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Abstract

Mutations in hallmark genes are believed to be the main drivers of cancer progression. These mutations are reported in the
Catalogue of Somatic Mutations in Cancer (COSMIC). Structural appreciation of where these mutations appear, in
protein–protein interfaces, active sites or deoxyribonucleic acid (DNA) interfaces, and predicting the impacts of these
mutations using a variety of computational tools are crucial for successful drug discovery and development. Currently, there
are 723 genes presented in the COSMIC Cancer Gene Census. Due to the complexity of the gene products, structures of only
87 genes have been solved experimentally with structural coverage between 90% and 100%. Here, we present a
comprehensive, user-friendly, web interface (https://cancer-3d.com/) of 714 modelled cancer-related genes, including
homo-oligomers, hetero-oligomers, transmembrane proteins and complexes with DNA, ribonucleic acid, ligands and
co-factors. Using SDM and mCSM software, we have predicted the impacts of reported mutations on protein stability,
protein–protein interfaces affinity and protein–nucleic acid complexes affinity. Furthermore, we also predicted intrinsically
disordered regions using DISOPRED3.
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Introduction
Cancer is a heterogeneous group of diseases, which is caused
by the accumulation of mutations in genes that control cell
activities, such as proliferation and apoptosis [1]. Mutations
reported by the Cancer Genome Consortium (ICGC) [2] and the
Catalogue of Somatic Mutations in Cancer (COSMIC) [3] show
that most cancer cells possess 60 or more mutations [4]. Of these,
80% are somatic, 10% are germline and 10% are both somatic
and germline mutations [5]. Although the majority are neutral
passenger mutations, a few are considered to be detrimental or
driver mutations [6].

Nowadays, rapid next-generation sequencing technology
can detect cancer somatic mutations very quickly, providing
essential information concerning which genes have been highly
mutated [7]. Non-synonymous single nucleotide polymorphisms
(nsSNPs) result in amino acid substitutions that could positively
or negatively modulate the protein’s function, and these are
often associated with human disease [8]. The standard way to
identify candidate driver nsSNP mutations is through frequency-
based approaches, which need a large sample size, for example,
the frequently observed V600E mutation in BRAF [9], but this
approach also presents the drawback of not detecting infrequent
driver mutations. An alternative way forward is the functional
approach, which detects mutations in conserved regions, also
known as orthostatic drivers; this method is used to detect
infrequently mutated genes [10]. However, not all mutations in
conserved regions are drivers, and conversely, not all mutations
in non-conserved regions are passengers [11].

Most mutations in genes vary among different samples of the
same cancer type and also vary within the same gene in different
cancers [12]. Therefore, identifying driver mutations that lead to
a particular type of cancer, to cell growth and proliferation or to
drug resistance remains a major challenge. However, there are
multiple databases and pipelines describing cancer-driver genes,
such as DriverDBv3 [13], a cancer driver gene database, IntOGen
[14], which identifies cancer drivers across tumour types and the
aforementioned COSMIC and ICGC.

In addition, algorithms such as SIFT [15] and PolyPhen-2 [16]
which depend on the analysis of evolutionary substitutions in
homologous sequences give clues about the essentiality of indi-
vidual amino acids for the identification and characterization
of putative driver mutations. Furthermore, knowledge of protein
three-dimensional (3D) structure allows further understanding
of the impacts of mutations on its structure and function. This
is exploited in a number of approaches, including SDM [17],
which has been developed in our group to predict impacts of
mutations on structural stability based on statistical analysis
of mutations as a function of the local structure. More recently,
the mCSM family of computer programmes [18] has also been
developed in our group to exploit the structural knowledge
using a machine learning method. This approach depends on a
learning set of 3D structures to predict impacts of mutations on
the stability of protomers (mCSM-stability) as well as on protein–
protein interactions (mCSM-PPI), protein–nucleic acid interac-
tions (mCSM-NA) and protein–ligand interactions (mCSM-lig)
[19], among the others. However, although it is clear that the
3D structure can provide useful insights into identifying and
understanding driver mutations, experimental definition of the
3D structure, especially for complex multidomain structures and
multiprotein assemblies, remains a challenge [11].

Although the number of experimental protein structures
deposited in the Protein Data Bank (PDB) [20], as well as
the model structures deposited in Genome3D [21] and Model

Portal (PMP) [22], has been steadily increasing over the past few
decades, few complete experimental structures of multidomain,
oligomeric and multicomponent systems have been determined
for the human proteome. Of the 723 genes present in the COSMIC
Cancer Gene Census (COSMIC CGC) [23], 245 have no hits in the
PDB, and of the remaining 478 genes, 263 have less than 50%
coverage. Although multiple resources map mutations to the 3D
structures, these are largely limited to experimentally solved
structures [24]. Comparative modelling based on homologues
with relatively high sequence identity (preferably over 30%)
is helpful to predict the structures of protomers or individual
domains, partially bridging the gap between sequence and
structural information. Useful software includes Modeller [25],
Phyre2 [26], LOMETS2 [27], DomSerf 2.1 [28] and I-TASSER [29].
More recently, machine learning/artificial intelligence methods,
such as AlphaFold [30], have made impressive progressive
progress in modelling proteins. However, predicting structures
comprising multiple domains that are often connected by
flexible regions or higher order multicomponent assemblies
remains an even greater challenge.

Although driver mutations are often distributed across the
protein sequence, they tend to cluster together in the 3D struc-
ture and appear mainly in the active site or at the interface [11],
but they can occasionally act allosterically within a protomer
or domain, or between protomers in higher order assemblies.
In order to understand the ways that mutations can impact on
function, we describe the construction of the COSMIC CGC 3D
(CGC 3D) database that includes 3D structures for multidomain,
homo-oligomeric and multicomponent systems of the human
proteome along with the use of 3D structures in the prediction
of the impacts of mutations, allowing the identification of rare
driver mutations. These data can be useful in guiding drug
discovery by identifying regions in the protein which are highly
impacted by mutations and by designing new leads that interact
with regions in which mutations leading to resistance are less
likely to occur.

Methods
Modelling gene products in CGC

The protein sequences of the genes are taken from the COSMIC
database. DISOPRED3 [31] programme is used to predict the dis-
ordered regions of the target sequences and to identify regions
likely to be disordered. Structural coverage for each gene product
present is calculated, the amino acid sequences are searched
against the PDB using FUGUE [32], which recognizes distant
homologues using combined information from both sequence
and structure, PSI-Basic Local Alignment Search Tool (BLAST)
[33], which relies on Position-Specific Scoring Matrix (PSSM)
profile–profile alignment, and HHsearch [34], which uses hid-
den Markov models (HHMs) [35]. We also use other software
and databases to inform our modelling including: Pfam [36],
a large collection of protein families, represented by multiple
sequence alignments and HMMs; InterPro [37], providing func-
tional analysis of proteins by classifying them into families
and predicting domains and important sites; Simple Modular
Architecture Research Tool (SMART) [38] , a web resource (http://
smart.embl.de/) providing simple identification and extensive
annotation of protein domains and the exploration of protein
domain architectures; CATH [34] and SCOP [39] databases for
domain annotations as well as UniProt [40] for transmembrane
extracellular and intracellular annotations.
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All proteins were modelled interactively using the knowledge-
based method, MODELLER version 9.23. Where identical
domains or larger structures are available, these were associated
with the sequences of each of the gene products in the
COSMIC CGC. Where no identical experimental structure
is identified, homologue regions of known structure were
identified by FUGUE, PSI-BLAST, and HHsearch were selected
as templates. The selected single or multiple templates from
various experimental techniques, such as X-ray, nuclear
magnetic resonance (NMR) and Cryo-EM, were based on criteria,
such as identity, coverage and resolution. The structures of
bitopic transmembrane proteins (also known as single-pass or
single-spanning membrane proteins) that have not been solved
experimentally were obtained from the Membranome database
(OPM) [41], which provides structural and functional information
for more than 6000 such proteins from Homo sapiens. Issues
with selected templates, such as missing atom coordinates
for long loops in the PDB files, were taken into consideration
when selecting templates in order to avert the building of
long loops. Each selected template was re-aligned to the target
sequence using Clustal Omega software [42], and the generated
sequences alignment file was used by MODELLER to build the
final model, which is optimized using side-chain minimiza-
tion implemented in Foldit [43] to remove residues clashes
(Figure 1).

All higher order structures were built based on evidence from
the literature and UniProt annotations of the target gene. For
gene products with no structural representation in the PDB,
the full-length monomers/protomers, and where relevant, the
structures of homo- and hetero-oligomers and complexes with
deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and small
molecule ligands are modelled using the selected templates. For
example, for cyclic AMP-dependent transcription factor ATF-1,
which has a Basic Leucine Zipper Domain, annotated in UniProt
as binding DNA as a dimer, the crystal structure with PDB ID:
5ZKO was selected as a template to produce the final modelled
structure (Supplementary Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

For some gene products, experimental structures are
reported in more than one PDB entry. For example, RAC-
beta serine/threonine-protein kinase (AKT2) has a pleckstrin
homology (PH) domain (PDB ID: 1P6S), covering the region
between amino acids 1 and 111, and a protein kinase domain
(PDB ID: 3D0E), covering the region between 146 and 480. In
this case, the missing residues 112–145, located between the
PH domain and kinases domain, are predicted to be disordered.
The full protomer structure was obtained by assembling the
three regions (PH domain, disordered region and kinase domain),
and the homodimer was obtained by re-aligning the modelled
protomers to an experimentally solved homodimeric structure
(PDB ID: 3D0E) (Supplementary Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

Genes with experimental structures recorded in separate PDB
entries can also exist in different conformations and oligomeric
states. For example, the structure of the kinase domain of activin
receptor type-1 has been reported in different conformational
states (PDB ID: 4DYM, 6GIN) and therefore two models are built.
Activin receptor type-1 protein has three regions: the extracel-
lular domain, transmembrane and the cytoplasmic region. The
three regions are assembled to obtain the full protomer. This
was then superposed on the experimentally solved extracellular
hetero 4-mer (PDB ID: 3EVS) and cytoplasmic (PDB ID: 4DYM) to
obtain the first hetero-4-mer complexes. To achieve the second
reported conformation, the solved protomer was re-aligned to

the extracellular hetero 4-mer (PDB ID: 3EVS) and cytoplasmic
(PDB ID: 6GIN), as shown in Figure 3C.

For all modelled complexes, we implement jsPISA [44] to eval-
uate the interfaces formed in the protein homo/hetero oligomers
and in the protein–DNA structures. Quality assessment for a
modelled protein is particularly important when conducting
drug design and/or predicting the effects of mutations. Generally
speaking, predicting accurate models with Root-mean-square
deviation (RMSDs) of less than 1 Å is not possible for large
multidomain or multicomponent complexes. Accurate models
depend on the availability of templates with high coverage
and high-resolution structures, which is often not the case
for the genes in the COSMIC CGC. PROCHECK [45] is used
as a quality assessment for our modelled structures, with
a resolution parameter of 2.4 Å. This tool is very useful to
assess the quality of not only globular domains but also
intrinsically disordered regions that are integrated into the
modelled protomer. PROCHECK outputs include 10 plots that
give comprehensive analyses for all the residues. Furthermore,
MolProbity [46], another quality assessment tool, is used to
evaluate the stereochemical quality, contacts, steric clashes,
dihedral angles, H-bonds and side-chain rotamers of the
modelled protein structures. The overall MolProbity score is a
log-weighted value of all these features.

Mutation data

All missense mutations are downloaded from the COSMIC
database (https://cancer.sanger.ac.uk/cosmic/download). Muta-
tion data are pre-processed and filtered using an in-house
Python script and the frequency of each mutant is calculated.
The impacts of these mutations, whether they are stabilizing or
destabilizing, are predicted from the 3D structure by using two
independent software:

(i) SDM: a knowledge-based approach using environment-
specific amino acid substitution tables to predict the
impacts of mutations on protein stability.

(ii) mCSM: a machine learning approach using a graph-
signature method.

(a) mCSM stability predicts the impacts of mutations on
protein stability.

(b) mCSM-PPI predicts the impacts of mutations at a pro-
tein–protein interface.

(c) mCSM-NA predicts the impacts of mutations on protein–
DNA interactions.

Web interface

The CGC 3D database has been developed using Express.JS,
which is a web application framework for node.js. Data are stored
in multiple tables in the PostgreSQL database. Express (version
4) framework is used in the backend to query and retrieve
information from the stored tables. The frontend is developed
using HTML5, CSS and Bootstrap (version 4). We use Embedded
JavaScript (EJS) as a templating engine, which produces the final
HTML by injecting data into an HTML template at the client side.
All the 3D protein structures can be visualized using MolStar.
In addition, the UniProt viewer was implemented to display the
sequence, and key annotations were reported in the UniProt
database. The MSAViewer [47] was implemented to visualize the
multiple sequence alignment. The heatmap was implemented
using D3.js library to produce dynamic interactive mutations
data.
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Figure 1. Simplified flowchart for manual modelling pipeline. Starting from target gene in COSMIC CGC, annotating gene domains, finding PDB hits and homologues

structures, building model complexes and finally predicting the impact of the mutations on the modelled structures.

Results and database features
CGC 3D has five components:

(i) Search query.
(ii) Gene description and links to other relevant resources.

(iii) Structure visualization and sequence annotations.
(iv) Models and PDB tables.
(v) Mutations table and heatmap.

From the main CGC 3D entry site, the database can be queried
in three ways (gene-id, UniProt-id and gene-name), producing
graphical and tabular displays of the data. The Results page
includes: UniProt viewer that provides the user with essential
biological information; MolStar for visualizing the model/PDB
structures; DISOPRED3, which generates a disorder prediction
graph and three tables (Figure 2):
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Figure 2. (A) Website front and result pages. The ‘navbar’ at the top provides navigation to the Browse, Contact, Help, Acknowledgements and related resources. A brief

description of CGC-3D is presented in the midpage and gives the database features followed by a query field. All search queries are performed in one HTML Form via

GeneID, Gene Name or UniProtID. (B) The Results page includes all data: gene name with links to external data sources, including UniProt, Pfam, COSMIC and COSMIC-

3D; a brief description; MolStar which displays 3D structures of the target-gene models; UniProt viewer which is used to visualize domains and other annotations

and DISOPRED3 plot, which predicts disorder of the target gene. Models and PDB tables provide information about the modelled and experimental structures, and the

heatmap and mutations table provide predictions of the impacts of mutations reported in COSMIC CGC.

(i) The mutations table has each mutant with the predicted
values from multiple software: SDM, mCSM stability,
mCSM-PPI, mCSM-NA as well as the frequency for each
mutant, as reported in COSMIC CGC.

(ii) PDB table provides solved crystal structures, where avail-
able.

(iii) Models/PDB table includes modelled protomers, oligomeric
complexes and proteins that had their structures solved

experimentally with high coverage. The table also includes
quality assessments, oligomeric interface analysis and a
downloadable text file with further model information. For
genes with full structural coverage, the structures with the
best resolution are selected, downloaded from the RCSB PDB
and saved as biological assemblies and represented in the
Models/PDB table. Whereas, other structures are presented
in the PDB table.
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Figure 3. Four modelled oligomeric multicomponent targets selected from the CGC database. (A) RSPO3, an enhancer for the WNT signalling, is coloured in white,

the E3 ubiquitin–protein ligase RNF43 is coloured in yellow. The LGR5 homodimer is coloured in green. (B) Heterotetramer of FAD-binding protein (green), iron–

sulphur protein (cyan), SDHC (magenta) and SDHD (yellow). The heme molecule is represented between SDHC and SDHD in stick magenta. (C) Activin receptor type-1

(ACVR1) heterotetramer comprising ACVR1 homodimer represented in green and cyan. Ligand in the cytoplasm region is coloured in yellow and magenta, and the

transmembrane region is highlighted between red/blue circular structure, which represents the protein membrane region. Two different conformations for the kinase

domain are represented, and they were based on PDB entries 3OOM (left) and 6GIN (right). (D) The homotetrameric structure of KCNJ5 with each protomer coloured

differently. Top and bottom views show the potassium ions inside the channel.

Each gene has a short description parsed from UniProt, along
with external links to other resources, such as COSMIC, COSMIC-
3D, UniProt, MobiDB [48] and Pfam, to reduce data redundancy.
MolStar, a web-based tool supported by HTML5, is implemented
to view the 3D protein structure of 714 gene products. It has
multiple features such as a PDB parser, which directly loads the
structures from PDB. Furthermore, it shows interactions such as
hydrogen bonding, π–π stacking interactions of selected ligands
and amino acid residues, which could assist in visualizing the
gain or loss of interactions between the mutant and the wild-
type residues.

The sequence annotations, visualized using the ProtVista
viewer, show domain annotations, post-translational modifica-
tions, transmembrane regions, variants and multiple other fea-
tures. Visualizing all these features in one viewer helps under-
standing the protein’s role and function.

The Models table contains a quality assessment for each
model, a total disorder percentage, the gene-sequence length,
the templates selected to build the model and calculated model/
PDB coverages.

The three largest models deposited into the COSMIC CGC
3D database are LRP1B (4599 residues), FAT1 (4588 residues) and
FAT3 (4557 residues). The smallest gene is COX6C, coding for
75 amino acid residues, whereas the largest reported gene in
the CGC is MUC16, coding for 14 507 amino acids. Users can
download and view the structures of all the models, includ-
ing monomers, homo- and hetero- oligomers, together with

PROCHECK quality assessment, model information and disorder
prediction graph.

To illustrate some of the models that have been built and
deposited into the COSMIC CGC 3D databases, we have selected
several hetero-oligomeric complexes:

(i) R-spondin 3 (RSPO3) acts as an enhancer for the WNT
signalling. It binds to E3 ubiquitin ligase (RNF43) as well
as leucine-rich-repeat-containing G-protein-coupled recep-
tor (GPCR) (LGR4-6). This tripartite interaction precludes
degradation of the WNT receptor. The structure of this
complex hetero 6-mer will give greater insight into RSPO3
function. The templates used to build the RSPO3 hetero 6-
mer complex were entries 4C8V and 4KNG. The TM-align
and the RMSD between the model and the template are
0.86 Å and 2.64 Å, respectively. The MolProbity score of 3.51
indicates this model is likely to be correct and could be used
to assess the impact of mutations using in silico methods or
for molecular docking to identify small molecules that bind
at the protein–protein interface and inhibit WNT receptor
degradation (Figure 3A).

(ii) The G-protein-activated inward rectifier potassium channel
4 (KCNJ5). This is a voltage-dependent channel, controlled
by GPCRs, which allows potassium K+ ions to flow into the
cell based on the potassium concentration outside the cell.
KCNJ5 is modelled as a homo 4-mer based on PDB entry
3SYP; it presents RMSD of 1.72 Å and a TM-score of 0.95
between the template and the model and a MolProbity score
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of 2.70. The interfaces calculated by jsPISA display a large
circular area (Supplementary Figure S4, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/),
where the larger the radius, the greater the likelihood of
finding interfaces within the biological assemblage. This
modelled structure could be used in a molecular dynamics
simulation to study the potassium channel mechanism and
dynamics, or by molecular docking to look for small ligands
interrupting the potassium flow (Figure 3D).

(iii) Activin A receptor 1 (ACVR1), known as ALK-2, is a trans-
membrane receptor, belonging to the transforming growth
factor beta (TGF-β) receptor family, which signals through
a heteromeric complexes of type I or II. This protein is
important for the bone morphogenetic pathway, responsi-
ble for skeletal system repair and development. The ACVR1
models include ligands bound to the extracellular cysteine-
rich region. The final models are hybrids based on the
solved crystal structure of the kinase domain and close
homologues of the extracellular region. Multiple templates
were selected to build two models with different conforma-
tional states. The first modelled structure is based on PDB
ID: 3EVS_C, 1BTE_A/B, 4C02_A, 6GIN_A/B, with MolProbity
score of 2.98, and the second modelled structure is based
on PDB ID: 3EVS_C, 1BTE_A/B, 4C02_A, 3OOM_A, 4DYM_A),
with MolProbity score of 3.17 (Figure 3C).

(iv) Succinate dehydrogenase cytochrome complex (SDHC), part
of mitochondrial complex II, is a membrane anchor subunit
that transports electrons from succinate to ubiquinone [49].
The model consists of four proteins: flavoprotein, iron–
sulphur protein, SDHC and SDHD anchor proteins, each
consisting of three transmembrane helices. The heme is
bound between the SDHC and SDHD subunits. PDB ID:
1ZOY was used as template to build the hetero 4-mer
complex model. It has (RMSD of 0.287 and TM-score = 1)
between the model and the template and a MolProbity score
of 3.13.

Predictions of the impacts of mutations

The UniProt viewer (variants section) can show mutations
not only from UniProt but also from large-scale studies, such
as COSMIC and 1000-Genomes. A colour scale is used that
highlights the differences between deleterious and benign
mutations. A green colour indicates no associated disease,
whereas a red colour indicates disease-causing mutations
according to UniProt curation. Mutations highlighted in light
to dark blue have been detected in large-scale studies (Supple-
mentary Figure S3, see Supplementary Data available online
at http://bib.oxfordjournals.org/). Two sequence-based methods,
PolyPhen-2 and SIFT, were used by UniProt to predict the impacts
of these mutations as benign or deleterious. Missense mutations
reported in COSMIC CGC and highlighted in the mutation table
on COSMIC CGC 3D have predicted values from structural-based
methods, SDM and mCSM (and variant algorithms: mCSM-
stability, mCSM-NA and mCSM-PPI). A value equal or higher
than +2 indicates a mutation highly stabilizing, whereas a value
equal to or lower than −2 suggests that mutation is highly
destabilizing.

The majority of the frequent mutations reported in COSMIC
CGC have structural annotations in COSMIC CGC 3D. Most
frequent mutations shown occur between 10 and 50 times
(Figure 4C). Only 29 mutant residues occurring in 14 different

genes have been reported for more than 1000 times. All these
mutants appear in genes that are considered as hallmarks in
COSMIC CGC, with the exception of DNMT3A (Figure 4D). These
mutations are possible drivers, as they occur at essential regions
in the protein, such as the binding site in KRAS (G12D) and
DNA–protein interface in DNMT3A (R882H). The most mutated
gene reported in the COSMIC CGC with structural annotation
in the COSMIC CGC 3D database is TP53 with 25 068 missense
mutations, whereas the least mutated gene is chromosome-15
open reading frame 65 (C15ORF65) with 3 missense mutations.

Many of frequently reported mutations in the COSMIC CGC
3D have not been predicted to be highly destabilizing by mCSM
stability and SDM; however, mutations may affect protein–
protein, protein–nucleic acid, protein–ligand, protein–metal and
other interactions. Interestingly, we have observed multiple
infrequent mutations predicted to be highly destabilizing for
protein stability, PPIs and protein–DNA interactions (Supple-
mentary Figure S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/), perhaps confirming that driver
mutations are rare or act allosterically.

Finding rare or infrequent mutations at allosteric sites
remains an arduous but essential task since they can impact
both tertiary and quaternary structures. From our extensive
mutational analysis on the protein 3D structures, we have
proposed multiple rare driver mutations affecting protein
stability, protein–DNA binding and PPIs through structural-based
methods that go beyond the traditional frequency and functional
site analyses (Supplementary Figure S5A–C, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

Data statistics

There are eight genes present in the COSMIC CGC without any
mutational annotations (Supplementary Table S1, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
283 genes in COSMIC CGC are considered as the hallmarks of
cancer, as they are involved in the various metabolic pathways
promoting cancer cell survival and growth. Only 59 gene prod-
ucts have experimental structural coverage of more than 90%
of the amino acid sequence, whereas 410 gene products have
structures of regions/domains that are stable and have been
solved independently. There are 476 genes that have more than
one Pfam domain, indicating that most of the genes in the
COSMIC CGC have multidomain structures. The most frequent
domains are presented in Figure 5B, which shows that most of
the COSMIC CGC genes are associated with DNA binding.

There are 119 transmembrane protein models deposited into
the COSMIC CGC 3D database. Furthermore, we have modelled
402 genes with structural coverage above 80%, approximately,
60% of the total genes in the CGC. Most genes (451 genes) have a
disordered region of less than 50% of the amino acid sequence,
whereas 71 genes are predicted to have disordered regions of
more than 80% (Figure 5C). The average MolProbity score for all
the models deposited in the COSMIC CGC 3D is ∼3.2, with SD
of 0.64, and the lowest and highest values are 0.51 and 4.58,
respectively (Figure 5D). There are 7123 mutations predicted to
be highly destabilizing according to mCSM-stability and 11 297
according to SDM. Of these, 2632 mutations are identified by both
mCSM-stability and SDM to be highly destabilizing (Figure 4B).
Furthermore, 1458 mutations are predicted to be destabilizing
on the PPI and 1710 are predicted to be destabilizing at the pro-
tein–DNA interface. On the other hand, there are 34 mutations
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Figure 4. Analysis of mutations with structural annotations deposited in the COSMIC CGC 3D database. (A) The distribution of impacts of mutations predicted by SDM

and mCSM (nucleic acid, PPI and stability). (B) The resemblance of highly destabilizing mutations between mCSM (stability, NA and PPI) and SDM tools. (C) The overlap

annotations of fusion genes, oncogene genes or tumour-suppressor genes in the COSMIC CGC 3D (D). Frequencies of the most mutated residues reported in COSMIC

CGC with a structural annotation in COSMIC CGC 3D database. (E) Frequencies (log) of the most frequently mutated residues, each of which has over 1000 occurrences

(8 of these occur in KRAS and 4 occur in TP53). Each gene is coloured differently.

predicted to be stabilizing by mCSM Stability, 1303 mutations
predicted to be stabilizing by SDM, 2 mutations predicted to
be stabilizing by mCSM-PPI and 158 mutations predicted to be
stabilizing by mCSM-NA.

Discussion
In the past few years, proteomic and genomic databases, such
as Genome3D, ModBase [50], COSMIC, COSMIC-3D, Pfam, Gen-
Bank [51] and UniProt, have gradually become more widespread,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab220/6301528 by guest on 19 January 2022



COSMIC Cancer Gene Census 3D database 9

Figure 5. Structural analysis of genes presented in the COSMIC CGC 3D. (A) COSMIC CGC Pfam domain annotation; in purple, 38 genes show no domain annotations,

whereas, in green and magenta, 681 genes show Pfam hits. (B) There are five domains annotated to be in multiple genes, of which three domains are associated with

DNA binding. (C) Density plot for model coverage of the gene products: green colour represents modelled structures for gene products in COSMIC CGC that are close

to 100% coverage of gene, whereas blue colour represents experimental structure coverage for genes in COSMIC CGC. The percentage disordered regions predicted by

DISOPRED represented in red. (D) Density plot of the MolProbity score of all the models deposited in the CGC 3D.

providing extensive information about protein sequences, func-
tions, domain annotations and mutational data. However, these
structural databases are either limited to experimental struc-
tures or to single domain modelling. Our approach is based on
comparative homo- and hetero-oligomeric complex modelling
to understand the impacts of mutations on protein structures
and the interactions between domains, subunits and different
proteins. Structures of more complex, large proteins and assem-
blies are increasingly becoming available by cryo-EM. However,
challenges remain in characterizing single conformations and
interactions in many of these, especially for those that have
low complexity regions and/or that are intrinsically disordered.
Nevertheless, some models of these more complex systems have
been built with the approach described here, such as our recent
SARS CoV-2 3D database [52], the cGMP-specific phosphodi-
esterase 6 (PDE6) [53].

Knowledge of protein folds, including sidechain conforma-
tions, quaternary structures and transient complexes, is essen-
tial for understanding protein stability, function and the impact
of mutations. This can be achieved through the combination of
experimental methods and comparative modelling, followed
by energy minimization and perhaps molecular dynamics

simulations, ultimately yielding more reliable in silico predictions
of the impact of mutations using statistical or machine learning
approaches.

Almost all genes in COSMIC CGC 3D feature both globular
domains and intrinsically disordered protein regions (IDPRs).
The IDPRs are characterized by remarkable conformational
flexibility and therefore they lack stable 3D structure. The IDPRs
can be located within sequences that contribute to globular
structures, or in between them, before or after globular domains.
Unfortunately, these regions have been usually regarded as
not critical for protein function, whereas in reality, IDPRs can
actually perform crucial functional roles. Additionally, multiple
mutations have been observed in the IDPRs region and thus we
have included the IDPR regions into our models and attempted
to predict their impacts on protein stability. We believe proteins
are dynamic and IDPRs deeply influence protein flexibility and
oligomerization.

There remain many challenges in the modelling of the wild-
type proteins. These include:

(i) The accuracy of the model depends on the sequence simi-
larity of the modelled protein to that of the target. Where
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the similarity is low, loops may differ and residues may
be inserted or deleted in the homologues to be modelled,
leading to less accurate models.

(ii) The oligomeric state can vary between orthologues as well
as paralogues. This makes automated modelling particu-
larly challenging.

(iii) Conformations may also differ according to functional state,
whether the proteins are enzymes (apoenzymes, holoen-
zymes or intermediate substrate-enzyme complexes),
receptors or other regulatory proteins.

(iv) The majority of protein structures of the human CGC have
disordered regions, often linking structured domains, which
makes the assembly of the domains very challenging.

One of the advantages of our COSMIC CGC 3D database is
that it takes into consideration the problems mentioned above
by manually modelling the most challenging genes with high
structural coverage (Figure 5C). We have mapped 127 443 muta-
tions from COSMIC CGC to the modelled structures. This covers
around 71% of the reported mutations in COSMIC CGC. We are
continuously updating the models as new templates appear.

Conclusion
The COSMIC CGC 3D was developed to compensate for the
significant shortage of experimental 3D structures available for
the most essential genes in cancer. Furthermore, the increase
in the number of reported mutations leading to cancer makes it
necessary to rely on protein modelling approaches, which have
higher throughput. Highly intrinsically disordered regions, either
inserted within the globular domains or between them, makes it
very challenging to find an experimental solution quickly for the
full functional complex or macromolecular assembly. Mapping
the mutations to the full modelled complexes and exploiting
novel methods such as SDM and mCSM will certainly increase
our understanding of which mutations will likely have signifi-
cant impacts on function and drug discovery and perhaps allow
the design of new cancer medicines that are less susceptible
to the emergence of drug resistance. The immediate future
plans for the COSMIC CGC 3D database include allowing the
user to build the mutant structures. We also plan to integrate
further computational tools to predict the impact of mutations
on protein stability, such as mCSM-lig, MAESTRO, STRUM and
FOLD-X, aiming to increase the prediction accuracy and to make
a consensus score for all the predicted values. Since COSMIC CGC
3D is an ongoing effort, we will update any new genes coming to
the COSMIC CGC.

Key Points
• COSMIC CGC 3D is a comprehensive annotated

database that predicted the impact of mutations on
cancer gene.

• The modelled cancer proteins include homo-
oligomers, hetero-oligomers, transmembrane
proteins and complexes with DNA, RNA, ligands
and co-factors.

• Structural-based tools, such as SDM and mCSM (pro-
tein stability, protein–protein, protein–DNA), are used
to predict the impacts of mutations on the protein
interfaces, protein stability and protein–DNA inter-
face.

Availability

All data are freely available at https://cancer-3d.com/.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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