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Abstract. Recent works about ecumenical systems, where connectives from
classical and intuitionistic logics can co-exist in peace, warmed the discussion on
proof systems for combining logics. This discussion has been extended to alethic
modalities using Simpson’s meta-logical characterization: necessity is independent
of the viewer, while possibility can be either intuitionistic or classical. In this
work, we propose a pure, label free calculus for ecumenical modalities, nEK,
where exactly one logical operator figures in introduction rules and every basic
object of the calculus can be read as a formula in the language of the ecumenical
modal logic EK. We prove that nEK is sound and complete w.r.t. the ecumenical
birelational semantics and discuss fragments and extensions.

1 Introduction

Ecumenism can be seen as the search for unicity, that is, for different thoughts, ideas or
points of view to coexist in harmony. In mathematical logic, ecumenical approaches for
a peaceful coexistence of logical systems have been studied deeply, e.g. [Gir93,LM11].

More recently, Prawitz proposed a natural deduction system combining classical and
intuitionistic logics [Pra15]. The fundamental question he addressed was: what makes a
connective classical or intuitionistic? We will illustrate, with a simple example, some
ways of answering this. Consider the following statement, where x, y, z ∈ R and z ≥ 0:

if x + y = 2z then x ≥ z or y ≥ z

How should we interpret “if then” and “or” in this sentence for it to be valid? The answer
is: it depends! If we view this sentence with the classical mathematician’s eyes (CM), the
intuitionistic mathematician (IM) would not see a theorem. Since intuitionists can see
classical tautologies through the lens of double negation, we could embed this classical
interpretation in the intuitionistic setting as:

not (not (if x + y = 2z then x ≥ z or y ≥ z))

This would indeed be a valid statement for both CM and IM.
A finer possibility for guaranteeing the validity of the sentence is to give to the

implication an intuitionistic interpretation and to the disjunction a classical one. Namely,
the following statement is also a theorem for both CM and IM:

if x + y = 2z then not (not (x ≥ z or y ≥ z))
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Prawitz’ ecumenism idea can be summarized as: pinpoint the exact places where
the classical and intuitionistic views differ and signal it such that IM knows to read it
with her “ecumenical glasses”, i.e. through a double negation filter. The example above
shows that CM and IM can consider, for example, different connectives for disjunction
∨c and ∨i, respectively. Prawitz answered this question for all the first-order connectives
in [Pra15] by presenting an ecumenical natural deduction system.

In [PPdP19], we justified some of Prawitz’ choices via pure proof theoretical reason-
ing, using sequent based systems. Consider the well known classical and intuitionistic
sequent systems G3c and G3i [TS96]. Since all rules in G3c are invertible, no choices
have to be made during a classical proof search: one can apply any rule bottom-up in
any order. This is not the case in G3i: choices may have to be made for disjunction,
implication and the existential quantifier. This suggests that CM and IM would share the
universal quantifier, conjunction and the constant for the absurd (hence also negation)
– the neutral connectives, but they would each have their own existential quantifier,
disjunction and implication, with different meanings.

Following this discussion, the originial statement is ecumenically translated as

(x + y = 2z)→i x ≥ z ∨c y ≥ z

Now the classical mathematician would see everything just fine (since she cannot
differentiate classical from intuitionistic), while the intuitionistic mathematician would
put on her ecumenical glasses only when observing the disjunction, so they would both
agree on the statement. This is the essence of ecumenism!

In [MPPS20], we have extended this discussion to modalities to address the question:
how would CM and IM view such concepts as “necessity” and “possibility”? Using
Simpson’s meta-logical characterization [Sim94], the answer is that, if something is
necessarily true, then it is independent of the viewer. Possibility, on the other hand, can
be either intuitionistic: in the sense that one should have a guarantee that something
will eventually be true; or classical: in the sense that it is not the case that necessarily
something will not be true. Hence CM and IM share the necessity connective �, but
each would have their own possibility views, represented by ^c and ^i, respectively.

Our solution, however, was not entirely satisfactory since the ecumenical modal
calculi presented so far are not pure [Dum91]: the introduction rules for some connectives
depend on negation and other connectives. Moreover, the ecumenical modal systems
in [MPPS20] make use of labels: the basic objects used in proofs are from a more
expressive language than the logic itself, which partially encodes the logic’s semantics.

This paper tackles these issues, proposing a pure label free calculus for ecumenical
modalities, where every basic object of the calculus can be read as a formula in the
language of the logic. For that, we will use nested systems [Bull92,Kas94,Brü09,Pog09]
with a stoup [Gir91], together with a new notion of polarities for ecumenical formulas.
Nested systems are extensions of the sequent framework where each sequent is replaced
by a tree of sequents. The stoup is a distinguished context containing a single formula.
Finally, formulas can be polarized as negative if the main connective is classical or the
negation, or as positive otherwise. This is unlike any other notion of polarities that we
know of, but could well be related [Lau02]. The idea is that negative formulas are stored
in the classical context, while positive formulas are decomposed in the stoup. This not
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only allows for establishing the meaning of modalities via the rules that determine their
correct use (logical inferentialism), but also places the ecumenical system as a unifying
framework for modalities of which well known modal systems are fragments.
Organization and contributions. Sec. 2 reviews the notation for modal formulas, the
labeled system labEK and the ecumenical birelational semantics; Sec. 3 introduces
the ecumenical nested system nEK and its normalization procedure; in Secs. 4 and 5
soundness and completeness of nEK w.r.t. the ecumenical birelational semantics are
proved; Sec. 6 identifies the classical and intuitionistic fragments of nEK; Sec. 7 discusses
some modal extensions; and Sec. 8 concludes the paper.

2 Preliminaries

In [MPPS20] we proposed an ecumenical version of normal modal logic, where classical
and intuitionistic modalities co-exist. The system adopts Simpson’s approach [Sim94],
called meta-logical characterization, where a modal logic is characterized by the in-
terpretation of modalities in a first-order meta-theory. We translated modalities into
the ecumenical first-order logic LE [Pra15,PPdP19], justified similarly by the standard
interpretation of alethic modalities in a model. The presence of classical and intuition-
istic existential connectives in LE induces two possibility modalities, while the neutral
universal quantifier in LE entails a neutral necessity modality.

LanguageA of ecumenical modal formulas is generated by the following grammar:

A ::= pi | pc | ⊥ | ¬A | A ∧ A | A ∨i A | A ∨c A | A→i A | A→c A | �A | ^iA | ^cA

We use subscript c for the classical meaning and i for the intuitionistic one, dropping
such subscripts when formulas/connectives can have either meaning. A classical version
pc and an intuitionistic version pi of each propositional variable co-exist in A: their
meanings are different but related via double negation. The neutral logical connectives
{⊥,¬,∧,�} are common for classical and intuitionistic fragments, while {→i,∨i,^i} and
{→c,∨c,^c} are restricted to intuitionistic and classical interpretations, respectively.

The meta-logical characterization naturally induces a labeled proof system [Sim94].
The language L of labeled modal formulas is determined by labeled formulas of the
form x : A with A ∈ A and relational atoms of the form xRy, where x, y range over a set
of variables. Labeled sequents have the form Γ ⇒ x : A, where Γ is a multiset containing
labeled modal formulas and relational atoms. In what follows, if L is a sequent based
calculus, we use `L Γ ⇒ A to denote that there is an L-proof of Γ ⇒ A. The labeled
ecumenical system labEK [MPPS20] is presented in Figure 1.

Example 1. Below the derivation in labEK of the distributivity of the intuitionistic
diamond w.r.t the intuitionistic disjunction (see axiom k2 in Section 5).

xRy, y : A⇒ y : A init

xRy, y : A⇒ x : ^iA
^iR

xRy, y : A⇒ x : ^iA ∨i ^iB
∨iR

xRy, y : B⇒ y : B init

xRy, y : B⇒ x : ^iB
^iR

xRy, y : B⇒ x : ^iA ∨i ^iB
∨iR

xRy, y : A ∨i B⇒ x : ^iA ∨i ^iB
∨iL

x : ^i(A ∨i B)⇒ x : ^iA ∨i ^iB
^iL

⇒ x : ^i(A ∨i B)→i (^iA ∨i ^iB)
→i R
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x : pi, Γ ⇒ x : pi
init x : ⊥, Γ ⇒ z : C

⊥L
Γ ⇒ y : ⊥
Γ ⇒ x : A W

x : pi, Γ ⇒ z : ⊥
x : pc, Γ ⇒ z : ⊥ Lc

x : ¬pi, Γ ⇒ x : ⊥
Γ ⇒ x : pc

Rc

x : A, x : B, Γ ⇒ z : C
x : A ∧ B, Γ ⇒ z : C ∧L

Γ ⇒ x : A Γ ⇒ x : B
Γ ⇒ x : A ∧ B ∧R

x : ¬A, Γ ⇒ z : A
x : ¬A, Γ ⇒ z : ⊥ ¬L

x : A, Γ ⇒ x : ⊥
Γ ⇒ x : ¬A ¬R

x : A, Γ ⇒ z : C x : B, Γ ⇒ z : C
x : A ∨i B, Γ ⇒ z : C

∨iL
Γ ⇒ x : A j

Γ ⇒ x : A1 ∨i A2
∨iR j

x : A, Γ ⇒ z : ⊥ x : B, Γ ⇒ z : ⊥
x : A ∨c B, Γ ⇒ z : ⊥ ∨cL

Γ, x : ¬A, x : ¬B⇒ x : ⊥
Γ ⇒ x : A ∨c B

∨cR

x : A→i B, Γ ⇒ x : A x : B, Γ ⇒ z : C
x : A→i B, Γ ⇒ z : C

→i L
x : A, Γ ⇒ x : B
Γ ⇒ x : A→i B

→i R

x : A→c B, Γ ⇒ x : A x : B, Γ ⇒ z : ⊥
x : A→c B, Γ ⇒ z : ⊥ →c L

x : A, x : ¬B, Γ ⇒ x : ⊥
Γ ⇒ x : A→c B

→c R

xRy, y : A, x : �A, Γ ⇒ z : C
xRy, x : �A, Γ ⇒ z : C �L

xRy, Γ ⇒ y : A
Γ ⇒ x : �A �R

xRy, y : A, Γ ⇒ z : C
x : ^iA, Γ ⇒ z : C

^iL

xRy, Γ ⇒ y : A
xRy, Γ ⇒ x : ^iA

^iR
xRy, y : A, Γ ⇒ z : ⊥
x : ^cA, Γ ⇒ z : ⊥ ^cL

x : �¬A, Γ ⇒ x : ⊥
Γ ⇒ x : ^cA

^cR

Fig. 1. Ecumenical modal system labEK. In rules �R,^iL,^cL, the eigenvariable y does not occur
free in any formula of the conclusion. In the rule W, either A , ⊥ or x , y.

2.1 Ecumenical birelational models

The ecumenical birelational Kripke semantics, which is an extension of the proposal
in [PR17] to modalities, was presented in [MPPS20].

Definition 2. A birelational model [PS86] is a quadrupleM = (W,≤,R,V) with a poset
(W,≤), a binary relation R ⊂ W ×W, a monotone valuation V : 〈W,≤〉 → 〈2P,⊆〉 and
F1. For all worlds w, v, v′, if wRv and v ≤ v′, there is a w′ such that w ≤ w′ and w′Rv′;
F2. For all worlds w′,w, v, if w ≤ w′ and wRv, there is a v′ such that w′Rv′ and v ≤ v′.

An ecumenical modal model is a birelational model such that truth of an ecumenical
formula at a point w is the smallest relation |=E satisfying
M,w |=E pi iff pi ∈ V(w);
M,w |=E A ∧ B iff M,w |=E A andM,w |=E B;
M,w |=E A ∨i B iff M,w |=E A orM,w |=E B;
M,w |=E A→i B iff for all v such that w ≤ v,M, v |=E A impliesM, v |=E B;
M,w |=E ¬A iff for all v such that w ≤ v,M, v 6|=E A;
M,w |=E ⊥ never holds;
M,w |=E �A iff for all v,w′ such that w ≤ w′ and w′Rv,M, v |=E A.
M,w |=E ^iA iff there exists v such that wRv andM, v |=E A.
M,w |=E pc iff M,w |=E ¬(¬pi);
M,w |=E A ∨c B iff M,w |=E ¬(¬A ∧ ¬B);
M,w |=E A→c B iff M,w |=E ¬(A ∧ ¬B);
M,w |=E ^cA iff M,w |=E ¬�¬A.
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A formula A is valid in a modelM = (W,≤,R,V) if for all w ∈ W,M,w |=E A. A
formula A is valid in a frame (W,≤,R) if, for all valuations V, A is valid in the model
(W,≤,R,V). Finally, we say that a formula is valid, if it is valid in all frames.

Since, restricted to intuitionistic and neutral connectives, |=E is the usual birelational
interpretation |= for IK [Sim94], and since the classical connectives are interpreted via
the neutral ones using the double-negation translation, an ecumenical birelational model
coincides with the standard birelational model for intuitionistic modal logic IK. Hence
the following result easily holds from the similar result for IK.

Theorem 3 ([MPPS20]). The system labEK is sound and complete w.r.t. the ecumenical
modal semantics, that is, `labEK x : A iff |=E A.

Remark 4. It is interesting to note that the relational semantics for the classical connec-
tives is surprisingly more complex than for the intuitionistic ones. In fact, the definition
of |=E for the classical diamond is equivalent to

w

v

v0
w0

u

M,w |=E ⌃cA i↵ 8v � w.9u.v ( �R � ) u, M, u |=E A
w

v

v0
w0

u

M,w |=E ⌃cA i↵ 8v � w.9u.v( �R � )u

where v (≤ ◦R ◦ ≤) u represents that there exist v′,w′ ∈ W such that v ≤ v′, v′Rw′

and w′ ≤ u. Although intriguing, this kind of two-level semantics also appears in the
relational semantics for classical logic in [ILH10], where the forcing relation is defined
on top of the primitive notion of “strong refutation”.

3 A nested system for ecumenical modal logic

The two main criticisms regarding system labEK are: (i) it is not pure, in the sense that
negation still plays an important role on interpreting classical connectives – for example,
the rule ^cR introduces a classical diamond via its boxed negated version; and (ii) it
includes labels in the technical machinery, hence allowing one to write sequents that
cannot always be interpreted within the ecumenical modal language.

This section is devoted to tackle these points and propose a pure label free calculus
for ecumenical modalities, where every basic object of the calculus can be translated as
a formula in the language of the logic, with no use of auxiliary negations.

The inspiration comes from Girard’s notion of stoup [Gir91] and Straßburger’s nested
system for IK [Str13]. The main idea is to let sequents of the form Σ ⇒ Π , with Σ,Π
multisets of formulas, go through a two-phase refinement: the first one is to separate
the succedent Π into two parts: one that is essentially classical; and another containing
a single formula, the stoup. The second one is to add nested layers to sequents, which
intuitively corresponds to worlds in a relational structure [Fit14,Brü09,Pog09].

The primary key concept to distinguish which formulas are allowed or not in the
stoup is the following notion of polarity.

Definition 5. A formula is called negative if its main connective is classical or the
negation, and positive otherwise (we will use N for negative and P for positive formulas).
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The structure of a nested sequent for ecumenical modal logics is a tree whose nodes
are multisets of formulas, just like in [Str13], with the relationship between parent
and child in the tree represented by bracketing [·]. The difference however is that the
ecumenical formulas can be left inputs (in the left contexts – marked with a full circle •),
right inputs (in the classical right contexts – marked with a triangle O) or a single right
output (the stoup – marked with a white circle ◦).

Definition 6. Ecumenical nested sequents are defined in terms of a grammar of input
sequents (written Λ) and full sequents (written Γ) where the left/right input formulas
are denoted by A• and AO, respectively, and A◦ denote the output formula. When the
distinction between input and full sequents is not essential or cannot be made explicit,
we will use ∆ to stand for either case.

Λ B ∅ | A•, Λ | AO, Λ | [Λ] Γ B A◦, Λ | [Γ], Λ ∆ B Λ | Γ

As usual, we allow sequents to be empty, and we consider sequents to be equal modulo
associativity and commutativity of the comma.

We write Γ⊥
◦

for the result of replacing an output formula from Γ by ⊥◦, while Λ⊥
◦

represents the result of adding anywhere of the input context Λ the output formula ⊥◦.
Finally, ∆∗ is the result of erasing an output formula (if any) from ∆.

Observe that full sequents Γ necessarily contain exactly one output-like formula,
having the form Λ1, [Λ2, [. . . , [Λn, A◦]] . . .].

Example 7. The nested sequent ^cAO, [¬A◦] represents a tree of sequents where ^cA is
in the right (classical) input context of the root sequent, while ¬A is in the output context
(stoup), in the leaf sequent.

The next definition (of contexts) allows for identifying subtrees within nested se-
quents, which is necessary for introducing inference rules in this setting.

Definition 8. An n-ary context ∆
{

1
}
· · ·

{n }
is like a sequent but contains n pairwise

distinct numbered holes { } wherever a formula may otherwise occur. It is a full or a
input context when ∆ = Γ or Λ respectively.

Given n sequents ∆1, . . . , ∆n, we write ∆{∆1} · · · {∆n} for the sequent where the i-th
hole in ∆

{
1
}
· · ·

{n }
has been replaced by ∆i (for 1 ≤ i ≤ n), assuming that the result is

well-formed, i.e., there is at most one output formula. If ∆i = ∅ the hole is removed.
Given two nested contexts Γi{} = ∆i

1,
[
∆i

2,
[
. . . ,

[
∆i

n, {}
]]
. . .

]
, i ∈ {1, 2}, their merge5 is

Γ1 ⊗ Γ2{} = ∆1
1, ∆

2
1,

[
∆1

2, ∆
1
2,

[
. . . ,

[
∆1

n, ∆
2
n, {}

]]
. . .

]
Figure 2 presents the nested sequent system nEK for ecumenical modal logic EK.

Example 9. Below left the nested proof corresponding to the labeled one in Example 1.

5 As observed in [Pog09,Lel19], the merge is a “zipping” of the two nested sequents along the
path from the root to the hole.
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Λ
{
p•i , p◦i

} init
Γ{⊥•} ⊥

• Γ⊥
◦

Γ
W

Γ⊥
◦ {

p•i
}

Γ⊥
◦ {

p•c
} p•c

Γ⊥
◦ {

pOi
}

Γ⊥
◦ {

pOc
} pOc

Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ∗{¬A•, A◦}
Γ⊥

◦ {¬A•} ¬
• Γ⊥

◦ {A•}
Γ⊥

◦ {¬AO} ¬
O

Γ{A•} Γ{B•}
Γ{A ∨i B•} ∨•i

Λ
{
A◦j

}
Λ
{
A1 ∨i A◦2

} ∨◦i j

Γ⊥
◦ {A•} Γ⊥

◦ {B•}
Γ⊥

◦ {A ∨c B•}
∨•c

Γ⊥
◦ {AO, BO}

Γ⊥
◦ {A ∨c BO} ∨

O
c

Γ∗{A→i B•, A◦} Γ{B•}
Γ{A→i B•} →•i

Λ{A•, B◦}
Λ{A→i B◦} →

◦
i

Γ∗{A→c B•, A◦} Γ⊥
◦ {B•}

Γ⊥
◦ {A→c B•}

→•c

Γ⊥
◦ {A•, BO}

Γ⊥
◦ {A→c BO} →

O
c

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦ Γ{[A•]}
Γ{^iA•}

^•i
Λ1{[A◦, Λ2]}
Λ1{^iA◦, [Λ2]} ^

◦
i

Γ⊥
◦ {[A•]}

Γ⊥
◦ {^cA•}

^•c
∆⊥
◦

1

{
^cAO,

[
AO, ∆⊥

◦
2

]}
∆⊥
◦

1

{
^cAO,

[
∆⊥
◦

2

]} ^Oc
Γ∗{PO, P◦}
Γ⊥

◦ {PO} dec
Λ{NO,⊥◦}
Λ{N◦} sto

Fig. 2. Nested ecumenical modal system nEK. P is a positive formula, N is a negative formula.

[A•, A◦] init

^iA◦, [A•]
^◦i

^iA ∨i ^iB◦, [A•]
∨◦i

[B•, B◦] init

^iB◦, [B•]
^◦i

^iA ∨i ^iB◦, [B•]
∨◦i

^iA ∨i ^iB◦, [A ∨i B•]
∨•i

^i(A ∨i B)•,^iA ∨i ^iB◦
^•i

^i(A ∨i B)→i (^iA ∨i ^iB)◦
→◦i

[
A•, AO,⊥◦] initc[
AO,¬A◦

] ¬◦
^cAO, [¬A◦]

^Oc

�¬A◦,^cAO �
◦

¬�¬A•,^cAO,⊥◦ ¬
•

¬�¬A•,^cA◦ sto

The derivation above right shows part of the proof that ^c can be defined from �
(^cA ≡ ¬�¬A). Note the instance of the classical general version of the initial axiom,
initc (see Theorem 11 in the next section). It also illustrates well the relationship between
nestings, classical inputs, and birelational structures: reading the proof bottom-up, the
sto rule is a delay on applying rules over classical connectives. It corresponds to moving
the formula up w.r.t. ≤ in the birelational semantics. The rule �◦, on the other hand,
slides the formula to a fresh new world, related to the former one through the relation R.
Finally, rule ¬◦ also moves up the formula w.r.t. ≤. Compare this description with the
image in Remark 4. In this paper, we will not explore formally the relationship between
delays/negations/nestings and semantics.

3.1 Harmony

A logical connective is called harmonious in a certain proof system if there exists a
certain balance between the rules defining it. For example, in natural deduction based
systems, harmony is ensured when introduction/elimination rules do not contain insuf-
ficient/excessive amounts of information [DD20]. In sequent calculus, this property is
often guaranteed by the admissibility of a general initial axiom (identity-expansion) and



8 Marin, Pereira, Pimentel, Sales

of the cut rule (cut-elimination).In the following, we will prove harmony, together with
some intermediate results. We start with a proof theoretical result in nEK, which has a
standard proof (see [PPdP19] and [MPPS20] for similar results).

Lemma 10. 1. In nEK, the rules ∨•c ,∨Oc ,→•c ,→Oc ,¬•,¬◦, p•c , pOc ,^
•
c ,^

O
c and dec are

invertible, that is, in any application of such rules, if the conclusion is a provable
nested sequent so are the premises.

2. The rules ∧•,∧◦,∨•i ,→◦i ,^•i ,�•,�◦ and sto are totally invertible, that is, they are
invertible and can be applied in any contexts.

3. The following rules are admissible in nEK

Γ

Λ ⊗ Γ Wc
Λ ⊗ Λ ⊗ Γ
Λ ⊗ Γ Cc

Proof. The proofs are by standard induction on the height of derivations. The proof of
admissibility of Wc does not depend on any other result, while the admissibility of Cc

depends on the invertibility results above.

The invertible but not totally invertible rules in nEK concern negative formulas,
hence they can only be applied in the presence of empty stoups (⊥◦). Note also that the
rules W,∨◦i , and ^◦i are not invertible, while→•i is invertible only w.r.t. the right premise.

Theorem 11. The following rules are admissible in nEK

Λ{A•, A◦} initi Γ⊥
◦ {A•, AO} initc

Proof. The proof of admissibility of the general initial axioms is by mutual induction.
Below we show the modal cases where, by induction hypothesis, instances of the axioms
hold for the premises.

Γ⊥
◦ {[

A•, AO
]} initc

Γ⊥
◦ {^cAO, [A•]} ^

O
c

Γ⊥
◦ {^cA•,^cAO} ^

•
c

Λ{[A•, A◦]} initi

Λ{�A•, [A◦]} �
•

Λ{�A•,�A◦} �
◦

Proving admissibility of cut rules in sequent based systems with multiple contexts
is often tricky, since the cut formulas can change contexts during cut reductions. This
is the case for nEK. The proof is by mutual induction, with inductive measure (n,m)
where m is the cut-height, the cumulative height of derivations above the cut, and n is
the ecumenical weight of the cut-formula, defined as

ew(Pi) = ew(⊥) = 0 ew(A ? B) = ew(A) + ew(B) + 1 if ? ∈ {∧,→i,∨i}
ew(Pc) = 4 ew(♥A) = ew(A) + 1 if ♥ ∈ {¬,^i,�}
ew(^cA) = ew(A) + 4 ew(A ◦ B) = ew(A) + ew(B) + 4 if ◦ ∈ {→c,∨c}

Intuitively, the ecumenical weight measures the amount of extra information needed (the
negations added) to define classical connectives from intuitionistic and neutral ones.
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Theorem 12. The following intuitionistic and classical cut rules are admissible in nEK

Λ{P◦} Γ{P•}
Λ ⊗ Γ{∅} cut◦

Λ⊥
◦ {NO} Γ{N•}
Λ ⊗ Γ{∅} cutO

Proof. The dynamic of the proof is the following: cut applications either move up in the
proof, i.e. the cut-height is reduced, or are substituted by simpler cuts of the same kind,
i.e. the ecumenical weight is reduced, as in usual cut-elimination reductions. The cut
instances alternate between intuitionistic and classical (and vice-versa) in the principal
cases, where the polarity of the subformulas flip. We sketch the main cut-reductions.

– Base cases. Consider the derivation below left
π

Λ
{
p◦i

}
Γ
{
p•i

} init

Λ ⊗ Γ{∅} cut◦

π
Λ
{
p◦i

}
Λ ⊗ Γ∗

{
p◦i

} Wc

If p•i is principal, then Γ
{
p•i

}
= Γ∗

{
p◦i , p•i

}
and the reduction is the one above right.

If p•i is not principal, then there is an atom q for which the pair q◦i , q
•
i appears in

Λ ⊗ Γ{∅} and the reduction is a trivial one. Similar analyses hold for cutO, when the
left premise is an instance of init, and for the other axioms.

– Non-principal cases. In all the cases where the cut-formula is not principal in one of
the premises, the cut moves upwards. We illustrate the most significant case, where
a decide rule is applied, as in the derivation below left.

π1
Λ{PO, P◦}{NO}
Λ⊥

◦ {PO}{NO} dec π2
Γ{N•}

Λ{PO} ⊗ Γ{∅} cutO

π1
Λ{PO, P◦}{NO}

π2
Γ⊥

◦ {N•}
Λ{PO, P◦} ⊗ Γ∗{∅} cutO

Λ{PO} ⊗ Γ⊥◦ {∅} dec

The cut moves upwards in the right premise until N• is principal in the bottom-most
step of π2, at which point Γ = Γ⊥

◦
and dec can move below the cut, obtaining the

derivation above right.
– Principal cases. If the cut formula is principal in both premises, then we need to be

extra-careful with the polarities. We illustrate below the reduction for case where
N = P→c Q, with P,Q positive.

π1
Λ⊥

◦ {P•,QO}
Λ⊥

◦ {P→c QO} →
O
c

π2
Γ∗{P→c Q•, P◦}

π3
Γ⊥

◦ {Q•}
Γ⊥

◦ {P→c Q•} →•c
Λ ⊗ Γ⊥◦ {∅} cutO0

reduces to

π3

Γ⊥
◦ {Q•}

Γ⊥
◦ {¬QO} ¬

O

π1

Λ⊥
◦ {P•,QO}

Λ⊥
◦ {P→c QO} →

O
c

π2
Γ∗{P→c Q•, P◦}

Λ ⊗ Γ∗{P◦} cutO2
π≡1

Λ⊥
◦ {P•,¬Q•}

Λ2 ⊗ Γ⊥◦ {¬Q•} cut◦

Λ2 ⊗ Γ∗ ⊗ Γ⊥◦ {∅} cutO1

Λ ⊗ Γ⊥◦ {∅} Cc
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where π≡1 is the same as π1 where every application of the rule dec over QO is
substituted by an application of ¬• over ¬Q•. Observe that the cut-formula of cutO1
has lower ecumenical weight than cutO0 , while the cut-height of cutO2 is smaller than
cutO0 . Finally, observe that this is a non-trivial cut-reduction: usually, the cut over
the implication is replaced by a cut over Q first. Due to polarities, if Q is positive,
then ¬Q is negative and cutting over it will add to the left context the classical
information Q, hence mimicking the behavior of formulas in the right input context.

4 Soundness

In this section we will show that all rules presented in Figure 2 are sound w.r.t. the
ecumenical birelational model. The idea is to prove that the rules of the system nEK
preserve validity, in the sense that if the interpretation of the premises is valid, so is the
interpretation of the conclusion.

The first step is to determine the interpretation of ecumenical nested sequents. In this
section, we will present the translation of nestings to labeled sequents, hence establishing,
at the same time, soundness of nEK and the relation between this system with labEK.

First of all, we observe that the entailment in ecumenical systems is intrinsically
intuitionistic, in the sense that Γ ⇒ B is valid iff

∧
Γ →i B is valid [PPdP19]. Moreover,

the classical connectives are defined semantically via the intuitionistic ones by sporadic
double-negation. Another interesting aspect is that, in the labeled ecumenical modal
system labEK, fresh world labels can be created (bottom-up) by the box operator in
succedents and both diamond connectives in antecedents. Yet, once this new label
is created, it is shared by all modal formulas, independently of their intuitionistic or
classical nature.

This suggests the following interpretation of nested into labeled ecumenical sequents.

Definition 13. Let Π•, ΠO, Π◦ represent that all formulas in the each multiset are re-
spectively input left, right, or output formulas. The underlying Π will represent in all
cases the corresponding multiset of unmarked formula inA. The translation [[·]]x from
nested into labeled sequents is defined recursively by

[[Π•1 , Π
O
2 , Π

◦
3 , [∆1], . . . , [∆n]]]x B ({xRxi}i, x : Π1, x : ¬Π2 ⇒ x : Π3) ⊗ {

[[∆i]]xi

}
i

where 1 ≤ i ≤ n, xi are fresh, and the merge operation on labeled sequents is defined as

(Σ1 ⇒ Π1) ⊗ (Σ2 ⇒ Π2) B Σ1, Σ2 ⇒ Π1, Π2

Given R a set of relational formulas, we will denote by xR∗z the fact that there is a path
from x to z in R, i.e., there are y j ∈ R for 0 ≤ j ≤ k such that x = y0, y j−1Ry j and yk = z.

That is, right input formulas are translated as negated left formulas in labeled se-
quents, and nestings correspond to relational altoms. The next result shows that, in fact,
this interpretation is correct.

Theorem 14. Let Γ be a nested sequent and x be any label, if `nEK Γ then `labEK [[Γ]]x.
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Proof. The proof is by structural induction on the proof π of Γ. We will illustrate a
classical and a modal case.

– If the last rule applied in π is ∨Oc , by induction hypothesis,

[[Γ⊥
◦ {

AO, BO
}
]]x = R, Σ, z : ¬A, z : ¬B⇒ x : ⊥

is provable for a set R of relational atoms and a multiset Σ of labeled formulas,
obtained by translating Γ⊥

◦ {∅} and such that xR∗z ∈ R. Hence:

R, Σ, z : ¬A, z : ¬B⇒ z : ⊥
R, Σ ⇒ z : A ∨c B

∨cR

R, Σ, z : ¬(A ∨c B)⇒ x : ⊥ ¬L

– If the last rule applied in π is ^Oc , by induction hypothesis,

[[∆⊥
◦

1

{
^cAO,

[
AO, ∆⊥

◦
2

]}
]]x = R, zRy, Σ, z : ¬(^cA), y : ¬A⇒ x : ⊥

is provable for a set R and a multiset Σ of relational and labeled formulas, resp.,
obtained by translating sequents ∆⊥

◦
1 and ∆⊥

◦
2 , and where xR∗z ∈ R. Hence:

R, zRy, Σ, z : ¬(^cA), y : ¬A⇒ z : ⊥
R, zRy, Σ, z : ¬(^cA), z : �¬A, y : ¬A⇒ z : ⊥ W

R, zRy, Σ, z : ¬(^cA), z : �¬A⇒ z : ⊥ �L

R, zRy, Σ, z : ¬(^cA)⇒ z : ^cA
^cR

R, zRy, Σ, z : ¬(^cA)⇒ x : ⊥ ¬L

Due to rule W in labEK, the label assigned to ⊥ on the right is irrelevant in both cases.

The proof above also establishes the relationship between proofs in nEK and labEK:
the right input context stores negative formulas, which are in fact negated positive
formulas (as in [Gir91]), and the decision rule dec in nEK is mimicked in labEK by
applications of the left rule for negation. In this way, the use of nestings together with
decision and store rules imposes a discipline on rule applications in labeled systems.

Theorems 3 and 14 immediately imply the following.

Corollary 15. Nested system nEK is sound w.r.t. ecumenical birelational semantics.

Finally, we observe that from labeled to nested sequents, on the other hand, is not
a simple task, sometimes even impossible. In fact, although the relational atoms of a
sequent appearing in a labEK proof can be arranged so as to correspond to nestings,
in general, if the relational context is not tree-like [GR12], the existence of such a
translation is not clear. For instance, how should the sequent xRy, yRx, x : A⇒ y : B be
interpreted in modal systems with symmetrical relations?

Hence, we will avoid the translation method for proving completeness, which will
instead be proven in Section 5 with respect to the Hilbert system.

However, thanks to their tree shape, it is possible to interpret nested sequents as
ecumenical modal formulas, and hence prove soundness in the same way as in [Str13].
This direct interpretation of nested sequents as ecumenical formulas means that nEK is a
so-called internal proof system. We thus finish this section by sketching an alternative
proof of soundness of nEK w.r.t. the ecumenical birelational semantics.
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Definition 16. The formula translation et(·) for ecumenical nested sequents is given by

et(∅) B > et(A•, Λ) B A ∧ et(Λ)
et(AO, Λ) B ¬A ∧ et(Λ) et([Λ1], Λ2) B ^iet(Λ1) ∧ et(Λ2)
et(Λ, A◦) B et(Λ)→i A et(Λ, [Γ]) B et(Λ)→i �et(Γ)

where all occurrences of A ∧ > and > →i A are simplified to A. We say a sequent is
valid if its corresponding formula is valid.

The following technical lemma holds in nEK, adapting the proof from NIK.

Lemma 17. [Str13, Lemmas 4.3 and 4.4] Let ∆ and Σ be input (resp. full) sequents,
and Γ{ } be a full context (resp. Λ{ } be an input context). If et(∆)→i et(Σ) is valid, then
et(Γ{Σ})→i et(Γ{∆}) and et(Λ{∆})→i et(Λ{Σ}) are valid.

The next theorem shows that the rules of nEK preserve validity in ecumenical modal
frames w.r.t. the formula interpretation et(·).
Theorem 18. Let

Γ1 . . . Γn

Γ
r n ∈ {0, 1, 2}

be an instance of the rule r in the system nEK. Then et(Γ1) ∧ . . . ∧ et(Γn) →i et(Γ) is
valid in the birelational ecumenical semantics.

Proof. The proof for the intuitionistic propositional and modal connectives follows the
same lines as in [Str13]. For the other cases, due to Lemma 17, it is sufficient to show
that the following formulas are valid; all such proofs are straightforward.

1. for W: ⊥ →i A
2. for ¬•: (¬A→i A)→i (¬¬A)
3. for ¬O: ¬A→i ¬A
4. for ∨•c : (¬A ∧ ¬B)→i (¬(A ∨c B))
5. for ∨Oc : (¬(¬A ∧ ¬B))→i (A ∨c B)
6. for→•c : (((A→c B)→i A) ∧ (¬B))→i (¬(A→c B))
7. for→Oc : (¬(A ∧ ¬B))→i (A→c B)
8. for p•c : (¬pi)→i (¬pc)
9. for pOc : (¬¬pi)→i pc

10. for ^•c : (¬^iA)→i (¬^cA)
11. for ^Oc : (�¬A)→i (¬^cA)

5 Completeness

Classical modal logic K is defined as propositional classical logic, extended with the
necessitation rule (presented in Hilbert style) A/�A and the distributivity axiom k :
�(A→ B)→ (�A→ �B).

There are, however, many variants of axiom k that induce logics that are classically,
but not intuitionistically, equivalent (see [PS86,Sim94]). In fact, the following axioms
follow from k via the De Morgan laws, but are intuitionistically independent

k1 : �(A→ B)→ (♦A→ ♦B) k2 : ♦(A ∨ B)→ (♦A ∨ ♦B)
k3 : (♦A→ �B)→ �(A→ B) k4 : ♦⊥ → ⊥
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Combining axiom k with axioms k1 − k4 defines intuitionistic modal logic IK [PS86].
In the ecumenical setting, this discussion is even more interesting, since there are

many more variants of k, depending on the classical or intuitionistic interpretation of
implications and diamonds.

Theorems of ecumenical modal logic EK are defined as the formulas that are derivable
from the axioms of intuitionistic propositional logic plus the definitions of classical
operators using negation and the intuitionistic versions of the axioms k−k4. We can show
that all these EK axioms are provable in nEK (e.g. Example 9). Hence, in the presence
of cut-elimination (Section 3.1), we can deduce completeness of nEK w.r.t. EK.

Theorem 19. Every theorem of the logic EK is provable in nEK.

Moreover, a formula is derivable in EK iff it is valid in all birelational frames
(see [MPPS20]), which in turn implies completeness of nEK w.r.t. birelational semantics.

6 Extracting fragments

In this section, we will study pure classical and intuitionistic fragments of nEK. For the
sake of simplicity, negation will not be considered a primitive connective, it will rather
take its respective intuitionistic or classical form.

Definition 20. An ecumenical modal formula C is classical (intuitionistic) if it is built
from classical (intuitionistic) atomic propositions using only neutral and classical
(intuitionistic) connectives but negation, which will be replaced by A→c ⊥ (A→i ⊥).

The first thing to observe is that, when only pure fragments are concerned, weakening
is admissible. Observe that this is not the case for the whole system nEK. In fact,
A ∨c ¬AO,C◦ is provable in nEK for any formula C, but the proof necessarily starts with
an application of the rule W if, e.g., C is an atomic formula pi.

Proposition 21. Let nEKi (nEKc) be the system obtained from nEK −W by restricting
the rules to the intuitionistic (classical) case (see Figures 3 and 4). The rule W is
admissible in nEKi and nEKc.

Proof. For the intuitionistic fragment, the proof is standard, by induction on the height
of derivations (considering all possible rule applications). The classical case is more
involved. The idea is that classical formulas in the stoup are eagerly decomposed until
either an axiom is applied, or the formula is stored in the classical input context and
the stoup becomes empty. This is only possible because the rules ∧◦ and �◦ are totally
invertible and all the other rules in nEKc are invertible (Lemma 10). Formally, the
following proof strategy is complete for nEKc, when proving a nested sequent Γ:

i. Apply the rules ∧•,∧◦,�•,�◦ and sto eagerly, obtaining leaves of the form Λ{⊥◦}.
ii. Apply any rule of nEKc eagerly, until either finishing the proof with an axiom

application or obtaining leaves of the form Λ{P◦}, where P is a positive formula in
nEKc, that is, having as main connective ∧ or �. Start again from step (i).
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Λ
{
p•i , p◦i

} init
Γ{⊥•} ⊥

• Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ{A•} Γ{B•}
Γ{A ∨i B•} ∨•i

Λ
{
A◦j

}
Λ
{
A1 ∨i A◦2

} ∨◦i j
Γ∗{A→i B•, A◦} Γ{B•}

Γ{A→i B•} →•i
Λ{A•, B◦}
Λ{A→i B◦} →

◦
i

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦ Γ{[A•]}
Γ{^iA•}

^•i
Λ1{[A◦, Λ2]}
Λ1{^iA◦, [Λ2]} ^

◦
i

Fig. 3. Intuitionistic fragment nEKi.

Γ
{
p•c , pOc

} init
Γ{⊥•} ⊥

• Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ⊥
◦ {A•} Γ⊥

◦ {B•}
Γ⊥

◦ {A ∨c B•}
∨•c

Γ⊥
◦ {AO, BO}

Γ⊥
◦ {A ∨c BO} ∨

O
c

Γ∗{A→c B•, A◦} Γ⊥
◦ {B•}

Γ⊥
◦ {A→c B•}

→•c

Γ⊥
◦ {A•, BO}

Γ⊥
◦ {A→c BO} →

O
c

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦

Γ⊥
◦ {[A•]}

Γ⊥
◦ {^cA•}

^•c
∆⊥
◦

1

{
^cAO,

[
AO, ∆⊥

◦
2

]}
∆⊥
◦

1

{
^cAO,

[
∆⊥
◦

2

]} ^Oc
Γ∗{PO, P◦}
Γ⊥

◦ {PO} dec
Λ{NO,⊥◦}
Λ{N◦} sto

Fig. 4. Classical fragment nEKc.

Observe that weakening is never applied, since a positive classical formula P◦ is totally
decomposable into negative subformulas of the form N◦, which are stored in the classical
input context as NO, or ⊥◦.

This result clarifies the role of weakening in nEK: it serves as a bridge between
intuitionistic and classical parts of a derivation and its application can be restricted to
just below classical rules.

Since weakening is not present, nEKi matches exactly the system NIK in [Str13].

Fact 22 The intuitionistic fragment of nEK is Straßburger’s system NIK.

For the classical fragment, the discipline presented in the proof of Proposition 21
is interesting as it resembles focused search [LM11] in nEKc: neutral connectives are
handled in the stoup, while rules on classical connectives are applied in classical context.

Yet, this discipline does not match the focusing defined in [CMS16], since in that
work diamond is considered positive and box negative, while the ecumenical system
enforces the opposite polarity assignment. The task of providing a fully focused sys-
tem, as well as adding polarized versions of conjunction and disjunction, as done e.g.
in [LM11,CMS16] is left for a future work.
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Axiom Condition First-Order Formula
d : �A→ ♦A Seriality ∀x∃y.R(x, y)

t : �A→ A ∧ A→ ♦A Reflexivity ∀x.R(x, x)
b : A→ �♦A ∧ ♦�A→ A Symmetry ∀x, y.R(x, y)→ R(y, x)

4 : �A→ ��A ∧ ♦♦A→ ♦A Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z))→ R(x, z)
5 : �A→ �♦A ∧ ♦�A→ ♦A Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z))→ R(y, z)

Table 1. Axioms and corresponding first-order conditions on R.

Γ{�A•, A•}
Γ{�A•} t•

∆1{[∆2,�A•], A•}
∆1{[∆2,�A•]} b•

∆1{[∆2,�A•],�A•}
∆1{[∆2],�A•} 4•

Γ{[�A•][�A•]}
Γ{[�A•][∅]} 5•

Λ{A◦}
Λ{^iA◦} t◦

Λ1{[Λ2], A◦}
Λ1{[Λ2,^iA◦]} b◦

Λ1{[Λ2,^iA◦]}
Λ1{[Λ2],^iA◦} 4◦

Λ{[∅][^iA◦]}
Λ{[^iA◦][∅]} 5◦

Γ⊥
◦ {AO}

Γ⊥
◦ {^cAO} tO

∆⊥
◦

1

{[
∆⊥
◦

2

]
, AO

}
∆⊥
◦

1

{[
∆⊥
◦

2 ,^cAO
]} bO

∆⊥
◦

1

{[
∆⊥
◦

2 ,^iA◦
]}

∆⊥
◦

1

{[
∆⊥
◦

2

]
,^cAO

} 4O
Γ⊥

◦ {[∅][^cAO]}
Γ⊥

◦ {[^cAO][∅]} 5O

Fig. 5. Ecumenical modal extensions for axioms d, t, b, 4 and 5.

7 Extensions

Depending on the application, several further modal logics can be defined as extensions
of EK by simply restricting the class of frames we consider or, equivalently, by adding
axioms over modalities. Many of the restrictions one can be interested in are definable
as formulas of first-order logic, where the binary predicate R(x, y) refers to the corre-
sponding accessibility relation. Table 1 summarizes some of the most common logics,
the corresponding frame property, together with the modal axiom capturing it [Sah75].

Since the intuitionistic fragment of nEK coincides with NIK, intuitionistic versions
for the rules for the axioms t, b, 4, and 5 match the rules (•) and (◦) presented in [Str13],
and are depicted in Figure 5.

For completing the ecumenical view, the classical (O) rules for extensions are justified
via translation to the labeled system labEK. For example, the labeled derivation on the
left justifies the classical rule in the middle.

xRx,R, Σ, x : ¬A⇒ x : ⊥
xRx,R, Σ, x : �¬A⇒ x : ⊥ �L

R, Σ, x : �¬A⇒ x : ⊥ T

R, Σ ⇒ x : ^cA
^cR

R, Σ, x : ¬^cA⇒ z : ⊥ ¬L + W
Γ⊥

◦ {AO}
Γ⊥

◦ {^cAO} tO xRx, Γ ` z : C
Γ ` z : C T

The rule T above right is the labeled rule corresponding to the axiom t [Sim94]. The
rules bO, 4O and 5O, shown in Figure 5, are obtained in the same manner. By mixing and
matching these rules, we conjecture hat we obtain ecumenical modal systems for most
logics in the S5 modal cube [BRV01], i.e. those that are not defined with axiom d.
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8 Conclusion

In this paper, we have presented a pure, nested proof system nEK for the ecumenical
modal logic EK, together with pure fragments and extensions. We proved soundness of
nEK w.r.t. the ecumenical birelational model via a translation to the labeled ecumenical
modal system labEK. For completeness, we used the fact that EK axioms are provable
in nEK and we proved cut-elimination for nEK. Finally, having an ecumenical nested
system allowed for extracting well known systems as fragments.

First of all, it should be noted that combining classical and intuitionistic modalities
conservatively in the same pure logical system is not trivial. In fact, the labeled system
in [MPPS20] makes an extensive use of negations in order to keep classical information
persistent. We have shown that this can be avoided by having an additional classical
context to store negative formulas, similarly to Girard’s classical system LC [Gir91],
henceforth solving the “impurity” issue. On the other hand, there seems to be no trivial
solution to remove labels from intuitionistic modal sequent systems where the distribu-
tivity of the diamond w.r.t. the disjunction holds [Sim94]. The solution here was to adopt
the framework to nested sequents, whose tree structure describes the corresponding path
in the birelational semantics, a special case in which labels can be eliminated.

It turns out that this mix of classical context, polarities and nestings can be implosive,
in the sense that adding a cut rule may lead to a collapse of the system to classical modal
logic. For controlling the implosion, the cut rules must have a restricted use of polarities
which, in turn, makes the cut-elimination proof non trivial.

There are many interesting ideas that can be explored for the proposed systems,
axioms and semantics, as indicated throughout the text, and many lines to be pursued in
this research direction. First of all, we have proposed a proof discipline for nEK, which
does not correspond to focusing for modal systems as presented in [CMS16]. In fact,
the presence of weakening is known to break focusing, we should threfore investigate
alternative ways of having a fully focused system. Moreover, it should be interesting to
study typing in ecumenical systems, in which fragments of already known modal type
systems could be embedded. Finally, we plan to implement ecumenical provers, as well
as to automate the cut-elimination proof in the L-Framework [OPR21].
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