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The Poiseuille flow (central line velocity Uc) of a fluid (viscosity ν) past a circular
cylinder (radius R) in a Hele-Shaw cell (height 2h) is traditionally characterised by a
Stokes flow (Λ = (UcR/ν)(h/R)2 � 1) through a thin gap (ε = h/R � 1). In this work
we use asymptotic methods and direct numerical simulations to explore the parameter
space Λ-ε when these conditions are not met. Starting with the Navier-Stokes equa-
tions and increasing Λ (which corresponds to increasing inertial effects), four successive
regimes are identified, namely the linear, nonlinear I and II regimes in the boundary
layer (the ’inner’ region) and a nonlinear regime III in both the inner and outer re-
gion. Flow phenomena are studied with extensive comparisons made between reduced
calculations, direct numerical simulations and previous analytical work. For ε = 0.01,
the limiting condition for a steady flow as Λ is increased is the instability of the Poi-
seille flow. However for larger ε, this limit is at a much higher Λ resulting in a lami-
nar separation bubble, of size O(h), forming for a certain range of ε at the back of the
cylinder, where the azimuthal location was dependent on ε. As ε is increased to ap-
proximately 0.5 the secondary flow becomes increasingly confined adjacent to the side
walls. The results of the analysis and numerical simulations are summarised in a plot
of the parameter space Λ-ε.

1. Introduction

The study of Poiseuille flow through thin sheets past a circular cylinder has a long
history, starting with the experiments by Hele-Shaw (1898) and the early theoretical
work by Stokes (appendix to Hele-Shaw 1899). By neglecting inertial terms, the leading
order solution was shown to be a quasi two-dimensional potential flow past a cylinder
where all the boundary conditions are met except the no-slip boundary condition on
the cylinder surface. The latter results in a boundary layer or ’inner’ region of thickness
O(h) on the cylinder surface in which secondary flow becomes significant at leading order
whereas the secondary flow outside the boundary layer, in the ’outer’ region, is only a
higher-order effect; here h is the half-height of the gap. The fundamental interest in this
problem has resulted in many different studies, which are reviewed below.

Riegels (1938) investigated experimentally and analytically the flow past a circular
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cylinder (radius R) in a Hele-Shaw configuration. The experiments showed a flow separa-
tion at approximately 60o from the rear stagnation point for Λ = (UcR/ν)ε2 = 3, where
Uc is the maximum channel velocity and ε = h/R. However, as the radius of the cylin-
der and the maximum channel velocity are not given in the work, reproduction of these
results is difficult, as not only is the ratio h/R unknown but also the ratio R/W where
W is the width of the Hele-Shaw cell; blockage ratios can have a significant influence
on Hele-Shaw flows (Thompson 1968). By retaining the inertial terms in the governing
equations and seeking solutions in powers of Λ an outer solution to O(Λ) was obtained.
Thompson (1968) used matched asymptotics to find inner and outer solutions, where
both of these solutions were expanded in powers of h. Compared to the Reigels (1938)
analysis, additional terms to the outer solution were determined, up to O(ε2). The addi-
tional first order term results in a displacement thickness of 0.6ε, indicating a degree of
inner-outer regional interaction. The inner solutions, to O(ε), were resolved analytically
(to give the tangential velocity) and using numerical calculations (for the radial and
vertical velocities). In both of these works the generation of higher order streamwise vor-
ticity was established, however only in the outer flow solution. Balsa (1998) investigated
the boundary layer structure for a slender body with h/l � 1 (where l is a characteris-
tic length of the slender body) using matched asymptotics, while retaining the inertial
terms in the governing equations. Streamwise vorticity is diffused into the fluid domain
and forms a pair of two counter rotating corner vortices, the strength of which is de-
pendent on the rate of change of the curvature of the body. This streamwise vorticity is
confined to the boundary layer.

Lee & Fung (1969) used a construction technique to investigate the plane Poiseuille
Stokes flow around a cylinder, which was found to be valid for ε < 5. A two term
approximation to an infinite series was presented for the velocity and pressure fields and
from this a drag force could be derived, showing a dramatic decrease in drag for ε > 1.
Tsay & Weinbaum (1991) extended the work from Lee & Fung (1969), again using a
construction technique to investigate the Stokes flow in a regular array of cylinders. The
no-slip condition could be more accurately satisfied on the surfaces of the cylinders (than
in Lee & Fung 1969), thereby extending its range of validity in ε. Guglielmini et al. (2011)
and Sznitman et al. (2012) used PIV and asymptotic methods to investigate the low Re
flow past corners with varying radius of curvature. The secondary flow identified at the
corner comprised pairs of counter rotating vortices and was shown to be a purely viscous
phenomena. Due to weak vertical velocities (in the z-direction, see figure 1) in a Hele-
Shaw cell, depth averaged solutions have also been investigated (Buckmaster 1969; Zhak
et al. 1986). Zhak et al. (1986) also reported reversed flow for Λ > 14 in their laboratory
experiments (where ε = 0.03). The depth averaged solutions did not predict the velocity
field well near the cylinder.

There are many engineering applications which can be approximated as a plane Poiseuille
flow through a thin sheet with cylinders of varying aspect ratio ε and cross-section aligned
perpendicular to the flow including flow through geological formations which is important
in the field of hydrology (Zimmerman & Bodvarsson 1996) and carbon sequestration (Fu
2016). In physiological flows, these types of flows are found in alveoli sacs (Lee 1969) and
in the choriocapillaris (Zouache et al. 2015, 2016). Knowledge of the flow past an isolated
cylinder is fundamental to understanding mass and passive transfer in these critical tis-
sues. The use of secondary flows has also microfluidic applications including cell sorting
(Nivedita et al. 2017). Another example concerns microsystems handling off-chip and
on-chip processes. An appreciation of the possible occurrence of considerable nonlinear
effects, which might include flow separation and the formation of eddies, is felt to be
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Figure 1: Schematic of Poiseuille flow (with maximum velocity Uc) past a cylinder (ra-
dius R), highlighted in grey, between two flat plates separated by a distance 2h. The
origin for the Cartesian and cylindrical polar coordinate system is the cylinder centre
in the midplane. The span W is taken to be very large in this study.

potentially important; this is especially so if as suggested here such effects can arise at
comparatively low flow rates (Kimura et al. 2018).

The purpose of the present work is to study the development of the flow phenom-
ena using asymptotic methods and direct numerical simulations, with the intention of
increasing Λ and ε past the validity of Thompson’s analysis. Starting with the Navier-
Stokes equations (in cylindrical polar coordinates) and increasing Λ (which corresponds
to increasing inertial effects), four successive regimes are identified, namely the linear,
nonlinear I and II regimes in the boundary layer and a nonlinear regime III in both
the inner and outer flow. Direct numerical simulations are carried out to investigate the
parameter space where the analytical treatment is no longer valid. The governing equa-
tions and boundary conditions are defined in §2, along with a description of the four
regimes mentioned above. The numerical methods are described and validated in §3 and
the results for a variation in Λ and ε are presented in §4 and §5 respectively. Discussion
and conclusions are given in §6.

2. Governing equations & boundary conditions

In this work we investigate a plane Poiseuille flow (with midplane velocity Uc) of a
fluid (with a density and kinematic viscosity of ρ and ν respectively) past a circular
cylinder of radius R (see figure 1). The dimensional governing equations for a steady,
incompressible, isothermal, Newtonian fluid are the continuity equation

∇ · ũ = 0, (2.1)

and the momentum equation

(ũ ·∇)ũ = −1

ρ
∇p̃+ ν∇2ũ. (2.2)
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To non-dimensionalise this system, set u = ũ/Uc, x = x̃/R and p = −2p̃/(GR) =
p̃Λ/ρU2

c where Uc = −Gh2/(2µ), µ is the dynamic viscosity, G is the far-field pressure
gradient and h is half of the gap height. Here Λ = (UcR/ν)(h/R)2. The non-dimensional
equations are then

∇ · u = 0, (2.3)

and

Λ(u ·∇)u = −∇p+ ε2∇2u, (2.4)

where ε = h/R. The boundary conditions include p ∼ −2x, u→ O(1) in the far-field and
no slip conditions on z = ±ε and at the cylinder surface. In cylindrical coordinates (2.3)
and (2.4) can be written as

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0, (2.5)

and

Λ

(
ur
∂ur
∂r

+
1

r
uθ
∂ur
∂r

+ uz
∂ur
∂z
− 1

r
u2θ

)
= −∂p

∂r
+ ε2

(
∇2ur −

ur
r2
− 2

r2
∂uθ
∂θ

)
,

Λ

(
ur
∂uθ
∂r

+
1

r
uθ
∂uθ
∂θ

+ uz
∂uθ
∂z

+
1

r
uruθ

)
= −1

r

∂p

∂θ
+ ε2

(
∇2uθ −

uθ
r2

+
2

r2
∂ur
∂θ

)
,

Λ

(
ur
∂uz
∂r

+
1

r
uθ
∂uz
∂θ

+ uz
∂uz
∂z

)
= −∂p

∂z
+ ε2∇2uz,

(2.6)

where the operator ∇2(·) = ∂2(·)
∂z2 + 1

r
∂
∂r

(
r ∂(·)∂r

)
+ 1

r2
∂2(·)
∂θ2 (Batchelor 1967). Our interest

lies in the flow behaviour for small values of ε and gradually increasing Λ, which corre-
sponds to gradually increasing inertia and hence nonlinearity. Section 2.1 below addresses
the linear regime. This is followed by nonlinear range I which describes the first occur-
rence of significant nonlinearity in the flow field, given in section 2.2, after which section
2.3 is concerned with the next substantial change in nonlinear influence which arises in
the nonlinear range II. Section 2.4 is on the nonlinear range III which represents the
highest nonlinear regime.

2.1. Linear theory

We first take ε � 1 (along with Λ being so small that all the inertia terms can be
neglected) and work in two regions, each of which has z = εz∗. The outer region has all
variables of O(1) except for uz = εu∗z, z = εz∗ and so from (2.5) and (2.6) we obtain the
lubrication equations

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz∗

∂z∗
= 0, (2.7a)

0 = −∂p
∂r

+
∂2ur
∂z∗2

, (2.7b)

0 = −1

r

∂p

∂θ
+
∂2uθ
∂z∗2

, (2.7c)

0 = − ∂p

∂z∗
. (2.7d)

Hence the pressure here depends only on r and θ to leading order. The appropriate
boundary conditions require zero velocity components at z∗ = ±1 and tangential flow at
r = 1, along with the following at large r,
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{uθ, ur, uz∗} → {−(1− z∗2) sin θ, (1− z∗2) cos θ, 0},
p ∼ −2x.

(2.8)

At leading order uz∗ is zero throughout the outer region, in keeping with the Hele-
Shaw/Stokes (1899) finding that the dominant flow there is quasi two-dimensional. The
latter takes the form

uθ = −(1− z∗2)

(
1 +

1

r2

)
sin θ, ur = (1− z∗2)

(
1− 1

r2

)
cos θ, p = −2

(
r +

1

r

)
cos θ,

(2.9)
for the current circular cylinder geometry, and this leaves a non-zero slip velocity and
associated pressure p0(θ) = −4 cos(θ) as r tends to 1 on approach to the cylinder.

The inner region or boundary layer is where r = 1 + εr∗, z = εz∗, with r∗ and z∗ of
O(1), θ = O(1) and (uθ, ur, uz) = (ûθ, εûr, εûz)+ ..., p = p0(θ)+ ε2p̂(r∗, θ, z∗)+ ... . From
(2.5) and (2.6), we then find the equations

at O(1) :
∂ûr
∂r∗

+
∂ûθ
∂θ

+
∂ûz
∂z∗

= 0, (2.10a)

at O(ε) : 0 = − ∂p̂

∂r∗
+ ∇2

1ûr, (2.10b)

at O(1) : 0 = −p′0(θ) + ∇2
1ûθ, (2.10c)

at O(ε) : 0 = − ∂p̂

∂z∗
+ ∇2

1ûz, (2.10d)

where the ∇2
1 operator is (∂2/∂r∗2+∂2/∂z∗2) and p′0 = ∂p0/∂θ. The boundary conditions

in the inner region correspond to zero velocity components at z∗ = ±1, and at r∗ = 0,
along with the following matching requirement at large r∗,

{ûθ, ûr, ûz} ∼
{

–2(1–z∗2) sin θ, 2(r∗–b)(1–z∗2) cos θ, 0
}
, (2.11a)

p̂(r∗, θ, z∗) ∼ –2(r∗–b)2 cos θ, (2.11b)

and (to emphasize) p0(θ) = –4 cos θ. The constant b represents an unknown origin
shift and is to be addressed below. The θ-momentum balance (2.10c) combined with the
boundary conditions on ûθ determines ûθ using

∇2
1ûθ = p′0(θ), (2.12)

which in turn indicates an exponential decay into the outer ûθ asymptote at large r∗.
Equations (2.10a, b, d) then act to fix ûr, ûz and p̂: for instance they give the biharmonic-
like equations

∇4
1ûr = −∇2

1

(
∂

∂θ

(
∂uθ
∂r∗

))
,

∇4
1ûz = −∇2

1

(
∂

∂θ

(
∂uθ
∂z∗

))
,

(2.13)

for ûr and ûz, noting that the right hand sides of (2.13) are known by virtue of (2.12).
We remark that the above working agrees with Thompson’s analysis.
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2.2. Nonlinear range I

Now consider how substantial nonlinear influences emerge as Λ is increased slightly.
Concerning the left hand side of (2.10), the representative terms missed out are these,

Λ

(
ûr
∂ûr
∂r∗

ε+ ûθ
∂ûr
∂θ

ε+ ûz
∂ûr
∂z∗

ε− û2θ
)

vs. O(ε),

Λ

(
ûr
∂ûθ
∂r∗

ε+ ûθ
∂ûθ
∂θ

ε+ ûz
∂ûr
∂z∗

ε+ ûrûθε

)
vs. O(1),

Λ

(
ûr
∂ûz
∂r∗

ε+ ûθ
∂ûz
∂θ

ε+ ûz
∂ûz
∂z∗

ε

)
vs. O(ε).

(2.14)

The terms after ’vs.’ correspond to the order present in (2.10). So as Λ is increased, the
first overtake (of the linear contributions) due to gradually increasing nonlinear effects
occurs when the centrifugal (or centripetal) term −Λû2θ grows to be of order ε as seen in
(2.10b) as all other terms on the left hand side are of smaller magnitude. This indicates
that a new regime arises when

Λ = O(ε), (2.15)

a possibility that is examined below. A similar study for the outer region shows that
the missed out terms there lag behind those of (2.7) by a factor Λ at most and so they
do not overtake significantly when (2.15) holds. When Λ = O(ε), with Λ = εΛ′, where
Λ′ is O(1), then given that all terms on the left hand side of (2.14) are relatively small
compared to the centripetal term, the new development is that (2.10b) is replaced by the
augmented form

−Λ′û2θ = − ∂p̂

∂r∗
+ ∇2

1ûr. (2.16)

The other equations in the inner region, namely (2.10a, c, d), remain as they were and
likewise for all the dominant equations (2.7) of the outer region. We are now left with
(2.10a, c, d) and (2.16) to solve. Here however (2.7c) still gives us (2.12) again for ûθ and
so we are left with (2.10a, d) and (2.16). Eliminating the pressure now leads to

∇4
1ûr = −Λ′

∂2û2θ
∂z∗2

−∇2
1

∂

∂θ

(
∂ûθ
∂r∗

)
, (2.17)

and

∇4
1ûz = Λ′

∂2û2θ
∂z∗∂r∗

−∇2
1

∂

∂θ

(
∂ûθ
∂z∗

)
, (2.18)

as the two equations for ûr and ûz respectively. The boundary conditions require zero
velocities at r∗ = 0 and at z∗ = ±1, along with the following at large r∗,

{ûθ, ûr, ûz} ∼ {−2(1− z∗2) sin θ, 2(r∗ − b)(1− z∗2) cos θ + Λ′û1(θ, z∗), 0},

p̂(r∗, θ, z∗) ∼ −2(r∗ − b)2 cos θ +
96

35
Λ′r∗ sin2 θ,

(2.19)

cf. (2.11a, b), where

û1(θ, z∗) = −4

[
z∗2
(

11

70
− z∗2

6
+
z∗4

30

)
− 1

42

]
sin2 θ. (2.20)

The required behaviours (2.19) are to match the velocity components and pressure with
those of the outer region as r tends to unity. The form (2.20) of the (new) term pro-
portional to Λ′ in (2.19) is inferred directly from the governing equations in the inner
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region. The three turning points or extrema present in the radial velocity (ur) condition
at large r∗ originate from the requirement (see (2.20)) that the vertical velocity (uz) must
tend to zero in order to match with the solution in the outer region. In consequence the
total effective mass flux, the integral of ur with respect to z∗ across the channel, must
be zero from the continuity equation in (2.23); this, combined with the velocity ur itself
having to be zero at the walls and given the symmetry about z∗ = 0, necessitates at least
three extrema being encountered. It should be noted that Riegels (1938) analysis also

assumed that
∫ h
−h urdz = 0 while Thompson’s (1968) matched asymptotic approach did

not require this condition and showed that this condition is not valid, except as ε→ 0.

2.3. Nonlinear range II

The next distinct nonlinear range arises because of the presence of the contribution in
Λ′ in the radial velocity in (2.19). In the inner region, when Λ′ becomes large with r∗

remaining of order unity the centrifugal term which is of order ε in (2.14) increases like
Λ′ whereas the inertial contribution Λur∂ur/∂r(see (2.6)) grows as ΛεΛ′2 in view of the
O(1) form of û1 in (2.19). A new balance between that inertial contribution and the
centrifugal effect therefore takes place when ΛεΛ′2 grows to become comparable with
εΛ′. This balance implies the new regime is defined by

Λ = O(ε1/2). (2.21)

Essentially the same overtaking occurs for the other inertial contributions. Hence, fol-
lowing on from the previous range, the second nonlinear range therefore has Λ increased
to Λ = ε1/2Λ′′ with Λ′′ of O(1) and in the inner region the new expansion is

(uθ, ur, uz) = (ūθ, ε
1/2ūr, ε

1/2ūz) + ...,

p = p̄+ ε3/2 ¯̄p(θ, r∗, z∗) + ....
(2.22)

Here, p̄ = p0(θ) from matching. Substitution into (2.5) and (2.6) yields to leading order
the following system,

O(ε−1/2) :
∂ūr
∂r∗

+
∂ūz
∂z∗

= 0,

O(ε−1/2) : Λ′′
(
ūr
∂ūr
∂r∗

+ ūz
∂ūr
∂z∗
− ū2θ

)
= − ∂ ¯̄p

∂r∗
+

(
∂2ūr
∂r∗2

+
∂2ūr
∂z∗2

)
,

O(1) : Λ′′
(
ūr
∂ūθ
∂r∗

+ ūz
∂ūθ
∂z∗

)
= −p′0(θ) +

(
∂2ūθ
∂r∗2

+
∂2ūθ
∂z∗2

)
,

O(ε−1/2) : Λ′′
(
ūr
∂ūz
∂r∗

+ ūz
∂ūz
∂z∗

)
= − ∂ ¯̄p

∂z∗
+

(
∂2ūz
∂r∗2

+
∂2ūz
∂z∗2

)
,

(2.23)

where we observe that Λ′′ = (UcR/ν)ε3/2; this is equivalent to a Dean number. The
boundary conditions for (2.23) are that the three velocity components are zero at z∗ = ±1
and at r∗ = 0, along with the following at large r∗

{ūθ, ūr, ūz} ∼ {−2(1− z∗2) sin θ,Λ′′û1(θ, z∗), 0},
∂ ¯̄p

∂r∗
→ 96

35
Λ′′ sin2 θ,

(2.24)

where û1 is defined in (2.20). The boundary condition for the pressure in (2.24) applies
because the order of magnitude of the pressure in (2.22) arises in response to the inertial
and viscous forces in the inner region rather than in response to the outer-flow pressure.
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2.4. Nonlinear range III

The previous two subsections indicate that nonlinear effects arise first in the boundary
layer, involving the two regimes associated with (2.15) and (2.21). The next nonlinear
range III would seem to correspond, tentatively, to considerable nonlinear influences first
entering the outer flow and to have a regime scale of Λ = O(1). The reasoning for the
O(1) scale here is based on the pressure gradient in (2.24) in particular since it implies a
pressure contribution of order ε3/2Λ′′r∗ near the edge of the boundary layer; as the outer
flow is entered (where r∗ increases to the order ε−1) this pressure contribution grows to
become of order unity when Λ′′ increases by ε−1/2, i.e. when Λ becomes O(1), at which
stage the outer flow is affected nonlinearly. This inference is to be appraised further after
the study of direct numerical solutions and reduced system solutions to be presented in
the following sections.

3. Numerical methods

In the previous section, systems of equations of increasing complexity were derived,
which require a numerical solution. In this section we detail the methods used, mostly
for the Navier-Stokes system (2.1) and (2.2) and their validation.

3.1. Navier-Stokes simulations

Numerical simulations of (2.1) and (2.2) were carried out with the open-source CFD tool-
box OpenFOAM using a finite volume method (Weller et al. 1998). Three-dimensional
unstructured meshes were generated in blockMesh and the solver used was simpleFoam,
which is appropriate for these laminar, steady flows. All schemes are second order accu-
rate. The cylinder is placed in the middle of a domain of length L = 200R and width
W = 100R, such that the flow at the sides is not affected by the cylinder (a schematic
of the setup is shown in figure 1). The cylinder and the top and bottom plates have the
no-slip condition applied, while the side walls have the no-flux condition. The inlet con-
dition is that of Poiseuille flow (with the flow from left to right) and the outlet condition
is p = 0. The validation and mesh independence studies are shown in the next section
and in Appendix A, respectively.

3.1.1. Validation

The purpose of this validation is to ensure OpenFOAM’s ability to accurately simulate
flow past vertically confined cylinders. The most recent comprehensive comparison of
experiments and numerical simulations for flow past confined cylinders with varying
aspect ratio is by Ribeiro et al. (2012). Although the blockage ratio (R/W ) of 25% is
much higher than for the current work, the salient phenomena of the flow around a
confined cylinder are present such as flow separation with increasing Reynolds number
and the variation of the separation bubble in the vertical direction, which gives confidence
to the numerical solutions for the unbounded setup considered in this work. The geometry
used was for an aspect ratio, h/R = 2. Following Ribeiro et al. (2012) the cylinder is
placed in the centre of the channel (width 4R) 200R and 140R from the inlet and outlet
respectively (to minimise the effects of the inlet and outlet). All boundaries had the no-
slip condition except for the inlet and the outlet. The definition of the Reynolds number
for this problem was Re = QR/(Aν) where Q and A are the volume flow rate and cross-
sectional area respectively and U = Q/A is the bulk velocity. Comparisons were made
across a wide range of Reynolds numbers for the separation bubble length Lv (defined as
the distance from the rear stagnation point on the cylinder to the location in the wake
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Figure 2: Variation of the length of the laminar separation bubble Lv with (a)
Reynolds number and (b) vertical distance with the current simulations (�) and nu-
merical simulations and experiments by Ribeiro et al. (2012) given by the dashed black
lines and (◦) respectively.

where the streamwise velocity is zero) and velocity profiles fore and aft of the cylinder,
with good agreement found in all cases (see figures 2 and 3).

The comparison with the analytical work by Thompson (1968) forms the second part
of the validation, which is for unbounded flow past a circular cylinder in a Hele-Shaw con-
figuration. Extensive comparisons between the current numerical work and Thompson’s
analytical solution for a wide range of Λ are given in §4, and are not repeated here. Also,
as the comparison to Thompson’s (1968) paper forms a significant part of this work, the
inner and outer solution for the radial and tangential velocity and pressure have been
included in Appendix B. Thompson’s outer solution (for velocity and pressure) is given
up to Λ = O(ε2) while the inner solution is up to Λ = O(ε) which needs to be considered
when comparisons are made with the present direct numerical simulations.

3.2. Reduced system calculations

The reduced system descriptions are those of §2.1-2.3. For the linear-theory case of §2.1,
the outer flow is given by (2.11) and the inner flow by equations (2.12)-(2.13). These
were treated by a standard relaxation method based on finite differences to determine
the three scaled velocity components, which has been used in previous studies (Glowinski
& Pironneau 1979; Smith & Dennis 1990). The formulation here is a velocity-vorticity
one, supplemented by iterative determination of the constant b through an integral of
the continuity equation over the inner-region domain. Agreement was found with the
results of Thompson (1968) including the value 0.6302 of the constant b. The same finite
difference method was then extended to cover nonlinear range I for the system (2.17)-
(2.18).

The system of equations in nonlinear range II (2.23) can be independently calculated
in the z∗-r∗ plane for different azimuthal locations. The question arises to the length of
the domain in the radial direction as the boundary condition (2.24) is independent of r∗.
One possibility is matching the asymptotic boundary condition for ur to the numerical
simulation data, which is further explored in §4.5.
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Figure 3: Streamwise velocity variation in the (a) streamwise direction at z/R = 0 and
y/R = 0 for Re = 18.5 and Re = 40.6 and (b) cross-stream direction at z/R = 0
and x/R = ±4 for Re = 26.1. Shown are the current simulations (black lines) and
the numerical simulations (dashed black lines) and experiments (◦) by Ribeiro et al.
(2012).

4. Results: variation of Λ

In this section the results of the numerical simulations will be presented, and where
appropriate compared to previous analytical work, for ε = 0.01 and increasing Λ. These
values have been chosen to highlight the different ranges identified in §2. First the velocity
fields of the linear range will be presented, which also serves as further validation of the
numerical methods. Next, as the nonlinear ranges identified in §2 do not have explicitly
defined limits, distinct flow phenomena cannot be allocated neatly to separate ranges.
Therefore, flow and force diagnostics will be presented for increasing Λ, and the overall
discussion is left to §6.

4.1. Linear range

To investigate the linear range, simulations of Λ = 0.001 were carried out, such that
Λ � ε � 1. Figure 4 shows the comparison of the three velocity components between
the current direct numerical simulations, reduced calculations and Thompson’s analyt-
ical work at different azimuthal locations (which is measured from the rear stagnation
point). In the outer region there is excellent agreement for the tangential, radial and
vertical velocities between the current numerical simulations, Thompson’s outer solution
and the linear theory. In the inner region there is excellent agreement between the DNS,
reduced calculations and Thompson’s inner solution. Note how the inner and outer so-
lutions provide an agreeable composite solution to the numerical simulation results. The
constant displacement thickness of approximately 0.6ε can be identified as the vertical
shift between the linear solution given by (2.9) and the present simulations or Thomp-
son’s outer solution (see figure 4d); our calculation of b in the linear range in §3.3 is based
on a solvability requirement which is equivalent to Thompson’s approach and involves
the total mass flux, and the result for b agrees well with the numerical simulation results.
The boundary layer thickness is approximately r∗ = 2, which was predicted in the early
work by Stokes. The vertical velocity is orders of magnitude less than the radial and
tangential velocities and is only present in the inner layer. The velocity profiles exhibit a
symmetry around θ = π/2 for Λ = 0.001, however as Λ is increased the vertical and radial
velocity become increasingly asymmetric. To investigate the linear range, simulations of
Λ = 0.001 were carried out, such that Λ � ε � 1. Figure 4 shows the comparison of
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the three velocity components between the current direct numerical simulations, reduced
calculations and Thompson’s analytical work at different azimuthal locations (which is
measured from the rear stagnation point). In the outer region there is excellent agree-
ment for the tangential, radial and vertical velocities between the current numerical
simulations, Thompson’s outer solution and the linear theory. In the inner region there
is excellent agreement between the current numerical simulations, reduced calculations
and Thompson’s inner solution. Note how the inner and outer solutions provide an agree-
able composite solution to the numerical simulation results. The constant displacement
thickness of approximately 0.6ε can be identified as the vertical shift between the linear
solution given by (2.9) and the present simulations or Thompson’s outer solution (see
figure 4d); our calculation of b in the linear range in §3.3 is based on a solvability require-
ment which is equivalent to Thompson’s approach and involves the total mass flux, and
the result for b agrees well with the numerical simulation results. The boundary layer
thickness is approximately r∗ = 2, which was predicted in the early work by Stokes.
The vertical velocity is orders of magnitude less than the radial and tangential velocities
and is only present in the inner layer. The velocity profiles exhibit a symmetry around
θ = π/2 for Λ = 0.001, however as Λ is increased the vertical and radial velocity become
increasingly asymmetric.

4.2. Streamlines perpendicular to cylinder surface

To gain a qualitative picture of the secondary flow induced by increasing Λ, streamline
plots of uz and ur (obtained from the direct numerical simulations) in planes perpendic-
ular to the cylinder surface (z∗-r∗), at different angles from the rear stagnation point, are
shown in figure 5. In nonlinear range I the important addition to the governing equations
is the centrifugal term in (2.16) which occurs when Λ is O(ε). For Λ = 0.05, there is an
upwelling in the component ur in the midplane (at z∗ = 0) at θ ≈ π/2 (see figure 5b-c)
which is a consequence of the centrifugal term (i.e. inertia) and occurs at the midplane
because the centrifugal force is greatest here. For increasing Λ, the start of the upwelling
moves closer to the front stagnation point, which is then followed by the streamlines
wrapping around themselves, forming two counter rotating vortices. Also, for the same
angle from the rear stagnation point, these counter rotating vortices increase in size for
increasing Λ (e.g. figure 5(c, h,m) for 92o). In figure 5, attention needs to be taken when
considering the scale of the counter rotating vortices. For example, for Λ = 1, the two
counter rotating vortices grow to about r∗ = 60 (or 0.6R) and as ε = 0.01, these are
highly elongated flow structures (figure 5m).

To compare the streamline structure of the direct numerical simulations against Thomp-
son’s (1968) outer solution (red lines) and the current reduced calculations for nonlinear
range I (equations (2.16)-(2.18)) (green lines), the location of where ur = 0 are shown
in figure 5. Note that in figure 5, for Thompson’s work ur < 0 (i.e. the flow is towards
the cylinder) and ur > 0 (i.e. flow is away from the cylinder) for radial locations further
away and closer to the cylinder than the red line, respectively. Thompson’s work consis-
tently underpredicts the results of the numerical simulations while the comparison with
the reduced calculations is good for azimuthal locations away from π/2 and for low Λ.
Metrics of the counter rotating vortices are analysed in more detail in the next section.
When θ < π/2, the pressure gradient and the centrifugal terms are coincident and the
domed structure of where ur = 0 seen for θ > π/2 is not present. The counter rotating
vortices becoming smaller (for decreasing azimuthal location) and the flow towards the
cylinder is increasingly confined to the channel walls (for θ tending towards zero).
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Figure 4: The (a-c) tangential, (d-f) radial and (g-i) vertical velocity profiles at
(a, d, g) θ = 3π/4, (b, e, h) θ = π/2 and (c, f, i) θ = π/4 for ε = 0.01 and Λ = 0.001. The
lines represent the present Navier-Stokes numerical simulations (black lines), present
reduced calculations for the inner region, (2.12)-(2.13) (green lines), Thompson’s inner
solution (blue lines and circles), Thompson’s outer solution (red line) and the linear
outer solution (2.11) (grey line). The profiles are in the midplane (z = 0) for (a-f) and
at z∗ = −0.4 for (g-i).

4.3. Pair of counter rotating vortices

The two metrics of interest here are the angle at which the pair of counter rotating vortices
start to form θv (where the angle is measured from the rear stagnation point) and the size
of the two counter rotating vortices, Lv. Firstly, θv is defined to be the largest angle from
the rear stagnation point where ur = 0 along the radial coordinate but that it is at least
r∗ = 2 (see figure 6a). This definition is used to overcome the issue of Thompson’s outer
solution for ur not satisfying the no-slip condition on the cylinder surface (see the red
line in figure 4d), so the outer solution for ur would predict the presence of streamwise
vorticity, even in the linear regime. Figure 6(b) shows that as Λ is increased the upwelling
due to ur moves closer to the front stagnation point. The excellent agreement with the
reduced calculations in figure 6(b) implies that the centrifugal term alone determines the
starting point of the upwelling of ur for this range of Λ. Secondly, the size of the counter
rotating vortices is defined to be the distance from the cylinder surface in the midplane
(z = 0) to where ur = 0 (see insert in figure 7a). For the reduced calculations Lv was
found to be proportional to Λ. From the direct numerical simulations in figure 7(a, b) it
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Figure 5: Streamlines of uz and ur in planes normal to the cylinder surface (z∗-r∗) for
(a-e) Λ = 0.05 , (f -j) Λ = 0.5 and (k-o) Λ = 1. All results are for ε = 0.01. The an-
gle of the plane (from the rear stagnation point) is shown in the left corner. The red
and green lines indicate the locations of where ur = 0 for Thompson’s outer solution
and the reduced calculations for nonlinear range I (equations (2.13) and (2.16)), re-
spectively. Note the scale for r∗; for Λ = 1, these are highly elongated vortices close to
θ = π/2.
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Figure 6: (a) Definition of the angle θv (where the flow is from left to right) and (b)
its variation with Λ (for ε = 0.01) where the present simulations are shown with the
symbol (◦), Thompson’s theoretical value (red line) and the reduced calculations for
nonlinear range I (green line).
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Figure 7: Variation of the size of the counter rotating vortices, Lv/R, in the midplane
at (a) 92o and (b) 98o with Λ (for ε = 0.01) where the present simulations are shown
with the symbol (◦), Thompson’s theoretical value (red line) and the reduced calcula-
tions for nonlinear range I (green line).

can be seen that the growth of the counter-rotating vortices is not proportional to Λ due
to the additional nonlinear terms in (2.14) being important when Λ is O(1) and then
only near θ = π/2.

Thompson’s (1968) results in figures 6 and 7 are applicable up to Λ = O(1) while
Thompson’s inner solution (up to O(ε)) for ur is symmetric about θ/π = 1/2 and has no
change of sign in the radial direction r∗ (and therefore can not be used to predict θv). In
contrast the reduced calculations in the current work are an inner solution. This might
explain why Thompson’s analysis is better at predicting Lv while the present reduced
calculations are better at predicting θv. Although our interest here is to a large extent in
the flow structure as Λ increases we should comment that in figure 7 the nonlinear range
I results (in green) are almost certainly taken beyond their practical range of application.
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Figure 8: The variation of the midplane (z = 0) surface pressure coefficient (p̃s −
p̃S)Λ/ρU2

c (where p̃S is the pressure at θ = π) with azimuthal location for the cur-
rent direct numerical simulations (black line), the linear solution (black dashed lines)
and Thompson’s (1968) solution (red lines) for Λ (a) 0.1, (b) 1 and (c) 3. The blue line
gives the pressure perturbation of the direct numerical simulations from the linear so-
lution.

4.4. Pressure field

In figure 8(a-c) the midplane surface pressure coefficient, (p̃s − p̃S)Λ/ρU2
c where p̃s and

p̃S are the surface pressure and the pressure at the front stagnation point respectively, is
plotted for increasing Λ. For small Λ, the linear solution (2.9) and Thompson’s pressure
solution (B 4) agree with the current direct numerical simulations. For Λ = 1, the agree-
ment of the current simulations and Thompson’s solution remains close while deviating
from the Stokes solution. For Λ = 3, Thompson’s solution agrees with the simulations on
the front side of the cylinder, however it does not predict the behaviour on the rear side of
the cylinder, significantly underestimating the drop in pressure here. Also, plotted is the
pressure perturbation of the direct numerical simulations from the linear solution (blue
line) which is found to scale in proportion to Λ sin2 θ and is consistent with the asymp-
totic analysis and Thompson’s analysis (see boundary condition (2.19) and Thompson’s
solution (B 4) respectively).

In nonlinear range I it is possible to calculate the gradients of the pressure perturba-
tions (from the linear pressure solution) in the radial and the vertical direction. These
pressure gradients, for example at the walls, were obtained from numerical derivatives of
the vorticity functions that were used in the nonlinear range I calculations (see (C 4) and
(C 5) in Appendix C). In figure 9(a) the inner solution of the present reduced calcula-
tions and Thompson’s outer solution provide, in effect, an agreeable composite solution
to the direct numerical simulations for the radial gradient of the pressure perturbation
for Λ = 0.1. As Λ is increased, the direct numerical simulations and the inner solution
start to diverge which is to be anticipated as Λ = 1 is beyond the range of applicability of
nonlinear range I. Similarly the numerical simulations start to diverge from Thompson’s
outer solution when Λ is further increased to Λ = 3. The vertical gradient of the surface
pressure perturbation is plotted in figure 10(a). As could be anticipated the variation
is weak and as Λ is increased the agreement between the nonlinear range I and the di-
rect numerical simulations decreases. Note that Thompson does not calculate an inner
pressure solution so it is not possible to make comparisons with the current numerical
simulations in this region.

As the fluid flows through the channel and past the cylinder there are two main pres-
sure gradients, namely, the pressure gradient in the channel from the inlet to the outlet
and also the pressure gradient due to the presence of the cylinder. When Λ is sufficiently
small, the channel pressure gradient is dominant. However, as Λ is increased, the chan-



16 C.A. Klettner & F.T. Smith

0 10 20 30
0

5

10

15

20

0 100 200 300
0

5

10

15

20

0 200 400 600 800 1000
0

5

10

15

20

(a) (b) (b)

Figure 9: Profiles of the radial gradient of the pressure perturbation for Λ = (a) 0.1,
(b) 1 and (c) 3 for the current direct simulations (black lines), Thompson’s outer solu-
tion (red lines) and nonlinear range I (green lines).
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Figure 10: Profiles of the gradient of the (a) surface pressure perturbation in the ver-
tical direction and (b) surface pressure minus the free stream pressure p̃fs in the az-
imuthal direction for the current direct simulations for Λ = 0.1 (�), 1 (◦) and 3 (×).
Thompson’s outer solution (red lines) and nonlinear range I (green lines) are also
shown. The free stream pressure, p̃fs(x), is the pressure in the channel far away from
the cylinder (at the same streamwise location) projected onto the cylinder.

nel pressure gradient is decreased resulting in the cylinder pressure gradient having an
increased effect on the flow. To highlight this, in figure 10(b), the free stream pressure
pfs(x) (i.e. far enough away for the cylinder to have no effect) is subtracted from the
pressure at the surface of the cylinder. As expected, on the front of the cylinder there is
a favourable pressure gradient (with reasonable agreement with Thompson’s outer solu-
tion) but as Λ is further increased an adverse pressure gradient emerges at the rear of
the cylinder at θ/π ≈ 0.4 for Λ = 3, which results in a deceleration in the tangential
velocity at the back of the cylinder (see figure 14f).

4.5. Velocity field

In this section the velocity field will be discussed for increasing Λ. As the tangential ve-
locity uθ remains largely unchanged until Λ is O(1), we start with a detailed examination
of ur which is instrumental in the formation of the counter rotating vortices and is key
to the reduced calculations in nonlinear range II and then progress to the tangential
velocity. As uz is weak for the range of Λ considered it will not be discussed here.

To highlight how the secondary flow structure relates to the radial velocity midplane
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Figure 11: The radial velocity profiles at θ = 3π/4 (in the midplane, z = 0) for Λ = (a)
0.1, (b) 1 and (c) 3. The lines represent the current Navier-Stokes numerical simula-
tions (black line), Thompson’s inner solution (blue circles), Thompson’s outer solution
(red line), the potential flow solution (grey line) and the reduced calculations for non-
linear range I (green line).

velocity profiles of ur are plotted in figure 11 for different Λ at θ = 3π/4. There is good
agreement between the direct numerical simulations and the reduced calculations of this
work for nonlinear range I (2.16)-(2.18) (see Appendix C for further details on how ur is
calculated in nonlinear range I) and Thompson’s outer and inner solutions where they
are applicable while for Λ = 3, as is to be anticipated, there are significant differences.
Note that ur = 0 was used to indicate the domed structure seen in figure 5.

As Λ is increased from the linear to nonlinear range II the boundary condition for
the inner region at large r∗ changes. For the linear range this boundary condition for
ur at the cylinder is (1− z∗2)(1− r−2) cos θ. When the centrifugal term is included and
Λ is increased there are two components to the boundary condition (2.19). The first
term is 2(r∗ − b)(1 − z∗2) cos θ which is to be expected, based on the linear solution,
and the second term is Λ′û1 (where Λ′ = Λε−1) which has three turning points and
increases linearly with Λ′ (see end of section §2.2 for further discussion on this boundary
condition). As the first term is dependent on cos θ and the weighting of the second term
is by Λ′, it is possible these terms are of equal magnitude with a resulting velocity profile
a combination of these two terms at different azimuthal locations for the same Λ′. For
increasing Λ′ the three turning point velocity profile starts to emerge first at θ = π/2 due
to the sin2 θ term in û1. This is the upwelling (due to the centrifugal term) which has
already been discussed in the context of the generation of the counter rotating vortices
in §4.2. When Λ is still further increased into nonlinear range II the boundary condition
for ur at large r∗ only has one term, namely Λ′′û1.

To show the effect of varying azimuthal location and Λ, profile plots of ur (in the
vertical direction) at different radial locations from the cylinder surface are shown in
figure 12 where the first row (a − c) and second row (d − f) are for θ = 135o and
θ = 95o respectively, the latter is chosen to highlight the increased effect of inertia
close to θ = π/2. The radial locations r∗ = 50 and r∗ = 10 are chosen to show how
the velocity profile develops from large to small r∗ (note that for ε = 0.01, r∗ = 50 is
equivalent to 0.5R). A third velocity profile is also shown (with a dashed line), where
the ur velocity profile is taken at the radial distance which best matches the asymptotic
boundary condition (2.24). This always occured at r∗ where the maximum positive ur
value was attained (see figure 6a).

The figures 12(a− c) show that for θ = 135o and an increase in Λ, the velocity profile
remains almost unchanged for r∗ = 50, with a mild distortion arising in the profiles at
z∗ = 0 (away from a parabolic shape) at r∗ = 10 and only resulting in the three turning
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point profile at Λ = 1. For θ = 95o and Λ = 0.05, the profiles for r∗ = 1 and r∗ = 10 are
already distorted however; even the closest matching velocity profile is quite different to
the asymptotic boundary condition. It is quite likely that for the flow conditions at this
location the two terms mentioned above are of approximately equal magnitude.

The reason for this indepth look at ur and its connection to the asymptotic boundary
condition is because the nonlinear range II system of equations (2.23) does not have
a defined domain length/size in r∗ (see boundary conditions (2.24)). One possibility
is to set the domain length, r∗D, to that where the current numerical simulation data
best matches the asymptotic boundary condition (2.24), a length of which was found to
increase as Λ increased (see figure 12d− f). Streamline plots of uz-ur at 98o are shown
in figure 13(a − c) for the direct numerical simulations. The radial locations of r∗D are
highlighted by the blue dashed line (note that these are the dashed line velocity profiles
in figure 12d− f). In figure 13(d− f) are the streamlines for nonlinear range II. There
are considerable differences between the simulation results and the nonlinear range II
streamlines which is likely due to the zero vertical velocity imposed at the ’inlet’ of
nonlinear II calculations, which is not the case for the direct numerical simulations. For
these confined flows the flow field will be very sensitive to these boundary conditions
imposed.

As Λ is increased, the pair of counter rotating vortices form closer to the front stag-
nation point and also become larger, which results in the momentum in the radial and
vertical direction increasing and hence the momentum in the azimuthal direction decreas-
ing. The consequence is a negative displacement thickness at the front of the cylinder
which can be seen in figure 14(a−c) where the tangential velocity at θ = 3π/4 is less than
that of the potential flow as Λ is increased from 0.1 to 3. An increase in Λ also results
in the adverse pressure gradient emerging at the back of the cylinder which results in a
deceleration of the tangential velocity, an effect that is quite pronounced for Λ = 10 (see
figure 14f).

4.6. Limit of steady flow with increasing Λ

For Λ � 1, the channel Reynolds number Reh = Uch/ν becomes a potentially limiting
factor to a steady flow and is especially important for flows past circular cylinders as
the fluid has to accelerate around the sides. The critical Reynolds number for flow in a
channel is approximately 800 (Tuckerman et al. 2014), which for ε = 0.01 is Λ = 8. The
highest value for Λ that was simulated with the steady state solver was Λ = 3 and a
simulation of Λ = 5 did not converge. No further attempt was made to obtain an exact
point of transition with a transient solver or to investigate the instability mechanism.
How this upper limit on Reh affects the flow past a circular cylinder is discussed further
in the §6.

4.7. Drag force

The force on the cylinder is

F =

∫
S

(p̃I − τ ) · n̂dS, (4.1)

where I and τ are the identity matrix and viscous stress tensor respectively and n̂ is the
unit vector out of the fluid domain. The corresponding drag coefficient is defined as

CD =
F · x̂

2ρU2
c hR

, (4.2)



Flow past a cylinder vertically confined between two plates 19

-0.4 -0.3 -0.2 -0.1 0 0.1
-1

-0.5

0

0.5

1

-0.4 -0.3 -0.2 -0.1 0 0.1
-1

-0.5

0

0.5

1

-0.4 -0.3 -0.2 -0.1 0 0.1
-1

-0.5

0

0.5

1

(a) (b) (c)

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
-1

-0.5

0

0.5

1

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1

(d) (e) (f)

Figure 12: The radial velocity profiles (in the vertical direction) for (a-c) θ = 135o and
(d− f) θ = 95o for Λ = (a, d) 0.05, (b, d) 0.5 and (c, f) 1. The three velocity profiles are
at r∗ = 50 (solid line), r∗ = 10 (dots) and also the velocity profile where the numerical
simulation results best match the asymptotic boundary condition (2.24) (green dashed
lines). The colours represent the current numerical simulations (black), Thompson’s
outer solution (red).

which can be split into the pressure and the viscous component

CDP =

∫
S
p̃In̂ · x̂dS

2ρU2
c hR

, CDν = CD − CDP , (4.3)

where x̂ is the unit vector in the streamwise direction (Klettner et al. 2016). The drag
coefficient is plotted in figure 15(b)with the numerical simulations compared with the Lee
& Fung’s (1969) Stokes solution and also a direct calculation with (4.1) using Thompson’s
analysis. The two methods give the same prediction although Thompson’s analysis gives
a better agreement for the surface pressure for Λ = 3 (figure 8c) which is due to the form
of the Λ term in (B 4). An alternative way of calculating the drag force would be using
an integral analysis where due to diffusion velocity perturbations in the wake disappear
quickly behind the cylinder (Lee & Fung 1969). The friction coefficient τ̃wΛ/(ρU2

c ) with
τ̃w = µ∂ũθ/∂r̃ on the cylinder midplane are plotted for the direct numerical simulations
and Thompson’s (1968) inner solution in figure 15(b) for increasing Λ. The boundary layer
thickness around the front of the cylinder decreases slightly for increasing Λ leading to an
increase in the shear stress for −1 < θ/π < −1/2 (figure 15b) which is not predicted by
Thompson’s inner solution as it has no dependency on Λ (see equation B 3). Agreement
is good up to where the inner solution is applicable however the deceleration of the
tangential velocity is not captured at the rear of the cylinder. The friction coefficient is
two orders of magnitude less than the pressure and also decreases significantly towards
the side walls which results in the CDP /CD ≈ 1.
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Figure 13: Streamlines of uz and ur in planes normal to the cylinder surface (z∗-r∗) at
98o for Λ = (a, d) 0.05 , (b, e) 0.5 and (c, f) 1 for the direct numerical simulations (a-c)
and nonlinear range II (2.23) (d-f). In (a-c) the blue dashed line indicates r∗D, where
the asymptotic boundary condition (2.24) best matches the current simulation results.

5. Results: variation of ε

In this section the variation of ε is investigated with ε = 0.1 and varying Λ. The main
difference in increasing Λ at ε = 0.1 is that the channel instability occurs now at Λ = 80,
which means flow features already analysed in §4 can develop further, and also results
in additional flow phenomena. Also simulations are carried out to explore the parameter
space Λ-ε and these results are discussed in the next section.

The metric θv was found to be quite different for ε = 0.1 than for ε = 0.01. Figure 16(a)
shows that the angle at which the secondary flow starts to form is closer to θ/π = 1/2 and
also that θv is quite insensitive to Λ for Λ� 1. For ε = 0.1, the boundary layer is thicker
than for ε = 0.01 which results in the tangential velocity having a smaller magnitude
around the front of the cylinder (compare figures 14d−f with figure 17) which means that
the centrifugal effect that causes the secondary flow is weakened, and as such the vortices
form further away from the front stagnation point. Figure 16(b) shows the variation of
the metric Lv with Λ (at θ = 98o). For Λ = 1 the counter rotating vortices are quite
similar in size to ε = 0.01 (both are Lv/R ≈ 0.2; see figure 7b). For Λ = 10 these grow
to Lv/R ≈ 1. The prediction from Thompson’s analysis is also shown however it should
be noted that this taken well past were it is applicable. Additional simulations were
also carried out to investigate the effect of increasing ε on the secondary flow. As ε was
increased from 0.2 to 0.5 the secondary flow that is generated is smaller and confined
closer to the side walls as compared to ε = 0.01 (see for example figure 5).

The tangential velocity profiles follow those seen previously for ε with good agreement
between the direct numerical simulations and Thompson’s solution (see figure 17). The
displacement thickness is clearly visible in figure 17(a) as the red line is 0.6ε above the
potential flow solution. Although there is no negative displacement thickness at Λ = 1
the tangential velocity for Λ = 10 is considerably less than the potential flow solution.
The comparison is good at the front of the cylinder, even for Λ = 10. To highlight the
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Figure 14: The tangential velocity profiles for (a-c) θ = 3π/4 and (d-f) θ = π/4 for
Λ = (a, d) 0.1, (b, d) 1 and (c, f) 3. All profiles are in the midplane, z = 0. The lines
represent the current Navier-Stokes numerical simulations (black line), Thompson’s
inner solution (blue line), Thompson’s outer solution (red line) and the potential flow
solution (grey line).
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Figure 15: (a) Drag coefficient as a function of Λ for where the current numerical sim-
ulations are shown as (◦) and Lee & Fung’s (1969) force expression for a Stokes flow
past a cylinder is shown as a black dashed line and Thompson’s analytical solution is
given by the red lines. All results are for ε = 0.01. (b) The midplane friction coefficient
for Λ = 0.1 (�), 1 (◦) and 3 (×).

effect of the adverse pressure gradient at the back of the cylinder, a profile is also given
at π/4 with significant deceleration for Λ = 10.

For ε = 0.1, the midplane friction and the surface pressure coefficient are plotted in
figure 18. Similar to ε = 0.01 there is good agreement for the surface pressure coefficient
for Λ = 0.1 and 1. For Λ = 10 there is an adverse pressure gradient at θ/π ≈ ±0.4.
Due to the deceleration in the tangential velocity at the rear of the cylinder, the friction
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Figure 16: (a) Variation of the angle θv with Λ. (b) Variation of the size of the counter
rotating vortices with Λ in the midplane at 98o. Thompson’s analytical solution is
given by the red lines. All results are for ε = 0.1.
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Figure 17: The tangential velocity profiles for ε = 0.1 and Λ = (a) 0.1, (b) 1 and (c) 10
at θ = 3π/4. All profiles are in the midplane. The lines represent the current numerical
simulations (black line), Thompson’s inner solution (blue line), Thompson’s outer solu-
tion (red line) and the potential flow solution (grey line). To highlight the deceleration
at the back of the cylinder, the dashed lines in (b− c) is the velocity profile at θ = π/4.

coefficient is negligible here for Λ = 10. Note the increase in the friction coefficient
over the front side of the cylinder for Λ = 10. In comparison to ε = 0.01, the friction
coefficient is only an order of magnitude less than the pressure coefficient which results in
the pressure component of the drag coefficient being CDP /CD ≈ 0.95. The dependence
of CD on ε (see Lee & Fung 1969) is present but it is not possible to distinguish this from
figures 15 and 18.

The consequence of the adverse pressure gradient and the subsequent deceleration in
the tangential velocity is a laminar separation bubble (LSB) forming at the rear of the
cylinder for Λs ≈ 13.5 (Λs here is the minimum value of Λ at which the LSB forms).
Figure 19 shows streamlines of the velocity field in blue while the LSB is highlighted with
red streamlines. The LSB is of size O(h) as indicated by the black dashed line around the
cylinder. When Λ is further increased the LSB forms into an attached separation bubble
which is seen in two-dimensional flow past cylinders up to a Reynolds number of about
40. Figure 20 shows that decreasing ε decreased the size of the LSB and also shifted its
formation towards the front stagnation point. Also, as ε decreases, Λs increases.
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Figure 18: (a) The midplane friction coefficient for Λ = 0.1 (�), 1 (◦) and 10 (×). (b)
The pressure coefficient for Λ = 0.1, 1 and 10. (c) Drag coefficient as a function of Λ
where the current numerical simulations are shown as (◦) and Lee & Fung’s (1969)
force expression for a Stokes flow past a cylinder is shown as a black dashed line and
Thompson’s analytical solution is given by the red lines. All results are for ε = 0.1.
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Figure 19: Streamlines of the velocity field (in blue) highlighting the development of
the laminar separation bubble (red streamlines) in the midplane for ε = 0.1 and Λ =
(a) 13.5 (≈ Λs), (b) 19 and (c) 25. The black dashed line indicates the distance ε from
the cylinder surface. The flow is from left to right.

(a) (b) (c)

Figure 20: Streamlines of the velocity field (in blue) highlighting the laminar separa-
tion bubble (red streamlines) in the midplane (z = 0) for ε = (a) 0.1, (b) 0.05 and (c)
0.031 for Λ ≈ Λs. The black dashed line indicates the half height h. The flow is from
left to right.

6. Discussion and conclusions

Our concern in the paper has been with the effects of increasing nonlinearity, rep-
resented by increasing values of the parameter Λ, in a Hele-Shaw configuration with a
circular cylinder in a channel. The study has consisted of direct numerical simulations for
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Figure 21: A diagram summarising the different ranges for the flow past a circular
cylinder in a Hele-Shaw configuration with the linear and nonlinear ranges (NL) I,
II and III analysed in §2. The dashed red line indicates the approximate upper limit
of the formation of the secondary flow (as two counter-rotating vortices as in figure
5) and the dashed green line indicates the approximate transition to an unsteady
Poiseuille flow. The blue dashed line indicates steady separated flow. The simulations
carried out are indicated by (•).

small finite ratios (ε) of channel half-height to cylinder radius supplemented by analyses
for asymptotically small ratios.

It is insightful to summarise the work in the preceding sections into a plot of the
parameter space Λ-ε (see figure 21). Traditional Hele-Shaw flow is for Λ� 1 and ε� 1.
In §2 the linear range and the nonlinear ranges I, II and III were identified which
correspond to Λ being O(ε), O(ε1/2) and O(1) respectively. In §4 the upper limit, as Λ
is increased, of the steady flow was suggested as due to unsteady Poiseille flow (shown
as a green dashed line). In §5, as ε was increased to approximately 0.3 < ε < 0.5 the
secondary flow was no longer present as two counter rotating vortices, instead smaller
vortices formed adjacent to the side walls (represented by a red dashed line). Also there
is the steady separated flow region for ε & 0.03 and increasing Λ. The region where
Thompson’s inner and outer analyses is applicable is for Λ = O(ε) and O(1) respectively
and ε� 1. In nonlinear range I the secondary flow starts to emerge and this is followed
by a negative displacement thickness at the front of the cylinder in nonlinear range II
and a deceleration of the tangential velocity around the back of the cylinder in nonlinear
range III. The suggested form of nonlinear range III implies that the three-dimensional
interactive boundary layer (IBL) equations hold throughout the outer region then. Three
dimensional IBL theory is usually used for external flows (Smith 1983; Duck & Burggraf
1986; Smith 2018) rather than for the present internal configuration.
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Further investigation is required to establish how and when the unsteady flow might
occur as Λ is increased. There are two different flowfields which can be present before
the unsteadiness occurs, namely a steady separated flow (for 0.2 ' ε ' 0.03) and a
non-separated flow (ε . 0.03) which are likely to respond differently to an increase in
Λ. Additionally as the flow has to accelerate around the cylinder the flow might go
unsteady earlier than indicated in the figure (i.e. the dashed green line in figure 21 could
be shifted to the left). The three dimensional nature of these separation bubbles is also
left to further work.

In this work there was extensive comparison made between our reduced calculations in
nonlinear range I, direct numerical simulations and Thompson’s analysis. Thompson’s
use of matched asymptotics meant that there was some feedback between the inner and
outer regions. There is interesting overlap of Thompson’s and the present analytical
work. Thompson’s excellent work is mostly concerned with effects such as higher order
influences in the outer region. In contrast we find analytically that nonlinearity first
enters at leading order in the inner region as far as the secondary flow is concerned and,
in a second stage, nonlinearity is much increased to the extent that the main flow velocity
component becomes altered nonlinearly. Both of these inner-region stages occur with the
parameter Λ still being small. The advantage of treating the fully nonlinear problem by
direct simulation, allied with analysis, is felt to be that clear ranges can be identified
when certain phenomena are likely to occur.
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Appendix A

This Appendix will detail the mesh independence study. Boundary layers in Hele-
Shaw flow are not like the more common inviscid-viscous boundary layers (where the
boundary layer thickness can be estimated by equating viscous and inertial forces). Here
the boundary layer thickness does not vary signficantly with Λ and is dependent on the
gap height 2h. As this is a three-dimensional problem, mesh independence will be shown
in the three cylindrical coordinates.

Firstly, for the radial and azimuthal direction the case of ε = 0.01 and Λ = 0.001 is
chosen. From figure 4, we can see that although the boundary layer thickness is r∗ = 2,
the gradient of the vertical velocity changes sign at r∗ ≈ 0.5 making uz the velocity
component with the highest mesh resolution requirement. Figure 22 shows meshes of
increasing radial resolution ∆r/R = {0.0017, 0.0011, 0.0008} or ∆r/h = {0.17, 0.11, 0.08}
with the coarsest visibly unresolving the vertical velocity close to the wall while the finest
mesh adequately resolves it.

It should be noted that the mesh resolution required for the vertical velocity is con-
siderably greater than the tangential velocity. To highlight this, the friction coefficient
τ̃wΛ/(ρU2

c ) on the cylinder midplane are plotted and compared to Thompson’s analytical
solution with all resolutions showing excellent agreement (see figure 23). Additionally,
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Figure 22: Mesh independence study of the vertical velocity at θ = 3π/4 for ε = 0.01,
Λ = 0.001 and z∗ = 0.4 for ∆r/h =(a) 0.17, (b) 0.11 and (c) 0.08. The vertical mesh
resolution is shown to the left of the velocity profiles. Also shown are the current re-
duced simulations for nonlinear range I (green lines) and Thompson’s inner solution
(blue circles).

the pressure coefficient is shown which highlights that these surface metrics are not sen-
sitive to the meshes used. Additional integral metrics (e.g. drag coefficient) have not
been included in this mesh independence study as the surface metrics indicate that an
adequate resolution is present. This also indicates that the resolution requirement in the
azimuthal direction is not as great in the radial direction and so ∆θ ≈ 4∆r.

For the vertical direction the case chosen for mesh independence is Λ = 1 and ε =
0.01. The vertical profile of the radial velocity ur (i.e. in the z∗-direction) at r∗ = 4
was chosen (see figure 12f) as the velocity profile has three turning points; therefore
requiring a higher resolution than the parabolic profiles usually encountered in Hele-
Shaw type flows. Radial velocity profiles were compared for increasing mesh densities
of ∆z/h = {0.095, 0.065, 0.049} (while keeping ∆r/h = 0.08) and all meshes provided
adequate resolution (plots not shown here).

The final meshes used a mesh resolution close to the cylinder of ∆r/h = 0.08, ∆θ = 0.32
and ∆z = 0.049. In the vertical direction the meshes spacing is equal whereas the mesh
spacing in the radial direction is finer towards to the cylinder surface. Note that away
from the cylinder the mesh size increases which results in quite elongated elements far
from the cylinder. However the Poiseuille flow which is present in this region is insensitive
to these elements.

Appendix B

This Appendix states Thompson’s (1968) tangential and radial velocity and pressure
for the outer and inner flow region. The outer solution for the tangential velocity is given
by

uθ = −(1− z∗2)

(
1 +

1

r2

)
sin θ︸ ︷︷ ︸

O(1)

− 1

2
ε(1− z∗2)

φ1 sin θ

r2︸ ︷︷ ︸
O(ε)

− 1

18
ε2φ21(1− z∗2)

sin θ

r2
+ ΛH(z∗)

sin 2θ

r3︸ ︷︷ ︸
O(ε2)

,

(B 1)
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Figure 23: Mesh independence study of the (a) friction coefficient and (b) the pressure
coefficient for ε = 0.01, Λ = 0.001 and z∗ = 0 with ∆r/h = 0.17 (�), 0.11 (◦) and
0.08 (×). Also shown are Thompson’s inner solution for the friction coefficient and the
outer solution for the pressure (red lines).

where H(z∗) = z∗6/15− z∗4/3 + 11z∗2/35− 1/21 and φ1 = 2.521 and the radial velocity
is given by

ur = (1− z∗2)

(
1− 1

r2

)
cos θ︸ ︷︷ ︸

O(1)

− 1

2
ε(1− z∗2)

φ1 cos θ

r2︸ ︷︷ ︸
O(ε)

− 1

18
ε2φ21(1− z∗2)

cos θ

r2
+ ΛH(z∗)

(
cos 2θ

r3
− 1

r5

)
︸ ︷︷ ︸

O(ε2)

.

(B 2)
The inner solution for the tangential velocity, to O(ε), is given by

uθ = −2

(
1− z∗2 − 4

∞∑
n=0

(−)nk−3n e−knr
∗

cos knz
∗

)
sin θ︸ ︷︷ ︸

O(1)

,

−1

2
ε sin θ

{(
(1− z∗2)(φ1 − 4r∗)− φ1

∞∑
n=0

(−)nk−3n e−knr
∗

cos knz
∗

)}
︸ ︷︷ ︸

O(ε)

, (B 3)

where kn = (n+ 1/2)π. The inner solutions, to O(ε), for the radial and vertical velocity
are tabulated in Thompson (1968). The outer pressure, to O(ε2), in Thompson (1968) is
given by

p = −2 cos θ

(
r +

1 + 1
2εφ1 + 1

18ε
2φ21

r

)
− 12

35
Λ

(
1− 2 cos 2θ

r2
+

1

r4

)
, (B 4)

noting the typographical error in Thompson’s (1968) equation (4.12).

Appendix C

In this Appendix the solution to nonlinear range I, equations (2.13) and (2.16), is
described. The radial velocity ur close to the cylinder is given by
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ur = 2V1(r∗, z∗)ε cos θ + 4V2(r∗, z∗)Λ sin2 θ, (C 1)

while further out the above expression reduces to

ur = 2V1∞(r∗, z∗)ε cos θ + 4V2∞(z∗)Λ sin2 θ, (C 2)

with

V1∞(r∗, z∗) = (r∗–b)(1–z∗2), V2∞(z∗) =
1

42
–

11

70
z∗2 +

1

6
z∗4–

1

30
z∗6, (C 3)

where b = 0.63. The functions V1, V2 and V1∞ are plotted in figure 24(a−b). The gradient
of the pressure perturbation in the radial and vertical direction in nonlinear range I are
given by

∂p̂

∂r∗
= 2

∂Pr1
∂r∗

cos θ +
∂Pr2
∂r∗

(
4Λ

ε

)
sin2 θ, (C 4)

and
∂p̂

∂z∗
= 2

∂Pz1
∂z∗

cos θ +
∂Pz2
∂z∗

(
4Λ

ε

)
sin2 θ, (C 5)

respectively where the additional functions on the right hand sides are plotted in figure
24(c− d).
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