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Abstract 30 

Background: Central nervous system (CNS) lymphoma is a rare and aggressive non-Hodgkin 31 

lymphoma that might arise in the CNS (primary CNS lymphoma, PCNSL) or disseminates from 32 

a systemic lymphoma to the CNS (secondary CNS lymphoma, SCNSL). Dysregulated 33 

expression of micro RNAs (miRNAs) is associated with various pathological processes and 34 

miRNA expression patterns may have diagnostic, prognostic and therapeutic implications. 35 

However, miRNA expression is understudied in CNS lymphomas. 36 

Methods: Here, we performed expression analysis of 798 miRNAs in 73 CNS lymphoma 37 

samples, using the NanoString platform, followed by a detailed analysis, to identify potential 38 

novel biomarkers characterizing subgroups and to examine differences based on their primary 39 

and secondary nature, molecular subtype, mutational patterns and survival. 40 

Results: We described the general expression patterns of miRNAs across CNS samples and 41 

identified 31 differentially expressed miRNAs between primary and secondary groups. 42 

Additionally, we identified 7 more miRNAs associated to  with a molecular subtype and 25 43 

associated with to mutation status. Using unsupervised clustering methods, we defined a small 44 

but distinct primary sample group, with characteristically different expression patterns 45 

compared to the rest of the samples. Finally, we identified differentially regulated pathways 46 

between conditions and assessed the utility of miRNA expression patterns in predicting 47 

survival. 48 

Conclusions: Our study provides the basis of future research on central nervous system 49 

lymphomas, and proves the importance of specific miRs and pathways in their pathogenesis. 50 

 51 
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 53 

Background 54 

Central nervous system (CNS) lymphoma is a rare and aggressive non-Hodgkin lymphoma that 55 

either arises in the CNS structures (primary CNS lymphoma, PCNSL) or disseminates from a 56 

systemic lymphoma to the CNS (secondary CNS lymphoma, SCNSL). Histologically, it 57 

predominantly manifests as a diffuse large B-cell lymphoma (DLBCL). CNS lymphomas 58 

remain a significant challenge to treat effectively as their molecular pathogenesis is not well 59 

understood [1-4]. 60 

Both from a therapeutic and prognostic point of view, it is becoming increasingly important to 61 

precisely define the molecular subtype of DLBCLs into germinal center B-cell (GC) type, 62 

activated B-cell (ABC) type or “unclassified” (UC) cases, as described by Alizadeh et al. [5]. 63 

Patients in the ABC-type DLBCL group show an inferior outcome [5, 6] compared to the other 64 

types. The fundamental difference in biology including oncogenic pathways and mutation 65 

targets between GC- and ABC-type DLBCLs is also reflected in the different efficacy of novel 66 

targeted therapies between these subgroups [7, 8]. A more precise, gene expression expression-67 

based molecular subtype assignment can be achieved from formalin-fixed paraffin embedded 68 

(FFPE) tissue using the NanoString Lymphoma Subtyping Test (LST) assay (NanoString 69 

Technologies, Inc., Seattle, USA) compared to the standard immunohistochemical (IHC) 70 

methods. The NanoString assay also demonstrates a better concordance with the gold-standard 71 

Affymetrix approach [9]. 72 

The discovery of microRNAs (miRNAs, miRs) has opened a new field for unraveling and 73 

therapeutically targeting diseases. These small non-coding RNAs regulate diverse biological 74 

processes through post-transcriptional gene expression modulation. Based on their seed 75 

sequence, miRNAs bind to multiple target mRNAs, thereby promoting their degradation or 76 

inhibiting translation [10-12]. Dysregulated expression of miRNAs is associated with a myriad 77 
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of pathological processes including hematological malignancies [13, 14], and distinct miRNA 78 

expression patterns may have diagnostic, prognostic and therapeutic implications [15-19]. As 79 

miRNAs remain relatively well preserved in archival FFPE tissue specimens, they are readily 80 

available as valuable sources of information in cancer tissues [20-22]. For the quantification of 81 

miRNA transcripts in FFPE samples, the NanoString nCounter technology is a preferable 82 

choice over quantitative reverse transcription polymerase chain reaction (qRT-PCR) [23, 24], 83 

with a high reproducibility similar to other platforms [25, 26]. The NanoString assay also 84 

performs well in relative quantification studies [27]. 85 

MiRNA expression of PCNSL has been studied using different methods such as qRT-PCR [28-86 

38], microarray [36, 39], in situ hybridization [37, 38], next-generation sequencing (NGS) [35] 87 

and NanoString [38] technologies on various tissue types including brain biopsy specimen 88 

(FFPE [32, 37, 39] or fresh [36]), cerebrospinal fluid (CSF) [28-31, 33, 38] and peripheral blood 89 

[35], serum [34] or plasma [33]. It has been shown and further confirmed that the combined 90 

detection of miR-21, miR-19b and miR-92a in CSF allowed a stable diagnosis of PCNSL. 91 

Moreover, these miRNAs seem to be a promising target for treatment monitoring and follow-92 

up [28, 29], similarly to U2 small nuclear RNA fragments [30]. In addition, plasma miR-21 93 

may serve as a diagnostic [33], and serum miR-21 both as a diagnostic and prognostic marker 94 

for PCNSL [34]. Other miRNAs with prognostic value in PCNSL include miR-151a-5p and 95 

miR-151b, together with 10 additional miRs [35]. CSF levels of miRNA‑21 may have the 96 

potential as a predictor of chemotherapeutic effect [33]. Measuring miR-30c in the CSF can 97 

differentiate between PCNSL and SCNSL, as elevated levels of miR-30c have pathobiological 98 

significance in SCNSL [31]. A recent microarray study found a couple of miRNAs with positive 99 

or negative prognostic significance in PCNSL [36]. It has also been demonstrated, that PCNSL 100 

shows different miRNA expression profiles compared with nodal or testicular DLBCL [32, 37, 101 

39]. 102 
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In this study, we performed expression profiling of 798 human miRNAs in 73 FFPE brain 103 

biopsy samples of primary and secondary CNS lymphomas using the NanoString platform, 104 

followed by a bioinformatics analysis to reveal changing expression signatures. We aimed to 105 

identify potential novel biomarkers characterizing subgroups among brain lymphomas, as well 106 

as to examine differences based on their primary and secondary nature, molecular subtype, 107 

mutational patterns and survival. 108 

 109 

  110 
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Methods 111 

Sample collection and patient information 112 

FFPE brain biopsy specimens of 64 patients with PCNSL and 9 patients with SCNSL were 113 

analyzed in this study. Tissue samples were obtained from three centers: (i) 1st Department of 114 

Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; 115 

(ii) Department of Pathology, University of Pécs, Pécs, Hungary and (iii) Division of 116 

Neuropathology, The National Hospital for Neurology and Neurosurgery, University College 117 

London Hospitals, United Kingdom, through the UK Brain Archive Information Network 118 

(BRAIN UK). Permissions to use the archived tissue have been obtained from the Local Ethical 119 

Committee (TUKEB-1552012) and from BRAIN UK (Ref.: 16/018), and the study was 120 

conducted in accordance with the Declaration of Helsinki. 121 

Information on the molecular subtypes determined by the Research Use Only version of the 122 

NanoString LST-assay (NanoString Technologies, Inc., Seattle, USA) and on the mutational 123 

status identified by ultra-deep NGS of 14 target genes as described previously [40] are 124 

summarized in Additional file 1, together with clinical and survival data. Survival data was 125 

available in 54 PCNSL and 9 SCNSL cases. 126 

 127 

MicroRNA profiling using the NanoString platform 128 

RNA isolation from 64 PCNSL and 9 SCNSL samples was performed using the RecoverAll™ 129 

kit (Life Technologies/Ambion, Inc, Foster City USA) according to the manufacturer’s 130 

instructions. Approximately 100 ng of total RNA from each sample was analyzed using the 131 

Human v3 miRNA expression assay kit, following manufacturer’s instructions (NanoString 132 

Technologies, Inc., Seattle, USA). The Human v3 miRNA assay covers 98% of miRNA 133 

sequences found in miRBase v22, including 798 probes that recognize human miRNAs and 29 134 

assay control probes. Raw data were pulled from digital analyzer and imported into nSolver4.0 135 
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(NanoStringtm) for data quality check. Data sets that passed all QC checks (including imaging 136 

quality, binding density, positive control linearity and limit of detection) were exported as a 137 

.csv file for downstream statistical analysis. Raw miRNA counts for all samples are available 138 

in the GSE162956 dataset at NCBI GEO. 139 

 140 

Nanostring data normalization 141 

Raw NanoString read counts and clinical information was imported into the R statistical 142 

environment (version 3.5.1). We discarded human miRNAs with extremely low expression 143 

(read count <= 1 in more than 60 samples) from all analysis, resulting in 781 human miRNAs, 144 

besides the control probes and housekeeping genes. Data normalization was done with the 145 

NanoStringNorm package (version 1.2.1) [41] using the following options: CodeCount = 146 

“geo.mean”, Background = “mean.2sd”, SampleContent = “housekeeping.geo.mean”, 147 

OtherNorm = “quantile”. We used the ath, cel, osa and NEG miRNA classes as negative 148 

controls, the POS class as positive controls, the ACTB, B2M, GAPDH, RPL19 and RPLP0 genes 149 

as housekeeping genes, and everything else as endogenous miRNAs. During the initial data 150 

assessment, we considered those miRNAs expressed, that had a larger normalized expression 151 

value than the lowest positive control (Additional file 2). We calculated the minimum, 152 

maximum and average expression of all miRNAs across all samples, together with the number 153 

of samples where a miRNA was expressed across all samples using the normalized expression 154 

values. Additionally, we calculated the minimum, maximum, average and median values for 155 

the PCNSL and SCNSL samples separately. Based on the median expression values we ranked 156 

the miRNAs and categorized them into 15 separate expression groups. 157 

 158 

Differential expression analysis 159 
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We used the limma package (version 3.38.3) for differential expression [42]. We included the 160 

primary or secondary category, the molecular subtype, origin of sample (institute or 161 

department)institute, degradation time and NanoString scan dates in the linear model as 162 

covariates during differential expression analysis. We converted the normalized read counts 163 

with the voom [43] function of limma, fitted the linear model with the lmFit function and 164 

calculated p-values with the eBayes function [44]. The raw p-values were FDR adjusted using 165 

the Benjamini-Hochberg method. We considered miRNAs differentially expressed with FDR 166 

adjusted p-value < 0.05 and absolute log2 fold change between conditions > 1 (Additional file 167 

3). 168 

We carried out a number of comparisons between different sample groups. First, we calculated 169 

differentially expressed miRNAs between the primary and secondary samples. Additionally, 170 

we calculated differentially expressed miRNAs between the different molecular subtypes, 171 

within the primary samples. This included the GC vs ABC, UC vs ABC and GC vs UC 172 

comparisons. Finally, we calculated differences between the different sample groups stratified 173 

by mutation status, using the CARD11, CCND3, CD79B, CSMD2, CSMD3, IRF4, KMT2D, 174 

MYC, MYD88, PAX5, PIM1, PRDM1 and TP53 genes (Additional file 3). 175 

 176 

Principal component analysis and unsupervised clustering 177 

During the principal component analysis, we used the normalized and voom transformed data, 178 

additionally removing the potential batch effects of the institute, scan date and degradation time 179 

with the removeBatchEffect function of the limma package. We calculated the principal 180 

components with the prcomp R function with the scale. parameter set to TRUE, and plotted the 181 

first and second principal components. 182 

During the binary hierarchical clustering of the samples, we used the voom transformed, 183 

normalized read counts of all endogenous miRNAs, after removing the potential batch effects 184 
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of the institute, scan date and degradation time with the removeBatchEffect function of the 185 

limma package. First, we binarized the expression values [45] with a cut-off of 12. All miRNAs 186 

below this threshold were considered not expressed, while the rest was considered expressed. 187 

Using the expressed/not expressed status of the miRNAs across all samples, we calculated 188 

sample distances using the dist function from R, with the binary method, and did a hierarchical 189 

clustering using the hclust function, with the ward.D2 method. We manually defined a “small” 190 

and a “big” cluster of samples (Additional file 4), and carried out a Fisher-test, using a 2x2 191 

contingency table (expressed/not expressed and small/big cluster) to check for miRNAs whose 192 

expression is associated with the small and big clusters (Additional file 5). The Fisher-test p-193 

values were FDR adjusted using the Benjamini-Hochberg method and miRNAs with FDR 194 

adjusted p-value < 0.05 were considered associated with the cluster type. We repeated the 195 

binary hierarchical clustering using only the primary samples without changing any other 196 

parameter. 197 

Additionally, we did a k-means clustering on the data, where we also used the voom 198 

transformed, normalized read counts of all endogenous miRNAs after removing the potential 199 

batch effects of the institute, scan date and degradation time with the removeBatchEffect 200 

function of the limma package. We used kmeans function of R, with the iter.max = 1000 201 

parameter and setting the cluster number to 4. We clustered both the samples and the miRNAs. 202 

During data visualization we dropped the largest miRNA cluster as it mainly contained 203 

miRNAs that were not expressed in most samples or had a very low expression level. We 204 

repeated the k-means clustering using only the primary samples without changing any other 205 

parameter. 206 

 207 

miRNA pathway enrichment analysis 208 
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We used the miRNet database (accessed and downloaded on 2019-08-29) to collect putative 209 

targets of the differentially expressed miRNAs [46]. We downloaded all gene and lncRNA 210 

targets of these miRNAs from bone-marrow or brain tissue-based experiments. We considered 211 

a gene up- or downregulated if at least two of its putative regulators from miRNet were 212 

differentially expressed in the opposite direction in a specific tissue type. For example, the 213 

AGO1 gene was considered downregulated in the secondary vs primary comparison, as 7 of its 214 

regulatory miRNAs defined in miRNet were upregulated in the secondary vs primary 215 

comparison based on the NanoString analysis. Based on this filtering criteria, only bone 216 

marrow-based mRNA interactions were considered for further downstream analysis. 217 

Additionally, we downloaded version 7 of the MSigDB gene sets [47] and did a Fisher-test 218 

using a 2x2 contingency table as follows: genes were either part of a gene collection or not, and 219 

based on the miRNet analysis they were putatively differentially expressed or not. The Fisher-220 

test p-values were FDR adjusted using the Benjamini-Hochberg method and gene collections 221 

with FDR adjusted p-value < 0.05 were considered enriched in a specific comparison 222 

(secondary vs primary, etc) (Additional file 6). 223 

 224 

Survival analysis 225 

Survival data was available for 63 patients with the overall survival in months, last follow-up 226 

date, and survival status. We used only the 54 primary samples during analysis, and stratified 227 

patients according to the binary expression status of the investigated miRNAs, or the big/small 228 

cluster classification. W used the survival package (version 2.44-1.1) [48] to create Surv objects 229 

in R and calculated log-rank test based p-values using the survminer (version 0.4.6) [49] 230 

package. The log-rank p-values were FDR adjusted using the Benjamini-Hochberg method 231 

(Additional file 7). 232 

 233 
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Validation of NanoString miRNA expression data 234 

10 miRNAs with significant differential expression among subgroups were selected (Additional 235 

file 8 and 9) based on NanoString expression data. Additionally, 3 miRNAs with stable 236 

expression in the cohort were used as endogenous control. 237 

Validation with droplet digital PCR 238 

The selected samples were individually retro-transcribed with the TaqMan™ MicroRNA 239 

Reverse Transcription Kit (Applied Biosystems, USA) following manufacturer’s instructions. 240 

100 ng miRNA from each selected sample was retro-transcribed with specific TaqMan™ 241 

miRNA assays (Applied Biosystems, USA) in ProFlex Thermal Cyclers (Applied Biosystems, 242 

USA) using the following parameter values: 16°C for 30 min, 42°C for 30 and 85°C for 5 min. 243 

cDNAs were further diluted with 50 ul nuclease-free water to obtain a final volume of 77 ul. 10 244 

ul diluted cDNA sample were used in the subsequent ddPCR reactions with 1 ul of the specific 245 

TaqMan™ miRNA assays and 11 ul of ddPCR Supermix for Probes (No dUTP) (Bio-Rad 246 

Laboratories, USA). Following droplet generation, target miRNAs were amplified in a C1000 247 

Touch Thermal Cycler (Bio-Rad Laboratories, USA) with parameters as follows: 10 min at 248 

95°C for enzyme activation, followed by 40 cycles of denaturation at 94°C for 30 s and 1 min 249 

annealing/extension at 55°C, enzyme deactivation step set at 98°C for 10 min, and a final hold 250 

step at 4°C for an infinite time period. Results were analyzed using the QuantaSoft software 251 

(version 1.7; Bio-Rad, USA). All ddPCR reactions were performed with the detection of 252 

adequate events (>10000 droplets per sample). Results were determined in copy number per ul. 253 

Validation with qPCR 254 

Further NanoString miRNA expression data validation was completed with quantitative PCR. 255 

Reverse Transcription was performed as described above with the exception that each miRNA 256 

target was individually retro-transcribed with an endogenous control miRNA. 5 ul of the cDNA 257 

samples were amplified in duplicates using 1.5 ul of the target and endogenous control specific 258 
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TaqMan™ miRNA assays with 7.7 ul 2x TaqMan puffer (Applied Biosystems, USA) and 10.5 259 

ul nuclease-free water on a Quantstudio 3 Real-Time PCR system (Applied Biosystems, USA). 260 

Ct values for sample target and endogenous miRNAs were determined as the average Ct value 261 

of the duplicates. ΔCt values were obtained extracting Ct values of endogenous control 262 

miRNAs from the Ct values of target miRNAs, which were subsequently used for statistical 263 

analysis. 264 

 265 

  266 
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Results 267 

Distribution of molecular subtype categories in CNS lymphomas 268 

Based on the NanoString LST-assay the PCNSL cases consisted of 78.1% (50/64) ABC, 15.6% 269 

(10/64) GC and 6.3% (4/64) UC molecular subtypes. Among the SCNSL cases, 44.4% (4/9) 270 

were classified as ABC- and 55.6% (5/9) as GC-subtypes (Figure 1A). 271 

 272 

General miRNA expression patterns in CNS lymphomas 273 

The NanoString panel contained 798 endogenous, 5 housekeeping genes (ACTB, B2M, 274 

GAPDH, RPL19, RPLP0), 9 positive and 16 negative controls. Based on the normalized 275 

expression values, almost half of the investigated miRNAs (381) were not expressed in any 276 

sample, and 54 were expressed only in one. On the other hand, 12 miRNAs were expressed in 277 

72 and 2 miRNAs in all 73 samples (Additional file 2). 278 

We compared the median expression of endogenous miRNAs between PCNSL and SCNSL 279 

samples (Figure 1B). miRNAs that have a non-zero median expression in both groups are highly 280 

correlated (Spearman correlation 0.89). We found 676 and 661 miRNAs in PCNSL and SCNSL 281 

respectively, that had rank in the bottom 10 % based on median expression. On the other hand, 282 

hsa-miR-4454+hsa-miR-7975 is an extreme outlier, with a larger median expression than most 283 

of the positive controls. We noticed that the hsa-miR-4454 expression detected by NanoString 284 

might be confounded by the expression of tRNAHis, as the miRNA is identical to the 3’ end of 285 

the tRNA [50]. 286 

 287 

Differential miRNA expression between primary and secondary CNS lymphomas and 288 

molecular subtypes 289 
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We analyzed differential expression patterns of the miRNAs between PCNSL and SCNSL 290 

cases and different molecular subtypes using the limma R package, after removing known 291 

confounding factors. With an absolute log2 fold change > 1 and FDR value < 0.05 cut-off, we 292 

found 31, 4 and 3 differentially expressed miRNAs between PCNSL and SCNSL cases, GC 293 

and ABC subtypes, and UC and ABC subtypes, respectively (Figure 2A, Table 1 and Additional 294 

file 3). Twenty-eight miRNAs showed increased and three showed decreased expression in 295 

SCNSL compared to PCNSL. Three miRNAs showed lower and one miRNA higher expression 296 

in GC compared to ABC cases. All three differentially expressed miRNAs showed lower levels 297 

in UC compared to ABC subtypes (Additional file 3). 298 

 299 

miRNA expression profile association to mutation status 300 

We checked assessed if miRNA expression profiles are were associated to with the mutation 301 

status of specific genes. We found 8 differentially expressed miRNAs associated to with the 302 

mutation status of gene PRDM1, and one miRNA associated to with the mutation status of 303 

genes C-MYC and CARD11 each (Figure 2B, Table 1 and Additional file 3). 304 

We also identified 8, 5 and 2 differentially expressed miRNAs in cases with PAX5, CSMD3 305 

and CSMD2 mutations. However, there were only two samples harboring mutation in each of 306 

these genes, therefore, the results must be considered with caution (Additional file 3). 307 

 308 

Unsupervised clustering of miRNA expression data 309 

We checked if the data grouped according to disease characteristics using principal component 310 

analysis (PCA). The PCA results showed that we have no clear distinct groups based on disease 311 

subtype (primary or secondary) or molecular subtype (Figure 3). Additionally, the samples do 312 
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not group cluster based on RNA isolation group, instituteplace of origin, scanning date, 313 

degradation time, % tumor content, age or sex (Supplementary Figure 1 – 8). As we could not 314 

define any specific grouping of samples based on this analysis, we investigated the miRNA 315 

expression patterns further, using additional clustering methods. 316 

First, we did a binary clustering of the data (Figure 4), where we only considered the 317 

expressed/not expressed status of miRNAs. Based on the binary clustering, two sample groups 318 

are become apparent. A small group, consisting of 8 samples are clearly separate from the rest 319 

(Additional file 4). The binary expression patterns of this group are markedly different from the 320 

larger group. For example, the hsa-miR-93-5p and hsa-let-7d-5p miRNAs were not expressed 321 

in any samples from the small cluster, while the hsa-miR-181a-5p miRNA was expressed only 322 

in one sample. These miRNAs were expressed only in a small fraction of the large cluster. 323 

Considering these expression patterns, we carried out a systematic analysis and validated if the 324 

expression of specific miRNAs is significantly associated with the small and large groups using 325 

a Fisher test. Based on the test results, we found 19 miRNAs, whose expression patterns are 326 

associated with the clusters (Additional file 5). Interestingly, we only found miRNAs, whose 327 

lack of expression was associated with the small cluster, and did not find any, whose presence 328 

of expression was associated with the same cluster. Based on these patterns, we initially thought 329 

that the small cluster might be the result of a particularly bad quality sample group or strong 330 

technical bias. However, based on the normalized, batch-corrected PCA analysis 331 

(Supplementary Figures 1-8) of the expression data, this does not seem to be true. The cluster 332 

remains even after correcting for all known technical biases, and also does not seem to be 333 

associated with age or sex. 334 

After the binary clustering analysis, we repeated sample clustering using a k-means based 335 

method and instead of the binary expression data, we used normalized expression values (Figure 336 

5). Based on visual inspection, we decided to use 4 clusters for the k-means algorithm, both for 337 
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the sample and the miRNA level analysis. Interestingly, the second largest k-means sample 338 

cluster (SCluster1) consisting of 10 samples, partially overlaps with the “small” cluster defined 339 

in the binary expression analysis (Additional file 4). In summary, both the binary expression 340 

clustering and the k-means clustering defined a small set of samples with markedly distinct 341 

miRNA expression patterns from the rest. 342 

After inspecting the miRNA k-means clusters, we noticed that the expression of miRNAs in the 343 

second largest cluster (MCluster1) in SCluster1 is low for most of the samples. We checked the 344 

overlap of MCluster1 miRNAs with the 19 miRNAs that had significantly different binary 345 

expression in the previous analysis. All of the 19 miRNAs were present in the new k-means 346 

based cluster. Therefore, MCluster1 contains those miRNAs whose expression pattern defines 347 

the small sample cluster seen in all of the above analysis. 348 

Repeating both analysis using only PCNSL samples leads to similar results, with the only 349 

difference being that the “small” binary cluster contains an additional sample with sample 350 

number 33 (Supplementary Figures 9 and 10). 351 

 352 

Pathway enrichment of differentially expressed miRNAs 353 

After the differential expression analysis, we asked if specific pathways might be up- or 354 

downregulated in a specific comparison. Assuming that the differential regulation of a specific 355 

miRNA will lead to the differential regulation of its target mRNAs in the opposite direction, 356 

we carried out a pathway enrichment analysis, based on validated miRNA – mRNA interactions 357 

from the miRNET database. Due to the low number of differentially expressed miRNAs, we 358 

were able to do this analysis only in the case of SCNSL vs PCNSL and PRDM1 mutated vs 359 

non-mutated comparisons. We found several pathways that are putatively downregulated in 360 

these cases (Figure 6 and Additional file 6). The G2M checkpoint, PI3K-AKT-MTOR 361 
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signaling, TGF-beta signaling pathways, MYC target and androgen response genes were 362 

downregulated in both comparisons besides a number of other pathways or gene sets. 363 

Additionally, in the SCNSL vs PCNSL comparison TNF-alpha signaling, apoptosis and UV 364 

response genes, the P53 pathway and E2F target genes were also downregulated. 365 

We carried out a similar analysis using the 19 miRNAs defined during the binary clustering, 366 

that are not expressed in our “small cluster”. However, in this case, as the miRNAs are not 367 

expressed in the small sample cluster, and the associated enriched pathways are putatively 368 

upregulated in the same samples. Pathways include the unfolded protein response, connected 369 

to cellular stress, the P53 and MTORC1 signaling pathways, the epithelial to mesenchymal 370 

transition or the hypoxia gene sets and UV response genes. 371 

 372 

miRNA expression profile association to survival characteristics 373 

Finally, we asked whether the expression profile of specific miRNAs is associated to patient 374 

survival. We stratified patients according to the binary expression status of miRNAs and using 375 

the log-rank test, calculated the significance of overall survival (OS) differences between 376 

groups (Additional file 7). The only miRNA showing difference was hsa-miR-4488, with an 377 

FDR of 0.022 (Supplementary Figure 11 and 12). Repeating the analysis with only PCNSL 378 

samples (Additional file 7), we found no significant differences between groups after FDR 379 

correction. hsa-miR-18a-5p had the lowest FDR value (0.12). Of note, the survival analysis is 380 

hampered by the relatively low number of cases and the heterogeneous nature of the treatment 381 

regimens applied in this cohort. 382 

 383 

Validation of NanoString results 384 

Commented [SB1]: Something is missing in this sentetce  
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Based on the differential expression results, we selected a number of miRNAs for additional 385 

validation. We used quantitative RT-PCR and dd-PCR for different miRNAs. (Additional file 386 

8). Using the RT-PCR delta-CT values and the dd-PCR counts, we correlated the validation 387 

results with the original and normalized NanoString read counts (Additional file 9). RT-PCR 388 

delta-ct values should show a high negative correlation, while dd-PCR counts should show a 389 

high positive correlation with NanoString read counts or normalized expression values. We 390 

could validate hsa-miR-411-5p and hsa-miR-32-5p using RT-PCR, where the correlation of 391 

delta-ct values with the normalized read counts was ≦ -0.6. Additionally, we validated hsa-392 

let7g-5p, hsa-miR-191-5p and hsa-miR-379-5p using dd-PCR where the correlation of dd-PCR 393 

read counts with the NanoString read counts was ≧ 0.6, besides hsa-miR-411-5p where the 394 

correlation of normalized read count with dd-PCR counts was 0.67 and the correlation of the 395 

original NanoString read count with the dd-PCR count was 0.47. 396 

 397 

  398 
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Discussion 399 

CNS lymphomas represent a considerable clinical challenge, as their molecular pathogenesis is 400 

poorly explored. CNS lymphomas are difficult to investigate as they are rare, and usually small 401 

biopsies are taken for diagnostic purposes, which may not be sufficient for further analysis [3, 402 

4] in many cases. Moreover, the majority of these biopsies are archived as FFPE tissue blocks, 403 

which suffer from degradation of macromolecules [51-56]. However, microRNAs provide a 404 

robust signal and can be stably extracted from FFPE samples [20-22], making them preferential 405 

as cancer biomarkers. They are also promising targets for molecular therapy in cancer, due to 406 

their role as oncomiRs or tumor-suppressors [57-59]. The NanoString nCounter technology 407 

allows direct quantitation of hundreds of miRNA transcripts from FFPE tissues with 408 

outstanding performance, therefore it may be a preferable choice over other transcriptomic 409 

methods [23-26]. 410 

Previous expression studies of PCNSL revealed various miRNAs with a potential diagnostic 411 

[28, 29, 31, 33, 34], prognostic [34-36] or predictive [33] value. These datasets were generated 412 

by different methods, and used  with the use of diverse patient-derived sample types and control 413 

tissues [28-39], thus being difficult to synthesize and integrate. Moreover, most studies 414 

examined only a few miRs [28-30, 33, 34, 37] on a limited number of CNS lymphoma cases 415 

[28, 29, 32-39]. There is only a single study in the literature discussing the miR expression 416 

differences between PCNSL and SCNSL [31]. The authors demonstrated in CSF samples that 417 

miR-16, miR-30b, miR-30c, miR-191 and miR-204 were upregulated and miR-222 was 418 

downregulated in SCNSL, with miR-30c showing the largest expression difference [31]. 419 

In this study, we performed expression profiling of 798 human miRNAs in a large number of 420 

CNS lymphoma cases. We compared the miR expression patterns of FFPE brain biopsy 421 

specimens of primary and secondary CNS lymphomas to minimize the tissue bias that may well 422 
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be presented with the examination of systemic (nodal) DLBCL. We used the NanoString 423 

platform, which is a reliable method for miR expression analysis of FFPE tissues [23-27]. 424 

We identified 28 up- and 3 downregulated miRs in SCNSL compared with PCNSL (Table 1). 425 

Amongst these, we find found miR-30c-5p, which has had already been described to be 426 

significantly increased in CSF specimens samples of patients with SCNSL compared with 427 

PCNSL [31]. In general, miR-30c-5p has a tumor-suppressive role in cancer pathogenesis, and 428 

shows low expression in various malignancies (reviewed in [60]) which is in line with our 429 

findings (median expression: 11.18 and 0; rank: 137 and 147 in SCNSL and PCNSL samples, 430 

respectively) (Additional file 2). Its significantly lower expression in PCNSL may contribute 431 

to their more aggressive behavior. Multiple studies have found higher expression of miR-21, a 432 

well-known oncomiR [61], both in PCNSL and DLBCL cases compared to controls [16, 28, 433 

29, 33, 34, 62-66]. In our study miR-21-5p generally showed high expression (median 434 

expression: 3278.55 and 2926.61; rank: 16 and 17 in SCNSL and PCNSL samples, 435 

respectively) with a significant increase in SCNSL cases. Higher expression of miR-21 has also 436 

been associated with worse overall survival in DLBCL patients [67]. We found 3 members of 437 

the miR-17-92 cluster (miR-19a-3p, miR-18a-5p and miR-106b-5p) to be upregulated in 438 

SCNSL compared with PCNSL, with a moderately high overall expression (median expression: 439 

606.62 and 58.34, 1088.28 and 383.75, and 763.30 and 263.06; rank: 70 and 94, 52 and 72, and 440 

62 and 75, respectively in SCNSL and PCNSL samples). This miR cluster has a strong 441 

oncogene activity in various malignancies including DLBCL [68-71]. Higher expression of 442 

miR-18a was found to be associated with a shorter overall survival in DLBCL [72]. Previous 443 

studies demonstrated other members of the miR-17-92 cluster (miR-17-5p and miR-20a) to be 444 

upregulated in PCNSL compared with nodal DLBCL [32, 37]. Moreover, high levels of miR-445 

19b-1 and miR-92a-1 were detected in the CSF of PCNSL patients [28, 29]. 446 
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Regarding the molecular subtypes, cases in the ABC group showed significantly higher 447 

expression of miR-155-5p, miR-222-3p and miR-522-3p and lower expression of miR-92a-3p 448 

compared with the GC group. In line with our results, higher expression of miR-155-5p [16, 449 

19, 64, 65, 71, 73-76] and miR-222-3p [18, 71, 73] has already been associated with the ABC 450 

subtype in DLBCL. We found that the ABC molecular subtype also correlated with higher miR-451 

522-3p, miR-454-3p and miR-455-5p expression compared with the UC subgroup. 452 

This is the first study demonstrating differentially expressed miRNAs in association with the 453 

mutational status of the PRDM1, C-MYC and CARD11 genes in CNS lymphomas. According 454 

to the literature, the only miRNA that has already been connected to any of these genes is miR-455 

30a-5p, which directly targets PRDM1 and modulates the WNT/beta-catenin pathway [77]. 456 

However, this association is not connected to the mutational status of PRDM1 itself. 457 

It is widely known, that the different miRNA profiling platforms do not perform evenly 458 

consistently [24-27]. Nevertheless, we successfully validated the observed expression patterns 459 

of miR-148b-3p, miR-32-5p, miR-411-5p and miR-379-5p by ddPCR and/or RT-PCR methods. 460 

Based on our data, pathway enrichment analysis revealed several downregulated pathways and 461 

gene sets in SCNSL compared with PCNSL. Additionally, PRDM1 mutation was also 462 

associated with the downregulation of several pathways. Even though the evidence is 463 

circumstantialindirect, as we did not directly measure the differential regulation of the genes 464 

consisting comprising a pathway, but only their regulators, these pathways might be attractive 465 

targets for future drug development. The constitutive activation of NF-κB was already 466 

described in the literature [78-80] for DLBCL, besides apart from the activation of the PI3K-467 

MTOR-AKT [79-81]. Based on our results, these pathways are generally more active in PCNSL 468 

compared to SCNSL and availabe drugs [82] available to targeting these pathways might be 469 

more effective for a selection of PCNSL cases. The unfolded protein response pathway was 470 
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similarly upregulated in PCNSL cases. This pathway is considered as a general pro-survival 471 

mechanism for cancer cells [83], and small molecule inhibitors targeting the pathway are 472 

becoming available, suggesting a possible threapeutictherapeutic target in PCNSL, as these 473 

lymphomas might be more sensitive to the treatment. Additional upregulated pathways in the 474 

PCNSL vs SCNSL comparison include protein secretion, the P53 p53 pathway, MYC target 475 

genes, the G2M checkpoint, E2F transcription factor target genes, apoptosis genes, and genes 476 

related to androgen response.  Considering that PCNSL is a rare and aggressive disease and the 477 

prognosis is poor [84], the pathways and molecular mechanisms analyzed in this study might 478 

be considered as novel drug targets. 479 

Considering the pathway level changes in PRDM1 mutated samples, some drugs might be more 480 

effective in patients without PRDM1 mutations. The TGF-Beta signaling, the PI3K-MTOR-481 

AKT, MYC target genes, G2M checkpoint genes and androgen response genes are all 482 

downregulated in samples with PRDM1 mutation, therefore the efficiency of their inhibitors 483 

might be decreased [80, 82, 85]. 484 

Intriguingly, principal component analysis (PCA) showed no clustering of cases according to 485 

either disease characteristics or subtypes even after accounting for the various batch effects and 486 

biases. Subsequent binary clustering of the cases according to miRNA expression (expressed 487 

or not expressed) revealed a small group of 8 samples clearly separating from the rest. 488 

Additional sample clustering using a k-means based method with normalized expression values 489 

defined a sample cluster (SCluster1) consisting of 10 samples. Five samples from SCluster1 490 

also overlaps with the small cluster defined in the binary expression analysis. Taken together, 491 

unsupervised clustering methods defined a small set of samples with markedly distinct miRNA 492 

expression patterns. Interestingly, the lack of expression of 19 miRNAs was found to be 493 

associated with the small cluster in the binary clustering analysis. Moreover, all of these 19 494 

miRNAs were part of a miRNA k-means cluster (MCluster1) in SCluster1. Pathway enrichment 495 
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analysis shows similar pattern in this small distinct set of samples to PCNSL, with even more 496 

pronounced changes compared to the SCNSL vs PCNSL analysis. The WNT/beta-catenin 497 

pathway activated here, was described as activated in PCNSL [86], and the small set of samples 498 

defined here might be an unknown PCNSL subgroup where the pathway can be efficiently 499 

targeted with Wnt inhibitors [87]. Similarly, many other pathways that were upregulated in the 500 

PCNSL vs SCNSL comparison, are also upregulated here, therefore inhibitors targeting them 501 

[79-81] might be more effective. Based on these results, this is a well-defined sample group 502 

within the PCNSL cases contributing significantly to the differing expression patterns between 503 

PCNSL and SCNSL. 504 

Survival analysis of all cases using the binary expression data showed miR-4488 to be 505 

significantly associated with a worse overall survival, however, we did not find any association 506 

when analyzing PCNSL samples solely. It is important to highlight that these results are limited 507 

by the modest number of cases and the heterogeneous nature of the treatment regimens applied 508 

in this cohort. 509 

Conclusions 510 

Our results could be the basis of future research on a larger number of PCNSL cases to prove 511 

the importance of specific miRs and pathways in the pathogenesis of PCNSL, in order to 512 

discover novel therapeutic targets or biomarkers. 513 

  514 
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Figure legends 832 

Fig. 1 Sample characteristics and general expression patterns. a) Total number of primary and 833 

secondary central nervous system lymphoma samples categorized by molecular subtypes. b) 834 

Median normalized expression of miRNAs in PCNSL (x-axis) and SCNSL (y-axis) samples. 835 

Both axes are log10 based, and the hexagon color scale shows the number of miRNAs falling 836 

into a particular median expression range. As can be seen on the plot (bright yellow hexagon in 837 

the bottom left corner), a large number of miRNAs had a 0 or near 0 expression in both sample 838 

types. The Spearman correlation of PCNSL and SCNSL values is 0.89. 839 

Fig. 2 Differential expression analysis between sample groups. a) Volcano-plot of differential 840 

expression results comparing secondary and primary samples, the GC and ABC or UC and 841 

ABC sample groups. The x-axis shows the log2 fold change of a specific miRNA, while the y-842 

axis shows the -log10 transformed FDR corrected p-value. b) Volcano-plot of differential 843 

expression results comparing mutated and non-mutated samples for a specific gene, where the 844 

color of the dots correlates with the number of mutated samples. As in panel a) x-axis shows 845 

the log2 fold change of a specific miRNA, while the y-axis shows the -log10 transformed FDR 846 

corrected p-value. 847 

Fig. 3 Principal component analysis of miRNA expression patterns of all samples, after 848 

removing potential batch effects from the normalized and voom transformed data. The shape 849 

of the points shows the primary or secondary disease category, while the color corresponds to 850 

the molecular subtype. 851 

Fig. 4 Unsupervised clustering of samples using binary (ON/OFF) miRNA expression patterns. 852 

The heatmap shows the binary expression pattern of miRNAs that were considered expressed 853 

in at least one sample. Columns correspond to samples, while rows correspond to a specific 854 

miRNA. Yellow tiles show expressed, purple tiles show non-expressed miRNAs. On top of the 855 
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heatmap a hierarchical clustering tree shows the relationship between samples. miRNAs that 856 

were not expressed in any of the samples are not shown. 857 

Fig. 5 Unsupervised clustering of samples using normalized miRNA expression patterns. The 858 

heatmap shows the k-means clustering of miRNAs after normalization, voom transformation 859 

and batch effect removal. Columns correspond to samples, while rows correspond to a specific 860 

miRNA. Heatmap colors show expression intensity. We removed the largest miRNA cluster 861 

(Mcluster2) from the visualization as it contained mainly miRNAs with zero or very low 862 

expression. 863 

Fig. 6 Gene set enrichment analysis. MSigDB pathways deregulated in specific comparisons, 864 

based on the differential expression patterns of miRNAs, from PRDM1 mutated and non-865 

mutated or secondary and primary samples. Additionally, the figure shows the putatively 866 

deregulated pathways using the 19 miRNAs showing a significant association with the 867 

unknown “small cluster” based on the unsupervised clustering of expression data. The x axis 868 

shows the -log10 transformed, FDR corrected Fisher-test p-values, the y axis lists the 869 

deregulated MSigDB cancer hallmarks, and the dot size is proportional to the Fisher-test odds 870 

value. The dot colors correspond to the three different categories investigated (PRDM1 mutated 871 

vs wild-type, SCNSL vs PCNSL and the unknown small cluster). The light red background of 872 

the “Unknown small cluster” facet indicates that pathways in this analysis are upregulated, 873 

while pathways in the other two comparisons are downregulated. 874 

 875 

Additional files 876 

Additional file 1. Sample information. The table contains available clinical and sample 877 

information including age, sex, survival status, clinical treatment, mutation status of selected 878 

Formatted: German (Germany)
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genes, tumor content, primary/secondary and molecular subtype classification, sample and 879 

RNA isolation year, institute, RNA isolation group, and scan date. 880 

Additional file 2. Summary statistics of normalized NanoString read counts. The first tab 881 

includes the minimum (expression_min), maximum (expression_max) and average expression 882 

(expression_mean) across all samples, together with the number of samples where the miRNA 883 

was expressed (is_expressed). A miRNA was considered expressed if it had a higher expression 884 

than the lowest positive control. The second tab contains minimum (expression_min), 885 

maximum (expression_max), average (expression_mean), and median (expression_median) 886 

expression across PCNSL or SCNSL samples (pri_sec). Additionally, it contains the rank of 887 

median expression among all miRNAs (expression_rank) and the expression groups (group), 888 

based on the ranks. 889 

Additional file 3. Differential expression results. Limma-voom based differential expression 890 

results. The table contains the log2 fold change (log2fc), and false discovery rate (FDR) for 891 

each miRNA in each comparison (Condition). Additionally, it contains the number of samples 892 

with a specific mutation (Mutation_count), for the mutated – non-mutated sample comparisons 893 

and a Yes/No categorization showing if a specific miRNA was considered changing 894 

significantly in a specific condition (significant). 895 

Additional file 4. Sample clusters. Summary of different clustering analysis methods, showing 896 

sample ids (sample_id) that were included in the unknown “small cluster” based on a specific 897 

method (Binary cluster PCNSL+SCNSL, Binary cluster PCNSL only, Kmeans cluster 898 

PCNSL+SCNSL, Kmeans cluster PCNSL only). The table shows the number of times a sample 899 

id was present in the small cluster during a specific analysis (Present in cluster) and the size of 900 

the cluster in a specific analysis (Cluster size). 901 
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Additional file 5. Small cluster associated miRNAs. List of miRNAs that show a significant 902 

association with the “small cluster”. The table shows the miRNA id (mirna_id), the number of 903 

samples in the two clusters with expressed/not expressed status (Big_exp, Small_exp, 904 

Big_noexp, Small_noexp), the Fisher-test p-value (fisher_p), odds ratio (fisher_odds) and FDR 905 

(fisher_fdr). 906 

Additional file 6. Pathway enrichment analysis. The table shows all MSigDB pathways and 907 

gene collections, that were significantly enriched in a specific condition. Besides the condition 908 

(condition) and the MSigDB id (pathway), it includes the MSigDB class (msigdb_class), the 909 

number of genes considered differentially expressed/not differentially expressed, in the 910 

pathway/not in the pathway (pathway_de, pathway_not_de, not_pathway_de, 911 

not_pathway_not_de), the Fisher-test p-value (fisher_p), odds ratio (fisher_odds) and FDR 912 

(fisher_fdr). 913 

Additional file 7. Survival analysis. The table shows the results of the survival analysis, where 914 

samples were stratified based on the expressed/not expressed status of a miRNA. Columns 915 

include the miRNA id (mirna_id), log-rank survival test p-value (pval), FDR (FDR), the 916 

number of samples with or without expression (n0 and n1) and the survival analysis category 917 

(category). 918 

Additional file 8. Validation results. Results of the RT-PCR and dd-PCR validations, including 919 

miRNA id (mirna_id), sample id (sample_id), box number (bx_no), validation type 920 

(measurement), ct, delta-ct, or dd-PCR count values (value). 921 

Additional file 9. Correlation of PCR based validation and NanoString data. Spearman 922 

correlation of RT-PCR delta-ct or dd-PCR (condition) count values with the NanoString counts 923 

(spearman_corr_count) or normalized (spearman_corr_expr) NanoString values for the 924 
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validated miRNAs (mirna_id), besides the number of samples (sample_number) used for 925 

validation. 926 

 927 

Supplementary figure 1-7. Principal component analysis of miRNA expression patterns of all 928 

samples, after removing potential batch effects from the normalized and voom transformed 929 

data. The color of the points corresponds to various possible technical and biological 930 

confounding factors, including RNA isolation group, institute, scan date, degradation time in 931 

years, % tumor content (gray dots mean data not available), age or sex. Grey points correspond 932 

to samples with missing information. 933 

Supplementary figure 8. Principal component analysis of miRNA expression patterns of all 934 

samples, after removing potential batch effects from the normalized and voom transformed 935 

data. The plot shows the sample IDs. 936 

Supplementary figure 9. The unsupervised clustering of samples, similar to Figure 3., but 937 

excluding SCNSL samples. 938 

Supplementary figure 10. The unsupervised clustering of samples using normalized miRNA 939 

expression patterns, similar to Figure 4., but excluding SCNSL samples. 940 

Supplementary figure 11. Survival curve of patients stratified based on the binary expression 941 

(ON/OFF) of hsa-miR-4488. 942 

Supplementary figure 12. Normalized NanoString read count density of hsa-miR-4488 across 943 

samples, separated by the binary expression (ON/OFF) classification. The hsa-miR-4488 944 

miRNA in a specific sample might be considered not expressed, even with a larger than zero 945 

number of reads. 946 


