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Abstract

Inverse reinforcement learning has proved its ability to explain state-action trajecto-
ries of expert agents by recovering their underlying reward functions in increasingly
challenging environments. Recent advances in adversarial learning have allowed
extending inverse RL to applications with non-stationary environment dynamics
unknown to the agents, arbitrary structures of reward functions and improved
handling of the ambiguities inherent to the ill-posed nature of inverse RL. This is
particularly relevant in real time applications on stochastic environments involv-
ing risk, like volatile financial markets. Moreover, recent work on simulation of
complex environments enable learning algorithms to engage with real market data
through simulations of its latent space representations, avoiding a costly exploration
of the original environment. In this paper, we explore whether adversarial inverse
RL algorithms can be adapted and trained within such latent space simulations
from real market data, while maintaining their ability to recover agent rewards
robust to variations in the underlying dynamics, and transfer them to new regimes
of the original environment.

1 Introduction

Reinforcement learning (RL) achieves robust performance in a wide number of fields, with particularly
relevant success in model-free applications [1} 2] where agents explore an environment with no prior
knowledge about its underlying dynamics, and learn a policy that maximizes certain cumulative
reward function. Such learning process typically requires recurrent access of the agent to the
environment on a trial-and-error based exploration; however, reinforcement learning in risk-critical
tasks such as automatic navigation or financial risk control would not allow such an exploration,
since decisions have to be made in real time in a non-stationary environment where the risks and
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costs inherent to a trial-and-error approach can be unaffordable. In addition, such RL performance
generally requires that the designer manually specifies a reward function that represents the task
adequately and can be optimized efficiently [3]].

In the context of learning from expert demonstrations, inverse reinforcement learning has proved
capable of recovering through inference the reward function of expert agents through observations of
their state-action trajectories [4} 5] with decreasing dependence on pre-defined assumptions about
linearity or the general structure of the underlying reward function, generally under a maximum
entropy framework [6].

Recent advances in inverse RL have extended its application to high-dimensional state spaces with
unknown dynamics and arbitrary non-linear reward structures, thanks to the use of neural networks to
represent the reward function [[7]. Adversarial inverse reinforcement learning (AIRL) [8] extends
inverse RL further, achieving the recovery of rewards robust to variations in the dynamics of the
environment, while learning at the same time a policy to perform the task; AIRL builds on the
equivalences found by [9]] between inverse RL under maximum entropy and the training process of
generative adversarial networks (GANSs) [10].

1.1 Contributions

Financial markets are a particularly challenging case for inverse RL: high-dimensional, stochastic
environments with non-stationary transition dynamics unknown to the observer, and with variable
reactions to actions from agents. This makes AIRL particularly interesting to test on real financial
data, aiming at learning from experts robust reward functions that can then be transferred to new
regimes of the original environment.

In this paper we explore the adaptation of AIRL to a volatile financial environment based on real
tick data from a limit order book (LOB) in the stock market, attempting to recover the rewards
from three expert market agents through an observer with no prior knowledge of the underlying
dynamics, where such dynamics can also change with time following real market data, and where the
environment reacts to the agent’s actions. This is a challenging environment where we would expect
AIRL to remain better suited to learn from the expert agent trajectories than methods aimed directly
at recovering the policy (generative adversarial imitation learning [11]], or GAIL), given the expected
added value of AIRL regarding robustness of the recovered rewards with respect to varying dynamics
of the environment. GAIL provides means analogous to generative adversarial networks that allow
extraction of policies directly from data through a model-free approach for complex behaviours
in high-dimensional environments. The performance of each method is then evaluated against the
proportion of the expert agent’s total cumulative reward that can be obtained by policies recovered
through adversarial learning.

1.2 Model environment based on real data

The adversarial learning algorithms used in the experiment will require a model of the environment
where the observed agent trajectories took place, in order to evaluate the iterative estimations of
rewards and policies most likely to have generated the observations. In practice, we would observe
expert trajectories from agents as training data for adversarial learning, and then transfer the learnt
policies to new test market data from the real environment.

The latent space model of the equity LOB described in [12] shows how the Mixture-Density Recurrent
Network (RNN-MDN) architecture presented in World Models [[13]] to learn the transition dynamics
of the environment can also be applied to financial time series, learning a causal representation
of LOB market data where RL experts can be trained to learn policies then transferable back to
the original environment. Building on this work, we train three expert traders in the latent space
market model through advantage actor critic (A2C) [[14], double DQN [2], and Policy Gradient [15]
respectively, whose learnt policies remain profitable when tested on subsequent time series out of
sample. The collections of expert state-action trajectories generated by each trained agent serve as
input for the AIRL and GAIL algorithms in our experiments, following the implementation by [8].
Our conclusions will then examine the proportion of the experts’ cumulative rewards produced by the
policies learnt through either AIRL or GAIL from each expert agent.



2 Background

2.1 Related work

A number of previous works have applied inverse RL to financial data, focusing on evaluations of
feature vectors for state representations at different scales to explore a market of competing agents
[16], and assuming linear structures for the reward functions. Other works have focused on assessing
the comparative performance of probabilistic inverse RL based on Bayesian neural networks [17] as
an alternative to inverse RL based on Gaussian processes [3], applied to a simulated financial market
under a maximum entropy framework and allowing non-linear structures in the reward functions of
the agents.

On the other hand, model-based approaches have attempted to recover specific parameters such as
risk aversion implied by data [18]], where the observer assumes a certain structure for the underlying
utility of the agent. Research with simulations of real environments through neural networks [[19]]
allows to extend the original action and reward spaces to produce observations in the same spaces.
The representation of an environment through generative models has also been previously described
by World Models [13]] and its adaptation to limit order books [[12], where the authors obtain latent
representations of the environment enabling agents to learn a policy efficiently, and to transfer it back
to the original environment. Other authors have explored applications of Gaussian inverse RL to
learning investor sentiment models from historic data [20], to then extract tradable signals from the
model.

2.2 Adversarial Learning under Maximum Causal Entropy

The adversarial IRL experiments presented in this paper follow the AIRL implementation described in
[8]], framed through a standard Markov decision process defined by a tuple (S, .4, T, r, ) consisting
of a state space S; a set A of eligible actions; a model T of transition dynamics 7 (s’, a, s), where
each p(s'|s,a) represents the transition probability from state s through action a to state s’; the
unknown reward function (s, a) that we aim at recovering; and the discount factor ~ taking values
between [0, 1].

In general terms, forward RL seeks an optimal policy 7* that maximizes an expected cumulative
reward E [ Z?:o v'7(s¢)|m*] under the transition dynamics reflected in 7 (s’, a, s) and the policy 7*.
We denote the state-action trajectories derived from such expert policy as x = {(s¢, a;) }1_o-

Under this framework, inverse RL attempts to recover the reward function r that would most likely
have generated a given set of expert trajectories D = {x,})__; under the MDP (S, A, T,v) of
unknown reward. The adversarial learning methods considered will observe the trajectories in D
to infer a reward 7 (that yields a policy 7) to explain D. The performance of each model is then

evaluated through the total cumulative reward E[ ZtTZO v'r(s¢)|#] that # can recover against the
total reward IE | ZtT:O v'r(s¢)|*] obtained by the expert agent under policy 7*.

One of the main challenges of inverse RL resides in its ill-posed nature: firstly, a given set of
state-action trajectories D may be explained by several different optimal policies [3]]; the maximum
entropy principle as proposed in [4] addresses this problem, assuming that the optimal policy 7*(a|s)
that would have generated the trajectories in D follows exp {Q’ (s, a)} as developed in [4] 21]]. The
soft Q" function refers to the learning process under the standard RL formulation, where the objective
is regularized against a metric of differential entropy.

Secondly, the optimal policy determined may also be explained by a number of different reward
functions, where an external observer lacks the means to distinguish true rewards from those product
of non-stationary environment dynamics. The latter, when transferred to an environment with new
dynamics, may fail to produce an optimal outcome. Adversarial inverse RL [8]] introduces the concept
of disentangled rewards, aiming at learning reward functions robust to variations in the environmental
dynamics. This makes AIRL particularly attractive to study agents in financial markets, given their
inherent need of continuous adaptation to changing dynamics.

The connection between inverse RL under maximum causal entropy and GANs as described by [9]
compares the iterative cycles between generator and discriminator in the GAN with cases of inverse
RL that employ neural nets to learn generic reward functions under unknown environment dynamics



[7, 22]]. Moreover, a probabilistic approach to the problem allows to capture the stochastic nature of
the relationship between the reward objective and the policy actually executed.

Following the cited previous works, we use as benchmark a GAIL implementation adapted to our
market model: while GAIL is able to learn a policy from expert demonstrations, we expect AIRL to
outperform in an environment with volatile, non-stationary dynamics, besides recovering a reward
function in addition to the policy.

3 Experimental setup and results

The first requirement of our experiments is a model environment based on real financial data, that
allows training of RL agents and is also compatible with the AIRL and GAIL learning algorithms.
Learning a rich representation of the environment adds the general advantage of allowing RL models
that are simpler, smaller and less expensive to train than model-free counterparts for a certain target
performance of the learnt policy, as they search in a smaller space. Our experimental setup is based
on an OpenAl Gym structure [23] used to adapt the AIRL and GAIL implementations by [§] to a
financial version of a World Model environment as follows:

3.1 World models learnt from observed environments

World Models [[13]] provides an unsupervised probabilistic generative method to learn world rep-
resentations in space and time through neural networks, including the transition dynamics as our
experiment requires. RL agents operating in the real world would adapt their policies to their ex-
pectations of such transition dynamics, i.e. probabilities p(s’|s, a) of certain future state s’ given
the current state s and choice of action a contained in 7 (s', a, s). RL agents can then be trained
within the world model, with their learnt policies remaining optimal once transferred back to the
original environment (or even outperforming the agents trained in the original environment in some
instances).

These models capture three elements of the original environment: firstly, an auto-encoder learns a
latent representation of each state vector from its original high-dimensional space, compressing all
the observed information of that state into a vector z within a latent space of lower dimension (Fig.

).
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Figure 1: An auto-encoder extracts a latent-space representation from the original LOB data [24]

Secondly, after learning the latent vector for each state, the model learns the transition dynamics
connecting consecutive states through certain action choices a;. This model of transition probabilities
p(s'|s,a) of T(s,a, s) in the MDP is learnt through an RNN [25], 26, 27], able to learn sequential
information from time series along various time horizons by learning P(z¢41|a+, ht, z:) where h;
represents a hidden state of the RNN.

The choice of RNN architectures is based on their suitability to capture the transition model of
sequential data [28]], thus learning some predictive modelling of future states. In order to better reflect
the stochastic nature of the target environment, the deterministic output of the RNN is then fed into a



Mixture Density Network (MDN) [29] to produce a probabilistic prediction of next latent state. This
combined RNN-MDN architecture is detailed further in [[13}30].

Finally, an RL module decides which action to take given all the above information, including
the transition predicted in the latent space. As noted in [13]], this approach has the additional
advantage of providing RL agents with access to the latent space learnt by the model, which includes
representations of both the current state and an indication of what to expect in upcoming states
through the transitions modelled, sampling from the probability distribution of future states provided
by the RNN-MDN.
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Figure 2: Model for prediction of latent space transitions. Our RL processes are run in the latent state
space.

3.2 LOB version of world models learnt from real market data

The original version of World Models learns from environments based on computer simulations,
such as CarRacing-v0 [31] and VizDoom [32]. We base our experiments on the extension of this
architecture to financial environments presented in [12], where the auto-encoder is trained to learn a
latent space from sequences of snapshots of actual limit order book data, and the RNN-MDN models
the transitions between consecutive time frames as follows:

The data used to train the model consists of LOB time series from shares of Tencent Holdings Ltd.
(HK-700) traded in the Hong Kong stock exchange along sixty trading days between January and
March, 2018. Data from the following twenty trading days in April is then used as testing reference
for the adversarial learning algorithms. Each state contains the sequence of the last 10 data ticks for 3
LOB levels, so that the sequential information necessary to learn the transition dynamics is captured
in the data for each state.

LOB data is of high dimension, generally denominated Level II market data, and features several
relevant data points for each timestamp. Firstly, it contains various levels of bid (buy) and ask (sell)
prices for each timestamp, typically ranked in decreasing order of competitivity. The mid price
is generally derived as an average between the highest bid and lowest ask in the first LOB level.
Secondly, it includes the trading volume associated with each of such prices offered. The combined
progression in time of this data structure is often represented as a tensor of three dimensions [33].
Finally, trade stamp series contain the price and size of the last transactions executed out of previous
LOB states, used in this model as RL exploration.

In order to allow the RNN-MDN to model the transition dynamics, each state s; consists of 10
consecutive LOB data ticks for each of the above features. The auto-encoder learns a compressed
version of the data in lower dimensionality, through a latent space representation of short sequences
of original market data (Fig. . The model used in [12]] features a CNN-based auto-encoder, looking
back 10 updates in the limit order book that contains 3 levels of orders, and condenses the (10 * 3 x 4)
matrix into a z vector of dimension 12.

The RNN-MDN used to model the transition dynamics assumes that p(s’|s, a) follows a Gaussian
mixture distribution [12} [13]], where the model learns the parameters of the distribution p(s’|s, a) =

ZkK:t wi(s,a)D(s' | (s, a), 0% (s, a)) with D(-) assumed to be Gaussian, k = 5 and 128 neurons



per layer in the RNN. Once the prediction of the next state is sampled in the latent space, the reward
with respect to the present state and the action chosen is produced through a regression model.

3.3 Training experts in the LOB latent space

Once the full world model is trained and integrated into an OpenAl Gym structure, we train in it
the expert agents whose trajectories will serve as input to the adversarial learning experiments. We
follow the selection of RL algorithms in [12] proved to learn policies in the world model that remain
profitable when transferred back to the real environment: double DQN [2]], advantage actor critic
(A2C) [14] and policy gradient [15].

We now use each of the three trained expert agents to generate collections of 100 state-action
trajectories for each agent, with a length of 1000 (s;, a;) pairs each. Among the three experts, A2C
seems to be the best performing agent in terms of high mean and low variance of cumulative rewards,
followed by DQN (Fig. 3):
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Figure 3: Distribution of rewards obtained by each expert RL agent.

3.4 Adversarial learning from Reinforcement Learning trading experts

As in general GAN structures, adversarial inverse reinforcement learning is implemented through a
generator and a discriminator: two neural networks that contest with each other. The generator learns
to produce an output mapping from a latent space to a target data distribution, while the discriminator
tries to classify which samples come from the true distribution and which where produced by the
generator.

In the case of AIRL, the generator learns to produce state-action pairs (s¢, at)iL based on those

observed in the trajectories from the expert demonstrations (s, at)lE, while the discriminator Dy tries
to classify which state-action pairs were produced by the generator against those actually produced by
an expert agent, training through binary logistic regression. The reward estimate 7y is then updated
from the GAN minimax loss: log Dy(s, a, s") —log(1 — Dy(s, a, s")). An estimate 7 of the policy is
then updated from 7 iteratively.

Our experiments are initialized with the expert trajectories (s, a,g);E produced by executing each
expert policy 7 within the world model learnt from data gathered between January and March. We
then initialize a policy 7y and the discriminator Dy. The adversarial observer then updates iteratively
Dy and the reward 74 that produces a policy 7, which generates samples of (s, at)iL increasingly

similar to (s, at)f. The evaluations of cumulative rewards produced by each 7 take place with a
model environment run with test data from April.

We present in Fig. [ and Table|I]the results of running AIRL and GAIL on 200 training iterations:
AIRL is found to outperform GAIL in all the three cases considered (learning from demonstrations
of each expert trained), consistently with the initial motivation of the experiment.



2250
s00{ —— AIRL wel —— AIRL
— GAIL — GAIL
1750
2000
2 2
© © 1500
g 1500 g 1250
o« o«
| | 1000
o 1000 o
- - 750
500 500
250
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
AIRL training iteration AIRL training iteration

(a) Trained with A2C Experts

(b) Trained with DQN Experts

1400

1200

IRL Reward
£ 38 8 &

u
=1
=3

—— AIRL
— GAIL

0 =)

50 s 100 125

150 175 200

AIRL training iteration

(c) Trained with PG Experts

Figure 4: Comparative of rewards obtained through AIRL and GAIL by learning from each expert

agent.

Agent Average Return | Std Return
Expert A2C | 5047.3 125.9
AIRL 2433.0 59.7
GAIL 1563.1 43.4
(a) Adversarial learning from A2C Experts
Agent Average Return | Std Return
Expert DQN | 4177.4 116.6
AIRL 21511 45.6
GAIL 1574.5 70.8
(b) Adversarial learning from DQN Experts
Agent Average Return | Std Return
Expert PG | 1483.3 313.2
AIRL 1267.7 33.8
GAIL 1029.1 67.9

(c) Adversarial learning from PG Experts

Table 1: Summary of cumulative rewards obtained by AIRL, GAIL and each expert agent in the order

book.



4 Conclusions

We have presented an experimental setup to adapt adversarial inverse reinforcement learning and
generative adversarial imitation learning to a volatile financial environment, in order to evaluate their
ability to learn from expert trajectories in latent space simulations: the latent model employed allows
the training of the adversarial algorithms based on real market data. The results obtained show that
both methods can be trained against a latent space model of the market, while the specific advantage of
AIRL for learning rewards robust to variable environment dynamics allows it to outperform GAIL in
the cumulative rewards recovered from each of the three agents as the number of iterations increases.

A review of the original data series (Fig. [5) confirms the variability of mid price series and of their
volatility levels (measured across various horizons) when comparing the data corresponding to the
training period against that of the testing period. The rewards learnt by AIRL from the training model
are robust to such variable dynamics, hence its outperformance over GAIL when evaluated on the
test period.
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Figure 5: The original data series used to train the latent space model and the experts (blue) and to
test the adversarial learning methods (green) contain significant variability of price and volatility
levels.
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requirements to promote the independence of research, including but not limited to, the prohibition
on the dealing ahead of the dissemination of investment research. This Material is not intended as
research, a recommendation, advice, offer or solicitation for the purchase or sale of any financial
product or service, or to be used in any way for evaluating the merits of participating in any transaction.
It is not a research report and is not intended as such. Past performance is not indicative of future
results. Please consult your own advisors regarding legal, tax, accounting or any other aspects
including suitability implications for your particular circumstances. J.P. Morgan disclaims any
responsibility or liability whatsoever for the quality, accuracy or completeness of the information
herein, and for any reliance on, or use of this material in any way.
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