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Abstract—In recent years, the analysis of human interaction
data has led to the rapid development of graph embedding
methods. Topological information is typically interpreted into em-
bedded vectors or convolution kernels for link-based classification
problems. This paper introduces a Bayesian graph embedding
model for such problems, integrating network reconstruction,
link prediction, and behavior prediction into a unified framework.
Unlike the existing graph embedding methods, this model does
not embed the topology of nodes or links into a low-dimensional
space but sorts the probabilities of upcoming links and fuses
the information of node topology and data domain via sorting.
The new model integrates supervised transaction predictors with
unsupervised link prediction models, summarizing local and
global topological information. The experimental results on a
financial trading dataset and a retweet network dataset demon-
strate that the proposed feature fusion model outperforms the
tested benchmarked machine learning algorithms in precision,
recall, and F1-measure. The proposed learning structure has a
fundamental methodological contribution and can be extended
and applied to various link-based classification problems in
different fields.

Index Terms—Ensemble Learning; Bayesian Network; Inter-
action Prediction; Trader Network

I. INTRODUCTION

The rapid growth of human interaction networks has led
to a growing amount of interaction-generated data and the
impediment of finding reliable information [1], [2]. Interaction
logs, such as the web of sexual contacts, air-transport records,
blue tooth traces, email traces, mobile sensing logs, and ac-
cessing logs of WiFi hotspots, play an essential role in helping
individuals find relevant information, for instance, heteroge-
neous social behaviors and upcoming interactions. In human
interaction records, social relationships among individuals are
typically unknown. The latent social relationships can only
be inferred through other information channels, such as their
similarities on the observable social topologies, profiles, and
behavior trajectories [3], [4], [5]. To predict upcoming interac-
tions with interaction logs, researchers typically translate the
task to a classification problem. However, researchers need to
address two challenges beforehand. First, networked structures
are non-Euclidean, to which many classification methods, such
as support vector machines and convolutional neural networks,
can not be applied directly. Second, the size of the networks is
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normally large, which can be computationally expensive and
lead to storage costs.

Network representation learning models were proposed to
address the above challenges. They map the nodes in topologi-
cal spaces into low-dimension real-valued vectors and preserve
their proximity in the original spaces as much as possible.
They can be broadly classified into three categories: matrix
factorization-based models, random walk-based models, and
neural network models. Matrix factorization-based models
include Laplacian Eigenmaps [6], Graph Factorization [7],
GraRep [8], and HOPE [9]. Random walk-based models
include DeepWalk [10], Node2vec [11], GraphGAN [12],
and GraphSAGE [13]. Neural network models include Graph
Neural Networks [14], Graph Autoencoders [15], Graph
Convolutional Networks (GCN) [16], Graph Differentiable
Pooling [17], and Graph Attention Networks (GAT) [18].
Generally, the graph embedding methods can automatically
learn topological features without complicated feature engi-
neering procedures, while their robustness to network types
and memory requirements for large networks are generally
not satisfactory, and their interpretability is highly limited.

In this paper, we propose a Bayesian graph embedding (in
short BGE) model for the link-based classification problem,
which integrates network reconstruction, link prediction, and
behavior prediction into a unified framework. In a social
network, individuals can be denoted by nodes. Friends are
connected with an undirected link, representing the interaction
between them. When the interaction network is given, the
interaction prediction can be translated to estimating P(Tij =
1|E), where E denotes a set of links inferred by the interaction
logs, and Tij = 1 denotes that individual i and j would interact
at least once. The truth is that the topology of networks is
typically unknown.

The interaction log data used in this paper is provided by
a British bank. The log covers the transaction records of a
department for 12 months. Each transaction record contains
several features, mainly including the ID of the buying trader
and that of the selling trader. The learning task of the proposed
model is to predict upcoming transactions among traders. The
transaction prediction in the financial field is closely related to
risk management, since the transaction risk is diffusing over
the trader network by transactions [19], [20], [21]. Therefore,
the significance of the transaction prediction is self-evident
both theoretically and technically. In the available dataset,
the trader interaction network can only be inferred from the
transaction logs. With the logs including IDs, one can infer a
subgraph of the entire trader network, which is useful in the
following prediction of the upcoming transactions. The rest of
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the features can be extracted from their trading patterns, such
as the preference on product groups and trading time patterns.
Notably, the available interaction logs in a dataset are rather
limited. The inferred subgraph of the trader network is likewise
small and sparse, where a large number of traders are not
connected. These limitations highly increase the difficulty in
embedding them into useful vectors and training a convincing
binary classifier. To tackle this problem, we introduce a
different solution in this paper. The fusion of the node topology
and data domain is accomplished through a Bayesian network.
To further verify the robustness of the proposed model on
different link-based classification problems, we also employ
an open dataset about users in a retweet network. Our exper-
imental results on both datasets show that the performance
of the new model outperforms the state-of-the-art models,
demonstrating the feasibility of the proposed framework.

Our contributions of the study in the paper are three-
fold. First, we find a new way to integrate the topological
information of multi-components and data domains effectively.
Second, our model offers a solution to fuse the supervised
machine learning models with the unsupervised models. Third,
our extensive experiments on a variety of algorithms show
that the proposed new model achieves better prediction perfor-
mance and interpretability than the state-of-the-art algorithms,
which demonstrates that the model provides a promising
paradigm for tackling link-based classification problems.

The rest of the paper is organized as follows. Section II
reviews the preliminaries and related studies. Section III
introduces the proposed model. Section IV presents our ex-
perimental results, and Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORKS

For the interaction prediction task, many previous studies
adopt supervised learning methods to embed the data domain
and topological features of a node into an input vector, with
final outputs provided by a binary classifier, including decision
trees, support vector machines, K-nearest neighbors, multi-
layer perceptrons, radial basis function networks, naive Bayes,
and different ensemble learning models like random forest
and boosted decision tree [22], [23]. Among various graph
representation learning models [24], graph convolution deep
neural network (GCN) has shown particularly encouraging
performance in many learning tasks involving graph structure
data [25]. For link-based classification tasks, GCN is used to
embed nodes into a lower-dimensional space [26]. The final
output typically depends on a fully connected neural network
or other classical binary classifiers.

We do not embed node pairs into a lower-dimensional space
in the proposed model but into a ranking vector. Specifically,
a link prediction algorithm based on topology information
is adopted to embed node pairs. The probability ranking
result is then fused with non-topological information to derive
the final prediction. Thus, one can efficiently train a binary
classifier based on the non-topological information to infer
the probability of transactions between the disconnected node
pairs. The ranking of the transaction probability is likewise
easy to derive. With the probability ranking, the two modes
of data can be fused by a simple linear combination.

We then discuss the link prediction algorithms. The
topology-based link prediction algorithms can be roughly
classified into four categories: likelihood-based methods, prob-
abilistic methods, graph embedding methods, and similarity-
based methods [27]. Typical examples of the maximum
likelihood-based methods are the stochastic block model
(SBM) [28], fast probability block model (FBM) [29], hier-
archical structure model (HSM) [30], [31]. The community
structure in networks is usually not easy to detect because
numerous cycles break their hierarchical structures. The max-
imum likelihood methods are very time-consuming, and their
scalability to the types of networks is limited. The probabilistic
methods include probabilistic relational model (PRM) [32],
probabilistic entity-relationship model (PERM) [33], and
stochastic relational model (SRM) [34]. As they depend on
the global topological information, their time complexities are
normally high, and their accuracy is generally not very satis-
factory. The similarity-based models can be sorted into three
categories: local, quasi-local, and global algorithms. The local
algorithms only consider the local information of node pairs.
Typical local algorithms include the common neighbors (CN)
algorithm, preferential attachment (PA) algorithm, resource
allocation (RA) algorithm, Adamic-Adar (AA) algorithm, and
Cannistraci-Hebb (CH) algorithm [35], [36]. In this category,
the performance and robustness to network types of the RA
algorithm are relatively better. The scale of the information
used in quasi-local algorithms is between local and global
algorithms. Typical quasi-local algorithms include the local
random walk algorithm (LRW), local path algorithm (LP),
Propflow algorithm [37], and Quantum-inspired Ant Colony
Optimization (QACO) algorithm [38]. The information used
in the quasi-local algorithms is normally less than the global
algorithms, while their performances are often promising. In
this category, the performance and robustness to network
types of the QACO algorithm are more competitive. The
global algorithms, as the name implies, leverage the global
topology information of the network. Typical global algo-
rithms include the Katz algorithm, matrix forest index (MFI),
average commute time algorithm (ACT), low-rank algorithm
(LR), structural perturbation method (SPM), and the like [39].
Among them, the performance and robustness of the SPM are
relatively better.

III. BAYESIAN GRAPH EMBEDDING MODEL

A. Theoretical Framework
For each individual, his attributes are composed of his topo-

logical properties in the interaction network and his interaction
patterns, such as behavior preference and time trajectory. The
attributes are used for each pair to calculate their topologi-
cal similarities, behavior preference similarities, time pattern
similarities, and the likes. Based on these similarities or a
direct concatenation of the embedded vectors, one can train a
binary classifier, but its performance usually is not satisfactory.
One reason is that labels are imbalanced [40]. As many real
networks are sparse, the feature extraction or graph embedding
procedures inevitably sacrifice some topological information.
To tackle this problem, we propose the Bayesian graph em-
bedding method. Our model is illustrated in Fig. 1. From the
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Fig. 1. Schematic view of interaction prediction.

interaction logs, one can infer links between individuals A and
B (B and C likewise). Based on the inferred links, one can
derive a linking probability of A and C. Finally, the linking
probability and the behavior similarities together determine
whether A and C will interact with each other. Our goal is to
compute the probability

P(Tij = 1|E, θ(µi, µj)), (1)

where µi and µj are the attributes learned from i and j inter-
action logs; θ(µi, µj) is a vector representing the similarities
between individual i and j, where link e(i, j) ∈ E.

As also shown in Fig. 2, one can infer whether there
are links between the individuals in the probe set from the
topology in the training set. Based on the links and the be-
havioral similarities between them, one can eventually predict
whether they will interact. Take traders in investment banks
as an example, µi represents trader i’s preference on product
groups, trading time patterns, and so on. For the traders i
and j, θ(µi, µj) encapsulates their similarity on the product
group preference, similarities of time patterns, and so on.
Accordingly, Tij = 1 means that at least one transaction is
accomplished between traders i and j. To predict whether a
transaction will be accomplished between two traders who
have no transaction in the available transaction logs, one
can directly abstract a series of features from the network
mentioned above and establish a binary classification model
by fusing the features and trading patterns of the traders.
Nevertheless, the solution will be challenged by the links not
recorded in the transaction logs.

Based on the interaction logs, one can easily infer the set
of links E, since an interaction will surely leave a link, while
the inferred links are merely a part of the set of links in the
interaction network. The reason is that a dataset of logs can
hardly cover all the interactions in history, since it is a trade
secret itself. On the other hand, some individuals may be
acquaintances, but they have not interacted yet. Clearly, the
links among them can not be easily detected. To resolve the
problem, we assume that a link in the interaction network
can highly promote the probability of interaction between
two individuals. To facilitate the downstream calculation, we
uniformly set the probability P (Tij = 1|Aij = 1) = κ in this

𝐸

𝐴!"

𝑇!"

𝜃!"

Fig. 2. The Bayesian network of interaction prediction.

paper, where κ is a constant. Under this assumption, the task
is naturally interpreted as first predicting the missing links
with E and then predicting the upcoming interactions on the
predicted links.

Based on the Bayesian network shown in Fig. 2, then

P(Tij = 1|E, θ(µi, µj))

= P(Tij = 1|Aij = 1, θ(µi, µj))P(Aij = 1|E)

=
P (Tij = 1, Aij = 1, θ(µi, µj))P(Aij = 1|E)

P (Aij = 1, θ(µi, µj))
, (2)

where Ai,j denotes an entry in the adjacency ma-
trix of the network, and link v(i, j) ∈ E. As
P (Aij = 1|Tij = 1, θ(µi, µj)) = 1, the right-hand side of
Eq. (2) is reduced to

P (Tij = 1|θ(µi, µj))P(Aij = 1|E)

P (Aij = 1|θ(µi, µj))
. (3)

Computing P(Aij = 1|E) is a typical topology-based link
prediction problem while computing P(Tij = 1|θ(µi, µj))
can be translated to an attribute-based binary classification
problem. Since P(Aij) is irrelevant to θ(µi, µj) for Tij is not
given, P(Aij = 1|θ(µi, µj)) is equal to P(Aij = 1), which
is only dependent on the density [41] of the entire interaction
network including the missing links. Therefore, to predict an
interaction between individual i and j, one is required to
calculate P (Tij = 1|θ(µi, µj)) and P(Aij = 1|E) for all link
e(i, j) ∈ E with their behavior similarities and topological
properties, respectively. Computing P (Tij = 1|θ(µi, µj)) is a
binary classification problem, while estimating P(Aij = 1|E)
is a typical link prediction problem. Furthermore, the interac-
tion prediction problem is divided into a supervised machine
learning task and an unsupervised machine learning task [27].
The difficulty lies in that there is no suitable way to integrate
supervised and unsupervised learning models into the same
framework.

To unify the supervised and unsupervised machine learning
models, we implement the proposed model with three stages:
topology-based link prediction, attribute-based interaction pre-
diction, and feature fusion. A formal definition of the link
prediction problem is presented as follows. For each link,
the interactions between the individuals on both ends are not
recorded in the interaction logs, i.e., thus for links in E, define
the linking probability ranking L as L = [Bij , Bkl, ...], with
e(i, j), e(k, l) ∈ E and Bij ≥ Bkl, where the node pairs at
the top are more likely to be the missing or upcoming links.
For L, a series of representative topology-based algorithms
are introduced to score the links in E, including the local,
quasi-local, and global algorithms.
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Fig. 3. Schematic view of the BGE model.

For the attribute-based interaction prediction, we mine the
individual behavior patterns such as product preference simi-
larity and time pattern similarity in trader networks based on
the limited transaction information. A series of well-performed
supervised machine learning methods are then applied to score
each link in E. Finally, a ranking P of interaction probability
on E derived from the attribute-based model and L derived
from the topology-based model are required to be fused to
output the final ranking of interaction probabilities.

A schematic view of the framework of the proposed model
is presented in Fig. 3, where the supervised and unsupervised
learning algorithms are used as base learners to predict the
transactions and links in parallel. They are then fused into
a stronger classifier for transaction prediction. Specifically,
the supervised learning algorithms use the non-topological
properties of the transaction data as the input, while the
topological features of the trader network are taken into
account by unsupervised learning algorithms. In the following,
we will show that our model can appropriately integrate the
topological information of the sparse trading network with
the behavior similarities of pairwise traders in a way called
ranking fusion.

B. Interaction Prediction

If the data domain of nodes is non-empty in a dataset,
previous studies commonly adopt the supervised machine
learning algorithms for the convenience of integrating different
types of information. Instead, our model takes the supervised
algorithms as a component to learn the linking probability
from the data domain of nodes. In the following, we briefly in-
troduce attribute-based interaction prediction, topology-based
link prediction, and interaction prediction based on network
embedding. They are either the components of our model or
the methods to be compared.

1) Attribute-Based Interaction Prediction: Applying the
supervised learning algorithms to the problem of interaction

prediction [42] is typical for machine learning practitioners
as the occurrence of interaction can be predicted by a binary
classifier. Whereas the implementation of these algorithms is
dragged by the imbalanced data classes resulting from the
low density of real networks and difficulty in abstracting the
topological features into independent features [15]. A robust
classifier should be built either on adequately interpreting
the topological similarity measurements to features or on
learning the representation of the features through optimizing
the prediction accuracy [11]. The tested classification models
in previous studies include support vector machines, K-nearest
neighbors, logistic regression, random forest, multilayer per-
ceptron, radial basis function network, naive Bayes, and gra-
dient boost decision tree. To present a feasible ranking vector,
we select a series of classical binary classifiers to evaluate the
interaction probabilities between node pairs comprehensively.

In short, the support vector machine (SVM) is a discrimi-
native classifier formally defined by a separating hyperplane.
Specifically, given labeled training data (supervised learning),
the algorithm outputs an optimal hyperplane that categorizes
new examples. In [22], a comparison between a few link
prediction models is reported, and SVM with RBF kernel was
very successful in terms of accuracy. Therefore, we choose
SVM as our first binary classifier. Random forests or random
decision forests are a supervised ensemble learning method for
classification, regression, and other tasks that operate through
constructing a multitude of decision trees in training and
outputting the labels for classification or values for regression
from the trees. It is a flexible, easy-to-use machine learning
algorithm that usually produces good results, which is our sec-
ond choice. Gradient boosting decision tree (in short, GBDT)
is an iterative decision tree algorithm composed of multiple
decision trees. During each iteration, the algorithm uses the
current ensemble to predict the label of each sample and
then compare the label with the ground truth. The dataset is
remarked with the corresponding “residual” to emphasize the
training sample with poor prediction performance. Generally,
the GBDT algorithm performs well in various data mining
and machine learning competitions, which is thus our third
choice. The multilayer perceptron (in short, MLP) is regarded
as the simplest form of a feedforward neural network. Despite
its simple structure, the perceptron can learn and solve quite
complex learning problems. We use this basic deep neural
network framework to test the possibility of using other deep
learning models. Table III shows the parameter settings for all
the candidate models.

2) Topology-Based Link Prediction: To acquire the ranking
of linking probabilities for node pairs in networks, one can turn
to the similarity-based algorithms in which each pair of nodes,
x − y, is assigned a similarity score sxy . All the missing or
upcoming links are ranked with their scores, directly propor-
tional to their linking possibilities. Typically, these algorithms
are interpretable, with computational complexities lower than
the machine learning approaches. To present a feasible ranking
vector, we next introduce three representative algorithms on
different scales.

a) RA Algorithm: Let x and y denote two randomly
selected nodes in a network. Let Γ(x) and Γ(y) denote the
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sets of x and y’s neighbors, and kx and ky denote the degrees
of x and y, respectively. The similarity between nodes x and
y is defined as

SRA
xy =

∑
z∈Γ(x)∩Γ(y)

1

kz
. (4)

The performance of the RA algorithm has been demonstrated
to be one of the best local algorithms [43]. Therefore, it is
selected as a component of the BGE model.

b) QACO Algorithm: As a representative quasi-local
algorithm, the QACO algorithm integrates ant colony opti-
mization and quantum computing [38]. Consider an undirected
network G = (V,E), and let a number of artificial ants
randomly diffuse in G, where each node and node pair are
respectively allocated a certain amount of pheromone. The
probability that a link is visited by an ant is proportional to
its pheromone. Assume an ant visits n nodes, which leaves
a walking path. Let the probability that an ant travels from
node vi to node vj be pij . The value of pij relies on the
pheromone of the path, the visibility of the node pair (vi, vj),
and the quantum pheromone of vj . After an ant vj reaches its
destination, the pheromone on the node pairs and nodes in the
path will be updated according to a certain rule. In turn, the
updated pheromone on the links and nodes will affect the paths
of the ants in the next iteration. Generally, the pheromone
and visibility of the node pairs will heuristically lead the ants
to approach the globally optimal paths, since following the
quantum pheromone is an effective way to avoid local optima.
Finally, the pheromone τij and visibility ηij on node pair
(vi, vj) can effectively reflect the similarity between vi and
vj .

c) SPM Algorithm: The SPM algorithm is a structural
perturbation method in which a new matrix is generated by
perturbing the eigenvalues of the original adjacent matrix
while keeping the eigenvectors [44]. Randomly select a frac-
tion pH of the links in E to constitute a perturbation set ∆E,
and define ER as the set E − ∆E. Let AR and ∆A be the
corresponding adjacency matrices for the networks composed
of ER and ∆E, respectively. Note that A = AR+∆A, where
the real symmetric matrix AR can be diagonalized as

AR =
N∑

k=1

λkxkx
T
k , (5)

where λk and xk are the kth eigenvalue and its corresponding
orthogonal and normalized eigenvector of AR, respectively.
Using the perturbed eigenvalues and unchanged eigenvectors,
the perturbed matrix of AR can be rewritten as

Ã =
N∑

k=1

(λk +∆λk)xkx
T
k , (6)

where ∆λk denotes the difference on the kth eigenvalue
induced by the perturbation. Ã can be used as the linear
approximation of the given adjacency matrix A.

If the perturbation does not significantly change the struc-
tural features, the differences between the eigenvector of the
observed matrix xk and xk+∆xk for all k will be negligible.
In this case, AR+∆A can be approximated as Ã. Comparing

Algorithm 1 Preprocessing of Z for probability-based fusion.
1: Input: X ▷ Original outputs of candidate models
2: Z ←X
3: for j ∈ U do ▷ U is the index set of unsupervised

learning models
4: for i = 1, · · · , N do
5:

Z(i,j) ←
X(i,j) −min{X(·,j)}

max{X(·,j)} −min{X(·,j)}

6: end for
7: end for
8: Output: Z

Ã and AR, one can obtain the scores of the node pairs in
question, which are then used to predict the missing links
in ∆E. If there are missing links in a network, the SPM
algorithm can effectively detect them.

3) Interaction Prediction based on Network Embedding:
Network embedding is a method of network representation
learning. The purpose is to learn the lower-dimensional poten-
tial representation of nodes in the network while maintaining
the original network structure as much as possible [45]. The
features learned through graph embedding can be conveniently
used in various machine learning tasks. For example, in link
prediction, graph embedding is also a standard method to
obtain the feature representation of nodes. In order to compare
it with the method proposed in this paper, we use two classic
graph embedding models for link prediction tasks.

Node2vec is a classical model in network representation
learning and is mainly designed for feature learning of auto-
mated prediction tasks. This method is an extension of another
graph embedding model, Deepwalk, which comprehensively
considers the depth-first sampling neighborhood and breadth-
first sampling neighborhood [46].

Due to the wide application of GCN [25] in the field of
graph embedding, recent link prediction methods are closely
related to it. Among them, the most representatives are Graph
Auto Encoder (GAE) and variational Graph Auto Encoder
(VGAE) [47]. GAE is an application of the sparse autoencoder
model [48] to the field of graph embedding. The idea is to
use GCN to fuse node features with topological informa-
tion and decode the embedding by reconstructing the graph.
VGAE [47] introduces Gaussian noise to GAE, which is an
application of the variational auto-encoder(VAE) to the field of
graph embedding. The decoders of both GAE and VGAE are
built on link prediction tasks. Therefore, one can naturally use
them to accomplish such tasks. We will compare our model
with these two graph-embedding models in Section IV.

C. Feature Fusion

For the interpretability of the model, we adopt a linear
model to fuse the ranking vectors. Suppose that there are Tp =
|E| samples of trader pairs. The existence of their trading
transactions (i.e., ground truth or labels) is denoted by a vector
y = [y1, · · · , yTp]

⊤. Suppose also that there are D candidate
models in total (including both supervised and unsupervised
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Algorithm 2 Preprocessing of Z for ranking-based fusion.
1: Input: X ▷ Original outputs of candidate models
2: for j = 1 · · · , D do
3: X̃(·,j) ← Index of sorting X(·,j) in decreasing order
4: end for
5: for i = 1, · · · , Tp do
6: for j = 1, · · · , D do
7: Z(i,j) ← 1

X̃(i,j)

8: end for
9: end for

10: Output: Z

Algorithm 3 Optimal weights.
1: Input: Z, y
2:

w∗ ← argmin
w

− 1

N

{
N∑
i=1

[
yi ln f

(
w⊤Z(i,·)

)
+ (1− yi) ln

(
1− f

(
w⊤Z(i,·)

)) ]}
,

(7)

subject to
D∑

j=1

wj = 1, (8)

wj ≥ 0, j = 1, 2, . . . , D, (9)

3: Output: w∗

learning models), and the corresponding model weight in the
linear fusion is denoted by w = [w1, · · · , wD]⊤. For N
samples, the outputs of the candidate models are denoted by
a matrix Z = [Z(1,·), · · · ,Z(Tp,·)]

⊤ = [Z(·,1), · · · ,Z(·,D)],
where Z(i,·) is a vector of the predictions given by the
candidate models for node pair i, i = 1, · · · , Tp. In the
probability-based fusion, the predictions are the interaction
probabilities of node pairs for supervised models and similarity
scores for unsupervised models, respectively. In the ranking-
based fusion, the predictions are the reciprocals of the ranking
indices of the interaction probabilities and similarity scores
mentioned above. Their formal definitions will be provided
later in this section. Z(·,j) is a vector of the predictions
for all the node pairs given by the candidate model j,
j = 1, · · · , D. Use a unified weight vector w to fuse the
rankings of interaction probabilities and linking probabilities.
Let the numbers of supervised and unsupervised models be
Ns and Nu, respectively. The fused interaction probability for
node pair i can be defined as follows:

pi = w⊤
(1:Ns)

Z(i,1:Ns) +w⊤
(Ns+1:Ns+Nu)

·Z(i,Ns+1:Ns+Nu).

(10)

Here, we divide w into two segments, since the physical
meanings of the outputs of the candidate models are different
for supervised and unsupervised learning models. The outputs
of the former are the predicted probabilities of the transaction
links of node pairs, while the outputs of the latter are the
similarity scores between two nodes, which are typically out
of the range between 0 and 1. Therefore, the scores are

required to be normalized before fusion. We adopt the ‘Min-
Max Scaling’ [49] to normalize them in the probability-based
fusion. The preprocessing of Z is presented in Algorithm 1.
Although the predicted probabilities and similarity scores
possess different scales and physical meanings, their functions
are similar. A more significant probability or similarity score
implies that the transaction between the two traders is more
likely to occur. Therefore, one can fuse them to predict
upcoming transactions.

Considering the differences in scales and physical meanings,
we propose a ranking-based fusion. As the physical meanings
of the rankings are the same, the scaling is not necessary
anymore. In the fusion, Z = 1

X̃(i,j)

, where X̃(i,j) denotes
i’s index in the ranking of X(·,j) in descending order. The
preprocessing of Z is presented in Algorithm 2. The predicted
label of node pair i depends on whether the index of pi in the
ranking of p is less than or equal to a predetermined threshold
K, where K is a hyper-parameter of our model. If the index is
less than or equal to K, it will be labeled 1, and 0 otherwise.
The mapping is denoted by function f(·).

The optimal weights of candidate models in Eq. (10) can be
derived by Algorithm 3, in which a loss function is formulated
based on cross-entropy [49]. To optimize the hyper-parameter
w in Algorithm 3, we adopt the grid search in (0, 1) with a
step length 0.1 in our experiments.

IV. EXPERIMENTS

This section introduces our datasets, provides data prepara-
tion and model training settings, and presents the experimental
results and comparative analysis.

A. Data

We use a real-world trading dataset from a British invest-
ment bank. It is composed of 120,648 transaction records
of its UK trading department from 2 January 2014 to 31
December 2014. Each transaction record contains 36 entries
(known as features in machine learning [49]) such as unique
transaction ID, trading product grouping levels, instrument
description, selling trader ID, buying trader ID, the quantity
of trade, transaction time, the date that the trade goes live or
goes to mature in the system, currency rate, market operations
feedback, and the likes.

To further verify the robustness of the proposed model
on different link-based classification problems, we also em-
ploy a publicly available dataset about users in a retweet
network*. This dataset contains a network of over 100,000
users. For each user, several content-related, network-related,
and activity-related features were provided, such as average
sentiment and subjectivity of his neighbors’ tweets, his number
of tweets, followers, followees, and favorites.

B. Data Preparation and Model Training

Our main dataset is the trading data. To properly use the
transaction records, entries in the original dataset are carefully

*URL: https://www.kaggle.com/manoelribeiro/hateful-users-on-twitter?
select=users hate glove.content
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TABLE I
DISTRIBUTIONS OF FINANCIAL PRODUCTS.

Family Group No. of trans Amount Buy Sell
(%) (%) (%) (%)

IRD BOND 6.8300 23.1408 6.8300 23.1408
IRD CF 0.2900 0.0414 0.2900 0.0414
IRD CS 0.7100 0.5560 0.7100 0.5560
IRD FRA 1.5000 2.4039 1.5000 2.4039
IRD INFLS 0.1400 0.0173 0.1400 0.0173
IRD IRS 10.6800 12.0112 10.6800 12.0112
IRD LFUT 18.1000 0.1870 18.1000 0.1870
IRD LN BR 26.8300 55.1268 26.8300 55.1268
IRD OPT 0.1000 0.5306 0.1000 0.5306
IRD OSWP 0.1500 0.0515 0.1500 0.0515
IRD REPO 1.3000 3.0031 1.3000 3.0031
IRD SFUT 2.4500 2.1191 2.4500 2.1191
CURR FXD 25.5600 0.7190 25.5600 0.7190
CURR OPT 5.2800 0.0643 5.2800 0.0643
CURR MP 0.0008 0.0000 0.0008 0.0000
CRD CDS 0.0700 0.0278 0.0700 0.0278
CRD FDB 0.0017 0.0000 0.0017 0.0000
COM SWAP 0.0008 0.0000 0.0008 0.0000

selected, and in the meantime, domain knowledge of financial
trading and investment is likewise considered to generate some
new features. In the original dataset, the ‘family’ is a high-level
grouping of products. Transactions can be categorized into
four family types. The ‘group’ is a medium-level grouping of
products, including 17 categories. Clearly, the groups provide
a more accurate picture of traders’ trading patterns than the
families. The distributions of the products on groups are shown
in Table I. For each transaction, there are also a number
of temporal attributes in the record, such as the time that
a transaction is requested from a trader, the time that the
transaction is processed by the system, and the time that
the transaction is confirmed by two sides. As the differences
among these time records are small, we uniformly choose the
last one. The value of each transaction is in pounds sterling
based on the exchange rate of the date of the transaction.

Considering traders may have certain customary time pat-
terns in trading, we reconstruct the time-associated features
into three levels of time granularity: month, weekday, and time
slice. The trading time pattern of traders varies widely, which
seems not relevant to the transaction prediction. Whereas, one
should recall the necessary condition of a transaction that
there must be at least a small overlap between the traders’
time patterns. The overlap will more or less contribute to the
similarity of their trading time patterns. In addition, the details
of each transaction are integrated, but different products are
indiscriminately aggregated to calculate the attribute ‘trading
volume’ as the product details are not the focus of this paper.

As transaction prediction is based on a trading network,
one needs to further understand the structure of the trading
network and extract the topological features of node pairs in
it from the transaction records. We first integrate the features
associated with two traders, including their identities, the
groups of financial products that they have traded, the time
distributions of transactions in terms of months, weekdays,
and time slices. For example, the ‘group’ has a total of 17
categories, so the group feature of each node can be encoded
by a 17-dimensional vector representing the group distribution

of transactions. Based on the transformed features, we are able
to build the feature vector of links with the similarities of
the two nodes. In the measure of similarity, we use cosine
similarity. After inferring a trader network, extracting the
features of the nodes, and then using the similarities between
the pairwise nodes to constitute the feature vectors of the links,
we finally acquire the features shown in Table II.

The constructed trader network is composed of 1, 149 nodes
and 1, 810 links in total, which is a relatively small social
network comparing with other online social networks, such as
Facebook, Twitter, etc. The density of the network is 0.003
with a small average degree of 3.1. Its clustering coefficient
and average path length are 0.111 and 3.48, indicating that
it is a typical small-world network. For trader pairs that have
transaction records, we set their labels to 1, and 0 for the
others. Note that the number of trader pairs without transaction
records is much larger than the number of links in the network.
In other words, the network is extremely sparse. Therefore, we
randomly pick a number of negative samples, which is equal
to the number of positive samples, to compose the final dataset
for the purpose of solving the sample imbalance problem.
Finally, we collect a total of 3, 620 samples, with a positive
to negative sample ratio of 1 : 1.

We do not engineer features for the twitter data, and the
constructed retweet network is composed of 1, 004 nodes and
1, 870 links in total. Its clustering coefficient and average path
length are 0.212 and 2.46, indicating that it is a typical small-
world network. For user pairs that have retweet records, we set
their labels to 1 and 0 for the others. The network is likewise
sparse. Therefore, we randomly pick a number of negative
samples, which is equal to the number of positive samples,
to compose the final dataset for the purpose of solving the
sample imbalance problem. Finally, we collect a total of 3, 740
samples, with a positive to negative sample ratio of 1 : 1.

In order to ensure the credibility of the results, we adopt
a 10-fold cross-validation method. In the 10-fold cross-
validation, the balanced sample set is randomly partitioned
into 10 equal-sized subsets. Of the 10 subsets, a single subset
is retained as the validation data for testing the model, and the
remaining 9 subsets are used as a training set. Our training
set is composed of 3, 258 samples (3, 366 samples for the
retweet network), and the testing dataset is composed of
362 samples (374 samples for the retweet network). For the
binary classification task, our setting guarantees that each fold
contains roughly the same proportions of the two types of class
labels. The cross-validation process is repeated for 10 times,
with each of the 10 subsets used exactly once as the validation
data. The prediction results are then averaged to produce the
final result. As introduced in Section III, we test four different
supervised learning algorithms to present a feasible ranking
vector, which are SVM, RF, GBDT, and MLP. The hyper-
parameters of each algorithm are respectively optimized with
the grid search. The detailed setting of hyper-parameters is
shown in Table III.

C. Results and Analysis
Precision, recall, and F1-score are the most popular metrics

for evaluating a machine learning algorithm’s performance for
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TABLE II
FEATURES DESCRIPTION OF THE TRADING NETWORK.

Features Link-based features Node-based features Raw Data
Group Group similarity of two nodes 17-dimensional vector, each dimension represents

the number of transactions in the respective group
NB.INT:7595052 GROUP:LFUT
B.TRADER:T251 S.TRADER:T533

Month Month similarity of two nodes 12-dimensional vector, each dimension represents
the number of transactions in the month

Trn.Time.2:340856481 in timestamp,
that is, 1980-10-20 10:21:21

Weekday Weekday similarity of two nodes 5-dimensional vector, each dimension represents
the number of transactions in the Working day

Same as above

Time slice Time slice similarity of two nodes 24-dimensional vector, each dimension represents
the number of transactions in the hour

Same as above

TABLE III
HYPER-PARAMETER SETTINGS OF SUPERVISED LEARNING MODELS.

Model Hyperparameter
Support vector machine Kernel: Radial basis function

Regularization parameter: 10
Gamma: 0.001

Random forest Tree numbers: 135
Min. samples be a leaf:19
Max. depth of the tree: 9

Gradient boosting decision tree Tree numbers: 120
Learning rate: 0.1
Max. depth of the tree: 3
Min. samples required to split: 284
Min. samples be a leaf: 78
Subsample: 0.7

Multilayer perceptron Activation: ReLU
Weight optimization: Adam [50]
L2 penalty parameter: 0.0001

classification problems. When we apply these metrics to the
algorithms with the top-K selection in the link prediction [51],
Precision is redefined as the ratio of the accurate predictions
among the top-K predicted links [52]. For the balanced test
sets, we set K = |L|

2 , and precision is computed as

Precision@K =
m

K
. (11)

For a given K, larger precision means higher prediction
accuracy. Recall describes the ratio of the predicted links to
the removed links. Let m be the number of correctly predicted
links in the top-K of L for the test set, and we compute recall
as follows

Recall@K =
m

n
, (12)

where n is the total number of existing links in the test set.
Another evaluation metric F1-score takes the harmonic mean
of precision and recall.

Table IV shows the average results of the evaluation metrics
with the 10-fold cross-validation for the trader network data.
The best-performing feature combinations are highlighted in
gray. Compared with the feature combinations provided by
pure supervised or unsupervised models, one can see that
a reasonable fusion of them achieves the best performance.
Concerning the fusion mode, the ranking-based fusion gener-
ally performs better. For the ranking-based fusion, the perfor-
mance of the feature fusion provided by Random Forest and
‘QACO’ is ranked second, followed by that of ‘GBDT’ and
‘QACO’. The ranking-based fusion of the pure unsupervised
link prediction methods performs poorly in the dataset, but

TABLE IV
OVERALL RESULTS OF MODEL PERFORMANCE OF THE TRADER DATA.

Model Ranking-based fusion Probability-based fusion
Prec Recall F1 Prec Recall F1
(%) (%) (%) (%) (%) (%)

BGE 75.52 75.57 75.51 71.82 71.81 71.79
Supervised (fus) 70.28 70.25 70.23 35.75 35.75 35.73
Unsupervised (fus) 56.41 56.39 56.37 48.40 48.41 48.38
SVM + RA 63.87 63.87 63.84 37.29 37.30 37.28
SVM + SPM 69.23 69.23 69.20 46.91 46.92 46.89
SVM + QACO 70.94 70.95 70.91 37.02 37.02 37.00
RF + RA 69.12 69.10 69.08 31.88 31.91 31.88
RF + SPM 73.37 73.39 73.35 46.19 46.13 46.14
RF + QACO 74.92 74.39 74.89 31.27 31.30 31.27
GBDT + RA 69.56 69.56 69.53 31.71 31.73 31.71
GBDT + SPM 73.48 73.49 73.46 44.48 44.32 44.38
GBDT + QACO 74.81 74.84 74.79 30.99 31.01 30.99
MLP + RA 68.62 68.61 68.59 33.20 33.22 33.20
MLP + SPM 72.38 72.33 72.32 46.35 46.40 46.36
MLP + QACO 74.09 74.09 74.06 32.04 32.06 32.04
The best method in each column is highlighted in gray colour.

TABLE V
ABLATION OF THE FEATURES

Fusion Used features Precision Recall F1
Probability G, M, W, T1 0.677 0.677 0.677
Probability G, M, W, T2 0.714 0.714 0.714
Probability G, M, T1, T2 0.720 0.720 0.720
Probability G, W, T1, T2 0.719 0.719 0.719
Probability M, W, T1, T2 0.721 0.721 0.721
Probability G, M, W, T1, T2 0.725 0.725 0.725
Rank G, M, W, T1 0.684 0.684 0.684
Rank G, M, W, T2 0.744 0.744 0.744
Rank G, M, T1, T2 0.752 0.752 0.752
Rank G, W, T1, T2 0.746 0.746 0.746
Rank M, W, T1, T2 0.746 0.746 0.746
Rank G, M, W, T1, T2 0.762 0.762 0.762
G: Group; M: Month; W: Weekday; T1: Timestamp; T2: Topology

its performance is better than most probability-based fusions.
To further illustrate the transaction prediction based on the
trader network, the prediction result of the BGE model in an
experiment is visualized in Fig. 4, where the solid blue lines
denote the existing but not predicted transactions, the solid
yellow lines denote the correctly predicted transactions, and
the solid red lines denote the falsely predicted transactions.

We run feature ablation tests in the two fusion modes to
test the importance of features in our model. Table V shows
that ‘topology’ has the most significant impact on model per-
formance, which is embedded by the unsupervised algorithms.
The second is ‘Timestamp’, and the least is ‘Group’. Generally
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Fig. 4. Network visualizations of transaction prediction. The prediction result
on a probe set randomly selected from the transaction logs is visualized
here. The transaction log used in the experiment is a fragment of the entire
transaction historical log from 2 January 2014 to 31 December 2014. In this
inferred network, the traders (gray circles) with just one partner in the entire
trading log are placed on the perimeter of a circle. The remaining traders are
placed inside this circle, allocated among their neighbors. In the test set, a
trader will move toward the center of the circle a certain distance every time
he is at the end of a link to highlight the trader. The links in the training set
are hidden. Solid blue lines denote the existing but not predicted transactions,
solid yellow lines denote the correctly predicted transactions, and solid red
lines denote the falsely predicted transactions.
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Fig. 5. Performance evaluation of six graph embedding algorithms for (a) the
transaction prediction on the trader networks and (b) the retweet prediction
on the retweet networks.

speaking, the impacts from ‘Group’, ‘Month’, ‘Weekday’,
and ‘Timestamp’ are relatively close. We do not test the
importance of features in the retweet networks, since the
number of features in the dataset is over 1,000, and such a
test is computationally expensive and trivial.

Fig. 5(a) shows that the BGE-rank model outperforms the
rest algorithms in all the metrics. The BGE-probability model
is next to the BGE-rank model. The ranking-based fusion
successfully tackles this problem, providing a novel pathway
to fuse the attributes and topological features of links. At the
same time, as three widely used methods in graph embedding,

we observe that GCN, GAT, VGAE do not perform well in this
task. Here, GCN and GAT are trained by the same decoder in
GAE [47]. For the Node2vec, we linearly combine the inner
product of the embedded vectors with the supervised models.
For the topological properties, one can see that the fusion
performance by GCN is worse than that by Node2vec. The
reason is that GCN cannot effectively integrate the features
of high-order neighbors, which play an essential role in the
mission. Similar behaviors can be observed in the retweet
networks. Fig. 5(b) shows that the F1-measures of the BGE-
probability model and BGE-rank model are likewise higher
than the rest algorithms in all the metrics, confirming the
robustness of our model to network types. Interestingly, the
performance of the BGE-probability model is slightly higher
than the BGE-rank model, indicating that the reciprocal of the
ranking indices may not be the best way to fuse the link-based
features in the task. Next to the BGE-rank model, ‘Node2vec’
also performs well, indicating that the node attributes are
crucial in the task.

V. CONCLUSION

This paper proposes a novel feature ranking framework to
predict human interactions with historical interaction logs.
Different from the existing methods, we adopt neither a
pure supervised method with complicated feature extraction
and learning procedures nor a pure unsupervised method,
which can hardly integrate the individual properties with their
connections. Instead, we apply a Bayesian graph embedding
model for fusing the individual properties with the topologi-
cal information of the network composed of their intercon-
nections. The model successfully integrates the supervised
interaction prediction and unsupervised link prediction with
interaction probabilities. Extensive experimental results on two
datasets of different types show that our model outperforms
the tested benchmarked algorithms in precision, recall, and
F1-score. We believe that our model provides a promising
paradigm for further studies on network embedding and human
interaction prediction. Admittedly, as we aim to promote the
performance of interaction prediction algorithms, other metrics
such as computational complexity, scalability to network size,
and robustness to network type are not specifically optimized.
To meet specific needs, one can rearrange the components
of the model; the fusion among the individual properties and
topological properties can be further improved. For instance,
a non-linear combination may perform better in some tasks;
semi-supervised extensions can likewise be considered if the
dataset contains a large number of unlabeled data. Such
possible extensions will be explored in our further work.

APPENDIX - KEY NOTATIONS

P Probability of interaction
E Set of links inferred by the interaction logs
A Adjacency matrix of the network
L Linking probability ranking

Ti,j Transaction between two traders
ui Attributes learned from interaction logs

θui,uj
Similarities between individual i and j
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Z Outputs of the candidate models
D Number of candidate models
w Model weight
Ns Number of supervised models
Nu Number of unsupervised models
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