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Abstract—This paper investigates non-orthogonal multiple ac-
cess (NOMA)-based cloud radio access networks (C-RANs),
where edge caching is adopted to cut down the crowdedness of
the fronthaul links. We aim to maximize the energy efficency
(EE) by jointly optimizing the power allocation, analog and
digital precoding, which turns out to be an intractable non-convex
optimization problem. To tackle this problem, we first select
cluster heads using the selecting cluster-head (SCH) algorithm,
where the analog precoding matrix can be resolved by means of
maximizing the array gains. Then, the device grouping algorithm
is proposed to group devices according to the equivalent channel
correlations, and thus the NOMA devices in the same beam are
capable of sharing the same digital precoding vector. Finally,
joint digital precoding design and power allocation algorithm
is proposed to decompose the resultant optimization problem
into two subproblems and solve them iteratively by applying
Taylor expansion operation and the minimum mean square error
(MMSE) detection. Simulation results validate that the proposed
NOMA-based C-RANs with hybrid precoding (HP) scheme can
achieve higher SE and EE than traditional orthogonal multiple
access (OMA)-based approach and two-stage HP scheme.

Index Terms—Cloud radio access network (C-RAN), non-
orthogonal multiple access (NOMA), massive multiple-input
multiple-output (mMIMO), hybrid precoding, power allocation.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT), as a commu-
nication paradigm which integrates the operational tech-

nology and informational technology, connects the sensors,
computers and machines, etc, and makes industrial operations
more efficient and intelligent [1]. Nevertheless, traditional
IIoT networks face the challenges in the explosive growth
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of data traffic caused by multiple IIoT devices. The combi-
nation of massive multiple-input multiple-output (mMIMO)
and millimeter wave (mmWave) has been considered as a
potential technique for IIoT since it can achieve higher spectral
efficiency (SE) and broader bandwidth [2] [3]. In traditional
MIMO systems, the fully digital precoding requires each
antenna equipped with a dedicated radio-frequency (RF) chain,
which makes it difficult to afford the hardware cost and energy
consumption [4] [5]. On the other hand, hybrid precoding
(HP) is considered as an energy-efficient architecture which
balances the tradeoff between the system performance and
hardware complexity [6]. The HP comprises two architecture:
the fully-connected HP where each RF chain is connected to
all antenna elements, and the sub-connected HP where each
RF chain is connected to the equal number of antennas. In
general, the fully-connected HP has higher SE while the sub-
connected HP has higher energy efficiency (EE) [5].

Non-orthogonal multiple access (NOMA) is also one of the
promising techniques for significantly enhancing the SE in
mmWave mMIMO systems [7]–[9]. Different from orthogo-
nal multiple access (OMA)-based systems, the NOMA-based
systems can serve multiple devices in one beam at the same
frequency-time resource block with the aid of intra-beam
superposition coding (SC) at base station (BS) and successive
interference cancellation (SIC) at the receivers [10], [11].
Moreover, the NOMA-based systems with HP architecture can
significantly reduce the number of phase shifters (PS) and
RF chains, which can mitigate the energy consumption while
achieving good system performance.

Due to the large hardware and operating costs of mmWave
mMIMO technique, the system performance is limited. The
cloud radio access network (C-RAN) has been regarded a
potential technique to realize centralized data processing and
dynamic resource scheduling, which can reduce the hardware
overhead. However, there is a long distance between the data
center of the conventional C-RAN and the devices, which leads
to a higher end-to-end delivery latency. To tackle this problem,
a cache-enabled C-RAN is presented, where the enhanced
remote radio heads (eRRHs) are deployed to execute baseband
signal processing as well as cache the popular contents [12]
[13]. In particular, the network edges can pre-fetch the most
popular files and store them into their own local cache during
the off-peak periods. In this case, the cache procedure is ben-
eficial to decrease the end-to-end latency of devices and thus
enhance the SE [14], [15]. The authors in [14] investigated the
cache placement strategy for minimizing the average requested
download delay subject to the limited cache and fronthaul
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capacity. A novel cache scheme was studied to maximize
the average date rate whilst satisfying the constraint of finite
service latency [15]. The authors in [16] studied a cooperative
caching strategy with content request prediction, which can
significantly improve the cache hit ratio and reduce content
acquisition delay effectively. Besides, due to the variability
of the C-RAN network environments, the increase of IIoT
devices and the dense deployment of eRRHs, there is an
urgent need for efficient resource management solutions to
reduce the energy consumption. To this end, maximizing the
EE whilst satisfying a certain SE requirement becomes a
new optimization criterion in wireless communication systems.
Besides, EE is also the key performance indicators (KPIs) for
the fifth generation (5G) and beyond wireless communication
networks [7].

A. Contributions

Previous works mainly focus on EE maximization using
the NOMA technique without considering the effect of C-
RANs. On the other hand, the works in [14], [15] aim to study
the cache placement strategies for C-RANs, where NOMA is
not considered to further enhance the system performance.
To the best of our knowledge, the resource allocation for
maximizing EE in NOMA-based C-RANs has not been well
studied. Motivated by these observations, we consider hybrid
precoding design and power allocation for EE maximization in
NOMA-based C-RANs, including cluster-head selection, ana-
log precoding, device grouping, digital precoding and power
allocation. Specifically, our contributions can be summarized
as follows.
• We propose a theoretical model for EE maximization

in NOMA-based C-RANs, where the hybrid precoding
and power allocation are jointly optimized. To tackle the
mixed combinatorial non-convex optimization problem,
we first design the analog precoding and device cluster-
ing, and then jointly optimize the digital precoding and
power allocation.

• For the design of analog precoding and device clustering,
we first propose the selecting cluster-head (SCH) algo-
rithm to select cluster heads, and then resolve the analog
precoding matrix by maximizing the array gains. After
that, the device grouping algorithm is proposed to group
devices according to the equivalent channel correlations.

• In the case of power allocation and digital precoding, the
resultant EE maximization problem is still non-convex
owing to the inter-cluster and intra-cluster interferences.
To tackle this problem, a joint digital precoding design
and power allocation algorithm is proposed to decompose
the original non-convex problem into two subproblems,
and solve them iteratively by applying Taylor expansion
operation and the minimum mean square error (MMSE)
detection.

• Numerical results reveal that the EE performance can
be significantly improved by our proposed algorithms
compared to the fully ZF precoding scheme. Moreover,
these results also demonstrate that the proposed NOMA-
based C-RANs with hybrid precoding scheme can achieve

Fig. 1: Illustration of a NOMA-based C-RANs architecture.

higher SE and EE than OMA-based approach and two-
stage HP scheme.

B. Organization and Notation

The remainder of the paper is structured as follows. In
Section II, the system model of the NOMA-based C-RANs is
presented. In Section III, the SCH algorithm, analog precoding
and device grouping are discussed. The joint digital precoding
design and power allocation algorithm is presented in Section
IV. Numerical results and the conclusion are discussed in
Section V and Section VI, respectively.

Notation: We use bold upper case and lower case letters
to denote matrices and column vectors, respectively. The
(·)−1, (·)T and (·)H represent matrix inversion, transpose and
conjugate transpose, respectively. || · ||p and tr(·) denote lp
norm operation and trace, respectively. The diagonal elements
of diagonal matrix diag(a) are the elements of vector a. E{·}
represents the expectation. The number of elements in set Γ
is denoted as |Γ| and | · | indicates the absolute value. bxc
denotes the integer closest to but not greater than x. The
complex Gaussian distribution with mean n and covariance R
is denoted as CN (n,R). The Kronecker product is denoted as
⊗. IN denotes the identity matrix with the dimension of N ×
N. c̄ is the complement 1− c of a binary variable c ∈ {0, 1}.
The empty set is denoted as ∅. C indicates the complex field.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, the considered NOMA-based C-RANs ar-
chitecture is shown in Fig. 1. There are KR eRRHs estab-
lishing wireless communication links with KU single-antenna
devices, where K = KU/KR denotes the number of devices
connected with each eRRH. Let KU = {1, · · · ,KU} and
KR = {1, · · · ,KR} be the set of devices and eRRHs,
respectively. The BBU connects eRRH i through an error-free
fronthaul link with capacity Ci bps/Hz, i ∈ KR.

To reduce the energy consumption, the sub-connected HP
architecture is adopted in the NOMA-based C-RANs. In
particular, the number of RF chains in HP architectures is less
than the number of antennas, which can be realized by a high-
dimensional analog precoder and a low-dimensional digital
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Fig. 2: The sub-connected hybrid precoding architecture.

precoder. The total antenna array elements at the eRRH is
separated into multiple sub-arrays, wherein each RF chain is
connected to a sub-array. The beam direction radiated from
each sub-array is controlled by the value of the phase shifters.
N transmit antennas and NRF RF chains are allocated to every
eRRH, where each RF chain connects to N/NRF transmit
antennas through phase shifters. Since the number of beams
is restricted to the number of RF chains, we assume that the
number of RF chains NRF is equal to the number of beams
G, i.e., NRF = G.

1) Cache Model: Assume that the requested files can be
divided into different sublibraries. There are G sublibraries
which are transmitted by G beams. The requested files |Sg|
in the gth sublibrary Fg,i for eRRH i are transmitted through
the gth beam, where Fg,i = {f ig,1, f ig,2, · · · , f ig,|Sg|}. Next,
we can model the cache status of sublibrary Fg at eRRH i by
introducing binary variables cFg,i, Fg ⊆ F , i ∈ KR, as

cFg,i =

{
1, if eRRH i caches subfile Fg,
0, otherwise,

(1)

where the binary variable c̄Fg,i = 1− cFg,i.
2) Channel Model: Owing to the limited scattering in

mmWave channels, we adopt the geometric Saleh-Valenzuela
model to embody the spatial correlation characteristics of
mmWave communications [17]. Specifically, the mmWave
channel model between the eRRH i and the device k with
one line-of-sight (LoS) path and Lk,i − 1 non-LoS (NLoS)
paths is adopted [18]. The N × 1 channel vector hik between
the eRRH i and device k can be given by [19]

hik =

√
N

Lk

Lk,i∑
l=1

α
(l)
k,ia(ϕ

(l)
k,i, θ

(l)
k,i), (2)

where α(l)
k,i is the complex gain of the lth path, θ(l)

k,i and ϕ(l)
k,i

represent the elevation and azimuth angle of departure (AoD)
of the lth path, a(ϕ

(l)
k,i, θ

(l)
k,i) ∈ CN×1 indicates the array

steering vector of a N1 × N2 uniform linear array (ULA),
which is represented by

a(ϕ, θ) =aa(ϕ)⊗ ae(θ), (3)

where aa(ϕ) = 1√
N1

[ej2πi(d1/λ) sinϕ]i∈{0,1,··· ,N1−1}, ae(θ) =
1√
N2

[ej2πj(d2/λ) sin θ]j∈{0,1,··· ,N2−1}, the signal wavelength is
denoted as λ, d1 and d2 indicate the horizontal and vertical
antenna spacing, respectively. Similar to [17], we assume that
d1 = d2 = λ/2 in mmWave communications. The channel
state information (CSI) is assumed to be perfectly known at
all the eRRHs [7] [20]. It is assumed that the parameters of the
channel between the eRRH and IoT devices (i.e., the direction
of arrival (DOA)) are estimated by the rank reduction method
[21]. In particular, IoT devices first send training sequences
to the eRRH in the uplink. Then, the covariance of the
received signals is used to perform eigenvalue decomposition,
and thereby the determination matrix is generated. Finally,
when the DOA is consistent with the signal direction, it is
determined that the eigenvector of the matrix corresponds to
the minimum eigenvalue.

3) Signal Model: According to the cache model subsection,
cf,i denotes the caching state of file f in eRRH i. If cf,i = 1,
the devices of eRRH i will retrieve the contents of files from
the local cache. Otherwise, devices will retrieve the contents
of files from the library located at the BBU. Generally, as
for the uncached files, soft- and hard- fronthaul information
transmission are two common kinds of transmission methods
to fetch files from the BBU. For the soft fronthaul information
transmission, a quantized version of the precoded signals is
delivered through fronthaul links. In addition, the hard infor-
mation of the uncached files is transferred through fronthaul
links. When the devices request the uncached files in the
eRRHs, the soft fronthaul information transmission is adopted
to transfer the uncached files from the BBU to the eRRHs. As
a result, the signal x ∈ CN×1 which contains the information
of the uncached and cached files delivered by eRRH is written
as

xi = Ai

( ∑
f∈Freq

df,isf + zi

)
, (4)

where df,i = cf,id̃f,i+ c̄f,id̄f,i ∈ CNRF×1, d̃f,i is the digital
precoding vector of cached baseband signal sf , and d̄f,i is
the digital precoding vector of uncached signal for eRRH
i, respectively, the scalar quantity sf is the data symbol of
requested file f with E{|sf |2} = 1, the requested files set is
denoted as Freq . Supposing that the quantization noise zi ∈
CNRF×1 is independent of the information of the requested
files and distributed as zi ∼ CN (0,Ωi). The quantization
covariance matrix Ωi is set as υINRF , where υ is a constant
with 0 < υ < 0.02 [20]. Note that if eRRHs have cached
all requested files, i.e., files Freq are prestored at the local
cache, the quantization noise zi is a zero vector. In addition,
we suppose that the quantization noise zi is unrelated to the
eRRHs. Ai is the analog precoding matrix of size N ×NRF .
The sub-connected HP analog precoding matrix is written as
[22]

Ai =


āi,1 0 · · · 0
0 āi,2 0
...

. . .
...

0 0 · · · āi,NRF

 , (5)
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where M = N/NRF is presumed to be an integer. Thus, each
RF chain connects M antennas through M phase shifters. The
elements of āi,n ∈ CM×1 have the same amplitude 1/

√
M but

different phases for n = 1, 2, · · · , NRF .
Consequently, the signal yk is given by

yk = hHk A
∑

f∈Freq

dfsf + hHk Az + vk

= hHk Adfksfk︸ ︷︷ ︸
desired file

+
∑

f∈Freq\{fk}

hHk Adfsf︸ ︷︷ ︸
interference files

+ hHk Az + vk︸ ︷︷ ︸
noise

,

(6)

where hHk ,
[
hHk,1,h

H
k,2, · · · ,hHk,KR

]
∈ C1×NKR , hHk,i ∈

C1×N is the channel matrix between device k and eRRH
i, df ,

[
dHf,1,d

H
f,2, · · · ,dHf,KR

]H
∈ CNRFKR×1 and z ,[

zH1 , z
H
2 , · · · , zHKR

]H ∈ CNRFKR×1, vk is the noise following
the distribution CN (0, σ2

v). The analog precoding super-matrix
A can be given by

A =
[(

A1P
H
1

)H
, · · · ,

(
AKRPH

KR

)H]H
= diag

(
A1, · · · ,AKR

)
,

(7)

where the permutation matrix Pi is defined as

Pi =
[
0NRF×(i−1)NRF , INRF×NRF ,0NRF×(KR−i)NRF

]T
.

(8)
Then, the signal-to-interference-and-noise ratio (SINR) at

the device k can be written as

γk =
hHk Adfkd

H
fk

AHhk

ξk
, (9)

where

ξk=
∑

f∈Freq\{fk}

hHk Adfd
H
f AHhk + hHk AΩAHhk + σ2

v ,

(10)
Ω = diag(Ω1, · · · ,ΩKR).

To this end, the achievable data rate of device k is given by

Rk = log2(1 + γk). (11)

Since the interference between eRRHs and devices in
adjacent cells is very low, we assume that each device is
associated with the nearest eRRH and can only be licensed
to one eRRH [23]. The eRRHs are allocated to the orthogonal
time-frequency resources which avoids the co-tier interference
between the eRRHs [24] [25]. As for the eRRH i, the set of
devices served by the gth beam is expressed as Sig , where
|Sig| ≥ 1 for g = 1, 2, · · · , G and Sim ∩ Sin = ∅ for m 6= n.
The total number of devices supported by all beams under
each eRRH is K, i.e.,

∑G
g=1 |Sig| = K, i ∈ KR.

According to the above cache model, the signal xi ∈ CN×1

contains the information of the uncached and cached files
delivered by eRRH i, which is written as

xi = Ai

(
DFreq,isFreq,i + zi

)
, (12)

where Ai ∈ CN×NRF is the analog precoding matrix,
DFreq,i = [dF1,i,dF2,i, · · · ,dFG,i] ∈ CNRF×G is the digital
precoding matrix of eRRH i, and dFg,i = cFg,id̃Fg,i +
c̄Fg,id̄Fg,i ∈ CNRF×1, d̃Fg,i denotes the digital precoding
vector for caching the gth sublibrary Fg, and d̄Fg,i represents
the digital precoding vector for unavailable sublibrary Fg in
eRRH i, respectively. The signal sFreq,i ∈ CG×1 represents
the data symbol of requested file Freq. zi ∼ CN (0,Ωi) is the
quantization noise of size NRF × 1. Consequently, the signal
received by the mth device of the gth beam in the ith eRRH
can be given by

yig,m=(hig,m)HAi

G∑
j=1

|Sj |∑
k=1

dFj,i

√
pij,ks

i
fj,k+(hig,m)HAizi+v

i
g,m

=(hig,m)HAidFg,i

√
pig,ms

i
fg,m︸ ︷︷ ︸

desired files

+Iintra+Iinter︸ ︷︷ ︸
interference

+ (hig,m)
H

Aizi + vig,m︸ ︷︷ ︸
noise

,

(13)

where the intra-beam interference and inter-beam interference
are given by

Iintra=(hig,m)
H
AidFg,i

(m−1∑
k=1

√
pig,ks

i
fg,k+

|Sg|∑
k=m+1

√
pig,ks

i
fg,k

)
,

Iinter=(hig,m)
H

Ai

∑
j 6=g

|Sj |∑
k=1

dFj,i

√
pij,ks

i
fj,k,

where sifg,m is the transmit signal with E{
∣∣∣sifg,m∣∣∣2} = 1, pig,k

denotes the transmit power for the kth device of gth cluster,
vig,m ∼ CN(0, σ2

i,v) denotes the additive white Gaussian noise.
To mitigate the intra-cluster interference, NOMA schemes

are exploited in this paper. In particular, intra-beam SC is
performed at the ith eRRH and the receivers perform SIC
to remove the interference of the mth device from the kth
device (for all k > m) in the gth beam. In general, we
assume that

∥∥∥(hig,1)
H

AidFg,i

∥∥∥
2
≥
∥∥∥(hig,2)

H
AidFg,i

∥∥∥
2
≥

· · · ≥
∥∥∥(hig,|Sg|)

H
AidFg,i

∥∥∥
2
, g = 1, 2, · · · , G. Then, the

remaining received signal of the mth device in the gth beam
can be rewritten as

yig,m=(hig,m)HAidFg,i

√
pig,ms

i
fg,m︸ ︷︷ ︸

desired files

+(hig,m)
H
AidFg,i

m−1∑
k=1

√
pig,ks

i
fg,k︸ ︷︷ ︸

intra-beam interference

+(hig,m)
H

Ai

∑
j 6=g

|Sj |∑
k=1

dFj,i

√
pij,ks

i
fj,k︸ ︷︷ ︸

inter-beam interference

+ (hig,m)
H

Aizi + vig,m︸ ︷︷ ︸
noise

,

(14)
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and the SINR of the mth device in the gth beam is written as

γig,m =
∥∥∥(hig,m)

H
AidFg,i

∥∥∥2

2
pig,m

/
ξig,m, (15)

where ξig,m is given by (16) at the top of the next page.
Consequently, the data rate of the mth device in the gth beam
can be given by

Rig,m = log2(1 + γig,m). (17)

The sum data rate in the ith eRRH can be written as

Ri =
G∑
g=1

|Sg|∑
m=1

Rig,m. (18)

4) Power Consumption Model: For the considered NOMA-
based C-RANs, the total energy consumption is composed of
the circuit power and the transmit power. Thus, similar to [20]
[26], we can express the total power consumption of eRRH i
as

P itotal = P ic + η

( G∑
g=1

|Sg|∑
m=1

pig,m

)
, (19)

where the constant η ≥ 1 represents the inefficiency of power
amplifier [27]. The circuit power consumption P ic of eRRH i
is given by

P ic = NRFPR +NPPP +NAPA + PB , (20)

where PR and PP denote the power consumed by a RF chain
and phase shifter, respectively. NP and NA are the number
of phase shifters and power amplifies. PA and PB represent
the power consumed by power amplifies and baseband signal
processing, respectively.
B. Problem Formulation

Our aim is to maximize the EE of NOMA-based C-RANs
under the constraints of the fronthaul transmission rate, the
transmit power of eRRH, and precoding vectors. Accordingly,
the resulting optimization problem is formulated as

(P1): max
{pig,m},{Ai},{dFg,i}

KR∑
i=1

∑G
g=1

∑|Sg|
m=1R

i
g,m

P ic+η
(∑G

g=1

∑|Sg|
m=1 p

i
g,m

) (21a)

s.t. g(dFg,i) ≤ Ci, ∀i ∈ KR, (21b)
G∑
g=1

|Sg|∑
m=1

pig,m ≤ Pi, ∀i ∈ KR, (21c)

G∑
g=1

‖AidFg,i‖2 ≤ 1, ∀i ∈ KR, (21d)

where Pi is the maximum transmit power of eRRH i. Con-
straint (21b) implies that the data rate on each fronthaul link
cannot exceed the limited capacity Ci. We thus can express
the fronthaul rate g(dFg,i) as

g(dFg,i), log2 det

( ∑
Fg⊆Freq

c̄Fg,id̄Fg,id̄
H
Fg,i+Ωi

)
− log2 det(Ωi).

(22)

Constraint (21c) corresponds to the transmit power constraint
of eRRH i. Constraint (21d) denotes the normalization limi-

tation of precoding vectors. The considered EE optimization
problem, which jointly optimizes the analog precoding, digital
precoding and power allocation, is mixed combinatorial non-
convex and cannot be solved directly. Therefore, we concen-
trate on solving these variables in an alternative manner. Since
the beam pattern design needs to obtain beam scanning angles,
the cluster heads should be selected first in order to compute
the beam scanning angles. Then, the analog precoding and
device clustering can be designed based on the selected cluster
heads. Finally, the considered problem is decoupled into two
subproblems, where the power allocation and digital precoding
are optimized iteratively by using Taylor expansion operation
and the MMSE detection.

III. ANALOG PRECODING DESIGN AND DEVICE
CLUSTERING

For the reason that the number of devices K is much larger
than that of RF chains NRF in each cell, we divide devices
into NRF clusters, where the number of beams is equal to
the number of RF chains, i.e. G = NRF . In particular, the
correlation-based SCH Algorithm is proposed to select the
cluster head for each beam. Then, the analog precoding matrix
is solved through maximizing the array gain. In addition,
devices grouping is determined by the equivalent channel
correlation between the remaining devices and cluster-heads.

A. The Proposed Correlation-Based SCH Algorithm

To enhance the system performance, we select G cluster
heads in terms of the channel conditions of devices. Firstly, we
define %i,j = |hHi hj |/‖hi‖2‖hj‖2 as the channel correlation
coefficient between the device j and device i, where %i,j
indicates the lower correlation. In this case, inter-beam inter-
ference is suppressed for low channel correlation of devices
in different beams.

In the proposed correlation-based SCH algorithm, we mea-
sure and calculate the correlation of the cluster-heads through
an adaptive threshold σ, which is transformed into σ =
σ+0.1∗(1−σ) in the next iteration. Specifically, as for the first
beam, the device whose channel gain is the highest is assigned
to the first cluster head, and then the devices are chosen as the
cluster-head candidates for other clusters when their channel
correlations are less than the threshold σ. Particularly, we pick
out the device with the highest channel gain in the cluster head
candidates as the second cluster head. Based on this principle,
G cluster heads can be chosen. The specific steps and details
of the algorithm are summarized in Table I, where Γ is the set
of selected G cluster heads.

In particular, the highest complexity from step 8 to step
13 in Table I reaches (2 + 2(K − 1))(K − 1), while that is
2(K − 1) from step 14 to step 17. Thus, the computational
complexity of the proposed correlation-based SCH algorithm
reaches O(GK2) [28].

B. Analog Precoding With Finite Phase Shifters

A typical two-stage HP scheme is considered, where the
HP structure is divided into the analog and digital precoding
[29]. Particularly, for analog precoding, it is difficult to seek
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ξig,m =
m−1∑
k=1

∥∥∥(hig,m)
H

AidFg,i

∥∥∥2

2
pig,k +

∑
j 6=g

|Sj |∑
k=1

∥∥∥(hig,m)
H

AidFj,i

∥∥∥2

2
pij,k + (hig,m)

H
AiΩiA

H
i hig,m + σ2

i,v. (16)

TABLE I: THE PROPOSED SCH ALGORITHM

INPUT:
The number of devices and beams: K and G;
The channel correlation threshold: σ;
The channel vectors: hk for k = 1, 2, · · · ,K.

OUTPUT:
The cluster head set Υ.

1: H = [‖h1‖2, ‖h2‖2, · · · , ‖hK‖2];
2: [∼, O] = sort(H,′ descend′);
3: Υ = O(1);
4: Υc = O/Υ;
5: Θ = Υc;
6: g = 2;
7: while g ≤ G do
8: if Θ == Φ then
9: while Θ == Φ do
10: σ = σ + 0.1 ∗ (1− σ);
11: Θ = {i ∈ Υc|%i,j < σ, ∀j ∈ Υ}.
12: end while
13: end if
14: Θ = {i ∈ Θ|%i,j < σ, ∀j ∈ Υ};
15: Υ = Υ ∪Θ(1);
16: Υc = O/Υ;
17: g = g + 1.
18: end while
19: return Υ

precise control of phase shifters. To tackle this problem, we
exploit finite-resolution phase shifters. It is assumed that the
quantized phase shifters is B bits, and we can extract the non-
zero elements of the analog precoding matrix A as:

A(i, j) ∈ FA =
1√
M

{
ej

2πl

2B : l = 0, 1, · · · , 2B − 1

}
. (23)

For the cluster-head set Υ acquired in the proposed SCH
algorithm, the analog precoding can be obtained via the
channel vectors of cluster-heads in Υ. Specifically, we first
obtain the analog precoding vectors by maximizing the array
gain |hHΥ(g)āg|

2, where g = 1, 2, · · · , G. Subsequently, we
align the phases of the channel vector in the cluster head
and the precoding vector, and then quantize the phase of the
precoding vector to the nearest phase element in the feasible
set FA according to the Euclidean distance. To minimize the
phase difference of hΥ(g) and āg , we obtain the ith element of
analog precoding vector in the gth cluster āg via the following
formula:

āg(i) =
1√
M
ej

2πl̂

2B , (24)

where i = (g − 1)M + 1, (g − 1)M + 2, · · · , gM , and

l̂ = argmin
l∈{0,1,··· ,2B−1}

∣∣∣∣angle(hΥ(g)(i)
)
− 2πl

2B

∣∣∣∣ . (25)

C. Equivalent Correlations-Based Device Clustering

Based on the obtained analog precoding matrix, the equiv-
alent channel vectors can be expressed as:

h̄Hk = hHk A,∀k = 1, 2, · · · ,K. (26)

The device will be chosen to the cluster when the cluster
head and the selected device have the highest correlation of
equivalent channels. In particular, we classify the device m
(m 6∈ Υ) into the ĝth beam based on the following condition

ĝ = argmax
g∈{0,1,··· ,G}

|h̄Hmh̄Υ(g)|
‖h̄m‖2‖h̄Υ(g)‖2

. (27)

Since the devices in different clusters have low correlations,
the interference between beams can be diminished, thereby
improving the multiplexing gain.

IV. JOINT DIGITAL PRECODING DESIGN AND
POWER ALLOCATION

Based on the acquired analog precoding matrix, we focus
on jointly optimizing power allocation and digital precoding
for eRRH i. Then, (P1) is transformed as

(P2): max
{pig,m},{dFg,i}

∑G
g=1

∑|Sg|
m=1R

i
g,m

P ic + η
(∑G

g=1

∑|Sg|
m=1 p

i
g,m

) (28a)

s.t. g(dFg,i) ≤ Ci, (28b)
G∑
g=1

|Sg|∑
m=1

pig,m ≤ Pi, (28c)

G∑
g=1

‖AidFg,i‖2 ≤ 1. (28d)

Since (P2) is non-convex due to the non-convexity of the
objective function (28a) as well as constraints (28b), it is
difficult to solve directly. Thus, we decouple (P2) into two
subproblems, i.e., designing the power allocation with the fixed
digital precoding and optimizing the digital precoding with the
fixed power allocation. These two non-convex subproblems
will be converted to convex optimization problems via the
Taylor expansion operation and the minimum mean square
error (MMSE) detection, and we solve them iteratively.

A. Power Allocation Optimization

With a fixed digital precoding matrix, the original problem
is converted into a power allocation optimization problem.
Since the objective function is non-linear fractional, it is diffi-
cult to solve directly. To address this problem, the Dinkelbach
method [30] is exploited to transform the non-linear fractional
problem to a subtractive form, which can facilitate the solu-
tions. Based on [30], we have the following proposition.
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TABLE II: THE PROPOSED EE BASED POWER ALLOCA-
TION ALGORITHM

INPUT:
The index of iteration: r = 0;
The rth iteration’s achievable EE: q(r)

i = 0;
The stopping criterion: ε > 0.

OUTPUT:
The final solution of power allocation: {pi∗g,m};
The maximum achievable EE: q∗i .

1: REPEAT

2: For a given q(r)
i , Solve problem (34a) - (34b)

to obtain the power allocation {pi(r)g,m};
3: IF UR({pi(r)g,m})− q(r)

i UT ({pi(r)g,m}) ≤ ε
4: Convergence = TURE;
5: RETURN {pi∗g,m} = {pi(r)g,m}, q∗i = q

(r)
i ;

6: ELSE
7: Convergence = FALSE;

8: Set r = r + 1 and q(r)
i =

UR({pi(r−1)
g,m })

UT ({pi(r−1)
g,m })

;

9: END IF
10:UNTIL Convergence = TURE.

Proposition 1: The maximum achievable EE q∗i can be
obtained as follows

max
{pig,m}

UR({pig,m})− q∗i UT ({pig,m})

= UR({pi∗g,m})− q∗i UT ({pi∗g,m}) = 0 (29)

for UR({pig,m}) ≥ 0 and UT ({pig,m}) ≥ 0, and

UR({pig,m}) =

G∑
g=1

|Sig|∑
m=1

log2

(
1 + γig,m

)
, (30)

UT ({pig,m}) = P ic + η

( G∑
g=1

|Sig|∑
m=1

pig,m

)
, (31)

q∗i =
UR({pi∗g,m})
UT ({pi∗g,m})

, (32)

where {pig,m} is the set of the power allocation for device m
in the gth beam, ∀g = [1, 2, · · · , G],m = [1, 2, · · · , |Sig|].
Proof : Please refer to [30] for a proof of Proposition 1 . �
Proposition 1 supplies a compulsory and abundant con-

dition in order to obtain the optimal digital precoding and
power allocation. Generally speaking, an equivalent subtrac-
tive form-objective function of the optimization problem, i.e.,
UR({pig,m})− q∗i UT ({pig,m}), can be exploited to replace the
original objective function, where two optimization problems
have the same solution. Moreover, [30] also implies that
the optimal solutions can be acheived based on the equality
condition in (29). Therefore, the original optimization problem
(P2) is transformed to the equivalent optimization problem
according to Proposition 1 . A power allocation algorithm is
proposed to handle the equivalent optimization problem, which
is summarized in TABLE II.

In order to demonstrate the feasibility of the EE based

power allocation algorithm, it is substantial to prove its
convergence. First of all, the EE (i.e., qi) increases in each
iteration. Next, when the number of iterations is large enough,
it is evident that qi converges to the optimal value q∗i . Notice
that q∗i reaches the optimal conditions in Proposition 1 , i.e.,
UR({pi∗g,m}) − q∗i UT ({pi∗g,m}) = F (q∗i ) = 0. Assuming that
{pi(r)g,m} is the optimal power allocation set in the rth iteration,
q

(r)
i 6= q∗i and q

(r+1)
i 6= q∗i indicate the EE of the NOMA-

based C-RAN system in the rth and the (r + 1)th iteration
respectively. It follows that F (q

(r)
i ) > 0 and F (q

(r+1)
i ) > 0,

where q(r+1)
i =

UR({pi(r)g,m})
UT ({pi(r)g,m})

[30]. As a consequence, we have
the following expression

F (q
(r)
i ) = UR

(
{pi(r)g,m})− q

(r)
i UT ({pi(r)g,m}

)
= q

(r+1)
i UT ({pi(r)g,m})− q

(r)
i UT ({pi(r)g,m})

=
(
q

(r+1)
i − q(r)

i

)
UT ({pi(r)g,m}).

(33)

Since UT ({pi(r)g,m}) = P ic + η

(∑G
g=1

∑|Sig|
m=1 p

i(r)
g,m

)
> 0 and

F (q
(r)
i ) > 0, we can obtain q(r+1)

i > q
(r)
i . As the number of

iterations r is large enough, q(r+1)
i and F (q

(r+1)
i ) are capable

of reaching the optimality condition in Proposition 1 , i.e.,
q

(r+1)
i → q

(r)
i and F (q

(r+1)
i )→ 0 hold [31].

As described in the TABLE II, (P2) is converted to the
equivalent optimization problem (P3) according to the fixed
qi (step 2 in TABLE II)

(P3): max
{pig,m}

G∑
g=1

|Sg|∑
m=1

Rig,m−qi

(
P ic+η

( G∑
g=1

|Sg|∑
m=1

pig,m
))

(34a)

s.t.
G∑
g=1

|Sg|∑
m=1

pig,m ≤ Pi. (34b)

For convenience, the channel power gain is defined as

Gig,m,j(h
i
g,m,dFj,i) =

∥∥∥(hig,m)
H

AidFj,i

∥∥∥2

2
. (35)

As a result, we formulate the data rate Rig,m as

Rig,m = R̂1
g,m − R̂2

g,m, (36)

where

R̂1
g,m = log2

(
m∑
k=1

Gig,m,gp
i
g,k +

∑
j 6=g

|Sj |∑
k=1

Gig,m,jp
i
j,k

+ (hig,m)
H

AiΩiA
H
i hig,m + σ2

i,v

)
,

R̂2
g,m = log2

(
m−1∑
k=1

Gig,m,gp
i
g,k +

∑
j 6=g

|Sj |∑
k=1

Gig,m,jp
i
j,k

+ (hig,m)
H

AiΩiA
H
i hig,m + σ2

i,v

)
.

Noted that R̂1
g,m and R̂2

g,m are both concave with respect to
the transmit power {pig,m}. However, Rig,m is not concave,
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and hence it is difficult to deal with the non-convex problem
(P3). Based on the following Proposition 2, Rig,m can be
converted to a convex function by applying the successive
convex optimization algorithm.

Proposition 2: The non-convex function R̂2
g,m can be

converted to a convex one as

R̂2
g,m≤R̂2ub

g,m =log2(Si,r
g,m) +

log2(e)

Sr
g,m

m−1∑
k=1

Gi
g,m,g(pig,k−pi,rg,k)

+
log2(e)

Sr
g,m

∑
j 6=g

|Sj |∑
k=1

Gi
g,m,j(p

i
j,k − pi,rg,k),

where

Si,rg,m =
m−1∑
k=1

Gig,m,gp
i,r
g,k +

∑
j 6=g

|Sj |∑
k=1

Gig,m,jp
i,r
j,k

+ (hig,m)
H

AiΩiA
H
i hig,m + σ2

i,v.

(37)

Proof: Since R̂2
g,m is a concave function, its first-order Taylor

series expansion at any specific point is its global upper bound
[32]. For a given points {pri,j ,∀i, j}, the first-order Taylor
expansion operation of R̂2

g,m can be easily obtained. �
Based on Proposition 2, we can convert (P3) into (P3.1)

with the given {pi,rj,k,∀j, k} and qi

(P3.1): max
{pig,m}

R̂1−R̂ub2 − q
(r)
i

(
P ic+η

( G∑
g=1

|Sg|∑
m=1

pig,m
))

(38a)

s.t.
G∑
g=1

|Sg|∑
m=1

pig,m ≤ Pi, (38b)

where

R̂1 =
G∑
g=1

|Sg|∑
m=1

R̂1
g,m, R̂

ub
2 =

G∑
g=1

|Sg|∑
m=1

R̂2ub
g,m.

Obviously, (P3.1) is convex optimization problem, and we
can solve it using the standard convex optimization meth-
ods [33]. The proposed power allocation algorithm includes
two layers. In particular, the outer iteration repeats until the
subtractive form-objective function is less than the stopping
criterion ε. For the inner iteration, we solve problem (P3)
iteratively. Let Ii and Io represent the maximum number of
inner and outer iteration, respectively. Then, the computitional
complexity of the proposed dual-layer power allocation algo-
rithm is IiIoV 2 with the number of dual variables V [31].

B. Digital Precoding Design

After tackling the power allocation subproblem, the goal
of this subsection is to optimize the set of digital precoding
vector. It is obvious that the denominator of EE is unrelated to
digital precoding. Thus, we omit the denominator and problem
(P2) is rewritten as

(P4): max
{dFg,i}

G∑
g=1

|Sg|∑
m=1

Rig,m (39a)

s.t. g(dFg,i) ≤ Ci, (39b)
G∑
g=1

‖AidFg,i‖2 ≤ 1. (39c)

The objective function is expressed as

max
{dFg}

G∑
g=1

|Sg|∑
m=1

Rig,m =
G∑
g=1

|Sg|∑
m=1

log2(1 + γig,m). (40)

Nevertheless, (40) is still non-convex. Therefore, an it-
erative optimization algorithm is developed to tackle the
non-convex objective function. In particular, the Sherman-
Morrison-Woodbury formula can be presented as follows [34]
(A + BCD)−1 = A−1−A−1B(I+CDA−1B)−1CDA−1.

(41)
Substituting (1+γig,m) into (41), we can obtain (1+γig,m)−1,
which is given by (42) at the top of the next page. In order
to solve sifg,m in (13), we adopt the minimum mean square
error (MMSE) detection [28], which can be denoted as

ai∗g,m = arg min
aig,m

eig,m, (43)

where the mean square error (MSE) is written as

eig,m = E

{
|sifg,m − aig,myig,m|2

}
, (44)

and the channel equalization coefficient is expressed as aig,m.
Then, substituting (13) into (44), we have the following
equality
eig,m = 1− 2Re

(
aig,m(hig,m)

H
AidFg,i

√
pig,m

)
+ |aig,m|2

(
‖(hig,m)

H
AidFg,i‖22pig,m + ξig,m

)
.

(45)

Next, substituting (45) into (43), we are capable of receiving
the optimal equalization coefficient ai∗g,m, which is given by
(46) at the top of the next page.

Substituting (46) into (45), the closed-form expression of
MMSE can be obtained by
ei∗g,m=1−

‖(hig,m)
H
AidFg,i‖22pig,m

(
‖(hig,m)

H
AidFg,i‖22pig,m+ξig,m

)−1

,

(47)

which equals to (1 + γig,m)−1 in (42), and we have
(1 + γig,m)−1 = min

aig,m

eig,m. (48)

Subsequently, the data rate of the mth device in the gth
beam is rewritten as

Rig,m = log2(1 + γig,m) = max
aig,m

(− log2 e
i
g,m). (49)

Apparently, the latter expression in (49) has removed the
polynomial division γig,m, which simplifies the objective fun-
tion. However, the log function still exists, which is difficult
to solve. Then we have the following Proposition 3 [7], [9].

Proposition 3: Let f(b) = − bc
ln 2 + log2 b+ 1

ln 2 and b be a

positive real number, we have
max
b>0

f(b) = − log2 c, (50)

where the optimum value of b is b∗ = 1
c .

By using Proposition 3, we can rewrite (49) as

Rig,m = max
aig,m

max
big,m>0

(
−
big,me

i
g,m

ln 2
+ log2 b

i
g,m +

1

ln 2

)
.

(51)
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(1 + γig,m)−1 = 1− ‖(hig,m)
H

AidFg,i‖22pig,m
(
‖(hig,m)

H
AidFg,i‖22pig,m + ξig,m

)−1

, (42)

ai∗g,m=
(

(hig,m)
H

AidFg,i

√
pig,m

)∗(
‖(hig,m)

H
AidFg,i‖22pig,m + ξig,m

)−1

. (46)

Consequently, we reformulate the optimization problem
(P4) as

(P4.1): max
{dFg,i}

G∑
g=1

|Sg|∑
m=1

max
aig,m

max
big,m>0

(
−
big,me

i
g,m

ln 2
+log2 b

i
g,m

)
(52a)

s.t. g(dFg,i) ≤ Ci, (52b)
G∑
g=1

‖AidFg,i‖2 ≤ 1. (52c)

To tackle problem (P4.1), we employ the iterative opti-
mization method to optimize {aig,m}, {big,m} and {dFg,i}
separately. In particular, based on the optimal digital precoding
vector {d(l−1)

Fg,i } in the (l−1)th iteration, the optimum solution
of {ai(l)g,m} in the lth iteration is achieved based on (53) at the
top of the next page, where

ξi(l−1)
g,m =

m−1∑
k=1

∥∥∥(hi
g,m)

H
Aid

(l−1)
Fg,i

∥∥∥2
2
pig,k

+
∑
j 6=g

|Sj |∑
k=1

∥∥∥(hi
g,m)

H
Aid

(l−1)
Fj,i

∥∥∥2
2
pij,k

+ (hi
g,m)

H
AiΩiA

H
i hi

g,m + σ2
i,v.

(54)

At the same time, the b
i(l)
g,m is given by (55) at the top

of the next page according to (47), (49) and (50). Then, the
objective function can be transformed into a convex function
with respect to the digital precoding {d(l)

Fg,i} as follows

min
{d(l)
Fg,i}

G∑
g=1

|Sg|∑
m=1

bi(l)g,me
i(l)
g,m, (56)

where
ei(l)g,m = 1− 2Re(ai(l)g,m(hi

g,m)
H
Aid

(l)
Fg,i

√
pig,m)

+ |ai(l)g,m|2
(
‖(hi

g,m)
H
Aid

(l)
Fg,i‖

2
2p

i
g,m + ξi(l)g,m

)
= 1− 2Re(ai(l)g,m(hi

g,m)
H
Aid

(l)
Fg,i

√
pig,m)

+ |ai(l)g,m|2
( m∑

k=1

‖(hi
g,m)

H
Aid

(l)
Fg,i‖

2
2p

i
g,k

+
∑
j 6=g

|Sj |∑
k=1

∥∥∥(hi
g,m)

H
AidFj,i

∥∥∥2
2
pij,k

+ (hi
g,m)

H
AiΩiA

H
i hi

g,m + σ2
i,v

)
.

(57)

For the non-convexity of g(dFg,i), we exploit the concavity
of log2 det(·), and obtain g(dFg,i) ≤ ḡ(dFg,i,Li). Here,

ḡ(dFg,i,Li) is calculated by
ḡ(dFg,i,Li), log2 det(Li)−log2 det(Ωi)−NRF

+Tr

L−1
i

 ∑
Fg⊆Freq

c̄Fg,id̄Fg,id̄
H
Fg,i+Ωi

 .

(58)

Constraint (52b) is equal to ḡ(dFg,i,Li) ≤ Ci when
Li =

∑
Fg⊆Freq

c̄Fg,id̄Fg,id̄
H
Fg,i + Ωi. (59)

Accordingly, constraint (52b) is replaced by ḡ(dFg,i,Li) ≤
Ci. As a result, (P4.1) is reformulated as

(P4.2): min
{d(l)
Fg,i}

G∑
g=1

|Sg|∑
m=1

bi(l)g,me
i(l)
g,m (60a)

s.t. ḡ(dFg,i,Li) ≤ Ci, (60b)
G∑
g=1

‖AidFg,i‖2 ≤ 1. (60c)

Problem (P4.2) is convex with the fixed big,m and Li.
Therefore, we tackle the problem iteratively to obtain a
suboptimal solution. In each step, we first update big,m
and Li by using (55) and (59). Then, classical convex
optimization methods are utilized to solve the optimal
value {dFg,i} [33], while keeping (big,m,Li)’s fixed. In
particular, since b

i(l)
g,m, L

(l)
i and {d(l)

Fg,i} are the optimal
solution of the lth iteration, updating these variables will
increase the value of the objective function in (P4.1). As
a consequence, the proposed digital precoding scheme can
converge to a local optimum solution. The details of the
proposed scheme are discribed in TABLE III. Afterwards,
the devices of each beam in each eRRH will be reordered
such that

∥∥∥(hig,1)
H

AidFg,i

∥∥∥
2
≥
∥∥∥(hig,2)

H
AidFg,i

∥∥∥
2
≥ · · ·≥∥∥∥(hig,|Sg|)

H
AidFg,i

∥∥∥
2
, g = 1, 2, · · · , G, i ∈ KR, which is

assumed in Section II for SIC.
At the same time, the proposed digital precoding scheme

with the fixed power allocation has a polynomial complexity.
In particular, the computational complexity of acquiring ag,m
in (53) and bg,m in (55) for each iteration is linear in the
number of devices, i.e., O(K). Similarly, we can prove that the
computational complexity of obtaining L in (59) is O(N2

RF ).
In addition, the worst-case complexity of solving (P4.2)
is O(TmaxN

4.5
RF log2(1/ε)) with a given solution accuracy

ε > 0 [35]. In consequence, the computational complexity of
the raised digital scheme is O(TmaxN

4.5
RF log2(1/ε)).
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ai(l)g,m =
(

(hig,m)
H

Aid
(l−1)
Fg,i

√
pig,m

)∗(
‖(hig,m)

H
Aid

(l−1)
Fg,i ‖

2
2p
i
g,m + ξi(l−1)

g,m

)−1

, (53)

bi(l)g,m = 1
/
ei∗g,m = 1

/(
1−

∥∥∥(hig,m)
H

Aid
(l−1)
Fg,i

∥∥∥2

2
pig,m

(∥∥∥(hig,m)
H
Aid

(l−1)
Fg,i

∥∥∥2

2
pig,m+ξi(l−1)

g,m

)−1
)
, (55)

TABLE III: THE PROPOSED DIGITAL PRECODING
SCHEME FOR (P4)

INPUT:
The maximum iteration times: Tmax;
The initialized digital precoding: {d(l)

Fg,i} for l = 0;
The channel vectors: hig,m for g = 1, 2, · · · , G,
m = 1, 2, · · · , |Sig|.

OUTPUT:
The final solution of digital precoding: {d∗Fg,i}.

1: REPEAT
2: l = l + 1;
3: Compute auxiliary variables L

(l)
i via (59);

4: Compute ai(l)g,m via (53);
5: Compute bi(l)g,m via (55);
6: Solve the problem (60a)-(60c) to obtain {d(l)

Fg,i};
7: UNTIL Convergence=Tmax

C. Joint Digital Precoding Design and Power Allocation

The joint digital precoding design and power allocation
strategy for solving the original problem (P2) can be sum-
marized as follows
{pi(0)
g,m},{d

(0)
Fg,i}→q

(0)
i︸ ︷︷ ︸

Initialization

→· · ·→{pi(t)g,m},q
(t)
i →{d

(t)
Fg,i}︸ ︷︷ ︸

Iteration t

→ {pi(t+1)
g,m }, q(t+1)

i → {d(t+1)
Fg , i}︸ ︷︷ ︸

Iteration t+1

→ · · · ,
(61)

where {pi(t)g,m}, q(t)
i and {d(t)

Fg,i} are the set of power allocation,
EE and digital precoding in the tth iteration, respectively.
In general, the overall procedure of the algorithm for solv-
ing (P2) is summarized in TABLE IV. Obviously, the EE
qi increases in each iteration and finally converges to the
optimal value. Accordingly, the computational complexity of
the joint digital precoding design and power allocation scheme
is O(IiIoTmaxV

2N4.5
RF log2(1/ε)).

V. SIMULATION RESULTS

In this section, we provide numerical results to verify
the performance of the proposed schemes in NOMA-based
C-RANs. The eRRHs are all equipped with an ULA with
N = 64 antennas. In addition, NRF = 4 RF chains are
employed to serve K = 6 devices simultaneously. All the
devices are grouped into G = NRF = 4 clusters. As for
the channel vector between the kth device and the eRRH
i, we set Lk,i = 3, which includes one LoS path and two
NLoS path, and α(1)

k,i ∼ CN (0, 1) while α(l)
k,i ∼ CN (0, 10−1)

TABLE IV: THE PROPOSED JOINT DIGITAL PRECODING
DESIGN AND POWER ALLOCATION ALGORITHM

INPUT:
The channel vectors: hig,m for g = 1, 2, · · · , G,
m = 1, 2, · · · , |Sig|;
The stopping criterion: δ;
The initialized digital precoding: {pi(t)g,m} for t = 0;
The initialized power allocation: {d(t)

Fg,i} for t = 0;
The calculated q(0)

i based on {pi(0)
g,m} and {d(0)

Fg,i}.
OUTPUT:

The final solution of digital precoding: {d∗Fg,i};
The final solution of power allocation: {pi∗g,m}.

REPEAT:
1: t = t+ 1;
2: Solve the P3 under the fixed digital precoding
{d(t−1)
Fg,i } according to TABLE II;

obtain the set of power allocation {pi(t)g,m} and q(t)
i ;

3: Solve the P5 under the fixed power allocation
{pi(t)g,m} in terms of TABLE III;
obtain the set of digital precoding {d(t)

Fg,i};
UNTIL converge, i.e., |q(t)

i − q
(t−1)
i |2 ≤ δ.

for 2 ≤ l ≤ Lk,i. Besides, θ(l)
k,i and ϕ

(l)
k,i satisfy uniform

distribution U(−π, π), 1 ≤ l ≤ Lk,i. The quantized phase
shifters are set to 4 bits. The maximum transmit power for all
eRRHs is set to Pi = 10mW, ∀i = 1, · · · ,KR. The fronthaoul
capacity is set to Ci = 10Rzf where Rzf is the achievable
sum-rate through the fully digital zero-forcing (ZF) precoding
among all K devices. The probability of the file cached by
eRRH i is set to 0.5, and the requested files Freq are randomly
generated. In addition, the quantization covariance matrix Ωi

is designed to υINRF with υ = 0.01. The power consumption
of the baseband, per RF chain and power amplifies are set
to PB = 200 mW, PR = 300 mW and PA = 20 mW,
respectively. The power consumption of phase shifter with 4
bits is PP = 40 mW [36]. The inefficiency of power amplifier
is assumed to η = 1/0.38.

We first study the convergence behavior of the proposed
algorithm under different multiple access techniques with
sub-connected HP. For comparison, we consider the “Sub-
Connected HP-NOMA” scheme, where the sub-onnected HP
architecture is adopted in the NOMA-based C-RAN system,
and the “Sub-Connected HP-OMA” scheme where the OMA
technique is utilized for devices in each beam. As shown in
Fig. 3 and Fig. 4, it can be seen that both the “Sub-Connected
HP-NOMA” and “Sub-Connected HP-OMA” can converge to
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Fig. 3: Convergence in terms of the SE under different multiple access
schemes.
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Fig. 4: Convergence in terms of the EE under different multiple access
schemes.

a fixed value, which verifies the convergence of the proposed
hybrid precoding design and power allocation algorithm. In
addition, the “Sub-Connected HP-NOMA” achieves better
performance than the “Sub-Connected HP-OMA” in terms
of both SE and EE. This is because NOMA technique can
serve multiple devices in the same resource block, resulting
in achieving multi-device diversity, and thereby enhances the
SE and EE.

We then investigate the SE and EE of the NOMA-based
C-RAN system under different SNR values. To show the SE
and EE performance, we compare with the “Fully Digital ZF
Precoding” scheme, where each antenna is linked to a RF
chain and the ZF technique is applied. Moreover, the “Two-
Stage Sub-Connected HP-NOMA” algorithm in [28] is also
presented for comparison, which devides the HP design into
two step, i.e., analog precoding and digital precoding, and
then investigates the power allocation based on the solved HP.
As shown in Fig. 5 and Fig. 6, the SE and EE achieved by
all schemes are non-decreasing with the SNR value. In addi-
tion, our proposed NOMA-based resource allocation scheme
achieves higher SE and EE than both the “Sub-Connected HP-
OMA” and “Two-Stage Sub-Connected HP-NOMA” schemes.
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Fig. 5: The SE comparision versus SNR under different precoding
schemes.
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Fig. 6: The EE comparision versus SNR under different precoding
schemes.

This is due to the fact that NOMA technique enables multiple
devices receiving signal from eRRHs simultaneously, and the
proposed algorithm optimizes the digital precoding and power
allocation iteratively, which thereby converges to at least a
local optimal solution. Furthermore, it is apparent that the
“Fully Digital ZF Precoding” scheme achieves the highest SE
as described in Fig. 5. This is because each antenna is equipped
with a dedicated RF chain in order to take full advantage of
space diversity. However, the “Fully Digital ZF Precoding”
scheme has the lowest EE since the required RF chains
consume much more energy. In contrast, the “Sub-Connected
HP-NOMA” requires less RF chains than the “Fully Digital
ZF Precoding” scheme and thus can achieve higher EE, which
verifies the effectiveness of the proposed HP-NOMA scheme.

In the next simulation, we study the EE versus SNR under
different quantization bits of phase shifter in the proposed
NOMA-based C-RANs. From Fig. 7, it can be seen that the
sub-connected HP-NOMA with different bit of phase shifter
achieves good EE performance when SNR>-10dB. Besides,
the HP-NOMA with lower quantization bits can achieve higher
EE when SNR≤15dB, but the phase shifter of 3-bit has
higher EE performance than that of 2-bit for the case when
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Fig. 8: The EE comparision of proposed HP-NOMA scheme versus
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SNR>15dB. This is because the SE enhancement caused by
the higher SNR can compensate for the energy consumption
caused by 3-bit phase shifter, and hence a higher EE can be
obtained.

Finally, the EE versus the number of devices under dif-
ferent number of RF chains for the NOMA-based C-RANs
is evaluated. For sub-connected structures, since the number
of antennas must be an integer multiple of the number of
RF chains, we set N = 72. Fig. 8 shows that the EE is
monotonically non-decreasing with respect to the number of
devices. It can also be seen that increasing the number of
RF chains can enhance EE since it can achieve higher SE.
However, the sub-connected HP-NOMA scheme with 6 RF
chains achieves the worst EE performance when K≤8. This is
due to the fact that the improvement of SE cannot compensate
for the extra energy consumption of additional RF chains.
Therefore, we conclude that there exists a trade-off between
EE performance and the number of RF chains, especially for
the system with less devices.

VI. CONCLUSIONS

This paper investigated the EE performance for the NOMA-
based C-RANs. To maximize the EE, we jointly optimized

the power allocation, analog and digital precoding under
the constraints of the fronthaul link capacity and the total
transmit power. Since the formulated problem is non-convex,
we proposed a hybrid precoding design and power allocation
algorithm to decompose the original problem into three sub-
problems, and optimize analog precoding, devices clustering,
digital precoding and power allocation sequentially. Firstly, the
analog precoding was optimized by maximizing the array gain.
Next, we grouped devices based on the selected cluster heads.
Then, a joint digital precoding design and power allocation
algorithm was proposed to further improve the EE. Simula-
tion results indicated that our proposed schemes can achieve
faster convergence. In addition, the EE performance can be
significantly improved by our proposed algorithms compared
to the traditional OMA-based approach and two-stage HP
scheme. In the future, we will consider more sophisticated
hybrid precoding design for the NOMA-based C-RANs to
further improve the performance. Besides, the analysis of the
effect of imperfect CSI is an interesting topic for future work.
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