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TIM BUTTON

Abstract. On a very natural image of sets, every set has an absolute complement.

The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify

this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of

sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory,

which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster,

Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal

numbers; and natural extensions of BLT are definitionally equivalent with ZF.

Like all walls it was ambiguous,
two-faced. What was inside it
and what was outside it
depended upon which side you
were on.

Le Guin [1974: 1]

Building on work by Alonzo Church and Urs Oswald, Thomas Forster has
provided a pleasingly different way to think about sets. As in the ordinary
cumulative hierarchy, the sets are stratified into well-ordered levels. But,
unlike the ordinary cumulative picture, the sets form a boolean algebra.
In particular, every set has an absolute complement, in the sense that
∀a∃c∀x(x ∈ a↔ x /∈ c). In this paper, I develop an axiomatic theory for
this conception of set: Boolean Level Theory, or BLT.

I start by outlining the bare-bones idea of a complemented hierarchy
of sets, according to which sets are arranged in stages, but where each
set is found alongside its complement. I axiomatize this bare-bones story
in the most obvious way possible, obtaining Boolean Stage Theory, BST.
It is clear that any complemented hierarchy satisfies BST (see §§1–2).
Unfortunately, BST has multiple primitives. To overcome this, I develop
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2 TIM BUTTON

Boolean Level Theory, BLT. The only primitive of BLT is ∈, but BLT
and BST say exactly the same things about sets. As such, any comple-
mented hierarchy satisfies BLT. Moreover, BLT is quasi-categorical (see
§§3–5). I then provide two interpretations using BLTZF (an obvious ex-
tension of BLT): we can regard ZF as a proper part of BLTZF; but ZF is
definitionally equivalent to BLTZF (see §§6–7). I close by explaining how
to implement Conway’s games and surreal numbers in BLT (see §8).

This paper is the third in a triptych. It closely mirrors Part 1, but
can be read in isolation. Let me repeat, though, that Part 1 is hugely
indebted to the work of Dana Scott, Richard Montague, George Boolos,
John Derrick, and Michael Potter; this paper inherits those debts.1

Some remarks on notation (which is exactly as in Pt.1 §0). I use second-
order logic throughout. Mostly, though, this is just for convenience. Ex-
cept when discussing quasi-categoricity (see §5), any second-order claim
can be replaced with a first-order schema in the obvious way. I use some
simple abbreviations (where Ψ can be any predicate whose only free vari-
able is x, and � can be any infix predicate):

(∀x : Ψ)φ := ∀x(Ψ(x)→ φ) (∀x� y)φ := ∀x(x� y → φ)

(∃x : Ψ)φ := ∃x(Ψ(x) ∧ φ) (∃x� y)φ := ∃x(x� y ∧ φ)

I also concatenate infix conjunctions, writing things like a ⊆ r ∈ s ∈ t for
a ⊆ r ∧ r ∈ s ∧ s ∈ t. And I run these devices together; so (∀x /∈ x ∈
a)x ⊆ a abbreviates ∀x((x /∈ x ∧ x ∈ a) → x ⊆ a). When I announce
a result or definition, I list in brackets the axioms I am assuming. For
readability, all proofs are relegated to the appendices.

§1. The Complemented Story. Here is a very natural image of sets:
sets are not just collections of objects; sets partition the universe, and both
sides of the partition yield a set. There is the set of sheep; and there is
the set of non-sheep. There is the set of natural numbers; and there is the
set of everything else. There is the empty set; and there is the universal
set.

Many will reject this image out of hand. Supposedly, the paradoxes of
näıve set theory have taught us that there is no universal set; for if there
were a universal set V = {x : x = x}, then Separation would entail the
existence of the Russell set {x : x /∈ x}, which is a contradiction.

That reasoning, though, is too quick. Separation is incompatible with
the existence of V .2 More generally, Separation is incompatible with
the principle of Complementation (i.e. with the principle that every set

1See in particular Montague [1965: 139], Montague, Scott, and Tarski [unpublished:
§22], Scott [1960] [1974], Boolos [1971: 8–11] [1989], and Potter [1990: 16–22] [2004:
ch.3].

2NB: I assume classical logic throughout.
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LEVEL THEORY, PART 3 3

has an absolute complement). But it does not immediately follow that
Complementation is false; only that we must choose between Separation
and Complementation.

Both principles are very natural. Separation, however, has the weight
of history behind it; and this might not merely be a historical accident.
There is a serious argument in favour of Separation and against Com-
plementation, which runs as follows. The paradoxes of näıve set theory
forced us to develop a less näıve conception of set. The best such concep-
tion (according to this argument) is the cumulative iterative conception,
as articulated by this bare-bones story (recycled from Pt.1):

The Basic Story. Sets are arranged in stages. Every set is found at
some stage. At any stage s: for any sets found before s, we find a set
whose members are exactly those sets. We find nothing else at s.

It is easy to see that this conception of set yields Separation rather than
Complementation: any subset of a set a occurs at (or before) any stage
at which a itself occurs. So (the argument concludes) we should embrace
Separation and reject Complementation.

I take this argument very seriously. However, its success hinges on
whether the ordinary cumulative iterative conception really is the ‘best’
conception of set. Whatever exactly ‘best’ is supposed to mean, the argu-
ment lays down a challenge: produce an equally good or better conception
of set, which accepts Complementation and rejects Separation.

This paper considers a very specific reply to this challenge, due to
Forster’s development of work by Church and Oswald.3 Forster’s idea
is to make a small tweak to the story of the ordinary hierarchy, so that
‘each time we [find] a new set . . . we also [find] a companion to it which

3 Church [1974] and Oswald [1976]; see also Mitchell [1976] and Sheridan [2016].
Forster [2001] includes a nice summary of the technicalities behind the original Church–
Oswald idea.
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4 TIM BUTTON

is to be its complement’.4 In slightly more detail, we offer the following
bare-bones story:

The Complemented Story. Sets are arranged in stages. Every set
is found at some stage. At any stage s: for any sets found before s, we
find both

(Lo) a set whose members are exactly those sets, and
(Hi) a set whose non-members are exactly those sets.

We find nothing else at s.

According to our new story, we find each set using either clause (Lo) or
clause (Hi). Moreover, if we find a set using clause (Lo), then we find
its absolute complement using clause (Hi), and vice versa. This is the
absolute complement since, in clause (Hi), we quantify over all sets that
will ever be discovered, not just those discovered before stage s. This
story therefore secures Complementation; it describes the bare idea of a
complemented hierarchy of sets. But it only describes the bare idea, since,
for example, it says nothing about the height of the hierarchy.

In what follows, I will develop an axiomatic theory of this story, and
explore that theory’s behaviour. To be clear: I am not claiming that we
should reject the ordinary hierarchy in favour of the complemented. My
aim is only to provide a coherent (and surprisingly elegant) conception of
set which allows for Complementation rather than Separation.

In what follows, I will speak of low sets and high sets.5 A set is low iff
we find it using clause (Lo); we characterize low sets by saying ‘exactly

4 Forster [2008: 100]. Note that I speak of ‘finding’ sets, whereas Forster speaks of
‘creating’ them. Talk of ‘creation’ leads Forster to say that the members of V change,
stage-by-stage, as more sets are created, so that V is ‘intensional’, in a way that ∅ is
not [2008: 100]. I think that Forster should regard ∅ as equally ‘intensional’, since what
∅ omits changes, stage-by-stage. However, if sets are discovered (rather than created)
stage-by-stage, then all issues concerning intensionality can be side-stepped: all that
changes, stage-by-stage, is our knowledge about V ’s members and ∅’s non-members.

If we admit contingently-existing urelements, then the discussion of intensionality
becomes much more complicated. In the actual world, Boudica ∈ {x : x = x}; but in
a possible world where she never existed, Boudica /∈ {x : x = x}; by contrast, in all
possible worlds, Boudica /∈ {x : x 6= x}. From this, one might infer that V is intensional
whereas ∅ is not. But this inference is not immediate; it requires two substantial,
further, assumptions: (1) that the descriptions ‘{x : x 6= x}’ and ‘{x : x = x}’
rigidly designate ∅ and V respectively, and (2) that intensionality concerns trans-world
variation of members rather than trans-world variation of non-members. I hope to
explore both assumptions elsewhere. (Thanks to James Studd, Timothy Williamson,
Stephen Yablo, and an anonymous referee for this journal, for pushing me on this
point.)

5Note that every set will be low or high. This terminology departs somewhat from
Church’s. Church [1974: 298] defined ‘a low set as a set which has a one-to-one relation
with a well-founded set’ and ‘a high set as a set which is the complement of a low set’.
This leaves logical space for sets which are neither low nor high (in Church’s terms),
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LEVEL THEORY, PART 3 5

these things, which we found earlier, are this set’s members’. The limiting
case of a low set is the empty set, ∅. A set is high iff we find it using clause
(Hi); we characterize high sets by saying ‘exactly these things, which we
found earlier, are omitted from this set’. The limiting case of a high set
is the universe, V . (Note that low sets can have high sets as members,
e.g. {V } would be a low set with a high member.)

§2. Boolean Stage Theory. Given a model of ZF, there are simple
methods for constructing models of the complemented hierarchy.6 How-
ever, if the idea of a complemented hierarchy is genuinely to rival that
of the ordinary hierarchy, it cannot remain parasitic upon ZF; it needs a
fully autonomous theory. I will provide such a theory over the next two
sections.7

The Complemented Story, which introduces the bare-bones idea of a
complemented hierarchy, speaks of both stages and sets. To begin, then,
I will present a theory which quantifies distinctly over both sorts of enti-
ties. Boolean Stage Theory, or BST, has two distinct sorts of first-order
variable, for sets (lower-case italic) and for stages (lower-case bold). It
has five primitive predicates:

∈: a relation between sets; read ‘a ∈ b’ as ‘a is in b’
<: a relation between stages; read ‘r < s’ as ‘r is before s’
�: a relation between a set and a stage; read ‘a � s’ as ‘a is found at s’

Lo: a property of sets; read ‘Lo(a)’ as ‘a is low’, i.e. we find a using clause
(Lo)

Hi : a property of sets; read ‘Hi(a)’ as ‘a is high’, i.e. we find a using
clause (Hi)

For brevity, I write a ≺ s for ∃r(a � r < s), i.e. a is found before s. Then
BST has eight axioms:8

Extensionality ∀a∀b(∀x(x ∈ a↔ x ∈ b)→ a = b)
Order ∀r∀s∀t(r < s < t→ r < t)
Stage ∀a∃s a � s
Cases ∀a(Lo(a) ∨Hi(a))

PriorityLo ∀s(∀a : Lo)(a � s→ (∀x ∈ a)x ≺ s)
PriorityHi ∀s(∀a : Hi)(a � s→ (∀x /∈ a)x ≺ s)

and Church [1974: 305] used such sets to provide a Frege–Russell definition of cardinal
numbers.

6See Forster [2001: §§1–2] [2008: 106–8]; and my interpretation I in §D.1.
7The approach in this section follows Scott and Boolos, but in the setting of com-

plemented hierarchies rather than the ordinary hierarchies; see Pt.1 §§1 and 8.
8Using classical logic yields ‘cheap’ proofs of the existence of a stage, an empty set,

and a universal set, via Stage, SpecificationLo and SpecificationHi . Those who find such
proofs too cheap might wish to add some explicit existence axioms. (Cf. Pt.1 footnote
2.)
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6 TIM BUTTON

SpecificationLo ∀F∀s((∀x : F )x ≺ s→ (∃a : Lo)(a � s∧ ∀x(F (x)↔ x ∈
a)))

SpecificationHi ∀F∀s((∀x : F )x ≺ s→ (∃a : Hi)(a � s∧ ∀x(F (x)↔ x /∈
a)))

I will now explain how to justify each axiom.
The first two axioms make implicit assumptions explicit. Whilst I did

not mention Extensionality when I told the story of the complemented
hierarchy, I take it as analytic that sets are extensional.9 Similarly, Order
records the analytic fact that ‘before’ is transitive. Note, though, that
I do not explicitly assume that the stages are well-ordered,10 as it is
unclear at this point what would justify that assumption. (After all, if
we are willing to countenance entities as ill-founded as V , then it is not
immediately obvious that we should refuse to countenance a hierarchy
with infinite descending chains of stages. And the Complemented Story
does not explicitly require that the stages be well-ordered.)

Informally, Stage says that every set is discovered at some stage; this
claim appears verbatim in the Complemented Story. Likewise, Cases
says that every set is either low or high, and this is immediate from the
fact that every set is discovered using either clause (Lo) or clause (Hi).
(Note, though, that I do not assume at the outset that this is an exclusive
disjunction; initially, we should be open to the thought that one set could
be discovered using both clauses.)11

Next, PriorityLo and PriorityHi say that if we find a low set at a stage,
then we find all its members earlier, and if we find a high set at a stage,
then we find all its non-members earlier; both claims follow from clauses
(Lo) and (Hi). Finally, SpecificationLo and SpecificationHi say that if
every F was found before a certain stage, then at that stage we find both
the low set of all F s, and the high set of all non-F s; again, both claims
follow from (Lo) and (Hi).

Since all eight axioms hold of the Complemented Story, any comple-
mented hierarchy satisfies BST.

§3. Boolean Level Theory. Unfortunately, BST contains rather a
lot of primitives. Fortunately, most of them can be eliminated. In this
section, I present Boolean Level Theory, or BLT. This theory’s only
primitive is ∈, but it makes exactly the same claims about sets as BST
does.12 I start with a key definition:13

9For brevity of exposition, I am considering hierarchies of pure sets.
10Here I part company with Forster [2008: 100], who explicitly stipulates that the

stages are well-ordered. Ultimately, BST proves a well-ordering result (Theorem 4.1).
11Ultimately, BST proves that no set is discovered using both clauses (Lemma B.7).
12The approach in this section mirrors Pt.1 §§2–4, which builds on work by Mon-

tague, Scott, Derrick and Potter; see also Pt.1 §8.
13Compare Montague’s and Scott’s ¶-operation, presented in Pt.1 Definition 2.1.
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LEVEL THEORY, PART 3 7

Definition 3.1. For any set a, let a’s absolute complement be a =
{x : x /∈ a}, if it exists. Let Pa = {x : (∃c /∈ c ∈ a)(x ⊆ c ∨ x ⊆ c)}, if it
exists.14

The definition of a needs no comment, but the definition of Pa merits
explanation. It turns out that BST proves that a is low iff a /∈ a, and a is
high iff a ∈ a (see Lemma B.7). Seen in this light, Pa collects together all
the subsets of low members of a, and all the complements of such subsets.
As a specific example, if b is low, then P{b} = {x : x ⊆ b ∨ x ⊆ b}, i.e.
it is the result of closing b’s powerset under complements. We use this
operation in this next definition (where ‘bistory’ is short for ‘boolean-
history’, and ‘bevel’ is short for ‘boolean-level’):15

Definition 3.2. Say that h is a bistory, written Bist(h), iff h /∈ h ∧
(∀x ∈ h)x = P(x ∩ h). Say that s is a bevel, written Bev(s), iff (∃h :
Bist)s = Ph.

The intuitive idea behind Definition 3.2 is that the bevels go proxy for the
stages of the Complemented Story, and each bistory is an initial sequence
of bevels. (It is far from obvious that these definitions work as described,
but we will soon see that they do.) Using these definitions, BLT has just
four axioms:16

Extensionality ∀a∀b(∀x(x ∈ a↔ x ∈ b)→ a = b)
Complements ∀a(∃c = a)(a /∈ a↔ c ∈ c)

Separation/∈ ∀F (∀a /∈ a)(∃b /∈ b)∀x(x ∈ b↔ (F (x) ∧ x ∈ a))
Stratification/∈ (∀a /∈ a)(∃s : Bev)a ⊆ s
Intuitively, Complements tells us that every set has a complement, and a
set is low iff its complement is high; Separation/∈ tells us that arbitrary
subsets of low sets exist (and are low); and Stratification/∈ tells us that
every low set is a subset of some bevel (which corresponds to the thought
that it is found at some stage). These axioms and definitions are vindi-
cated by this next result, which shows that BLT has exactly the same
set-theoretic content as BST (see §B for the proof):

Theorem 3.3. BST ` φ iff BLT ` φ, for any BLT-sentence φ.

14By the notational conventions, Pa = {x : ∃c(c ∈ a ∧ c /∈ c ∧ (x ⊆ c ∨ x ⊆ c))}.
BLT’s axiom Complements guarantees that a exists for every a. However, we do not
initially assume that Pa exists for every a; instead, we initially treat every expression
of the form ‘b = Pa’ as shorthand for ‘∀x(x ∈ b↔ (∃c /∈ c ∈ a)(x ⊆ c∨ (∃z ⊆ c)∀y(y ∈
z ↔ y /∈ x)))’, and must double-check whether Pa exists. Ultimately, though, BLT
proves that Pa exists for every a: if a /∈ a then Pa ⊆ Ba (see Definition 4.3); if a ∈ a
then Pa = V .

15Compare Pt. 1 Definition 2.2, which simplifies the Derrick–Potter definition of
‘level’. Here, ‘bistory’ is short for ‘boolean-history’; ‘bevel’ is short for ‘boolean level’.

16As in footnote 8, classical logic yields a ‘cheap’ proof of the existence of ∅ and V .
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8 TIM BUTTON

Otherwise put: no information about sets is gained or lost by moving
between BST and BLT. Moreover, since every complemented hierarchy
satisfies BST, every complemented hierarchy satisfies BLT. In what fol-
lows, then, I will treat BLT as the canonical theory of complemented
hierarchies.

§4. Characteristics and extensions of BLT. To give a sense of
how BLT behaves, I will state some of its ‘characteristic’ results (the
proofs are in §A). The first two results allow us to characterize BLT with
a simple slogan: a boolean algebra of sets arranged in well-ordered levels.

Theorem 4.1 (BLT). The bevels are well-ordered by ∈.

Theorem 4.2 (BLT). The sets form a boolean algebra under comple-
mentation, ∩ and ∪.

This first result is quite surprising:17 the Complemented Story does not
explicitly specify that the stages must be well-ordered (see §2); but, since
every complemented hierarchy satisfies BLT (see §3), every complemented
hierarchy has well-ordered levels.

The well-ordering of the bevels yields a powerful tool, which intuitively
allows us to consider the bevel at which a set is first found:

Definition 4.3 (BLT). If a /∈ a, let Ba be the ∈-least bevel with a as a
subsetq; i.e., a ⊆ Ba and ¬(∃s : Bev)a ⊆ s ∈ Ba. If a ∈ a, let Ba = Ba.

Note that Ba exists for any a, by Stratification/∈, Complements and The-
orem 4.1.

A third characteristic result is that there is a contra-automorphism on
the universe.18 Roughly put: replacing membership with non-membership
(and vice versa) yields an isomorphic universe. Formally:

Definition 4.4. We recursively define a’s negative, written −a, as fol-
lows:

−a := {−x : x ∈ a}, if a /∈ a −a := {−x : x /∈ a}, if a ∈ a

Theorem 4.5 (BLT). ∀a∀b(a ∈ b↔ −a /∈ −b)

This immediately yields a nice duality:

Corollary 4.6 (BLT). φ ↔ φ	, for any BLT-sentence φ, where φ	

is the sentence which results from φ by replacing every ‘∈’ with ‘/∈’ and
vice versa.

17It will be much less surprising for those who have read Pt.1 §5.
18See Forster [2001: Definition 16 and subsequent comments]. This result inspires

my epigraph, from Le Guin. I owe the point to Brian King: in 2006, he arrived at an
idea like the Complemented Story (independently of Forster) and explained it using Le
Guin’s image.
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LEVEL THEORY, PART 3 9

These results highlight some of BLT’s deductive strengths. Now let me
comment on its (deliberate) weakness. By design, BLT axiomatizes only
the bare idea of a complemented hierarchy, and so makes no comment
on the hierarchy’s height.19 If we want to ensure that our hierarchy is
reasonably tall, three axioms suggest themselves (where ‘P ’ is a second-
order function-variable in the statement of Unbounded/∈):

Endless/∈ (∀s : Bev)(∃t : Bev)s ∈ t
Infinity/∈ (∃s : Bev)((∃q : Bev)q ∈ s ∧ (∀q : Bev)(q ∈ s → (∃r :

Bev)q ∈ r ∈ s))
Unbounded/∈ ∀P (∀a /∈ a)(∃s : Bev)(∀x ∈ a)P (x) ∈ s

Endless/∈ says there is no last bevel. Infinity/∈ says that there is an infinite
bevel, i.e. a bevel with no immediate predecessor. Unbounded/∈ states
that the hierarchy of bevels is so tall that no low set can be mapped
unboundedly into it (recall that the low sets are precisely the non-self-
membered sets).

To make all of this more familiar, here are some simple facts relating
BLT to ZF. Let BLT+ stand for BLT + Endless/∈, and BLTZF stand for
BLT + Infinity/∈ + Unbounded/∈; then:20

Proposition 4.7. .

(1) BLT proves the Axiom of Empty Set, i.e. ∃a∀x x /∈ a.
(2) BLT proves Union, i.e. ∀a(

⋃
a exists).

(3) BLT+ proves Pairing, i.e. ∀a∀b({a, b} exists), but BLT does not.
(4) BLT+ proves Powersets-restricted-to-low-sets, i.e. (∀a /∈ a)(℘a exists),
but BLT does not.

(5) BLT contradicts Powersets, i.e. it proves ∃a¬∃b∀x(x ∈ b ↔ x ⊆
a).

(6) BLT proves Foundation-restricted-to-high-sets, i.e. (∀a ∈ a)(∃x ∈
a)a ∩ x = ∅.

(7) BLT+ contradicts Foundation, i.e. it proves (∃a 6= ∅)(∀x ∈ a)a ∩
x 6= ∅.

(8) BLTZF proves Endless/∈.

If we want to state this result with maximum shock value: of the standard
axioms of ZF, BLT validates only Extensionality, Empty Set, and Union
(though BLT is also consistent with Pairing and standard formulations of
Infinity).

19Beyond the fact that classical logic guarantees the existence of at least one stage;
see footnotes 8 and 16.

20Since BLT+ proves Pairing, BLT+ extends NF2, the sub-theory of Quine’s NF
whose axioms are Extensionality, Pairing, and Theorem 4.2. However, BLT+ does not
extend NFO, the theory which adds to NF2 the axiom that {x : a ∈ x} exists for every
a; in particular, {x : ∅ ∈ x} does not exist; see the proof of Proposition 4.7.5 in §A.
For discussion of NF2 and NFO, see Forster [2001: §2].
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10 TIM BUTTON

§5. The quasi-categoricity of BLT. We have seen that every com-
plemented hierarchy satisfies BLT, so that every complemented hierarchy
has well-ordered bevels. In fact, we can push this point further, by noting
that BLT is quasi-categorical.21

Informally, we can spell out BLT’s quasi-categoricity as follows: Any
two complemented hierarchies are structurally identical for so far as they
both run, but one may be taller than the other. So, when we set up a
complemented hierarchy, our only choice is how tall to make it.

In fact, there are at least two ways to explicate the informal idea of
quasi-categoricity, and BLT is quasi-categorical on both explications.22

The first notion of quasi-categoricity should be familiar from Zermelo’s
results for ZF, and uses the full semantics for second-order logic:

Theorem 5.1. Given full second-order logic:

(1) The bevels of any model of BLT are well-ordered.23

(2) For any ordinal α > 0, there is a model of BLT whose bevels form
an α-sequence.24

(3) Given any two models of BLT, one is isomorphic to an initial
segment of the other.25

Since this result involves semantic ascent, it is an external quasi-categoricity
result. There is also an internal quasi-categoricity result for BLT, which
is a theorem of the (second-order) object language, but this point requires
a little more explanation.

In embracing Extensionality, BLT assumes that everything is a pure
set. Here is an easy way to avoid making that assumption. Consider the
following formula, which relativises BLT to a new primitive predicate,
Pure:26

BLT(Pure, ε) := (∀a : Pure)(∀b : Pure)(∀x(x ε a↔ x ε b)→ a = b) ∧
(∀a : Pure)(∃c : Pure)((∀x : Pure)(x ε c↔ x /∈ a) ∧ (a /∈ a↔ c ε c)) ∧
∀F (∀a : Pure)(a /∈ a→ (∃b : Pure)(b /∈ b ∧ ∀x(x ε b↔ (F (x) ∧ x ε a)))) ∧
(∀a : Pure)(a /∈ a→ (∃s : Bev)a ⊆ s) ∧
∀x∀y(y ε x→ (Pure(x) ∧ Pure(y)))

21This mirrors the discussion of LT’s quasi-categoricity; see Pt.1 §6.
22Both ways make essential use of second-order logic, albeit in different ways.
23i.e. if M � BLT then {s ∈M :M � Bev(s)} is well-ordered by ∈M.
24i.e. there is some M � BLT such that {s ∈M :M � Bev(s)} is isomorphic to α.
25When A and M are models of BLT, say that A is an initial segment of M iff

either A = M or there is some s such that M � Bev(s) and A is isomorphic to the
substructure of M whose domain is {x ∈M :M � Bx ∈ s}.

26Here, ‘⊆’ and ‘Bev ’ should be defined in terms of ε rather than ∈; similarly for ‘B’
in the statement of Theorem 5.2.
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LEVEL THEORY, PART 3 11

The first four conjuncts say that the pure sets satisfy BLT;27 the last says
that, when we use ‘ε’, we restrict our attention to membership facts be-
tween pure sets. This avoids the assumption that everything is a pure set.
Moreover, I can use this formula to state our internal quasi-categoricity
result (I have labelled the lines to facilitate its explanation):28

Theorem 5.2. This is a deductive theorem of impredicative second-
order logic:

(BLT(Pure1, ε1) ∧ BLT(Pure2, ε2))→ (1)

∃R(∀v∀y(R(v, y)→ (Pure1(v) ∧ Pure2(y))) ∧ (2)

((∀v : Pure1)∃yR(v, y) ∨ (∀y : Pure2)∃vR(v, y)) ∧ (3)

∀v∀y∀x∀z((R(v, y) ∧R(x, z))→ (v ε1 x↔ y ε2 z)) ∧ (4)

∀v∀y∀z((R(v, y) ∧R(v, z))→ y = z) ∧ (5)

∀v∀x∀y((R(v, y) ∧R(x, y))→ v = x) ∧ (6)

∀v∀x∀y((B1x ⊆1 B1v ∧R(v, y))→ ∃zR(x, z)) ∧ (7)

∀v∀y∀z((B2z ⊆2 B2y ∧R(v, y))→ ∃xR(x, z))) (8)

Intuitively, the point is this. Suppose two people are using their versions
of BLT, subscripted with ‘1’ and ‘2’ respectively. Then there is some
second-order entity, a relation R, which takes us between their sets (2),
exhausting the sets of one or the other person (3); which preserves mem-
bership (4); which is functional (5) and injective (6); and whose domain
is an initial segment of one (7) or the other’s (8) hierarchy. Otherwise
put: BLT is (internally) quasi-categorical.

As a bonus, this internal quasi-categoricity result can be lifted into an
internal total -categoricity result. To explain how, consider this abbrevia-
tion (where ‘P ’ is a second-order function-variable):

∃∞xΦ(x) := ∃P (∀xΦ(P (x)) ∧ (∀y : Φ)∃!x P (x) = y)

This formalizes the idea that there is a bijection between the Φs and the
universe (see Pt.1 §6). Using this notation, we can state our internal
total-categoricity result:

27With one insignificant caveat (see footnote 16): whereas classical logic guarantees
that any model of BLT contains an empty set and a universal set, LT(Pure, ε) allows
that there may be no pure sets.

28 Button and Walsh’s [2018: ch.11] proofs carry over straightforwardly to BLT.
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12 TIM BUTTON

Theorem 5.3. This is a deductive theorem of impredicative second-
order logic:

(BLT(Pure1, ε1) ∧ ∃∞xPure1(x) ∧ BLT(Pure2, ε2) ∧ ∃∞xPure2(x))→
∃R(∀v∀y (R(v, y)→ (Pure1(v) ∧ Pure2(y))) ∧

(∀v : Pure1)∃!yR(v, y) ∧ (∀y : Pure2)∃!vR(v, y) ∧
∀v∀y∀x∀z ((R(v, y) ∧R(x, z))→ (v ε1 x↔ y ε2 z)))

Intuitively, if both BLT-like hierarchies are as large as the universe, then
there is a structure-preserving bijection between them.

§6. Ordinary set theory as a proper part of BLT. The Comple-
mented Story provides two clauses for finding sets. Clause (Lo) tells us
that, at each stage s and for any sets found before s, we find a set whose
members are exactly those sets. But this is exactly what we would find
according to the Basic Story (see §1), which deals with ordinary, uncom-
plemented hierarchies. Intuitively, then, we should be able to recover an
ordinary hierarchy by considering a complemented hierarchy whilst ignor-
ing any use of clause (Hi). This intuitive idea is exactly right; the aim of
this section is to explain it carefully.

First, I must formalize the notion of a set which we find without ever
using clause (Hi). I call such sets hereditarily low, or helow for short. So:
helow sets are low, their members are low, the members of their members
are low, etc. Here is the precise definition:

Definition 6.1. Say that a is helow, or Helo(a), iff there is some tran-
sitive c ⊇ a such that (∀x ∈ c)x /∈ x.

To restrict our attention to the ordinary (uncomplemented) hierarchy, we
then just restrict our attention to the helow sets. To implement this for-
mally, for any formula φ, let φO be the formula which results by restricting
all of φ’s quantifiers to helow sets. Using this notation, we can then prove
results of this shape: If some theory of uncomplemented hierarchies proves
φ, then some suitable theory of complemented hierarchies proves φO.

To state these results precisely, we need a suitable theory of uncomple-
mented hierarchies. That theory is LT, discussed in Pt.1. In a nutshell,
LT stands to uncomplemented hierarchies exactly as BLT stands to com-
plemented hierarchies. I will now briefly recap LT’s key elements. To
formalize the Basic Story, we define a predicate, Lev , to capture the no-
tion of a level of an uncomplemented hierarchy (Pt.1 Definition 2.2); then
LT is the theory whose axioms are Extensionality, Separation, and Strat-
ification, which states that ∀a(∃s : Lev)a ⊆ s (see Pt.1 §2). It transpires
that LT is quasi-categorical, and that every uncomplemented hierarchy
satisfies LT, regardless of its height (see Pt.1 §§5–6). If we want to secure
a tall uncomplemented hierarchy, we can consider the axioms Creation,
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LEVEL THEORY, PART 3 13

Infinity and Unbounded (see Pt.1 §7); these are exactly like Endless/∈,
Infinity/∈ and Unbounded/∈ (see §3 of this part), except that they replace
‘Bev ’ with ‘Lev ’. Let LT+ stand for LT + Creation; it turns out that
ZF is deductively equivalent to LT + Infinity + Unbounded; so LT, LT+,
and ZF are three theories which axiomatize uncomplemented hierarchies,
making successively stronger demands on the hierarchy’s height. With
this background in place, here is the result which intuitively states that
the helow part of any complement hierarchy is an ordinary (uncomple-
mented) hierarchy (see §C for the proof):

Theorem 6.2. For any LT-sentence φ:

(1) If LT ` φ, then BLT ` φO
(2) If LT+ ` φ, then BLT+ ` φO
(3) If ZF ` φ, then BLTZF ` φO

§7. Definitional equivalence. Theorem 6.2.3 allows us to regard ZF
as the result of restricting attention to the helow-fragment of BLTZF’s
universe of sets. But we also have a much deeper interpretative result, as
follows (see §D):29

Theorem 7.1. ZF and BLTZF are definitionally equivalent, as are LT+

and BLT+.

As an immediate consequence, ZF and BLTZF are equiconsistent, as are
LT+ and BLT+. However, definitional equivalence is much stronger than
mere equiconsistency.

Roughly, to say that two theories are definitionally equivalent is to say
that each theory can define all the primitive expressions of the other, such
that each theory can simulate the other perfectly, and where combining
the two simulations gets you back exactly where you began.30 So, in
some purely formal sense, ZF and BLTZF can be regarded as notational
variants; as wrapping the same deductive content in different notational
packaging.

One might be tempted to go further, and suggest that Theorem 7.1
shows that there is no relevant difference between ZF and BLTZF. That,
however, would require further argument.31 Precisely because definitional
equivalence is a purely formal property, it ignores all non-formal matters,
and these may be philosophically significant. There is more philosophical
discussion to be had about the significance of Theorem 7.1, but that must
wait for another time.

29Forster conjectured that a result of this shape should hold.
30For a more precise statement of what definitional equivalence requires, see Button

and Walsh [2018: ch.5].
31Compare Pt.2 §9.
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14 TIM BUTTON

§8. Conway games and surreal numbers in BLT. Since ZF and
BLTZF are definitionally equivalent, there is a sense in which each can do
anything that the other can. Still, BLTZF can do some things more easily
than ZF. This is neatly illustrated by considering John Conway’s theory
of games and surreal numbers.32

Consider two-player games in which players move alternately, with no
element of chance, where the game must end in a win or loss. (Think of
chess, but without the possibility of stalemate.) Abstractly, such games
can be thought of as specifications of permissible positions: to make a
move in such a game is just to select a new position which is permissible
given the current game state; and you lose when it is your turn to move
but there is no permissible position. (Think of being checkmated: you
must move to a position where your King is not in check, but no such move
is available.) Crucially, any position in any such game can be considered
as a game in its own right. (Imagine the version of chess which always
starts with the pieces arranged as after the Queen’s Gambit in regular
chess.) So every game can be regarded, abstractly, as nothing other than
a specification of which games each player can move to. Otherwise put,
if we call the two game-players Low and High, then a game is just a
specification of low options, i.e. games that Low can move to, and high
options, i.e. games that High can move to.

The idea is very natural. However, as Conway remarked, formalizing
it ‘in ZF destroys a lot of its symmetry.’ He therefore suggested that
‘the proper set theory in which to perform such a formalisation would
be one with two kinds of membership’: a game would just be a set with
‘low-members’ (low options) and ‘high-members’ (high options).33 How-
ever, we can easily implement this idea in BLT, using only one kind of
membership. We start by saying that the games are the sets, and then
stipulate:

Definition 8.1 (BLT). If a is low, the set of a’s low options is La :=
{x ∈ a : x /∈ x}; the set of a’s high options is Ha := {x ∈ a : x ∈ x}. If a
is high, La := La and Ha := Ha.

Intuitively, then, a and a represent the same game. Moreover, there is a
natural algebra on the games, given as follows (I explain the definitions
below):34

32Joel David Hamkins suggested this application of BLT to me; many thanks to him,
both for the initial suggestion, and for much subsequent correspondence.

33 Conway [1976: 66]. Cox and Kaye [2012] take up this suggestion and offer an ax-
iomatic theory with two kinds of membership; they prove it is definitionally equivalent
with ZF. By Theorem 7.1, it is definitionally equivalent with BLTZF.

34The well-ordering of bevels guarantees determinacy, and licenses induction and
recursive definitions (see footnote 37, below). Definition 8.2 and 8.4 are BLT-
implementations of Conway’s [1976: chs.0–1] definitions. (As defined, the sum of two
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LEVEL THEORY, PART 3 15

Definition 8.2 (BLT). With − as in Definition 4.4, define + and ≤
recursively:

a+ c := {x+ c : x ∈ La} ∪ {a+ x : x ∈ Lc} ∪ {y + c : y ∈ Ha} ∪ {a+ y : y ∈ Hc}
a ≤ c iff (∀y ∈ Hc)y � a ∧ (∀x ∈ La)c � x

We stipulate that a ≡ c iff a ≤ c ≤ a, and define a− c := a+ (−c).
We can make these algebraic operations intuitive as follows. To take the
negative of a game is to reverse the players’ roles (cf. Theorem 4.5). To add
two games is to place them side-by-side, allowing a player to move in one
game without affecting the other. But the partial-order requires slightly
more explanation. Suppose High plays first on the game a; then Low has
a winning strategy iff whatever move High makes, i.e. for all y ∈ Ha,
if Low plays first on y then High has no winning strategy. Similarly,
suppose Low plays first on a; then High has a winning strategy iff for all
x ∈ La, if High plays first on x then Low has no winning strategy. So,
if we gloss ‘∅ ≤ z’ as ‘Low has a winning strategy as second player on z’
and gloss ‘z ≤ ∅’ as ‘High has a winning strategy as second player on z’,
this motivates two important special cases of the partial order:

∅ ≤ a iff (∀y ∈ Ha)y � ∅ a ≤ ∅ iff (∀x ∈ La)∅ � x

The remainder of Definition 8.2 is then set up so that a− b ≤ ∅ iff a ≤ b.
More generally, we have the following foundational result:

Theorem 8.3 (BLT). The sets form a partially-ordered abelian Group,
with ∅ = 0 and +,−,≤ as in Definition 8.2, all modulo ≡.35

We can obtain a totally-ordered Field by restricting our attention to sur-
reals:

Definition 8.4 (BLT). We specify that a is surreal iff: for all x ∈
La and all y ∈ Ha, both x and y are surreal and x � y. We define
multiplication on surreals thus:

a · c := {x · c+ a · y − x · y : (x ∈ La ∧ y ∈ Lc) ∨ (x ∈ Ha ∧ y ∈ Hc)} ∪
{x · c+ a · y − x · y : (x ∈ La ∧ y ∈ Hc) ∨ (x ∈ Ha ∧ y ∈ Lc)}

We say that a is a surreal-ordinal iff a is both helow and surreal.

Theorem 8.5 (BLT). The surreals form a totally-ordered Field, mod-
ulo ≡.

Summing up: Conway’s beautifully rich, nonstandard, theory of surreal
numbers is available, essentially off-the-shelf, within BLT.

low sets is always low; an arbitrary choice was required.) For Theorem 8.3, see Conway’s
[1976: 78]; for Theorem 8.5, see Conway [1976: ch.1]. For an accessible presentation,
see also Schleicher and Stoll [2006: §§2–4].

35To quotient by ≡, define [a] := {b ≡ a : (∀x ≡ a)Bb ⊆ Bx}; cf. Scott [1955] and
Conway [1976: 65].
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16 TIM BUTTON

§9. Conclusion. The Complemented Story lays down a conception
of set which rivals the (ordinary) cumulative notion, but which accepts
Complementation and rejects Separation (see §1).

I have shown that any complemented hierarchy satisfies BLT (see §§2–
3). So, given the characteristic results of BLT, the sets of any comple-
mented hierarchy are arranged into well-ordered bevels, and constitute a
boolean algebra (see §4). Moreover, BLT is quasi-categorical (see §5); so
our only choice, in setting up a complemented hierarchy, is how tall to
make it.

The theory BLTZF arises from BLT just by adding axioms which state
that the complemented hierarchy is quite tall (see §4). And we can regard
ZF as either a proper part of BLTZF (see §6), or as a notational variant
(in a purely formal sense) of BLTZF (see §7). But both interpretations
suggest that there is no obvious a priori reason to favour Separation
over Complementation. And in some settings, such as the discussion of
Conway games, using Complementation is extremely natural (see §8).

Appendix A. Characteristics of BLT. The remainder of this paper
consists of proofs of the results discussed in the main text. Many of the
simpler proofs are similar to results for Pt.1; in such cases, I omit the
proof and refer interested readers to the appropriate result from Pt.1.

This first appendix deals with the results from §4. Initially, I will work
in ECS, the subtheory of BLT whose only axioms are Extensionality,
Complements and Separation/∈ (see §3). I start with some simple results
and definitions:

Lemma A.1 (ECS). If c ⊆ a /∈ a, then c /∈ c; if a ∈ a ⊆ c, then c ∈ c.
Proof. If c ⊆ a /∈ a, then c /∈ c = {x ∈ a : x ∈ c} by Separation/∈ and

Extensionality. If a ∈ a ⊆ c, then c ⊆ a /∈ a by Complements, so that
c /∈ c as before, and c ∈ c by Complements. a
Definition A.2. Say that a is potent/∈ iff ∀x(∃c(x ⊆ c /∈ c ∈ a) →

x ∈ a). Say that a is transitive/∈ iff (∀x /∈ x ∈ a)x ⊆ a. Say that a is
complement-closed iff ∀x(x ∈ a↔ x ∈ a).

Lemma A.3 (ECS). If Pa exists (see Definition 3.1), then:

(1) (∀x /∈ x ∈ Pa)∃c(x ⊆ c /∈ c ∈ a).
(2) Pa is potent/∈.
(3) Pa is complement-closed.

Proof. (1) Fix x /∈ x ∈ Pa; so for some c /∈ c ∈ a, either x ⊆ c or
x ⊆ c . But x ∈ x by Complements, so x * c by Lemma A.1.

(2) Fix x ⊆ c /∈ c ∈ Pa; so x ⊆ c ⊆ b /∈ b ∈ a for some b by (1); hence
x ∈ Pa.

(3) Fix x ∈ Pa. If x ⊆ c for some c /∈ c ∈ a, then x = x ⊆ c so that
x ∈ Pa; if x ⊆ c for some c /∈ c ∈ a, then x ∈ Pa straightforwardly. a

https://doi.org/10.1017/bsl.2021.15
Downloaded from https://www.cambridge.org/core. University College London (UCL), on 14 Jan 2022 at 18:01:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/bsl.2021.15
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


LEVEL THEORY, PART 3 17

It follows that bevels (see Definition 3.2) have several important closure
properties:

Lemma A.4 (ECS). Every bevel is transitive/∈, potent/∈, complement-
closed, and non-self-membered.

Proof. Let s be a bevel, i.e. s = Ph for some bistory h. So s is
potent/∈ and complement-closed by Lemma A.3. For transitivity/∈, fix
a /∈ a ∈ s = Ph; so a ⊆ c /∈ c ∈ h for some c by Lemma A.3.1; and
c = P(c ∩ h) as h is a bistory; so a ⊆ P(c ∩ h) ⊆ Ph = s. To see s /∈ s,
suppose s ∈ s for reductio. Then s /∈ s ∈ s by Complements, so s ⊆ s by
transitivity/∈, so s = V . Since h /∈ h by definition, and h ∈ V = s = Ph,
by Lemma A.3.1 there is some c such that h ⊆ c /∈ c ∈ h. Since h is a
bistory, c = P(h ∩ c) = Ph = V , contradicting the fact that c /∈ c. a
From here, we can prove the well-ordering of the bevels, by proving a
sequence of results like those from Pt.1 §3; I leave this to the reader:36

Lemma A.5 (ECS). If there is an F , and all F s are non-self-membered
and potent/∈, then there is an ∈-minimal F . Formally: ∀F ((∃xF (x)∧(∀x :
F )(x /∈ x ∧ x is potent/∈))→ (∃a : F )(∀x : F )x /∈ a)

Lemma A.6 (ECS). If some bevel is F , then there is an ∈-minimal
bevel which is F . Formally: ∀F ((∃s : Bev)F (s)→ (∃s : Bev)(F (s)∧ (∀r :
Bev)(F (r)→ r /∈ s)))

Lemma A.7 (ECS). Every member of a bistory is a bevel.

Lemma A.8 (ECS). s = P{r ∈ s : Bev(r)}, for any bevel s.

Lemma A.9 (ECS). All bevels are comparable, i.e. (∀s : Bev)(∀t : Bev)(s ∈
t ∨ s = t ∨ t ∈ s)

Combining Lemmas A.6 and A.9, ECS proves that the bevels are well-
ordered by ∈; this is Theorem 4.1. This licenses our use of the B-operator
(see Definition 4.3). Here are some simple results about that operator,
which can be proved by tweaking the proof of Pt.1 Lemma 3.12:

Lemma A.10 (BLT). For any sets a, c, and any bevels r, s:

(1) Ba exists
(2) a /∈ Ba
(3) r ⊆ s iff s /∈ r
(4) s = Bs
(5) if c ⊆ a /∈ a or a ∈ a ⊆ c, then Bc ⊆ Ba
(6) if c ∈ a /∈ a or c /∈ a ∈ a, then Bc ∈ Ba

36For Lemma A.7, first note that if h is a history and c ∈ h, then c = P(c ∩ h) ⊆
Ph /∈ Ph by Lemma A.4, so c /∈ c by Lemma A.1. For Lemmas A.8–A.9, reason about
non-self-membered sets in the first instance, then deal with self-membered sets using
Complements and complement-closure.
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18 TIM BUTTON

Moreover, we can now show that sets are closed under arbitrary pairwise
intersection:

Lemma A.11 (BLT). For any sets a and c, the set a ∩ c = {x : x ∈
a ∧ x ∈ c} exists.

Proof. First suppose that either a /∈ a or c /∈ c (or both); without
loss of generality, suppose a /∈ a; now a ∩ c = {x ∈ a : x ∈ c} exists by
Separation/∈. Next suppose that both a ∈ a and c ∈ c. So both a /∈ a and
c /∈ c by Complements. Let s be the maximum of Ba and Bc. Since s is
potent/∈, both a ⊆ s and c ⊆ s, so a ∪ c = {x ∈ s : x ∈ a ∨ x ∈ c} exists
by Separation/∈. Now a ∩ c = a ∪ c exists by Complements. a
This immediately entails that the sets form a boolean algebra, which
is Theorem 4.2. Our next result shows that the universe is contra-
automorphic:37

Theorem 4.5 (BLT). ∀a∀b(a ∈ b↔ −a /∈ −b)
Proof. Recall that negative is given as in Definition 4.4 by

−a := {−x : x ∈ a}, if a /∈ a −a := {−x : x /∈ a}, if a ∈ a
Fix a bevel s and for induction suppose that, for any x, y ∈ s:

(1) −x is well-defined and Bx = B(−x); and
(2) x = y iff −x = −y.

It suffices to show that both properties hold of a, b when Ba = Bb = s.
Concerning (1). Suppose a /∈ a. If x ∈ a, then B(−x) = Bx ∈ Ba

by induction assumption (1) and Lemma A.10.6. Using Separation/∈, let
c /∈ c = {v ∈ Ba : (∃x ∈ a)v = −x} = {−x : x ∈ a}. Moreover, Bc = Ba,
by the well-ordering of bevels and since B(−x) = Bx ∈ Ba for all x ∈ a.
Now c ∈ c = −a by Complements; so Ba = Bc = Bc = B(−a). The case
when a ∈ a is similar, defining c /∈ c = {v ∈ Ba : (∃x /∈ a)v = −x} =
{−x : x /∈ a} = −a.

Concerning (2). If a ∈ a↔ b ∈ b, then a = b iff −a = −b by induction
assumption (2). Without loss of generality, suppose that a ∈ a and b /∈ b;
in establishing (1), we found that −a /∈ −a and −b ∈ −b; so a 6= b and
−a 6= −b. a
I ended §4 by stating some simple facts about extensions of BLT. I will
prove the distinctively boolean facts, leaving the remainder to the reader:

Proposition 4.7, fragment. .

(2) BLT proves Union, i.e. ∀a(
⋃
a exists)

37Theorem 4.1 licenses recursive definitions. We can regard as defining second-
order entities. If we are restrict ourselves to first-order logic, then instead (as usual)
we define a term by considering a strictly increasing sequence of first-order ‘bounded
approximations to −’ (specifying the behavior of the term over the last few bevels
manually, if there is a last bevel).
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(5) BLT contradicts Powersets, i.e. it proves ∃a¬∃b∀x(x ∈ b ↔ x ⊆
a)

(6) BLT proves Foundation-restricted-to-high-sets, i.e. (∀a ∈ a)(∃x ∈
a)a ∩ x = ∅.

(7) BLT+ contradicts unrestricted Foundation, i.e. it proves (∃a 6=
∅)(∀x ∈ a)a ∩ x 6= ∅.

Proof. (2) If a ∈ a, then
⋃
a = {x ∈ a : (∀y ∈ a)x /∈ y}, which exists

by Separation/∈ and Complements. If a /∈ a, then using Separation/∈ let
a0 = {x ∈ a : x /∈ x} and let a1 = {x ∈ a : x ∈ x}. I will show that

⋃
a0

and
⋃
a1 exist, so that, using Complements and Lemma A.11:⋃

a =
⋃
a0 ∪

⋃
a1 =

⋃
a0 ∩

⋃
a1

Clearly
⋃
a0 exists by Separation/∈ on Ba. If a1 = ∅ then

⋃
a1 =

∅; otherwise,
⋃
a1 =

⋂
{x : x ∈ a1}, which exists by Complements and

Separation/∈ on Ba.
(5) If there is only one bevel, then the only sets are ∅ and V = {∅, V },

so that ℘∅ = {∅} does not exist. Otherwise, we find {∅} at the second

bevel, and if ℘{∅} existed it would be {x : ∅ /∈ x}. So suppose for
reductio that a = {x : ∅ /∈ x}. Then ∅ /∈ ∅, so ∅ ∈ a, so a /∈ a. Now
a ∈ a = {x : ∅ ∈ x} by Complements, so that ∅ ∈ a, contradicting that
∅ ∈ a.

(6) If a ∈ a then a ∈ a by Complements, and a ∩ a = ∅.
(7) We find {V } at the second bevel, and {V } ∩ V 6= ∅. a

Appendix B. The set-theoretic equivalence of BST and BLT.
I now want to prove Theorem 3.3, which states that BLT and BST say
exactly the same things about sets. (This mirrors Pt.1 §4.)

To show that BST says no more about sets than BLT does, I define a
translation ∗ : BST −→ BLT, whose non-trivial actions are as follows:38

Lo(x) := x /∈ x Hi(x) := x ∈ x
(s < t)∗ := s ∈ t (x � s)∗ := (x ⊆ s ∨ x ⊆ s) (∀sφ)∗ := (∀s : Bev)(φ∗)

After translation, I treat all first-order variables as being of the same sort.
Fairly trivially, for any BLT-sentence φ, if BST ` φ then BST∗ ` φ. The
left-to-right half of Theorem 3.3 now follows as ∗ is an interpretation:

Lemma B.1 (BLT). BST∗ holds.

Proof. Extensionality∗ is Extensionality. Order∗ holds by Lemma A.4;
Stage∗ holds by Stratification/∈ and Complements; and Cases∗ is trivial.

38So the other clauses are: (¬φ)∗ := ¬φ∗; (φ ∧ ψ)∗ := (φ∗ ∧ ψ∗); (∀xφ)∗ := ∀xφ∗;
(∀Fφ)∗ := ∀Fφ∗; and α∗ := α for all atomic formulas α which are not of the forms
mentioned in the main text.
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20 TIM BUTTON

Next, by Lemma A.4 and Lemma A.8, we can simplify (x ≺ s)∗ to x ∈ s.
So, using Lemmas A.1 and A.4, we can simplify PriorityLo

∗ thus:

(∀s ∈ Bev)(∀a /∈ a)((a ⊆ s ∨ a ⊆ s)→ (∀x ∈ a)x ∈ s)
i.e. (∀s ∈ Bev)(∀a ⊆ s)(∀x ∈ a)x ∈ s

which is trivial; then PriorityHi
∗ holds similarly, by Complements. A

similar simplification allows us to obtain SpecificationLo
∗ via Separation/∈;

then SpecificationHi
∗ holds similarly, by Complements.39 a

To obtain the right-to-left half of Theorem 3.3, I will work in BST. I start
by defining slices, which will go proxy for stages, and will turn out to be
bevels, and then stating a few elementary results (for proofs, tweak those
of Pt.1 §4):

Definition B.2 (BST). For each s, let š = {x : x ≺ s}. Say that a is
a slice iff a = š for some stage s.

Lemma B.3 (BST). ∀F (∀a : Lo)(∃b : Lo)∀x(x ∈ b↔ (F (x) ∧ x ∈ a))

Lemma B.4 (BST). ∀s(∀a : Lo)(a � s↔ (∀x ∈ a)x ≺ s)

Lemma B.5 (BST). For any s:

(1) š exists and is low
(2) ∀r(∀a : Lo)(a � r ≤ s→ a � s)
(3) (∀a : Lo)(a ⊆ š↔ a � s)

We must now part company slightly with the strategy of Pt.1 §4, to handle
low and high sets, and their relation to (non-)self-membership:

Lemma B.6 (BST). If some slice is F , then there is an ∈-minimal slice
which is F .

Proof. Every slice is low, by Lemma B.5.1. Subsets of low sets are
low, by a result like Lemma A.1. From this, and Lemma B.5, it follows
that ∀š∀x((∃c : Lo)x ⊆ c ∈ š→ x ∈ š). The result now follows, reasoning
as in Pt.1 Lemma 3.5. a

Lemma B.7 (BST). a is low iff a /∈ a; and a is high iff a ∈ a.

Proof. Suppose for reductio that a ∈ a is low. Using Stage and
Lemma B.6, let š be an ∈-minimal slice such that ∃t(a � t ∧ ť = š);
let t witness this. Since a ∈ a � t and a is low, a � r < t for some r
by PriorityLo ; so ř ∈ ť = š by Lemma B.5, contradicting š’s minimality.
Discharging the reductio: if a is low, then a /∈ a. Similarly: if a is high,
then a ∈ a. The biconditionals follow by Cases. a

39Note that the ∗-translation of any BST-Comprehension instance is a BLT-
Comprehension instance.
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Lemma B.8 (BST). a exists; and a /∈ a↔ a ∈ a; and ∀s(a � s↔ a �
s).

Proof. Using Stage, let a � s. If a /∈ a, then a is low by Lemma B.7, so
(∀x ∈ a)x ≺ s by PriorityLo , so that by SpecificationHi and Extensionality
{x : x /∈ a} = a � s exists and is high, i.e. a ∈ a by Lemma B.7. If a ∈ a,
reason similarly using PriorityHi and SpecificationLo . a
Note that BST ` ECS by Lemmas B.3, B.7, and B.8. So Lemmas A.1–A.9
hold verbatim within BST. We can now complete our reasoning about
slices, by resuming the proof-strategy of Pt.1 §4; at this point, I leave the
remaining details to the reader:

Lemma B.9 (BST). š /∈ š; and š is transitive/∈; and š = P{ř : ř ∈ š}.

Lemma B.10 (BST). All slices are comparable, i.e. ∀š∀ť(š ∈ ť ∨ š =
ť ∨ ť ∈ š).

Lemma B.11 (BST). s is a bevel iff s is a slice.

It follows that BST proves Stratification/∈, delivering Theorem 3.3.

Appendix C. Helow sets. In this appendix I prove Theorem 6.2,
which shows how to recover ordinary, uncomplemented hierarchies via
helow sets (see Definition 6.1). For readability, I refer to non-self-membered
sets as low, and self-membered sets as high (cf. Lemma B.7). Note that ev-
ery helow set is low, since all its members are low (i.e. non-self-membered).
Now:

Definition C.1 (BLT). If a is low, let aO := {x ∈ a : x is helow}; by
Separation/∈, aO exists and is low.

Lemma C.2 (BLT). a is helow iff every member of a is helow.

Proof. Left-to-right. Where c witnesses that a is helow, if x ∈ a, then
x ∈ c and hence x ⊆ c, so c also witnesses that x is helow. Right-to-
left. Let every member of a be helow. Every member of a is low, so a
itself is low; hence a ⊆ (Ba)O. Now (Ba)O witnesses that a is helow: if
x ∈ c ∈ (Ba)O then c is helow so x is helow (by left-to-right), so x ∈ (Ba)O
as Ba is transitive/∈. a
I can now begin to show that O : LT −→ BLT, which simply restricts all
quantifiers to helow sets (see §6), is an interpretation of LT:

Lemma C.3 (BLT). Both ExtensionalityO and SeparationO hold.

Proof. For ExtensionalityO, fix helow a and b and suppose that (∀x :
Helo)(x ∈ a ↔ x ∈ b); then ∀x(x ∈ a ↔ x ∈ b) by Lemma C.2, so
a = b by Extensionality. Similarly, repeated use of Lemma C.2 shows
that SeparationO follows from Separation/∈. a
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22 TIM BUTTON

The next task is to connect bevels with levelsO. (See Pt.1 Definitions
2.1–3.1 for the definitions of potent, ¶, Hist and Lev .)

Lemma C.4 (BLT). For any bevels r, s:

(1) sO is helow, potent and transitive
(2) r ∈ s iff rO ∈ sO
(3) s = B(sO)
(4) sO = ¶h = ¶O(h), where h = {rO ∈ sO : Bev(r)}.
(5) sO is a levelO

Proof. (1) By Lemma C.2, sO is helow; then sO is potent and
transitive as s is potent/∈ and transitive/∈.

(2) Left-to-right. By (1). Right-to-left. Let rO ∈ sO. So r 6= s, since
rO /∈ rO. Similarly, sO /∈ rO, since sO is transitive; so s /∈ r by left-to-right.
So r ∈ s, by Lemma A.9.

(3) Induction on bevels, using (2).
(4) By (1) and Lemma C.2, h is helow. If a ∈ ¶h, then a ∈ sO as sO

is potent by (1). Conversely, if a ∈ sO, then a ⊆ r ∈ s for some bevel r
by Lemma A.8, and a ⊆ rO ∈ sO by (2) and Lemma C.2, so a ∈ ¶h. So
sO = ¶h. Repeated use of Lemma C.2, as in Lemma C.3, now yields that
¶h = ¶O(h).

(5) With h as in (4), since s = ¶O(h) it suffices to show that HistO(h).
If rO ∈ h, then rO ∩ h = {qO ∈ rO : Bev(q)}, by (1); so rO = ¶O(rO ∩ h)
by (4). a
Lemma C.5 (BLT). The levelsO are the bevelsO, i.e.: LevO(a) iff (∃s :

Bev)a = sO.

Proof. By Lemma C.4, if s is a bevel then both LevO(sO) and B(sO) =
s. To complete the proof, it suffices to note that if p and q are distinct
levelsO, then Bp 6= Bq; this follows from Lemma A.10.6 and the fact that
the levelsO are well-ordered by ∈. (The well-ordering of levelsO is Pt.1
Theorem 3.10O, which holds via Lemma C.3.) a
Corollary C.6 (BLT). StratificationO holds; Endless/∈ proves CreationO;

Infinity/∈ proves InfinityO; and Unbounded/∈ proves UnboundedO.

Recalling that LT + Infinity + Unbounded is equivalent to ZF (see §6),
Lemmas C.3 and C.6 yield Theorem 6.2.

Appendix D. Definitional equivalence. In this appendix, I prove
the definitional equivalence discussed in §7.40

40Recall: both LT and BLT (and their extensions) are formulated as second-order
theories. I continue to frame my discussion in second-order terms in this appendix.
However, the theories can easily be reformulated as first-order formulations, and the
definitional equivalences hold for these first-orderisations (only the quasi-categoricity
results of §5 require second-order resources).
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D.1. Interpreting BLTZF in ZF. I first define an interpretation, I ,
to simulate (extensions of) BLT within (extensions of) LT. The key idea
is to use ∅ as a flag to indicate whether to treat a set as low or high. To
allow ∅ to play this role, I define a bijection σ : V −→ V \ {∅}:41

σ(a) :=

{
{a} if a is a Zermelo number

a otherwise

where the Zermelo numbers are 0 = ∅ and n+ 1 = {n}. I then interpret
membership thus:

x ∈I a iff (σ(x) ∈ a↔ ∅ /∈ a)

Since σ(a) /∈ a for all a, it follows that a /∈I a iff ∅ /∈ a (i.e. a is treated
as low), and a ∈I a iff ∅ ∈ a (i.e. a is treated as high). I will now prove
a sequence of results which establish that I is an interpretation of BLT.
The first few are straightforward:

Lemma D.1 (LT+). Where a ⊆I b abbreviates (∀x ∈I a)x ∈I b:
(1) If ∅ /∈ a and ∅ /∈ b, then: a ⊆ b iff a ⊆I b
(2) If ∅ ∈ a and ∅ ∈ b, then: a ⊇ b iff a ⊆I b.

Proof. (1) Since σ is a bijection V −→ V \ {∅}, a ⊆ b iff ∀x(σ(x) ∈
a→ σ(x) ∈ b) iff a ⊆I b.

(2) Similarly, a ⊇ b iff ∀x(σ(x) /∈ a→ σ(x) /∈ b) iff a ⊆I b. a

Lemma D.2 (LT+). Extensionality I holds.

Proof. Suppose ∀x(x ∈I a ↔ x ∈I b). If a /∈I a but b ∈I b, then
∀x(σ(x) ∈ a ↔ σ(x) /∈ b), so that a ∪ b = V , which is impossible.
Generalising, a ∈I a iff b ∈I b. Now apply Lemma D.1. a

Lemma D.3 (LT+). Separation/∈
I holds.

Proof. Fix F and a /∈I a, i.e. ∅ /∈ a. Using Separation, let b = {σ(x) ∈
a : F (x)}. Since ∅ /∈ b we have ∀x(x ∈I b↔ (F (x) ∧ x ∈I a)). a
The interpretation of complementation is obvious: aI = a∪{∅} if a /∈I a,
and aI = a \ {∅} if a ∈I a. The next result follows trivially:

Lemma D.4 (LT+). ∀a∀x(x ∈I a ↔ x /∈I aI ), and ComplementsI

holds.

41Many thanks to Randall Holmes for discussion of this construction (and other
constructions); the proof in this section is much more self-contained than it would have
been, had it not been for his input. Thanks also to Thomas Forster, for encouraging
me to consider the question of definitional equivalence. The proof-strategy is similar
to Löwe [2006].
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24 TIM BUTTON

The only intricate part of this interpretation concerns the treatment of
bevels. Within LT+, we can define the von Neumann ordinals, and recur-
sively define the following:

Wγ = {σ(x) : (∃β < γ)x ⊆Wβ ∪ {∅}}

Now LT+ proves that Wγ exists for each γ, and that these are the bevelsI :

Lemma D.5 (LT+). Bev I (s) iff s = Wγ for some γ.

Proof. Lemmas D.2–D.4 show that LT+ proves ECSI . Hence LT+

proves Theorem 4.1I , i.e. that the bevelsI are well-ordered by ∈I . For
induction on γ, suppose that if β < γ then Wβ is the βth bevelI . Let s

be the γth bevelI . By Lemma D.1:

Wγ = {σ(x) : (∃β < γ)x ⊆Wβ ∪ {∅}}
= {σ(x) : (∃β < γ)(x ⊆I Wβ ∨ xI ⊆I Wβ)}

= {σ(x) : (∃Wβ /∈I Wβ ∈I s)(x ⊆I Wβ ∨ xI ⊆I Wβ)}
= (P{w ∈ s : Bev(w)})I

So Wγ = s by Lemma A.8I . By induction, the bevelsI are the Wγs. a
I can now prove the crucial proposition:

Lemma D.6 (LT+). Stratification/∈
I holds.

Proof. By Lemma D.5, it suffices to show that (∀a /∈I a)∃γ a ⊆I Wγ .
Since the levels are well-ordered by ∈ (Pt.1 Theorem 3.10), we can write

Vγ for the γth level. I claim: if a /∈I a ⊆ Vγ , then a ⊆Wγ . For induction,

suppose this holds for all ordinals β < γ. Fix a /∈I a ⊆ Vγ . If γ = 0,
then a = ∅ ⊆I W0 = ∅. Otherwise, fix x ∈I a, i.e. σ(x) ∈ a ⊆ Vγ ; now
x ⊆ Vβ for some β < γ, by Pt.1 Lemma 3.12, so that x ⊆ Wβ ∪ {∅}
by the induction hypothesis; so σ(x) ∈ Wγ , i.e. x ∈I Wγ . Generalising,
a ⊆I Wγ . a

Lemma D.7. LT+ ` BLTI
+ and ZF ` BLTI

ZF.

Proof. Lemmas D.2–D.6 establish that LT+ ` BLTI . And LT+ `
Endless/∈

I , using Creation and our explicitly defined bevelsI , the Wγs.

Evidently, Infinity yields Infinity/∈
I . For Unbounded/∈

I , fix P and a /∈I a;
by Unbounded, the set c = {σ(P (x)) : σ(x) ∈ a} exists; by construction,
∅ /∈ c and (∀x ∈I a)P (x) ∈I c. The result follows, since ZF is equivalent
to LT + Infinity + Unbounded (see §6). a

D.2. Interpreting ZF in BLTZF. I now switch to working in BLT+.
Using σ—i.e. using verbatim the same definitions of ‘Zermelo number’ and
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of σ in BLT+ as we used in LT+—consider this function:

η(a) =

{
{σ(η(x)) : x ∈ a} if a /∈ a
{σ(η(x)) : x /∈ a} ∪ {∅} if a ∈ a

I will prove that η is a bijection V −→ Helo. I then define a translation,
J , by stipulating:

x ∈J a iff η(x) ∈ η(a)

It will follow that J is an interpretation of LT+ in BLT+.

Lemma D.8 (BLT+). If η(a) = η(b), then a = b.

Proof. Let η(a) = η(b), so that a /∈ a↔ b /∈ b. For induction, suppose
that η(x) = η(y) → x = y for all x, y with Bx,By ∈ Ba ∪ Bb. If a /∈ a
and b /∈ b, then {σ(η(x)) : x ∈ a} = {σ(η(x)) : x ∈ b}, so that a = b by
the induction hypothesis and the injectivity of σ. The case when a ∈ a is
similar. a

Lemma D.9 (BLT+). η(a) is helow, for any a.

Proof. For induction, suppose that η(x) is helow for all x with Bx ∈
Ba. Suppose a /∈ a; since σ(η(x)) is helow iff η(x) is helow, every member
of η(a) is helow; so η(a) is helow by Lemma C.2. The case when a ∈ a is
similar. a

Lemma D.10 (BLT+). If a is helow, then a = η(c) for some c.

Proof. By Lemma D.8, η−1 is functional. For induction, suppose that
for all helow z ∈ Ba, we have that η−1(z) is defined and B(η−1(z)) ⊆ Bz.

If ∅ /∈ a, let c /∈ c = {η−1(σ−1(x)) ∈ Ba : x ∈ a} using Separation/∈. Fix
x ∈ a; then σ−1(x) ∈ Ba and σ−1(x) is helow, recalling that a is helow
and using Lemma C.2). Now B(η−1(σ−1(x))) ⊆ B(σ−1(x)) ∈ Ba by the
induction hypothesis, i.e. η−1(σ−1(x)) ∈ Ba. So c = {η−1(σ−1(x)) : x ∈
a}, so that a = η(c) and Bc ⊆ Ba.

If ∅ ∈ a, then instead let c = {η−1(σ−1(x)) : ∅ 6= x ∈ a}; now a =
η(c). a

Lemma D.11. BLT+ ` LTJ
+ and BLTZF ` ZFJ .

Proof. By Lemmas D.8–D.10, η : V −→ Helo is a bijection; now use
Theorem 6.2. a

D.3. The interpretations are inverse. It remains to show that I
and J are mutually inverse, in the sense required for definitional equiva-
lence.42 The key lies in their treatments of the Zermelo numbers. Work-
ing informally, let zn be the nth Zermelo number, and let vn be defined

42Via Friedman and Visser [2014: Corollary 5.5], we could instead verify that I and
J are bi-interpretations.
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26 TIM BUTTON

similarly, but starting from V rather than ∅, i.e.:

zn =

n times︷ ︸︸ ︷
{. . . { ∅ } . . . } vn =

n times︷ ︸︸ ︷
{. . . { V } . . . }

We can now consider two sequences:

z0, z1, z2, z3, . . . , z2n, z2n+1, . . .
z0, v0, z1, v1, . . . , zn, vn, . . .

Inutitively, I treats the former sequence as the latter, and J treats the
latter as the former. The proof that I and J are mutually inverse simply
builds on this intuitive thought.

Here are two facts which make the intuitive thought precise:

Lemma D.12 (LT+). ∀x x /∈I ∅, and ∀x x ∈I {∅}, and ∀x(x ∈I
zn+2 ↔ x = zn) for all n.

Lemma D.13 (BLT+). η(zn) = z2n and η(vn) = z2n+1, for all n.

The proofs of both facts are trivial. Using the second fact, though, I can
build up to the proof in BLT+ that x ∈ a iff (x ∈I a)J :

Lemma D.14 (BLT+). The function σJ , i.e. the J -interpretation of
LT’s definition of σ, maps zn 7→ vn 7→ zn+1, and x 7→ x otherwise.

Proof. Note that z2n ∈ z2n+1 ∈ z2n+2, with these membership facts
unique. So η(zn) ∈ η(vn) ∈ η(zn+1), by Lemma D.13, i.e. zn ∈J vn ∈J
zn+1. a

Lemma D.15 (BLT+). η(σJ (a)) = σ(η(a)), for all a.

Proof. By Lemmas D.13–D.14, we have η(σJ (zn)) = η(vn) = z2n+1 =
σ(z2n) = σ(η(zn)) and η(σJ (vn)) = η(zn+1) = z2n+2 = σ(z2n+1) =
σ(η(vn)). Now suppose a 6= zn and a 6= vn for any n, so that σJ (a) = a
and hence η(σJ (a)) = η(a); moreover, η(a) 6= zn for any n by Lemma
D.13; so η(σJ (a)) = η(a) = σ(η(a)). a

Lemma D.16 (BLT+). η(σJ (x)) ∈ η(a)↔ a /∈ a iff x ∈ a

Proof. If a /∈ a then η(a) = {η(σJ (x)) : x ∈ a} by Lemma D.15. If
a ∈ a then η(a) = {η(σJ (x)) : x /∈ a}∪{∅}, and note that ∅ 6= η(σJ (x)) =
σ(η(x)) for all x. a

Lemma D.17 (BLT+). x ∈ a iff (x ∈I a)J

Proof. Using Lemma D.16 and the fact that a /∈ a iff η(∅) = ∅ /∈ η(a),
note the following chain of equivalent formulas:

(1) x ∈ a
(2) η(σJ (x)) ∈ η(a)↔ η(∅) /∈ η(a)
(3) (σ(x) ∈ a↔ ∅ /∈ a)J

https://doi.org/10.1017/bsl.2021.15
Downloaded from https://www.cambridge.org/core. University College London (UCL), on 14 Jan 2022 at 18:01:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/bsl.2021.15
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


LEVEL THEORY, PART 3 27

(4) (x ∈I a)J

a
It remains to show in LT+ that x ∈ a iff (x ∈J a)I . Working in BLT+,
define µ as a map sending zn+1 7→ vn 7→ zn and x 7→ x otherwise; by
Lemma D.14, if x 6= ∅ then µ−1(x) = σJ (x). We then have two quick
results:

Lemma D.18 (BLT+). η(x) ∈ η(a) iff (x = ∅∧a ∈ a)∨(x 6= ∅∧(µ(x) ∈
a↔ a /∈ a))

Proof. If x = ∅, then η(∅) = ∅ ∈ η(a) iff a ∈ a. If x 6= ∅; use Lemma
D.16. a

Lemma D.19 (LT+). If x 6= ∅, then σ(µI (x)) = x.

Proof. By Lemma D.12, µI maps zn+2 7→ zn+1 7→ zn, and x 7→ x
otherwise. a

Lemma D.20 (LT+). x ∈ a iff (x ∈J a)I

Proof. Using Lemmas D.19 and D.18I , note the following chain of
equivalent formulas:

(1) x ∈ a
(2) (∅ = x ∧ x ∈ a) ∨ (∅ 6= x ∧ x ∈ a)
(3) (∅ = x ∧ x ∈ a) ∨ (∅ 6= x ∧ σ(µI (x)) ∈ a)
(4) (∅ = x ∧ a ∈I a) ∨ (∅ 6= x ∧ (µI (x) ∈I a↔ ∅ /∈ a))

(5) (∅ = x ∧ a ∈I a) ∨ (∅ 6= x ∧ (µI (x) ∈I a↔ a /∈I a))
(6) ((∅ = x ∧ a ∈ a) ∨ (∅ 6= x ∧ (µ(x) ∈ a↔ a /∈ a)))I

(7) (η(x) ∈ η(a))I

(8) (x ∈J a)I

a
Theorem 7.1 now follows from Lemmas D.7, D.11, D.17, and D.20.

D.4. Finitary cases of definitional equivalences. The base theo-
ries, LT and BLT, are not definitionally equivalent. To see this, consider:

lt(1) := 1 blt(1) := 2

lt(n+ 1) := 2lt(n) blt(n+ 1) := 2blt(n)+1

Any model of LT with n levels has lt(n) sets, and any model of BLT
with n bevels has blt(n) sets. In particular, there is a model of LT with
four sets, but no model of BLT has four sets. So LT and BLT are not
definitionally equivalent.

There is, though, a nice definitional equivalence when we insist that
there are infinitely many sets but that every set is finite. Concretely:
let LTfin be LT+ + ¬Infinity, and let BLTfin be BLT+ + ¬Infinity/∈. Our
earlier results immediately entail that LTfin and BLTfin are definitionally
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28 TIM BUTTON

equivalent. Moreover, as noted in Pt.1 §7, LTfin is equivalent to ZFfin.
Finally, ZFfin and PA are definitionally equivalent.43 So:

Lemma D.21. PA, ZFfin, LTfin, and BLTfin are definitionally equiva-
lent.
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