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Abstract

Arsenic is a ubiquitous toxic element, the global cycle of which is highly affected by microbial 
redox reactions and assimilation into organoarsenic compounds through sequential methylation 
reactions. While microbial biotransformation of arsenic has been studied for decades, the past 
years have seen the discovery of multiple new genes related to arsenic metabolism. Still, most 
studies focus on a small set of key genes or a small set of cultured microorganisms. Here, we 
leveraged the recently greatly expanded availability of microbial genomes of diverse organisms 
from lineages lacking cultivated representatives, including those reconstructed from 
metagenomes, to investigate genetic repertoires of taxonomic and environmental controls on 
arsenic metabolic capacities. Based on the collection of arsenic-related genes, we identified 
thirteen distinct metabolic guilds, four of which combine the aio and ars operons. We found that 
the best studied phyla have very different combinations of capacities than less well-studied 
phyla, including phyla lacking isolated representatives. We identified a distinct arsenic gene 
signature in the microbiomes of humans exposed or likely exposed to drinking water 
contaminated by arsenic and that arsenic methylation is important in soil and in human 
microbiomes.   Thus, the microbiomes of humans exposed to arsenic have the potential to 
exacerbate arsenic toxicity. Finally, we show that machine learning can predict bacterial arsenic 
metabolism capacities based on their taxonomy and the environment from which they were 
sampled.
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Introduction
Arsenic is ubiquitous in nature. It is commonly found in one of two inorganic forms; the 

pentavalent arsenate (As(V)) and the trivalent arsenite (As(III)), both of which are extremely 
toxic [1].  As(V) is taken up via phosphate transporters and As(III) via aqua-glyceroporins. 
Because arsenic uptake is incidental, it is assumed that all organisms have some coping 
mechanisms to deal with the toxicity [2]. Both arsenite oxidation and arsenate reduction can 
also support respiration, and these pathways are believed to have evolved before the split 
between the archaeal and bacterial domains [3]. Microorganisms play a major role in the global 
arsenic cycle, driving both the mineral precipitation and dissolution. Microbes are also capable 
of assimilating arsenic into more complex compounds or forming volatilized methylated forms of 
arsenic [4]. Taken together, microbes have a huge potential effect on human exposure to 
arsenic. While Bangladesh is a prime example of the detrimental effects of groundwater 
contamination, other hotspots are known around the world, exposing millions of people to 
arsenic-contaminated drinking water [5]. 

The last decade has seen an exponential growth in the availability of sequenced 
genomes, and with it the discovery and expansion of the known arsenic transforming genes in 
microorganisms [6]. Currently, there are four types of operons, one dedicated to detoxification of 
arsenic (ars operon) and three respiratory operons using arsenic as the electron acceptor 
(dissimilatory arsenate reduction by the arr operon) or electron donor (respiratory arsenite 
oxidation by aio/arx operons) [7]. The ars operon can be split into an inorganic path (the 
canonical reduction of arsenate and excretion of arsenite), and an organic pathway. The organic 
pathway starts with the methylation of arsenite by the ArsM enzyme, forming 
monomethylarsonous acid (MMAs(III)). MMAs(III) can be further methylated by ArsM and 
volatilized, excreted from the cells via the ArsP efflux system, or oxidized into less toxic 
compounds via the ArsH enzyme. An alternative efflux system (ArsJ) can excrete arsenate by 
forming an unstable intermediate with glyceraldehyde 3-phosphate. 

To date, studies have either focused on specific arsenic metabolizing microbes or 
surveyed the presence of a small number of key genes in larger datasets [8–12]. A few studies 
that investigated larger numbers of genes did not look at co-localization of these genes, which is 
necessary to improve confidence in pathway identification. In this study, we utilized a relatively 
comprehensive set of bacterial and archaeal genomes, thus a very large set of genes involved 
in arsenic transformation, to analyze how arsenic-related genes are combined in 
microorganisms. We also relied on gene co-localization to help overcome low homology or low 
levels of differentiation of auxiliary and regulatory genes.  Our research resulted in a database 
of genes related to arsenic biotransformation, within which we identified the core arsenic 
microbial guilds.  We show that the combination of microbial  taxonomy and environmental 
information predict the resident arsenic microbial guilds. Further, we show that arsenic exposure 
shapes the inventories of arsenic-relevant capacities in human microbiomes, thus could 
increase arsenic toxicity. 

https://www.zotero.org/google-docs/?LsBD6d
https://www.zotero.org/google-docs/?cwPknq
https://www.zotero.org/google-docs/?3Cobad
https://www.zotero.org/google-docs/?qV7NXy
https://www.zotero.org/google-docs/?54TSqZ
https://www.zotero.org/google-docs/?xIbquf
https://www.zotero.org/google-docs/?yYxMdi
https://www.zotero.org/google-docs/?L7NqBZ
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Results
Genomic sampling of microbial diversity across environments

We constructed a database of genomes (GAsDb) that sampled the broadest possible 
taxonomic and environmental diversity, drawing upon both the RefSeq genomes and ~3500 
metagenomes that our laboratories and collaborators have assembled, primarily from terrestrial 
environments.  We categorized each metagenome (and, for RefSeq, genome) in terms of its 
ecosystem of origin: terrestrial near-surface, marine, deep subsurface, engineered and host-
associated. Each metagenome was also assigned an environment type (101 categories, 
including soil, freshwater, human) and a geographic location (432 locations, divided into 
country/province/state), and climate (22 types - derived from the dominant climate of a given 
location). To assign taxonomy to 91,685 genomes, we used GTDB-Tk [13], for an initial 
assignment, but in some cases corrected the taxonomy to reflect more appropriate standard 
nomenclature. The genomes in the database are from both the Bacterial and Archaeal domains, 
with representatives from 92 phyla, 309 classes, 785 orders, 1,610 families, and 3,411 genera.  

Distribution of arsenic genes and arsenic loci in genomes 
For the purpose of this work, we designed 29 profile hidden Markov models (HMMs) 

targeting five genes of the aio operon, five genes of the arx operon, five genes of the arr operon 
(one gene was targeted with two HMMs), and 14 genes of the ars operon. Sequences were 
assigned a single annotation. When a sequence was found by multiple HMMs, assignments 
were made based on HMM scores. Following maximum likelihood tree constructions, we 
identified  four The four new clades that were all monophyletic with one of the 29 clades, and 
closely enough related that we assumed that they have related functions (see methods and 
Supplementary information 1). The HMM for ArsR did not yield robust results so it is not 
included in this work. 

In our analyses, we also considered the co-localization of genes to support functional 
assignments based on HMMs. Sets of co-localized genes involved in arsenic transformations 
were used to define arsenic loci. Loci with no discernible functionality (e.g. all the genes were 
auxiliary), or loci with a high ratio of hits below their HMM score threshold were removed from 
the dataset. The GAsDb contains 949 unique arsenic loci (see methods and Supplementary 
tables 1-3).  Genomes carry between 1 to 12 arsenic loci, with a median of 2 loci. 41% of 
genomes only have a single locus and 40% of loci appear in a single genome. Only ten arsenic 
loci appear in >5% of the genomes, all of them containing genes from the ars operon involved in 
arsenic resistance. Five of the ten have an arsenic efflux system (four loci for export of arsenite 
and one for export of methylated arsenic). Another, arsM, is a single gene locus. Two genes, 
arsC and arsH, appear in multiple loci. 

The richness of microbes, grouped by taxonomy or environment, was compared to 
random sampling of the whole dataset (Figure 1). Groups with significantly higher richness 
compared to random sampling (marks above standard deviation) are enriched for arsenic 
metabolism. No phylum was significantly enriched and only three types of environments had 
significantly high arsenic loci richness: groundwater, hotsprings, and sites associated with 
mining. 

https://www.zotero.org/google-docs/?IH6lGK
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Figure 1: Richness of arsenic loci in phyla (green) and environment types (magenta), compared 
to the mean richness from random sampling (1000 permutations) of the dataset (black line).  
Grey dashed lines indicate one standard deviation from the mean. 

Arsenic biotransformation guilds and core arsenic loci 
To examine if microbes can be classified into arsenic guilds with a similar set of genes, 

we first grouped the genomes to unique arsenic profiles (AsPRO). This was based on the gene 
content and gene count over the whole genome, resulting in 7,178 unique arsenic profiles. We 
further reduced the data to 7,141 AsPRO by eliminating profiles containing a single gene type. 
While the efflux systems for arsenite (arsB, ACR3), the efflux system for arsenate (arsJ), and 
methylation to volatilization (arsM) can be considered standalone detoxification pathways, we 
preferred to remove such genomes for several reasons. First, our dataset consists of 
metagenome-assembled genomes (MAGs) of unknown completeness, due to the large size of 
the database. That meant that we could not easily distinguish between true single gene 
genomes and noise from low-quality MAGs (this is not a concern for other AsPRO since the loci 
analysis shows the genes are co-localized in genomes). Second, the single gene profiles added 
too much noise when analyzing the metabolism of the clusters and their removal provided 
improved metabolic resolution, with little effect on the overall clustering structure (see methods). 

The chosen AsPROs were then clustered based on their genes (Figure 2). Clustering of 
AsPROs was conducted twice, once with a focus on global structure and once with a focus on 
local structure (see methods). In global structure, higher weight is given to the most abundant 
genes, while in local structure, smaller gene differences are weighted more. The former enabled 
a more refined analysis of metabolism in some of the larger groups. The representative 
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metabolism for each cluster was based on the proportion of genomes harboring the gene (Table 
1). Genes were considered representative if they were present in at least 50% of the genomes 
of a cluster. An exception was made for the cluster containing ArxAB as this was the only one 
containing these genes.   

 Clustering resulted in 13 arsenic biotransformation guilds (AsBT-Guild), 12 of which 
originated from the global structure and one unique to the local structure (the AsPRO were 
dispersed among several guilds or considered noise with global structuring). In addition, several 
AsBT-Guilds could be further separated into subclusters (AsBT-SubGuild). AsBT-Guild 11 and 
13 contain two subclusters, AsBT-Guild 7 contains 4 subclusters, and AsBT-Guild 5 (the largest 
group) is divided into 8 subclusters (Figure 2). All but two AsBT-Guilds contained the inorganic 
pathway of the ars operon, and all but one AsBT-Guild had at least one gene of the organic 
pathway of the ars operon as part of their representative detoxification system. Multiple AsBT-
SubGuilds had an additive proportion exceeding 100% of the two arsC variants (TRX-like 
protein family and LMWP protein family). The arsenite pump variants (arsB and ACR3) on the 
other hand, rarely overlapped within genomes.  Each of the respiration operons arr, arx, and aio 
were represented in a separate AsBT-Guild. Of these, the AsBT-Guild enriched for arx did not 
have it as representative metabolism (even though it was unique to it). The AsBT-Guild 
represented by the aio operon was further divided into two AsBT-SubGuilds, one containing the 
short version of the operon (aioBA) and the other the long version (aioBAXSR). 

Table 1: AsBT-Guilds/AsBT-SubGuilds (a) size and (b) representative arsenic metabolism
(a)

(b)
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We discovered four new AsBT-Guilds in our work. The two larger AsBT-Guilds 
(comprising 4,297 and 2,070 genomes) did not have the inorganic ars path but rather relied on 
arsM as the sole detoxification  enzyme. The first group (AsBT-Guild 3) paired the aio two-
component system (aioSR) with arsM, and the second group (AsBT-Guild 9) had arsM and the 
sibling clade of arsP (arsP-like), the MMAs efflux system. Members of the two AsBT-Guilds (3 
and 9) are predominantly found in soil environments, where they account for just over half of the 
soil derived genomes (2,918 and 1,698 genomes respectively of a total of 9,181 soil genomes). 
Genomes of AsBT-Guild 3 are also found in groundwater and sediment environments in large 
numbers (650 and 541 genomes respectively). The other AsBT-Guilds were smaller (comprising 
404 and 166 genomes). These AsBT-Guilds paired aio regulation genes with ars detoxification. 
Genomes in the larger group (AsBT-Guild 2) contain multiple aio and arx regulatory and 
auxiliary genes combined with a short ars operon and arsM. More than 75% of the genomes 
have five or more unique arsenic genes (not accounting for gene counts). Genomes in the 
smaller group (AsBT-Guild 1) have the full set of regulatory aio genes (aioXSR) paired with a 
short ars operon. 



7

Figure 2: Clustering of AsBT-Guilds and AsBT-SubGuilds. A two-dimensional UMAP projection 
of unique arsenic profiles (AsPRO). Black oval indicates global structure clustering while colors 
indicate sub clustering based on local structure. Small black points indicate AsPROs that were 
not clustered (considered noise). 

Next, we wanted to examine whether we could identify a core set of arsenic loci. The 
core arsenic loci is the minimal set of loci found (in various combinations) in more than half of 
the genomes of each phylum. We filtered GAsDB based on the per phylum frequency of the 
different loci and identified that the core arsenic loci consists of 83 loc (Supplementary table 2). 
Over 99% of all genomes are represented by the core arsenic loci (i.e. all these genomes have 
at least one of the loci in the core set), with a mean phylum representation of 97.6% and 46 of 
92 phyla fully recovered. One phylum (Candidatus Sumerlaeota) retained 50% of its genomes 
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and the phylum with the second-lowest retention (Aquificae) was at 81.5%. All the studied 
genes were accounted for within the core loci, except for arsenite oxidation via arxA. 

When we observed the proportions of the core loci in different phyla (Figure 3a) we 
discover that there exists a stark difference in the loci content of the five most represented phyla 
in GAsDB (Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes, and 
Actinobacteria), compared to all other phyla. To see if the difference in loci is also translated into 
a difference in functionality we reverted back to examining the proportions of the different genes 
in the genomes. Within GAsDB, the most common genes are for arsenate reduction (ArsC 
variants) and arsenite excretion (ArsB/ACR3), followed by MMAs oxidation (ArsH) and arsenite 
methylation (ArsM) (Figure 3b). But, when the proportion is calculated per phylum a very 
different picture appears (Figure 3c). The median proportion of arsenate reduction (ArsC 
variants) in phyla is 0.4, while >60% of genomes in the database have the genes. MMAs 
oxidation (ArsH) is similar with a median proportion <0.1 in phyla but found in nearly half of the 
genomes. The difference between phyla proportion for arsenite excretion (ArsB, ACR3) and its 
overall presence is smaller but follows a similar trend. Arsenite methylation shows the opposite 
trend, with a median proportions of ~0.55 across phyla, even though it is present in 20% of 
genomes. The answer to the difference in proportion lies with the five largest phyla in GAsDB. In 
these instances (and in other genes) the largest phyla are outliers in the distribution of 
proportions. These five phyla account for nearly 80% of the genomes in the dataset so they can 
highly distort the overall view of arsenic biotransformation. Moreover, the distortion also occurs 
in the literature, since these phyla are also the most studied phyla in microbiology [14]. 

https://www.zotero.org/google-docs/?BY7QuT
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Figure 3: Core loci and gene functionality proportions in genomes. (a) the proportion of the 20 
most frequent loci across all phyla. Lighter color in heatmap indicates higher proportions within 
the phyla. Loci are sorted from the top in descending order by their overall frequency. Phyla are 
sorted left to right in descending order based on their loci richness. (b) the proportion of 
functions in all of the genomes. (c) the distribution of function proportion by phyla. Each phylum 
is represented on the boxplot as a green-shaded dot. The darkness of the dot reflects the order 
of magnitude size of the phylum. 
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Taxonomic and environmental drivers of arsenic biotransformation
The above analysis has mostly been independent of taxonomic and environmental data 

(referred to below as metadata features) associated with the genomes. Furthermore, the 
classification of AsBT-Guilds was based on AsPRO and not on individual genomes. Still, the 
arsenic loci accumulation hinted at significant enrichment in some environments, while the core 
arsenic loci analysis revealed a stark difference between the well-studied phyla compared to all 
other phyla. In this section we will examine which metadata features are enriched in the AsBT-
Guilds, and how well the metadata features predict the AsBT-Guilds. 

To examine the level of metadata feature specificity to AsPROs (Supplementary table 4) 
we examined two parameters. First we checked what is the variation within the features (Figure 
4a). Feature variables are the instances of a metadata feature (e.g Actinobacteria is a feature 
variable of the Phyla feature). Second we examined if one feature variable accounted for the 
majority of the genomes (i.e. the dominant feature variant) in a given AsPRO (Figure 4b). These 
parameters are important for downstream analysis that test how predictive metadata features 
are of metabolism. The higher the within variation of a feature, and the more evenly the feature 
variables are distributed within AsPROs, the less predictive they would be.    

In both cases, AsPROs that account for a single genome were excluded from the 
analysis to prevent bias. In addition, we compared the statistics for AsPROs comprising ten or 
more genomes (n = 468) to AsPROs of less than ten genomes (n = 1,357). The environmental 
features have a lower variable count (except for location). The high variation in the location 
feature was an important indication that the data does not suffer from sampling bias. The 
taxonomic features show an increase in variability with higher taxonomic levels. Large AsPROs 
had higher variable counts than small AsPROs for all metadata features but Domain. The 
difference between the means was much more substantial compared to differences in median 
values or even the third quartile, indicating the data are skewed by a few highly variable large 
AsPROs. The average proportion of the dominant variable ranged from 0.65 (climate) to 0.99 
(Domain) with most features above 0.75. Large AsPROs had only slightly lower mean and 
median values compared to the smaller AsPROs. This means that although their variable 
counts are higher there still exists a single variable for each feature that accounts for most of the 
genomes associated with AsPROs. Moving forward, we chose parameters that had low 
variability at the AsPRO level: ecosystem and environment types for environmental metadata, 
and Domain, Phyla, and Class as the taxonomic metadata. 
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Figure 4: Specificity of metadata in AsPROs. (a) mean variable counts for metadata features. 
Error bars indicate confidence intervals at 95%. (b) distribution of the proportion of  the 
dominant variable in the features. White stars indicate the mean and black lines indicate median 
(when median is not observed it is equal to 1). 

To test if certain metadata was enriched in the AsBT-Guilds (and AsBT-SubGuilds) we 
used the Fisher’s Exact test (Supplementary tables 5-6). We consider only metadata with odds 
ratio higher than 1 and bonferroni corrected p-value < 0.05 to be significantly enriched in a given 
AsBT-Guild. We also note that enrichment does not necessarily equate to the most common 
metadata feature in an AsBT-Guild. The enrichment results varied greatly between AsBT-Guilds 
from very specific (a single environment type, phyla, and class) to 70 different variables across 
four features. At least one variable of Phyla, Class, and environment type was enriched in each 
AsBT-Guilds and AsBT-SubGuilds. An ecosystem variable was enriched in all but a single 
AsBT-SubGuild. A median of one ecosystem, three environment types, three phyla, and five 
classes were enriched in each guild/subguild. Of the four new AsBT-Guilds, 1 and 2 (pairing 
aio/arx regulation with the inorganic path of the ars operon) were enriched in samples from 
mining sites. AsBT-Guilds 3 and 9 (AioSR paired with ArsM) was enriched in multiple phyla from 
terrestrial ecosystems, with AsBT-Guild 9 highly specific to soil environments. AsBT-Guild 8 was 
noteworthy, because while it was enriched in several environment types, most of them marine 
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(seawater, shrimp, mollusca, zooplankton, fish, and cephalopods). Oxygen levels (deduced 
from the environment type) were an important factor for the respiration operons. AsBT-Guild 12 
(arr operon) was enriched in anaerobic environments, while AsBT-Guild 11 (aio operon) was 
enriched in aerobic environments. The latter was also more associated with contaminated sites. 
An interesting split occurred within the subguilds of AsBT-Guild 7 (long ars operon), based on 
the reductase and efflux pump variants. Human associated Gammaproteobacteria have the 
TRX-like ArsC variant and ArsB pump, while human associated Firmicutes have the LMWP 
ArsC variant and ArsB pump. A third subguild with the LMWP ArsC variant and ACR3 pump is 
enriched within both Gammaproteobacteria and Firmicutes from food products. 

The results so far showed that the metadata are specific to AsPROs and that similar 
AsPROs had similar metadata. Now we turned the analysis around to test if metadata can be 
used to predict the AsBT-Guild of genomes. We chose to use Phyla, Class, Ecosystem, 
Environment type, and Climate in order to predict AsBT-Guild membership by genome. Phyla 
and Class can robustly be identified with gene markers and research groups generating data 
from their own samples know where the samples are from so can assign environmental 
information. A subset of the data that contained information for all features (n = 46170, split 8:2 
for training and validation sets) was used to create a Random Forest Classification model 
(Supplementary information 2). A grid search was used to refine the model parameters and the 
best overall model was chosen based on its accuracy. The selected model had the following 
performance indices for the validation set: accuracy of 0.773, MSE of 0.203, logloss of 0.993, 
and r2 of 0.977. While the overall accuracy was relatively high, the mean per-calls error was 
0.576. From the confusion matrix it is clear that the model accuracy stems from high precision in 
predicting four AsBT-Guilds. AsBT-Guild 5 was detected at 0.9 accuracy while accounting for 
62% of the genomes in the validation set. AsBT-Guild 3 (n = 814, accuracy = 0.86), AsBT-Guild 
6 (n= 709, accuracy = 0.76), and AsBT-Guild 9 (n = 374, accuracy = 0.78) accounted for an 
additional 21% of the genomes in the validation set. It is worth mentioning that the two AsBT-
Guilds (3 and 9) that lack the short inorganic ars operon were accurately predicted.

The most important metadata features in the model (Figure 5a) are phyla (~50%) and 
environment type (~30%), followed by climate (~10%), class (~8%) and ecosystem (~2%). 
When the predicted AsBT-Guild is compared to the observed AsBT-Guild by phyla or 
environment type the accuracy of the results are much better (Figure 5b-c). For a given 
environment type, the lowest true positive (TP) % is 50% and for 36/46 environments the TP is 
equal or greater than 75%. Two important environments with <75% TP are sediment (74%) and 
soil (71%). These are prone to annotation errors in reported metadata. Other noteworthy 
environments that require improved annotation are food products, groundwater, and freshwater. 

For phyla, the results are similar with 32 of 46 having 75% TP or higher. Important phyla 
with low TP were Gammaproteobacteria, Betaproteobacteria and Deltaproteobacteria. Incorrect 
predictions for the Proteobacteria were assigning them to AsBT-Guild 5 and for 
Deltaproteobacteria assigning them to AsBT-Guild 3. 
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Figure 5: Random Forest Classifier model for arsenic metabolism. a) Variable importance in the 
Random Forest Classifier model. The bar plot shows the scaled importance of each of the 
metadata features. The insert table shows the relative importance and percent contribution to 
prediction.  b) Percent of true positive predictions for validation and test datasets based on 
phyla. c) Percent of true positive predictions for validation and test datasets based on 
environment type.

Since climate only accounted for 10% of the prediction, a second set containing all other 
genomes that did not have climate information, but had the other features (n = 16682) was also 
tested with the model. The accuracy for the second test set was 0.767 (MSE = 0.209, logloss = 
1.18), but the per class error was very high (0.81) and only two AsBT-Guild (6 and 5) had low 
error rates. These two account for most of the samples in the test data (81.2%). 

The breakdown of environments again had soil and sediment at low TP (Figure 5c). 

Mining related sites also showed low TP (~70%) and were the largest group in the low TP 

group. Wastewater, salt water (grouping seawater, brackish water, and hypersaline water), and 

mollusca had ≤45% TP and were relatively large (group sizes > 80 genomes).
For phyla (Figure 5b), most of the error stemmed from the Alphaproteobacteria, 
Betaproteobacteria and Gammaproteobacteria. Large groups that performed well in both data 
sets were the Actinobacteria, Firmicutes, and Bacteroidetes (Epsilonproteobacteria was also 
good but not that large). Zetaproteobacteria prediction improved significantly in the test data 
from 46% in the validation (n = 26) to 94% in the test (n = 53). Although the method in which 
climate was assigned to genomes was very generalized (to the most common climate region in 
a given location), and its importance in the model is low, it does improve the model predictions. 
Climate is easy to include if the geographic location of sampling is known. 
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Effect of arsenic exposure on the human microbiome
Human exposure to arsenic through groundwater and food is a worldwide concern, most 

prominently in Bangladesh [15]. A recent paper analyzed the probability of groundwater arsenic 
contamination and identified additional hotspots [5]. In the following analysis we sought to 
investigate if human microbiomes from areas of higher arsenic exposure risk cluster together, 
based on their arsenic metabolism. This would indicate that arsenic exposure affects the 
composition of the human microbiome. Within our data, we had one group of gut samples from 
humans from Laksam Upazila (Bangladesh) in which arsenicosis from arsenic exposure was 
confirmed [16]. We used this group as an indicator to locate the cluster of interest and called it 
the “arsenic exposed” cluster (the quotes are meant to convey we cannot prove arsenic 
exposure). Human associated microbial genomes were grouped based on their refined location 
and bodily source (see methods), and clustered by the counts of AsBT-SubGuilds in those 
groups (Figure 6a). The “arsenic exposed” cluster was found to be Cluster 16).

We next evaluated the other locations that were clustered with Laksam Upazila. We 
found that many (but not all) locations in the cluster have been shown to have heightened 
arsenic contamination in groundwater and soil (Figure 6b). Asian locations included West 
Bengal, Pakistan, Maharashtra (India), several provinces in China (Liaoning, Shandong, 
Zhejiang), Taiwan, southeast asian countries (Thailand, Viet Nam), Japan, and Saudi Arabia. 
Locations in the Americas included Mexico, Argentina (Buenos Aires), Columbia (Antioquia), 
Ecuador, several US states (Nebraska, California, Michigan, Montana, Florida), and several 
Canadian provinces (British Columbia and Manitoba). African locations included sub-saharan 
nations (Tanzania, Kenya, Mali, and Zambia) while European locations included Denmark, 
France, Italy, and the United Kingdom. The main locations in the cluster that match previous 
reporting [5] are West Bengal, Pakistan, Liaoning, Mexico and Buenos Aires. Other areas with 
increase risk of exposure (04.-0.6 probability As > 10 ppb) were Maharashtra, Thailand (central 
area), Viet Nam (southern area), Saudi Arabia, California, Tanzania, Kenya, Mali, and Zambia.           

The  AsBT-SubGuilds enriched in the “arsenic exposed” cluster were AsBT-SubGuilds 
19 and 18. A unique feature of both subtypes is that all of their genomes contain the arsP efflux 
system (excreting MMAs from the cells). In AsBT-SubGuild 18 just over 50% of the genomes 
also contained arsM. The high prevalence of the arsP efflux system indicates that the 
microbiome of humans exposed to arsenic further exacerbates the toxic effect since MMAs are 
more toxic to humans than arsenate and arsenite [17]. The arsenic exposed human samples 
have a much lower occurrence of AsBT-SubGuild 1, which are human-associated 
actinobacteria. AsBT-SubGuilds 18 is found in very low numbers in the entire set of human 
associated samples (n = 5) compared to AsBT-SubGuild 19, but it is only found in the “arsenic 
cluster” and adjacent cluster 11, that has additional genomes from Dhaka, Bangladesh and are 
known cholera patients. The cholera-patient samples have some overlap of locations with the 
arsenic-exposed cluster and the samples are enriched with AsBT-SubGuilds 5 (all members 
have the arsJ efflux pump for As(V)). The human source of the cholera-patient sample are feces 
(or clinical samples) while the arsenic-exposed samples also have multiple samples from the 
urinary system. 

https://www.zotero.org/google-docs/?jMeZuO
https://www.zotero.org/google-docs/?ZInMVV
https://www.zotero.org/google-docs/?otE1zQ
https://www.zotero.org/google-docs/?qvug6W
https://www.zotero.org/google-docs/?yol1lL
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Figure 6: Arsenic metabolism in human-associated microbial genomes. a) Clustering of 
genomes grouped by their geographic location and bodily source of sampling. b) Geographic 
location of the “arsenic-exposed” cluster. Locations in orange are part of the cluster.  

Discussion

In this paper we curated a large genomic database of arsenic related genes from 
Bacteria and Archaea, using 29 custom designed HMMs. Utilizing co-localization of genes, we 
enhanced the yield of identified genes to include more distantly related sequences, as well as 
new putative genes. Overall we defined nearly 949 unique arsenic loci (based on gene 
presence in a given loci), far higher than the few dozen known to date [8,18]. Our examination 
of the core arsenic loci (83 loci) and gene proportions in different phyla revealed that some of 
the most studied phyla in microbiology (Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria, Actinobacteria, and Firmicutes) [14] have a very different arsenic 
metabolism from all other phyla. While they may be dominant in some environments, it is clear 
that they are not representative of the microbial arsenic metabolism and more focus should be 
given to other phyla. 

Clustering of the genomes based on their arsenic related genes generated 13 types of 
representative arsenic metabolic/transformation capabilities (AsBT-Guilds), some further divided 
into more refined groups, totaling at 26 AsBT-SubGuilds. Of these AsBT-Guilds, four represent 
newly defined metabolic profiles. Interestingly, three of the four AsBT-Guilds (guilds 1, 2, and 3) 
paired the aio regulation system (aioR, aioS, and to a lesser extent aioX) [19] with the ars 
operon. While in two of those AsBT-Guilds a subset of genomes also have the catalytic aio units 
(aioBA, these are found at much lower proportions (10-20%) compared to the corresponding 
arsenate reductases of the ars operon (50-80%). Even though most of the genomes used in this 
work are considered to be draft genomes, we would argue that the results indicating the 
presence of aioSR without the aioX or the catalytic unit (aioBA) is strong. When identifying loci 
in the genomes we allowed for gaps between genes (up to five genes apart), but the majority of 
loci were of sequential genes (81.5% no gaps, 8.25% a single gene gap). The loci containing 
aioSR alone was one of the most commonly found loci (identified in 5870 genomes), while the 
loci aioXSR are found in 132 genomes. Other loci had the genes associated with different 
genes, even further adding to the results. One interesting, but unverified, hypothesis is the 
possibility that aioSR may also activate other genes (including ars operon genes) in response to 
arsenite.

Even more noteworthy are the two large AsBT-Guilds (3 and 9) that are lacking in the 
inorganic pathway of the ars operon. Instead these groups have ArsM that sequentially 
methylates As(III). Not only are AsBT-Guilds 3 and 9 predominant in soil environments, they 
represent some of the more dominant phyla in soil [20–23]. AsBT-Guild 3 contains two thirds of 
the Acidobacteria (1,649), the majority of Deltaproteobacteria (841), Rokubacteria (639), 
Gemmatimonadetes (606), and a large portion of Nitrospirae (126, 23.6% of the phylum) in the 
GAsDb. AsBT-Guild 9 contains most of the Dormibacteria (458) and close to half of 
Verrucomicrobia (190 accounting for 47.5%). It also contains a large number of Actinobacteria 

https://www.zotero.org/google-docs/?x0zvvl
https://www.zotero.org/google-docs/?Kc3863
https://www.zotero.org/google-docs/?U6XsnV
https://www.zotero.org/google-docs/?PsySGr
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(916) which account for nearly 40% of non-human microbiome Actinobacteria. This indicates 
that arsenic methylation in soil may be much more prominent than in other environments 
[10,12]. Arsenic methylation can be used by bacteria as an allelopathic agent [24]. To 
counteract the toxicity of MMAs, bacteria can demethylate it and excrete the As(III). Nearly 60% 
of genomes in AsBT-Guild 5, the other large AsBT-Guild in soil, have the arsH gene, which 
encodes the oxidation of trivalent MMAs to a less toxic form of pentavalent MMAs [25]. AsBT-
SubGuild 15 (within AsBT-Guild 5) is common in soil environments (1247) and nearly all 
genomes contain the arsI gene that encodes the demethylation of MMAs. This group contains 
Firmicutes, Betaproteobacteria, and Alphaproteobacteria. Here we can show a competitive 
relationship between different phyla based on their arsenic metabolism (Figure 7). 

Figure 7: Schematic diagram of interaction between different groups of soil microbes based on 
their arsenic metabolism. AsBT-Guilds 3 and 9 methylate arsenite which is transported out of 
the cells. The methylated arsenic can be oxidized by members of AsBT-Guild 5 or demethylated 
back to arsenite by AsBT-SubGuild 15 (part of AsBT-Guild 5), excreting it back into the 
environment. Dashed lines indicate expected transport by an unknown mechanism. 

Many other AsBT-Guilds were enriched with a particular combination of taxa and 
environment types. AsBT-Guild 2 (and more specifically AsBT-SubGuild 3) was enriched in 
Chloroflexi and Betaproteobacteria from leachate reactors of mining operations. The genomes 

https://www.zotero.org/google-docs/?rZdnkd
https://www.zotero.org/google-docs/?B5emN2
https://www.zotero.org/google-docs/?bZH7P3
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in this sub guild have a wide arsenic metabolic capacity. Genomes in this group had a mean of 
8.6 unique genes and 35% had 12 or more unique genes. Overall, 11 of 32 genes were present 
in at least 40% of genomes. Originating from a highly contaminated environment the bacteria 
need multiple pathways to protect them from arsenic exposure.

 AsBT-Guild 8 was enriched in Gammaproteobacteria and Zetaproteobacteria from 
seawater and marine organisms. The possession of both the inorganic ars pathway and the 
arsJ efflux system that excretes As(V) is compatible with As(V) being the dominant arsenic 
species in the marine ecosystem [4]. AsBT-Guild 11 (aio operon) and AsBT-Guild 12 (arr 
operon) are enriched in environments that match their oxidation reduction potential needs. 
Genomes of AsBT-Guild 11 are enriched in aerobic environments while genomes of AsBT-Guild 
12 are enriched in anaerobic environments. Of the sub-guilds of AsBT-Guild 7 (long ars 
operon), three are enriched in human microbiomes (AsBT-SubGuilds 8, 12, and 16) while the 
fourth (AsBT-SubGuild 17) is enriched in food products.

Building on the strong relationship found between the metadata and arsenic metabolism 
we created a random forest classifier model that is able to predict the AsBT-Guild a bacterium 
belongs to, based on its metadata (Phyla and Class for taxonomy. Ecosystem, climate, and 
environment type for environmental information). The model has an overall accuracy >75% 
which is also consistent for most phyla and environment types, the two most important 
parameters contributing to the model. Even though the model's accuracy is high, the data are 
still very noisy and improvements of metadata curation would further improve the model. The 
taxonomic assignment was relatively robust, as it was based on a well established method [13]. 
Still, the genomes themselves were not filtered for genome completeness so we were not able 
to assign taxonomy to the entire set of genomes we started with. Assignment of environmental 
information was even more subjective. While the curation of metagenomic samples from sites 
sampled by our group and collaborators is robust, NCBI-derived genomes are both lacking in 
information and the information present is at times misleading or incorrect. That said, we believe 
the predictive model would be very valuable to groups and organizations that are unable to 
conduct in-depth genomic analyses. Taxonomy can easily be derived from 16S rRNA 
sequencing, while the environmental information would be known to the people generating the 
data. 

An important focus of this work was the analysis of arsenic exposure in human 
microbiomes. Our analysis shows that arsenic exposure changes the human microbiome, 
enriching for specific metabolic types. Grouping genomes by their location and clustering the 
locations by AsBT-SubGuild abundance, an “arsenic exposed” cluster was identified. The 
cluster contained genomes sampled from humans known to be exposed to arsenic in Laksam 
Upazila [16] that were used as an indicator of the cluster of interest. Examination of the other 
location groups in the cluster showed several known hotspots for arsenic contamination, and 
more from increased exposure (04.-0.6 probability of As > 100 ppb)  [5]. Most of the genomes in 
the “arsenic-exposed” cluster are from the gut microbiome but another prominent source was 
the urinary system. Previous research on arsenic exposed humans in Mexico showed elevated 
MMAs in their urine [26]. The AsBT-SubGuild 19, characterized by the presence of the arsP 
efflux pump, was most prominent in the “arsenic-exposed” cluster. Another unique aspect of this 
sub guild is that it is the only one within AsBT-Guild 5 that has aioR at high proportions (>50% 
compared to a mean of 4.6% in the other sub guilds). The arsP efflux pump excretes trivalent 

https://www.zotero.org/google-docs/?4FPCVr
https://www.zotero.org/google-docs/?HMCrky
https://www.zotero.org/google-docs/?9mKsBi
https://www.zotero.org/google-docs/?12OMNz
https://www.zotero.org/google-docs/?VW6k0r
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MMAs from microbial cells [6], which are more toxic to humans than As(III) [17]. The microbial 
driven increase in methylated arsenic was experimentally shown in previous research [27,28], 
while other work has shown increased methylated arsenic in urine of exposed individuals [29]. 
By increasing the host exposure to trivalent MMAs, the bacteria further exacerbate the 
detrimental effect of arsenic exposure to their hosts. AsBT-Guild 6 of human associated 
Actinobacteria was the most reduced in the “arsenic-exposed” cluster. This group contains both 
arsH that can oxidize trivalent MMAs into lesser toxic pentavalent MMAs [25], as well as arsI 
that can demethylate MMAs. 

Our work shows the importance of analyzing the full spectrum of genes related to 
arsenic metabolism as well as utilizing co-localization data to support gene annotation. While 
sequence based analysis cannot provide proof of functionality, the consistent patterns across 
thousands of genomes lends support to the potential functions. We were able to identify 
microbial guilds with unique metabolic profiles and linked the aio two component regulation 
system to the ars operon. Arsenic methylation was revealed to be significant both in soil 
environments as well as in the human microbiome. Our predictive model can be used to further 
identify with high accuracy the metabolic potential of bacteria in most environments and could 
support decision making and improve monitoring of the potential for arsenic exposure around 
the world. 

Abbreviations
GAsDb - The Genomic database for arsenic biotransformation. This includes all the genes 
found by the HMMs, as well as information (taxonomic and environmental) about the genomes 
from which they were found.
AsPRO - Unique arsenic gene profile in genomes. Each AsPRO represents all the genomes 
that contain the same genes (including gene frequency). 
AsBT-Guild - Arsenic biotransformation guild. A cluster of AsPRO that shares a representative 
set of genes that can be translated into a function.
AsBT-SubGuild - a subset of AsBT-Guild derived from local clustering of the AsPRO. 

Methods

Creating the genomic database

Sequence data was downloaded from NCBI Reference Sequence Database (89,253 
genome assemblies) and the Banfield lab database (3,512 binning projects) were downloaded 
in 2018 . In both cases, open reading frames (ORFs) were predicted by Prodigal [30] with amino 

https://www.zotero.org/google-docs/?a3vlU6
https://www.zotero.org/google-docs/?b0mxsJ
https://www.zotero.org/google-docs/?C4SaAi
https://www.zotero.org/google-docs/?bjLtr5
https://www.zotero.org/google-docs/?helYrw
https://www.zotero.org/google-docs/?sUXOFL
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acid sequences as the output. For the Banfield lab database an additional filtering step to 
remove unbinned scaffolds was needed before gene prediction. Due to the size and complexity 
of the data, it was not possible to access the quality of the metagenome-assembled genomes 
(MAGs). To compensate for that, we applied strict filtering parameters (see following sections) 
and removed data we were less confident about. 

Genome taxonomy was assigned using GTDB-Tk [13], followed by name and taxonomic 
hierarchy corrections to comply with the generally accepted knowledge. 

Environmental metadata information for the Refseq genomes was parsed from the 
genomes genbank file, and for the Banfield lab genomes information was known for each 
binning project. For parameters were chosen: Ecosystem, Environment type, geography 
location, Climate. The information was curated manually to the best of our capability, 
recognising that user input may be fuzzy or mislabeled. Ecosystem of origin included: terrestrial 
near-surface, marine, deep subsurface, engineered and host-associated. Environment type was 
a more refined parameter including 101 categories. The environmental and engineered 
ecosystems shared most of the environment type categories (e.g. sediment, freshwater) with a 
few unique categories per ecosystem (e.g. hydrothermal vent in the marine ecosystem or food 
product in the engineered ecosystem). The environment type categories for the host-associated 
ecosystem were based on the host identity (e.g human, sponge). Geographic locations (432 
locations) were either country or state/province for the largest countries (e.g. USA, China, 
Russia), as well as countries with a long north-south axis (e.g. Chile, Argentina). For climate we 
used the Köppen climate classification (retrieved from  https://en.climate-data.org/) for terrestrial 
locations and a more general climate description (i.e. polar, temperate, tropical) for marine 
locations. When a location contained multiple climate regions the most common climate was 
chosen. 

Designing Hidden Markov Model profiles for arsenic related genes

The initial seed sequences for the HMMs were either taken from TIGRFAM (arsA, arsB, 
ACR3, arsC Trx type, arsC low molecular weight type, arsH, aioA, aioB) or from literature 
describing confirmed enzyme function ( et al. 2017 [6] and references within). To each gene, 
additional putative seed sequences were added based on pBLAST searches [31] targeting 
varying phyla to increase the sequence diversity of the seed sequences. 

To verify the monophyletic clustering of the seed sequences a reference set of 
sequences was used. Using the NCBI Conserved Domain Database [32], sequences of each 
gene family were downloaded. Protein sequences were align using MAFFT [33], followed by 
tree construction with FastTree [34] and visualized in iTOL [35]. 

After clustering verification, the seed sequences were used to build an HMM with 
HMMER [36]. Threshold scores were assigned by searching the HMMs back against the 
reference sequence set and locating the highest score of a none-seed sequence. The threshold 
scores were reevaluated again by randomly subsetting 2000 hits from the Refseq HMM search 
outputs four times and checking scores against the seeds.

We were unsuccessful in creating a robust HMM for arsR so this gene was not included 
in the study.

https://www.zotero.org/google-docs/?UTAogP
https://en.climate-data.org/
https://www.zotero.org/google-docs/?9dkVmd
https://www.zotero.org/google-docs/?csU1LI
https://www.zotero.org/google-docs/?PvC5QS
https://www.zotero.org/google-docs/?Toww5d
https://www.zotero.org/google-docs/?OFGk0b
https://www.zotero.org/google-docs/?RyfuA3
https://www.zotero.org/google-docs/?JTncFr
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Filtering hits and identifying loci
Initial data filtering was done in R using the Rstudio integrated development environment 

[37,38]. Output tables from the HMM searches were loaded into Rstudio and merged into a 
single data table. Sequences with multiple HMMs hits were located and the best match was 
chosen based on the HMM score. Sequences were then filtered by their size, allowing a range 
between 50% to 200% of the mean length of the seed sequences. Thresholds were applied to 
indicate if a sequence was reliable or unreliable (but sequences were not filtered out).

Monophyletic clustering of sequence verification was conducted on the sequences as a 
final filtering step. To reduce computational requirements, the sequences were first clustered to 
representative sequences using MMseqs2 [39]. The representatives were then aligned with the 
seed and reference sequences and built a maximum-likelihood tree using IQ-Tree [40]. 
Representative clustering with the seeds were used to subset the hit database to include only 
verified hits.  

As loci were identified based on co-localization of genes on scaffolds. This was done by 
parsing the scaffold feature numbers output and locating sequential ORFs. While initially a gap 
of up to five features was allowed, the mean distance between ORFs was 1.17 (n = 386334, sd 
= 0.44). Following the identification of loci, a primary putative function was assigned to each of 
them, based on gene presence. An hierarchical assignment of primary function priorities 
oxidoreduction transformations (arsC types, aioA, arrA, arxA), followed by methyl 
transformations (arsM, arsI, arsH), transport (arsB, ACR3, arsJ, arsP), regulation (aioR, aioS, 
aioX, arrS), and auxiliary genes (all else). Function based filtering included removing all loci with 
auxiliary primary function and keeping regulatory loci that contained >50% reliable hits. 

Modeling genomes with unsupervised and supervised methods
Unsupervised clustering was done using Uniform Manifold Approximation and Projection 

for Dimension Reduction (UMAP) [41] combined with Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN) [42,43]. These methods were applied to 
cluster the arsenic biotransformation guilds and subguilds (AsBT-Guild and AsBT-SubGuild 
respectively) as well as the human microbiome by location clustering. For AsBT-Guild/AsBT-
SubGuild clustering the input table consisted of gene counts for each unique genomic profile 
(AsPRO). The human associated microbiome clustering input was AsBT-Guild counts for each 
group, based on location and bodily source. Data was Z-transformed prior to fit transforming 
with UMAP. For global structure clustering UMAP was run with n_neighbors = 120, and 
HDBSCAN was run with min_cluster_size = 100, and no value set for min_samples. For local 
structure clustering UMAP was run with n_neighbors = 30, and HDBSCAN was run with 
min_cluster_size = 100 and min_samples = 10. The first iteration of AsBT-Guild/AsBT-SubGuild 
clustering included all AsPROs. The largest resulting cluster did not have any defined 
metabolism and further investigation showed that the main driver defining the cluster was a low 
number of gene types in the AsPROs, primarily AsPROs with a single gene. To achieve better 
cluster metabolic resolution, the single genes AsPROs were removed and the clustering was 
redone using the same parameters. The removal of the single gene AsPROs did not affect the 

https://www.zotero.org/google-docs/?BmJFor
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global structure and within the subclusters of the local structure split the large AsBT-Guild into 
subclusters with resolved metabolism.

Supervised modeling of the relation between genome metadata and their assigned 
AsBT-Guild was done usingDistributed Random Forest with the H2O.ai machine learning 
software [44]. The software was selected since it enables the use of categorical predictor 
variables without the need for one-hot encoding, thus keeping the number of predictor variables 
low. Train and validation sets were split at 8:2 ratio. Fixed model parameters included balancing 
class distribution (balance_classes = True), and including all predictor columns at each level 
(mtries = -2). Additional parameters, selected by grid search were the method of histogram 
aggregation ('AUTO', 'Random', 'UniformAdaptive'), maximum tree depth (20,40,80), minimum 
number of observations for a leaf in order to split (1,10, 50), the number of bins to be included in 
the histogram (5, 50, 100, 500, 1000), and the  number of trees to build in the model (50, 200). 
The best model from the grid search was selected by the mean per class accuracy index 
(mean_per_class_accuracy = 0.424). The resulting model had the following parameter: 
histogram_type = ‘UniformAdaptive’, max_depth = 20, min_rows = 1, nbins_cats = 100, ntrees = 
200. Feature importance was calculated as follows: “H2O-3 looks at the squared error before 
and after the split using a particular variable. The difference is the improvement. H2O uses the 
improvement in squared error for each feature that was split on (rather than the accuracy). Each 
feature’s improvement is then summed up at the end to get its total feature importance (and 
then scaled between 0-1)” (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-
importance.html).

Supplementary information
Supplementary information 1: HMM files, score cutoffs, and ML trees of new clades - 
https://figshare.com/account/projects/117447/articles/14912763
Supplementary information 2: Random Forest Classifier Model - 
https://figshare.com/account/projects/117447/articles/15177543 
Supplementary table 1: HMMs output for all genes (after filtering) included in this work  - 
https://figshare.com/account/projects/117447/articles/14912988
Supplementary table 2: Summary of loci - 
https://figshare.com/account/projects/117447/articles/14912994
Supplementary table 3: Count matrix of unique loci variants by genome - 
https://figshare.com/account/projects/117447/articles/15177510
Supplemental table 4: Genome metadata and clustering- 
https://figshare.com/account/projects/117447/articles/14913075
Supplementary table 5: Enriched features in AsBT-Guilds -  
https://figshare.com/account/projects/117447/articles/14955555
Supplementary table 6 : Enriched features in AsBT-SubGuilds - 
https://figshare.com/account/projects/117447/articles/14955558
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