Applied Catalysis B:*
Environmental 2021, 285, 119775.

(20) Zhu, Y.; Fan, L.; Yang, B.; Du, J. Multifunctional Homopolymer Vesicles for Facile

(55) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. A
For Table of Contents Only