IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 29, 2021, accepted December 23, 2021, date of publication December 24, 2021,

date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138628

Crystal Ball: From Innovative Attacks to Attack

Effectiveness Classifier

HAREL BERGER !, CHEN HAJAJ 2, ENRICO MARICONTI“3, AND AMIT DVIR""

! Ariel Cyber Innovation Center, Computer Science Department, Ariel University, Ariel 40700, Israel
2 Ariel Cyber Innovation Center, Data Science and Artificial Intelligence Research Center, Industrial Engineering and Management Department, Ariel University,

Ariel 40700, Israel
3UCL Department of Security and Crime Science, London WC1H 9EZ, U K.

Corresponding author: Amit Dvir (amitdv@g.ariel.ac.il)

This work was supported by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber directorate of the Prime

Minister’s Office.

ABSTRACT Android OS is one of the most popular operating systems worldwide, making it a desirable
target for malware attacks. Some of the latest and most important defensive systems are based on machine
learning (ML) and cybercriminals continuously search for ways to overcome the barriers posed by these
systems. Thus, the focus of this work is on evasion attacks in the attempt to show the weaknesses of state of
the art research and how more resilient systems can be built. Evasion attacks consist of manipulating either
the actual malicious application (problem-based) or its extracted feature vector (feature-based), to avoid
being detected by ML systems. This study presents a set of innovative problem-based evasion attacks against
well-known Android malware detection systems, which decrease their detection rate by up to 97%. Moreover,
an analysis of the effectiveness of these attacks against VirusTotal (VT) scanners was conducted, empirically
showing their efficiency against well-known scanners (e.g., McAfee and Comodo) as well. The VT system
proved to be a great candidate for the attacks, as in 98% of the apps, less scanners detected the manipulated
apps than the original malicious apps. As not all the attacks are effective in the same manner against the VT
scanners, the attack efficiency classifiers are advised. Each classifier predicts the applicability of one of the
attacks. The set of classifiers creates an ensemble, which shows high success rates, allowing the attacker to

decide which attack is best to use for each malicious app and defense system.

INDEX TERMS Android malware, machine learning, malware detection.

I. INTRODUCTION

Malware can be formally defined as any damaging software
that can harm a computer or mobile user [1]. Malware appears
in various forms, such as ransomware, trojans, and viruses
and targets all the Operative Systems (OSs) on the market.
Mobile malware has been a rising threat in the past years
(e.g. [2], [3]). As Android is the operative system on more
than 80% of the smartphones sold on the market, Android
malware are the most common and thus have the most
impact. Android malware takes many forms, like piggyback-
ing popular Android application PacKages (APKSs), which
can propagate to various Android markets. Lately, 10 million
Android users were attacked by an Android malware named
GriftHorse that lured users to assign themselves to a paid
service incorporated in benign-like apps. The developers of

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao

this malware acquired over 1.5$ million [4]. During the last
decade, this type of events motivated a long list of researchers
in the security community. Researchers have been working
towards different approaches throughout the years. Signature-
based detection systems [S]-[7], as well as studies on per-
missions usage [8]-[10] are some of the works carried out.
Recently, ML-based systems is one of the areas of highest
interest [11]-[14].

A never-ending marathon is held between the defend-
ers and attackers on each cyberspace subdomain, and the
Android malware detection is no different. Against the
malware detection systems, the attackers generate adversar-
ial examples (AE) that target the vulnerabilities in the mal-
ware detection systems, as proven by Goodfellow et al. [15].
These samples are manipulated to hide some features or
mimic the properties of a different malware family class
so that the detection system does not classify them cor-
rectly. A special case of AE involves the use of evasion

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 1317

https://orcid.org/0000-0001-6035-5127
https://orcid.org/0000-0001-9940-5654
https://orcid.org/0000-0003-3005-8214
https://orcid.org/0000-0002-3670-0784
https://orcid.org/0000-0002-3202-1127

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

attacks (EA), in which an adversary generates a perturbed
version of an instance that is mistakenly classified as benign
by a detection system [16]—[20]. This study follows problem-
based EAs, which manipulate the actual code of the app.
The contribution of this work is twofold. First, it leverages
weak spots in popular Android malware detection systems
(e.g. Drebin [11], [13], [21]-[25], Sec-SVM [13], [24]-[26],
DNN [21], FM [22]), by means of innovative evasion attacks.
In addition, the attacks were validated by using them against
some of the famous malware scanners accessible via VirusTo-
tal (VT) [27]-[31]. Popular scanners like Comodo, McAfee,
Symantec, and Alibaba showed a significant decrease in
detection rates, as a result of this study’s evasion attacks.
To extend the perspective on the attacks, a comparison of
the suggested evasion attacks was conducted with Android-
HIV (AHIV) [23], a well-known problem-based evasion
attack study. This study’s evasion attacks resulted in a greater
increase in terms of evasion rates compared to AHIV attacks.

Second, each attack was analyzed comprehensively,
including the evasion increase and VT app fail rates. Thanks
to these analyses, a classifier that predicts if an evasion attack
will be successful was implemented. An aggregation of multi-
ple classifiers (which are correlated with this study’s evasion
attacks), resulted in a decision function that is able to predict
and suggest which attack may be most effective depending
on the defensive systems in place. Both the decision function
and the classifiers are new approaches that can cause serious
threats to conventional detection systems.

The remainder of this paper is organized as follows. First,
related work is presented and discussed in Section I1. Second,
evaluation metrics and the dataset are discussed in Section I1I.
The Android malware detection systems exploited in this
paper are provided in Section IV, together with the attacker
models. In Section V, the attacks are presented, including
the comparison between the evasion attacks of this work
and Android HIV. Next, the attack effectiveness classifiers
are introduced and evaluated in Section VI. A discussion
about the evasion attacks and the classifiers is provided in
Section VII. Finally, the conclusions of the paper are pre-
sented in Section VIII.

Il. RELATED WORK

This section describes previous work in the field of Android
malware detection systems. The systems that are discussed
are based on ML, categorized in four main approaches. This
is the first part, in Section II-A. In addition, ML mal-
ware detection systems are vulnerable to EAs. Two forms
of evasion attacks are known, problem-based attacks and
feature-based attacks. Problem-based attacks [13], [32]-[37]
(which is the type of attack implemented in this study) incor-
porate perturbations into the sample itself, while feature-
based attacks [38]-[44] convert the sample into a feature
vector and change the values of features. Feature-based
attacks are implemented easily and automatically by an
ML [45]-[49]. However, when implementing the changes
into an application, the functionality of the app can be

1318

severely damaged [23], [30], [S0], [51]. As this study imple-
ments problem-based EAs, the focus of Section II-B is
problem-based EAs.

A. ANDROID MALWARE ML-BASED DETECTION SYSTEMS
This section reviews well-known ML-based detection sys-
tems for Android malware and discusses four main Android
malware detection approaches. The first is static analysis,
which includes gathering string values from the manifest file
and the Smali code files. The second approach follows the
control flow graph (CFG) of the application, which traces
the connection between API calls used in the app. The third
approach inspects the behavior of the app and gathers infor-
mation on the OS’s behavior while the app is running, along
with network usage, etc. The fourth approach analyzes Byte-
code sequences.

A general approach in Android malware detection systems
is static analysis. A well-known static-analysis detection sys-
tem in the Android malware domain is Drebin [11]. Drebin
collects 8 types of features from the APKs. Drebin extracts
permissions requests, software/hardware components and
intents from the manifest file, and suspicious/restricted API
calls, permissions that have been used in the app’s run and
URL addresses from the Smali code. Several updated ver-
sions of Drebin were published. For example, Sec-SVM [13]
is an improved version, that uses an evenly-weighted
approach toward the same feature-set. Another version is a
DNN version [21], which uses the same features to originate
adeep neural network. A factorization machine of Drebin was
published in [22]. The DroidAPIMiner [52], [53] is a detec-
tion system similar to Drebin. It analyzes API calls and per-
missions. The authors analyzed dataflow to recover package
names and frequently used parameter values. Mmda [54] ana-
lyzes static features as well, including permissions, hardware
features and receiver actions. Chan and Song [55] inspected
permissions and API calls. Sato ef al. [56] listed permissions
and intents as their feature set. They studied the frequency
of the use of specific features in benign and malicious apps.
Ma et al. [57] studied API calls in means of sequence, fre-
quency and usage to classify benign and malicious APKs. The
static analysis of Android malware detection systems inspects
several features of the apps which are easy to understand and
deploy. Most of the static features can be enumerated and
manipulated [13], [36], [58], [59].

MaMaDroid [12] is an example of a different approach.
This detection system extracts features from the CFG of an
app. MaMaDroid [12] generates an API call tree based on
packages and families. After an abstraction process of the
API calls, it analyzes the sequence of the API calls performed
by the app, to model its behavior. A similar approach to
identifying malicious third-party libraries in apps was used
by Backes et al. [60]. The authors also used function and app
profiling, to analyze different versions of the same third-
party library. The authors used Merkle Trees [61] to model
their libraries’ profiles. Monitoring the sequence of API calls
seems to be a better idea than the syntax analysis approach

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

and changing the app’s flow is more complicated. But, EAs
that change the flow of the application such as [23], [58],
[62]-[64] succeed in evading this kind of malware detection
system.

Several parameters such as network usage, CPU and
battery levels are the focus of the third approach. An exam-
ple of an Android malware detection using these features
is Andromaly [14]. A similar system was presented by
Shabtai et al. [65], who focused on network usage by measur-
ing the network traffic patterns of apps. The authors learned
the statistics of network packets a user sent and received,
the time between packets, etc. Shabtai et al. [66] proposed
an Android malware detection system using app resource
consumption with emphasis on temporal abstraction. The
authors aggregated the data during an app run, including
both user interactions like clicks and OS behavior such as
the CPU and network usage. Madam [67] correlates features
at four levels, i.e., kernel, application, user and package,
to detect malicious activity. Wang et al. [68] dissected kernel
tasks such as number of pages on VMs, change of states of
tasks. The third approach is based on the behavior of the
Android device while running various apps. This behavior
may depend on the app and is therefore hard to generalize.

Bytecode inspection is the fourth approach in Android
malware detection. Dalvik Bytecode Frequency Analysis [69]
looks for popular Dalvik Bytecode instructions found in mal-
ware apps. TinyDroid [70] studied sequences of Dalvik Byte-
code instructions. The authors gathered families of Bytecode
instructions under a symbol and used n-grams [71] to create
the features for the learning algorithm.

As each approach individually did not suffice, researchers
began to combine various methods. Martin ez al. [72] fused
dynamic and static analysis of Android apps. They com-
bined the analysis of API calls (static) and transitions
and probabilities of execution states (dynamic), creating
AndroPyTool [73], an open source tool for Android mal-
ware research. A combination of static analysis of permission
requests and dynamic testing of actual usage of these
permissions was introduced in [74]. MARVIN [75] ana-
lyzes the behavior of Android apps through static analy-
sis of their structure, certificates, etc. with the addition of
dynamic analysis of phone activity, dynamic code loading
and more. Androtomist [76] analyzes static features such as
permissions, intents, API calls and Java classes, along with
behavioral features like network traffic, and inter-process
communication. The combination of several methods seems
more accurate. However, analyzing multiple feature sets, for
example static and behavioral feature sets, requires huge
amount of resources, in means of memory and CPU. A recent
extended survey on Android malware detection systems can
be found in [77].

B. PROBLEM-BASED EVASION ATTACKS ON ML-BASED
DETECTION SYSTEMS

In the field of problem-based evasion attacks, three forms
of attacks should be mentioned. The first engages in the art

VOLUME 10, 2022

of camouflage, where the attack tries to conceal suspicious
strings and values of the app using obfuscation and encryp-
tion [13], [36], [62]. The second adds noises to the app [23],
[50], [78], [79]; e.g., non-invoked functions. The last attempt
is to change the nature of the app [23], [62]-[64]. It analyzes
the previous flow of the app, and changes the code of several
function calls.

The first type of problem-based EA is to camouflage
specific parts of the app. One well-known example of
camouflage is the use of obfuscation or encryption.
Demontis et al. [13] used obfuscation of suspicious strings,
API calls, and packages. Another example of camouflage
is packing an app inside another app. DaDidroid [62]
used a similar obfuscation method as the one found in
Demontis ef al. [13], with the addition of packing. The
authors wrapped the original malware inside a benign
app. Reflection, which allows an app to masquerade its
nature at runtime, is also a classic obfuscation method.
In reflection, an attacker runs a code that is loaded on run-
time. Rastogi et al. [36] introduced an attack, which uses
Demontis et al.’s [13] approach along with reflection.

Another typical approach to problem-based EAs on
ML-based detection systems includes adding noise to the
application, thus misleading the detection system’s labeling
of benign and malicious apps. A stub function/code injec-
tion is a well-known example of noise added to an app that
does not add any real functionality to it, but may change
its flow. In Android HIV [23], the authors implemented
non-invoked dangerous functions against Drebin and a stub
function injection against MaMaDroid. A recent example
of this type of attack can be found in [50], where the
authors implanted benign codes in malicious apps to evade
Drebin and Sec-SVM [13]. Pierazzi et al. [50] implanted
non-used benign parts from benign APKs to malicious
APKs for misclassification by Drebin and Sec-SVM as well.
GADGET [78] generates API call based EAs against Android
malware detection systems. Three types of attacks were incor-
porated in this system, which included appending no-op func-
tions to the app, encoding short API calls and obfuscating
strings. Cara et al. [79] injected non-operational classes to
the end of function calls to evade classification of malicious
apps.

The third approach involves in manipulation of the app’s
flow. A detection system which is based on the app flow
analysis (i.e. MaMabDroid), may misclassify apps whose app
flow changed [23], [62]. One of the ways to achieve this goal
is function outlining/inlining. A function outlining breaks a
function into smaller functions. Function inlining replaces a
function call with the entire function body. Stub function can
also be used to break the app flow [23], [63], [64]. A result of
such a change may be an ML misclassification of a malicious
application.

Ill. EVALUATION METRICS AND DATASET
In this section, the application dataset and a number of eval-
uation metrics are described. First, the dataset is presented,

1319

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

followed by evaluation metrics for each attack: evasion
robustness, evasion increase rate, VT app fail rate and evasion
trend.

A. DATA COLLECTION

The APK files evaluated throughout the paper were gath-
ered from the AndroZoo dataset [80], downloaded from the
Google Play market [81] and Drebin’s dataset [11], where
the first includes benign APKs and the latter includes the
malicious ones.'

B. EVASION ROBUSTNESS (ER)

To evaluate the robustness of detection systems against eva-
sion attacks, the proportion of malicious instances was com-
puted for which the detection system was evaded; this is the
metric of ER, with respect to the robustness of the detection
system (similar to the analysis provided in [85]). The ER is
computed as the true positive rate (TPR) of the malicious
apps. The TPR metric is used for the original detection rate
(Origpg) as well, measuring the TPR of the original malicious
apps (prior to the evasion attacks).

C. EVASION INCREASE RATE (EIR)

The evasion robustness depicts the detection rate in the pres-
ence of an evasion attack. However, a more precise analysis
of the effectiveness of an evasion attack can be suggested.
The EIR compares the original detection rate (Origpgr) and
the ER, as in [86], [87]. Eq. | formulates the EIR metric:

ER
Origpr

EIR=1-—

ey

D. VT APP FAIL RATE
The VT app fail rate measures the similarity between the
former Android malware and their manipulated counterparts.
This metric is specifically for a given set of detection systems.
It views these systems as a one big detection system. There-
fore, it is tailored for the VT system. For each app x, and for
each scanner sc € SC where SC is the set of VT scanners, the
function Hgc(x) is defined: Hsc(x) = Y~ cgc Lsc(x) (Where
15.(x) equals 0 if a specific scanner sc labels a sample app x
as benign, and 1 if it labels the sample as malicious.). In an
evasion attack, a set of perturbations is added to x, therefore
resulting in x’. An app fail rate is defined as follows:

A_FRgc(x) = %ﬁwm

As an evasion attack runs on a set of app samples X, the
final formulation of the VT app fail rate is as follows in Eq. 2.

FRsc(X) =Y " A_FRsc(x) @)

xeX

E. EVASION TREND
This metric extends the VT app fail rate, adding an overall
view of each evasion attack by the VT scanners according

IRecent works [21], [30], [82]-[84] used a similar approach, choosing the
Drebin dataset as their malicious dataset and apps from Androzoo as their
benign dataset.

1320

to the attack’s trends. For example, assume that a former
malware had 5 scanners detecting it as malicious. If the
manipulated app is detected in the second scan by at least 6
scanners, it will be added to the higher trend. On the other
hand, if the manipulated app is detected in the second scan
by at most 4 scanners, it will be assigned to the lower trend.
Alternatively, it will be related to the equal trend. The term
Ji_type defines a specific trend.

Each evasion attack was evaluated according to the three
trends (higher, lower, equal). The evasion trend (ET;_sype)
function was defined as the sum of running the relevant f;_spe
function on the former and manipulated apps divided by the
amount of former/manipulated apps. The formulation of the
ET function is presented in Eq. 3:

erxft_type(HSC(x) - HSC(X/))

Hlipe = 1]

3)

IV. TARGETED SYSTEMS AND ATTACKER MODELS

Four Android malware detection systems are described in this
section: Drebin [11], Sec-SVM [13], a Factorization Machine
(FM) [22] and DNN [21]. Drebin has several features, one
of which includes requested permissions. Sec-SVM, FM and
DNN are advanced models based on Drebin’s feature set.
In addition, three attacker models are described: Drebin
Model Access, Data Access and Zero-knowledge. These
models are the basis for the evasion attacks against the mal-
ware detection systems.

A. TARGETED SYSTEMS

Drebin [11] is a lightweight Android malware detection sys-
tem. During its run, Drebin creates the following observations
on each APK sample: (1) Component lists: The observa-
tions include IntentActionList, ServiceList, ActivityList, and
BroadcastReceiverList. These observations are gained from
the manifest file by following the component tags: intent,
service, activity, receiver. (2) Requested permissions: These
observations describe the permissions that were requested by
the app. Drebin maps them according to the uses-permission
tags from the manifest file. (3) Suspicious APIs: These
observations relate to the APIs defined in the detection sys-
tem. An example of a suspicious API is setWifiEnabled).
(4) Restricted APIs and used permissions: Drebin maps API
calls to permissions. Drebin looks for these calls to under-
stand which permissions are actually used by the applica-
tion. Next, Drebin lists the permissions that correspond to
permissions requested in the manifest as used permissions.
Finally, it adds the APIs mapped to permissions that were
not mentioned in the manifest file as restricted API calls.
(5) URLDomains: The classifier lists the URLs mentioned in
the Smali code files. The list of these observations and their
weights are defined in this paper as Drebin reports.

Overall, the classification process of Drebin is as follows:
(1) Drebin saves the original labels of each app. A label
of 0 is used for benign, and 1 for malicious. (2) During
the training process, Drebin inspects each training APK file.

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

It assigns each observation a corresponding weight W, and
sums the weights. (3) Drebin computes the maximum weight
that corresponds to a benign app as ¢ using SVM. (4) In
the test phase, if XW; > ¢, Drebin predicts a label of 1.
Otherwise, it predicts 0. It saves the weights and labels. (5)
Drebin compares its predicted labels to the original labels,
and produces an accuracy rate.

Sec-SVM [13] is a more secure version of Drebin. It uses
the same features. However, it is a more evenly-weighted
feature set. Such an approach was proven to improve the
detection system of the classifier under an evasion attack.

A factorization machine (FM) [22] was implemented
based on Drebin’s feature set (setting aside the web domains).
The FM model is designed to capture interactions between
features within high dimensional sparse datasets efficiently.

A basic DNN [21] was also tested on the Drebin feature set.
This DNN incorporates two fully-connected hidden layers.
Each layer consists of 160 neurons. The activation function is
ReLU. For optimization, the Adam optimizer is used with 150
epochs, a 128 sized mini-batch, and a learning rate of 0.001.

B. ATTACKER MODELS

This section describes three attacker models. The first two
models depict a gray-box attacker, which has access to the
Drebin reports or the training data. The last model is a zero-
knowledge attacker. Each model describes an attacker that
can manipulate specific parts on an APK, but not the train-
ing data or the model itself. First, the additional permission
family statistics used in the attacker models are described.
Then, the attacker models: Drebin Model Access (DMA),
Data Access (DA), and Zero-Knowledge (ZK) are discussed.
The models are summarized in Table 1.

TABLE 1. Attacker models.

Model Access to training data | Access to the model
Drebin Model Access X \
Data Access \4 X
Zero-Knowledge X X

C. PERMISSION FAMILY STATISTICS

The occurrences of each set of permissions were extracted
from both the benign and malicious apps. This process
resulted in a list of each group, which maps the set of per-
missions and their probability. Each of these sets is denoted
as a permission family. An adversary who has access to
these statistics understands how to mimic a benign app.
For example, if a permission family from the benign app’s
group is [X,Y,Z] and a malicious app requests permissions
[A,X,B,Y,Z,C] the attacker will conceal permission requests
[A,B,C] to mimic the benign app’s group behavior.

D. DMA ATTACKER MODEL

DMA is the first attacker model. This model has access to
Drebin as a gray-box during the manipulation process. It can
send apps to Drebin, and gain the Drebin report of each app

VOLUME 10, 2022

in return. Drebin enumerates the observations on the app
in the report and sends the report back to the attacker. The
Drebin report leads the attacker to the significant features the
adversary needs to obfuscate.

E. DA ATTACKER MODEL

The second attacker, DA, has access to the dataset used to
train the classifier. This model has no access to the model dur-
ing the manipulation process. The data allows the adversary
to create the permission families.

F. ZK ATTACKER MODEL
ZK, the third attacker model, has no knowledge of the trained
classifier or the training data during the manipulation process.

V. EVASION ATTACKS

An evasion attack is engineered for each attacker type (i.e.,
attacker model). Each attack transfers the embedded knowl-
edge of the model or the training data to a manipulated app
that is designed to be classified wrongly as benign.

In this section, an attack starting point template is described
in Section V-A. This is a common starting point for each
one of the evasion attacks. Then, the attacks targeting the
detection systems are described in Section V-B. The exper-
imental design is described in Section V-C and the results are
analyzed and discussed in Section V-D.

The evasion attacks were tested not only against academic
detection systems, but also on the set of industrial AVs from
VT. The attacker has no information on the VT scanners, their
detection methods or training data. Therefore, each one of the
evasion attacks should be considered a zero-knowledge attack
on the VT scanners. The VT scanner evaluation proves that
these attacks are effective not only on the targeted systems
but also on well-known VT scanners. Lastly, a comparison
between the evasion attacks to a recent problem-based eva-
sion attack named Android HIV is presented in Section V-E.

Algorithm 1 Attack Starting Point Template
1: procedure At. starting point(APK , [Add_data))
2: Manifest, Smali . . . < depackage(APK)
3: Manifest, Smali . . . <«
Attack_Vector(Manifest, Smali . . . , [Add_data])
4: APK < Repackage(Manifest, Smali . . .)
5: return APK

A. ATTACK STARTING POINT TEMPLATE

This section describes a starting point template to the eva-
sion attacks, which is a common starting point for each
attack implemented in this study. The template consists of
the following steps: (1) The algorithm’s input is an APK
and additional data if available (i.e., Drebin report/permission
families’ list); (2) Depackage the APK to the Smali code
files, manifest file and other subordinate files (line 2);
(3) Run the attack vector using the files obtained from

1321

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

the depackage process and the additional data (line 3);
(4) Repackage the APK (line 4), and return it as an output
of the algorithm (line 5)

B. MANIFEST BASED EVASION ATTACKS

This section introduces three novel evasion attacks. The fol-
lowing attack vectors manipulate parts of the manifest file,
and specifically the permissions app requests. It should be
noted that all targeted systems use Androguard [88] to extract
and list native permission requests. The attacks are named
MB1, MB2 and MB3. Each attack is defined by its formal
attacker model, which describes its capabilities. For example,
attack Manifest based attack type 1 (DMA) refers to the
first attack which is termed MB1. The attacker model which
defines the capabilities of this attack - the DMA attacker
model - is discussed in Section IV-B.

Manifest based attack type 1 (DMA), also known as
MBI1. The adversary scans the report from Drebin in par-
allel to the manifest file. It finds the requested permission
section in the report that is correlated to the specific tags in
the manifest file. Next, it switches the uses-permission tags
which describe a permission request to a newer version of
the permission request, a uses-permission-sdk-23 tag. The
complete attack procedure follows these steps: (1) The pro-
cedure’s input are the files depackaged from the APK and
a list of observations produced by the Drebin report on this
APK; (2) For each observation s, run steps 3-4; (3) Find
the observation in the manifest file; (4) SDK_23: Replace
the uses-permission tag in s to a uses-permission-sdk-23 tag;
(5) Return the new manifest file and all the other depackaged
files as output.

Manifest based attack type 2 (DA), also known as MB2.
The attacker observes the permission family statistics in par-
allel to the manifest file. It finds the top n families from the
benign apps dataset. In this study, WLOG, n=3 was used.
Next, it changes the manifest file accordingly. For each app,
it randomly picks a family to which to change. The attacker
switches the uses-permission tags of all the permission tags
that do not match a member of the family to a new uses-
permission-sdk-23 tag. The complete attack function takes
the following steps: (1) The procedure’s input are the files
depackaged from the APK and the permission family statis-
tics; (2) Random_family: pick a random family from the top 3
families in the benign app statistics; (3) For each permission
p in the manifest file, run steps 4-7; (4) If p is part of the fam-
ily, continue without any change; (5) SDK_23: Replace the
uses-permission tag of p to a new uses-permission-sdk-23 tag;
(6) Return the new manifest file and all the other depackaged
files as output.

Manifest based attack type 3 (ZK), also known as MB3.
The attacker blindly changes all of the uses-permission tags to
uses-permission-sdk-23 tags. The complete attack procedure
implements the following steps: (1) The procedure’s inputs
are the files depackaged from the APK; (2) For each permis-
sion p in the manifest file, run step 3; (3) SDK_23: Change
the uses-permission tag in p to a uses-permission-sdk-23 tag;

1322

(4) Return the new manifest file and all the other depackaged
files as output.

The manifest based attacks, which are presented in this
section, follow changes in the Android SDK versions.
Specifically, the uses-permission-sdk-23 tag was introduced
on devices running Android version 6.0. with sdk lower
than 23 cannot run the manipulated apps. However, as of
May 2021 [89], 88% of the Android devices around the globe
run Android version 6.0 or a newer version. Therefore, the
evasion attacks can be considered a threat for 88% of the
Android users. Also, the use of the new uses-permission-
sdk-23 tag is a part of the runtime permissions model. As a
result, users will be notified in run-time to grant permissions.
This may affect certain malware that wants to stay under the
radar without actively interacting with users. However, not
every user pays attention to the permission they grant [90].
For example, kids who download free apps which incorporate
malicious activity may grant permissions as an automatic
process to achieve full functionality of the app without any
thought about the consequences. Granting only the Internet
permission (which is common for benign and malicious apps,
as they tend to send and receive information from the Internet)
and the SMS permission produce a platform for malicious
surveillance [90]. The number of requests from the user is
small, and therefore may be considered a small interruption
for the user.

The changes to the apps due to the MB attacks do not
alter any functionality of the manipulated apps. Nevertheless,
a random subset of 10% of the applications of every evasion
attack was tested using DroidBot [91]. Each app was installed
and run on an emulator. Using the DFS-policy of DroidBot,
a subset of 5 actions were tested on the former and manip-
ulated apps. One-hundred percent of the apps retain basic
functionality of the former malicious apps.

C. EXPERIMENT SETTINGS
The experiments in this research assess the effectiveness
of the evasion attacks against Drebin, Sec-SVM, FM and
DNN. The experiments were run on an Intel(R) Core(TM)
i7-4510U CPU with 8 GB RAM with GeForce 840M GPU.
The implementation of Drebin for this study was taken from
GitHub [92]. A version of Sec-SVM was obtained from the
authors of [50]. The implementation of DNN was taken from
GitHub [21]. The implementation of the FM model was based
on polylearn [93]. The VT scan was run during 2020-2021.
The dataset for this experiment consisted of ~60K benign
apps from Androzoo (acquired from the Googleplay app
store) and ~6K malicious apps from the Drebin dataset (for
more details on the source of the data, see Section III).
The Drebin dataset was used for the experiments; as the
basic detection machine, Drebin [11], was built with the use
of this dataset. The Sec-SVM, DNN and FM also use the
Drebin dataset as their source for malicious apps. The benign
apps were replaced as the original apps were not available.
However, the original detection rates of each one of the
detection systems (Table 2) are similar to their detection rates

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

in the original papers.” This different balance between benign
and malicious apps was referred to in a recent paper [94]
in the Android malware detection field, which noted that
the real-life ratio of benign/malicious Android applications
is 90/10.

In addition, the results were validated by using 5-fold cross
validation. The benign data were not split to test/train since
the goal was to assess the attack’s evasion rate, as in [23],
[30], [50]. Overall, ~ 60k benign apps and ~ 4.8k malicious
apps were used as training data, and ~ 1.2k malicious apps
as test data.

An initialization phase preceded each attack, including
the classifier detection rate evaluation which included the
following steps: (1) A trained classifier was trained on the
benign and malicious dataset. Malicious test apps were sent
to the trained classifier. The classifier labeled each test app.
(2) The labels were accumulated to reveal the detection rate,
which is named the initial detection rate.

D. RESULTS

The effectiveness of the MB evasion attacks was evaluated by
the ER, VT app fail rate (FRapp), EIR, and the ET (mentioned
in Section III).

1) Evasion Robustness: The results are presented in
Table 2. The original apps and three evasion attacks
were evaluated against the targeted systems and VT
scanners. The detection systems that were tested were
Drebin, Sec-SVM, FM, and DNN. Six popular VT
scanners were chosen (Comodo, Alibaba, McAfee-
GW-Edition (McAfee), AegisLab, SymantecMobileln-
sight (Symantec) and Microsoft), in light of the fact that
they all have a high original detection rate. They are
representatives of the behavior of the VT system.’
The results show that the MB evasion attacks decreased
the detection rate of all of the detection systems. Drebin
sustained a fair evasion robustness of at least 75%
with the MB attacks. The balance between the different
feature types allowed Sec-SVM to detect more mali-
cious samples, resulting in a minor decrease in its ER.
On the other hand, the FM version suffered from a
significant loss in the detection rate, namely ~70%.
The DNN version of Drebin suffered a total loss in
the detection rate, resulting in no manipulated app that
was detected by the machine. Drebin and its updated
versions extracted features outside the manifest file and
thus their detection rate should not have zeroed when
confronting the MB attacks. However, the DNN model
also had an ER of 0%. As in its former study [21], this
model is susceptible to evasion attacks.

2n addition, a subset of random samples from a newer dataset,
CIC-ANDMALZ2017, were examined for the feasibility of the MB evasion
attacks. There were no errors in the manipulation process of the newer apps,
and the functionality of each app was retained (based on DroidBot as well).

3The results of the 64 scanners for the clean data and evasion
attacks, along with the classifiers, dataset and attacks can be found in:
https://github.com/harelber/Android-crystal-ball.

VOLUME 10, 2022

TABLE 2. ER of Drebin, Sec-SVM, FM, DNN, along with the VT scanners
Comodo, Alibaba, McAfee-GW-Edition, AegisLab, Symantec and Microsoft.
The minimal ER of each detection rate/VT detection system/scanner
appears in bold.

Origpr | MB1 | MB2 | MB3
Drebin 0.96 075 | 0.78 | 0.76
SecSVM 0.96 088 | 0.86 | 0.89
FM 0.97 027 | 034 | 039
DNN 0.97 0 0 0
Comodo 0.9 0.2 0.34 0.35
Alibaba 0.73 0.76 | 0.01 0.09
McAfee 0.75 0.95 0.04 | 0.15
AegisLab 0.99 097 | 039 | 043
Symantec 1.00 0.99 0.8 0.53
Microsoft 0.88 0.88 0.8 0.81

A subset of the most popular VT scanners’ results
is presented as an extension to the explored detec-
tion systems. As can be seen, the scanners’ ER rates
vary, but some significant ER rates can be pinpointed.
The ERs of Alibaba and McAfee in the case of MB2
were less than 5%. Comodo’s ER with MBI was
20%. AegisLab’s ER was less than 40% with MB2,
where its former detection rate was 99%. Symantec’s
original detection rate was 100%. Its ER was almost
half, namely 53%. Microsoft’s ER sustained a fair rate
of 80%.

In conclusion, the MB attacks were effective against
Drebin. Its secured version Sec-SVM was more robust
against them. The FM version was less robust than
Sec-SVM. Also, a DNN version of Drebin was
assessed. However, it failed to detect any manipulated
app. Moreover, some of the popular VT scanners suf-
fered a great loss against these attacks.

2) Evasion Increase Rates: The robustness evaluation

can be extended in light of the original detection rate.
A higher EIR indicates that more manipulated samples
can evade the detection system/scanner. As depicted in
Fig. 1, Drebin’s EIR is at most ~ 0.2 as it uses multiple
components and API calls as its feature set. In a similar
manner, Sec-SVM’s EIR low rate of 0.1 is explained by
the use of the same features as Drebin. The DNN’s EIR
increases to 1.00.
Interesting insights can be drawn from the EIRs of
the VT scanners. As can be seen, the EIRs of Alibaba
and McAfee in MB1 drop by several percent and 20%,
respectively. However, in MB2 their EIRs rise to more
than 90%. In MB3 their EIR is approximately 80%.
Comodo’s EIR is at least 60% in each one of the attacks.
AegisLab’s EIR is similar to zero in MB1, and 60% in
the MB2 and MB3 attacks. Finally, Symantec’s EIR is
negligible in the MBI attack, increases to 20% in the
MB?2 attack, and increases even more to ~40% in the
MB3 attack.

3) VT App Fail Rates: An extended analysis of the inno-
vative attacks of this study was conducted, in light
of the apps. Each evasion attack changed a slightly

1323

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

4)

1324

1.0 [

0.8

0.6

0.4 1

EIR

0.2 4

0.0 4 -

Drebin
SecsSvVM
FM

DNN
Comodo
Alibaba
McAfee
AegisLab
Symantec
Microsoft

BO00RoonCN

-0.2

T
MB1

T
MB2

T
MB3

Manifest Based attacks

FIGURE 1. Evasion Increase Rates of the three detection systems and six famous VT scanners.

different set of lines in the manifest file of every app.
Therefore, an observation of the VT scanner in light
of each app might add information on the effect of the
evasion attack. The VT App Fail Rate defines the dif-
ference in the amount of scanners that detect the clean
malicious app sample and its manipulated counterpart.
For MBI, an average decrease of 7.7 VT scanners
was identified. For MB2, the average decrease of VT
scanners was 6.2. The average decrease of VT scanners
for MB3 was 6.05. In conclusion, each evasion attack
decreased the effectiveness of the VT system. As the
VT system consists of ~64 scanners, the VT App Fail
Rate of ~ 10% of each evasion attack presents clear
maliciousness activity, yet is still effective in the eva-
sion of multiple scanners.

Evasion Trend: A close inspection was conducted into
the trends of the VT scanners. The trends of the scan-
ners in relation to each app sample were investigated in
light of the fact that it was established that a constant
~ 10% of the VT scanners failed to detect the evasion
attacks. Table 3 describes the trends of detection rate
after the manipulation in comparison to the former app
scans. If in the former malware x scanners detected it
as malicious and at least x + 1 scanners detected the
manipulated app as malicious, the app was assigned to
the higher trend. Otherwise, if the evasion attack app
sample was detected in the second scan by at most x — 1
scanners, it was assigned to the lower trend. Elsewhere,
it was assigned to the equal trend.

In all of the MB attacks, the number of scanners detect-
ing the app decreased after the evasion attack in at least
98.4% of the apps. Less than 1% of the apps in each
attack had an identical number of scanners before and
after the manipulation. Only MB1 had a 0.7% of the
apps with a higher number of scanners after the manip-
ulation in comparison to the former apps. As depicted
in Fig. 1, the MB1 evasion attack created an increasing

TABLE 3. Evasion Trends of the MB attacks. The leading trend in each one
of the attacks is the lower trend.

Lower | Equal | Higher
MBI1 | 98.4% | 0.8% 0.7%
MB2 | 99.5% | 0.5% 0%
MB3 | 99.9% | 0.01% 0%

ER in some of the scanners (e.g. McAfee). Therefore,
the attack created an opposite effect on the system as
a whole, of a positive higher trend, as more scanners
detected the attack in comparison to the clean data
counterpart. In conclusion, the higher trend was found
in more than 98% of the apps in each attack. Therefore,
the higher trend in Table 3 depicted the proportion of
VT scanners that detected the clean data but failed to
detect the manipulated data. The effect of the attacks
was shown with the subset of six scanners but had an
overall effect of the system as a whole. Most of the
scanners detected the clean data but failed to detect
the manipulated data. Therefore, the higher trend had
the lead over the other two trends. These insights should
be considered in future research.

To conclude this section, the Drebin and its advanced
versions suffered from a decrease in detection rate
when faced with the novel MB evasion attacks. In addi-
tion, the results show that VT scanners suffer from a
great loss in detection rate as a consequence of these
evasion attacks. Also, for each malicious app, the eva-
sion attacks caused a decrease of ~ 6 scanners in
average that detected the malicious app as malicious.
At last, the evasion trends assured that as a whole,
the VT system had a decrease in means of amount of
scanners that identify malicious APK samples after this
study’s evasion attacks.

E. ANDROID HIV
Android HIV [23] (AHIV) is a recent work on Android
malware detection systems and evasion attacks. The work

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

evaluated Drebin to find evasion attacks that decrease their
detection rates. Their evasion attack, JISMA [95], crafts adver-
sarial examples using the forward derivatives of the classifier.
As the MB attacks and AHIV attack are both Problem-Based
evasion attacks that target the Drebin classifier, a comparison
between the two works was suitable. The authors of AHIV
stated that evasion attacks that target the manifest file are
risky in terms of app functionality. As stated in Section V-B,
the MB attacks target the manifest file. However, as stated
in the Section V-B, the manipulation process does not change
the malicious activity of the app. Therefore, a comparison
between the AHIV and MB attacks is viable.

AHIV includes several attacker models. The first attacker
model is F, in which the attacker has access only to the feature
set. The next attacker model is FT, where the attacker has
access to the feature set and the training dataset. The third
attacker model is FB, in which an attacker has access to
the defense model as a black-box and the feature set. The
FTB attacker model is the final attacker model, which merges
the FB and FT attacker models. As the attacker models of
AHIV are slightly different from the attacker models of this
study, each attack is compared to the closest attacker model.

The MB attacker models were the Drebin Model Access,
Data Access and Zero-knowledge. The Drebin Model Access
and its MB1 correlated attack incorporate access to the
Drebin reports. The reports hold the important features of
any app that the attacker sends to Drebin. Therefore, it is
compared to the FB/FTB attacker models. The MB2 attack
and the Data access model include access to the statistics on
the training dataset. As such, this model can be referred to
as a T model, because the only data it knows is the training
dataset. However, the AHIV attacker models include the F
and FT attacker models, not a T model. Consequently, the
MB2 attack and Data Access model are compared to both
F and FT with a reservation. The MB3 attack is a zero-
knowledge attack. As a result it uses a much simpler model
than the F attacker model and thus can be compared to the
F attacker model but the MB3 attacker’s knowledge is more
limited than the F attacker model. Hence, it is compared to
the Baseline detection rate, and the F attacker model-based
attack.

The authors of AHIV kindly shared the trained models of
their attacks with this research. As their test data was from the
Drebin dataset, the MB attacks were run on the Drebin dataset
apps and tested against the trained models obtained from the
authors. The results of the evasion rates of the MB attacks
and the AHIV attacks are summarized in Table 4. As stated
above, the MB2 attack was compared to the attacks that are
based on the F and the FT attacker models. As such, it attained
a better evasion rate than the F attacker model. Compared to
the attack that is based on the FT attacker model, the MB2
attack achieved a lower evasion rate. The MB3 attack reached
a better evasion rate than the Baseline and the F attacker
model’s attack. While better than the F attacker model, the
attacker in the MB3 attack has no prior knowledge and thus
is a more evasive and destructive attack. The MB1 attack

VOLUME 10, 2022

trailed behind its correlative attacks by 16%. It involves a
more extensive process than MB2 and MB3 and its results
are worse.

In conclusion, the MB2 and MB3 evasion attacks per-
formed better than the AHIV evasion attacks. The MB3 was
better in each standard, including evasion rate and knowl-
edge of the model/data. The MB2 attack outperformed the
F attacker model’s attack. It had different knowledge than the
F and FT models.

TABLE 4. A comparison of the evasion rates of the AHIV attacker model
based attacks and the MB attacks. The JSMA evasion attacks (based on
the F, FT, FB, FTB attacker models) of AHIV are compared to the MB
attacks, and each MB attack to its relative attack of AHIV.

Baseline | MB3 F MB?2 FT FB MB1 FTB
1% 80% | 40% | 81% | 99% | 99% | 83% 100%

VI. ATTACK EFFICIENCY CLASSIFIER

The analysis of the VT scanners’ robustness against eva-
sion attacks in Section V established that the MB attacks
decrease the detection rate of the scanners. This decrease was
successful although no information on the training dataset
of the scanners or on their feature set, nor any informa-
tion on the scanners’ model were provided. Nonetheless,
some MB attacks did not achieve high EIRs against spe-
cific scanners. For example, the EIR of MB1 attack against
the McAfee-GW-Edition was negative. In other words, the
attack assisted the scanner in detecting the malicious samples.
As the purpose of an evasion attack is to evade detection, the
VT analysis marked a dramatic failure of the MB attacks. This
case as well as the case of the MBI attack and the Comodo
scanner motivate the need to predict successful attacks.

Additionally, as observed by [96], malicious executable
files were found on online sandboxes long before their respec-
tive attacks were published publicly. The authors did not
provide an absolute statement about the reasons such files
were found at the time. One possible explanation, raised by
the authors, was that advanced attackers tested their malicious
files before sending them to the wild. As a consequence, from
the perspective of an attacker, creating a malicious machine
that predicts the feasibility of an attack is of great value to
malicious entities.

As a result of both the VT analysis and the observation
of [96], described above, the following interesting questions
emerged:

1) Could an ML-based system predict whether an evasion
attack on a given sample is successful or not? The
results of the evasion attacks show that a few attacks
are detectable quite easily while others demonstrate a
high evasion rate. The same question of course is rele-
vant for the targeted systems (e.g. Drebin, Sec-SVM).
However, these systems are based on an open-source
code implementation. The feature sets are known and
the data for the classification is given. Therefore, it is
not a great challenge for an attacker to understand
how to make a successful attack against these systems.

1325

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

In contrast, such an information is unknown when
dealing with the VT scanners. Therefore, it is more
interesting to explore this question with regard to VT
scanners. To address this question, a classifier can be
implemented. This classifier will be termed an attack
efficiency classifier (AEC).

2) A brute force (BF) attacker runs an evasion attack
against the VT scanner on each malicious sample it
obtains. It can be considered as an AEC that predicts
each sample as class 1, where class 1 means a suc-
cessful attack. The motivation of such a comparison
is the cost of an attack, where running an attack costs
one unit, and not running it saves one unit. The BF
attacker costs n units where n symbolizes the number
of malicious samples. An AEC costs n—? units, where ¢
resembles the apps in which the AEC predicts the attack
would not succeed. Therefore, the attack should not be
run. Can the AEC be more precise than the BF attacker
and therefore cost efficient?

3) Does a combination of evasion attacks upgrade the
total evasion rate? Given a specific VT scanner and a
specific malicious APK, a group of A evasion attacks,
and a set of AECs, one for each evasion attack, the
following scenario is an option: First, the AEC of the
first evasion attack produces a prediction of failure.
Then, the AEC of the second evasion attack produces a
prediction of success. The other A — 2 evasion attacks
produce a prediction of failure. When each attack is
viewed separately, the AEC’s success in predicting a
successful attack is limited by the success of the spe-
cific attack. A combination of attacks, and in correla-
tion, a type of combination between the AECs, may
produce a stronger evasion attack and a more complex
AEC. In the above case, the choice is clear - the second
evasion attack. However, there might be a case where
more than one evasion attack on a specific sample
is predicted as successful. How should one choose
between the attacks? A decision function should be
advised, i.e., by randomly picking one of the attacks,
or by a more complex approach.

The remainder of the section is organized as follows: First,
the formal definitions are listed in Section VI-A. Next, the
experiments are described in Section VI-B. Finally, the exper-
imental results are analyzed and discussed in Section VI-C.

A. FORMAL DEFINITIONS

An AEC was implemented to assess the forecast of a suc-
cessful attack. The data that such an AEC learns is the
classification of the original malicious samples. It is more
intuitive to produce an AEC with the manipulated features
of the malicious apps, as it tries to learn an attack. Such an
AEC would try to assess the structure of the attack. However,
in such cases, the attacker needs to run the attack for each app
it sends to the AEC. When the AEC predicts that an attack
will fail, the attacker wastes the running time and resources

1326

on this app. Saving the time and resources is the motivation
of the AEC. Since the AEC’s goal is to predict if an attack
on a specific app will be successful, its actual purpose is to
forecast the success/failure, not to observe the actual attack
procedure. Therefore, the chosen features are the features
of the original malicious apps. For each evasion attack, the
AEC learns the original features of an app, and a version
of the label obtained from the targeted malware detection
system it tries to evade for the manipulated version of the
app. The label for the AEC is the opposite label gained from
the targeted system. In other words, if the targeted system
detected the manipulated version, the label for the AEC is 0,
and vice versa. Based on the original features, the AEC tries
to predict whether the theoretic evasion attack will succeed
or not. The AEC requires formal definitions. The following
definitions are presented in a general manner to be applied on
other targeted systems than the VT scanners as well. Given a
malicious sample x, its counterpart evasion attack x’, a set
of targeted systems S and a set of evasion attacks A, the
following definitions apply:

1) AEC: For each evasion attack a € A, an AEC C is
termed C,, where a resembles an attack. For example,
Cup1 is the AEC of MBI1. The AEC analyzes the
features of the original app x in the training or test
processes.

2) Prediction of a Sample: The term C,(x) will be used to
describe the prediction of C, on the original malicious
sample x.

3) AEC Labels: The term s(x) will be used to describe
the label of a system s € S produces for the malicious
counterpart x, of x. Similarly, the label of the AEC
is denoted s,(x). Since the AEC works in an opposite
manner compared to the scanner, s,(x) = —s(x)).

4) Brute-Force Attacker: The Brute-Force attacker uses
the evasion attack on any app. The AEC will be
evaluated against the BF attacker. The AEC and BF
attacker will demonstrate the difference between using
the attack any time vs using it in a more complex way.

5) Attack Feasibility: An ensemble of AECs is defined

as a combination of a group of AECs trying to predict
the success of a set of evasion attacks A.
An attack feasibility (AF) checks if one of the AECs
predicted an evasion attack as a success (i.e., 3C,(x) =
1 s.t. a € A). The AF is tested against a BF attacker,
which outputs 1 for every app (in a similar manner to
the AEC vs BF).

6) LR Attacks’ Decision Function: For each case where
more than one AEC predicts a successful attack
attempt, a decision function is implemented to choose
between the AECs. A decision function can take many
courses. In this study, a logistic regression ADFrg
approach was chosen. First, an LR model, LR, is gen-
erated based on the evasion attack data in a similar
manner to an AEC. For each app, the three LR models
output a probability. The attacks’ decision function

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

outputs the argmax over the multiplication of the LR
model and the AECs:

ADFr(x) = argmax(LR,(x) * Ca(x) | x € X,a € A)
4)

7) Random attacks’ decision function: To test the effec-
tiveness of the decision function, a random choice
between the AECs which predict a successful attack is
chosen as a baseline, and termed ADFg. The argmax
function of the LR decision function only chooses
between successful attack predictions if their amount
is more than 1. To match this issue, the ADFg only
chooses between the indexes of the AECs which out-
put 1. First, the indexes of the AECs which result in 1
are defined with an indicator function 1 4:

Iax)={a|Cix)=1,ac A}
Then, the random choose function is defined as follows:

ADFg(x) = random(14(x)) (@)

B. ATTACK EFFICIENCY CLASSIFIER EXPERIMENTS

The data obtained from VT in the test apps presented in
Section V-C were used in the AEC experiments. In addition,
apps from the AMD [97] and StormDroid [98] datasets were
used for the AEC’s experiments. In total, ~6K malicious apps
were used as a dataset for the AEC experiments (a similar
number to those used in the former experiments). The results
were validated by using 5-fold cross validation. The data of
each scanner included one set of malicious app features and
three sets of labels - one for each evasion attack variant of the
app. PyCaret [99] was used for the evaluation. The VT scan-
ners Comodo, McAfee-GW-Edition, SymantecMobilelnsight
and Microsoft were selected for the test cases.

The assessment comprised three parts:

1) The Fg score, which serves as a weighted harmonic
mean of precision and recall metrics was used to com-
pare several algorithms at once and assess the effec-
tiveness of the AECs. As both recall and precision are
important for the assessment, each AEC was optimized
once in the precision direction and the other with recall.
A range of § values between 0.2-5 with increments of
0.2 were tested. For each 8 value, the model with the
highest Fg score was chosen.*

2) After choosing the best model for each 8 value, a more
general overview was observed. For values lower than
or equal to 1, the optimization direction was precision.
The most frequent model that was chosen for the S
values served as the precision model. For B values
higher than 1, the recall was optimized, and a model
was chosen in a similar manner to the precision model.
Therefore, for each scanner and evasion attack, two
models were chosen - one that was found to be the
most effective in terms of precision for values lower

4 An overview of the chosen models can be found in the Appendix.

VOLUME 10, 2022

than/equal to 1, and one for the values higher than 1,
with recall optimization.
3) Two evaluation metrics were used to evaluate the
AECs, Attack Feasibility, and Decision Function:
a) Success rate: The main goal of the AECs is
to predict the success rate of an evasion attack.
This rate is the true positive rate (TPR) of
the labels and the predictions. The TPR in
this context measures the amount of predictions
of a successful attack, which correlates to an
actual successful attack divided by the amount
of actual successful attack labels. Therefore, it is
a suitable metric to evaluate the accuracy of the
AECs predicting a successful attack.
b) Save rate: The second goal of the AECs is to
save resources in cases where the AECs predict
a failed attack. Therefore, an evaluation metric
was created to assess the resources saved by the
AECs. The metric for save rate is the true negative
rate (TNR). In other words, the part of the apps
that was not manipulated due to a prediction of a
failed attack, which correlates with actual failed
attacks is divided by the amount of actual failed
attack labels (which represents apps that should
not be manipulated and therefore will not require
resources). The amount of resources saved in the
attack process is identified in this manner.

C. RESULTS

The purpose of the AECs was to predict the success of an
evasion attack. Tables 5-7 show the metrics with respect to
the AECs, AF and DF of the VT scanners: Comodo, McAfee-
GW-Edition (McAfee), SymantecMobilelnsight (Symantec),
and Microsoft. Each AEC is compared to its correlative
Brute-Force attacker, based on their success rates. Moreover,
the save rates of the AECs are presented in comparison to no
save rates on the part of BF.

The results of the AECs, presented in Table 5, show that
each AEC produces an equal or higher success rate than its
Brute-Force opponent. The gap between the BF and the AEC
lies between few percents, in cases like the MB1 against the
Comodo VT scanner with the Precision optimization, which
results in a gap of 1%, to cases where the gap can reach
40%, as in the case of the MB3 attack compared to Symantec,
with the Precision optimization. For each attack, scanner and
optimization factor, the save rate of the AEC is different,
ranging from no savings at all in the case of the MB1 attack
against the Comodo VT scanner with the Recall optimization,
to a save rate of 96% in the case of MB3 compared to the
Microsoft VT scanner with the Precision optimization. Also,
in most of the cases, the optimization factor did not change
the success rate dramatically with regards to the same attack
and scanner. The BF attacker did not show any intention of
saving resources. This is apparent from its definition, i.e.,
an attack that attempts to run itself on each sample without
any consideration of the waste of resources.

1327

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

The attack feasibility results in Table 6 show that the
ensemble of multiple AECs is still a better choice than a BF
attacker. In all of the cases, the attack feasibility success rate
is better than the BF attacker. In most of the cases (excluding
Microsoft), the difference between the optimization factors
is not huge. Also, in most of the cases, the AF shows that
the ensemble of attacks leads to a better success rate than its
subordinate AECs. This is intuitive, as the group of attacks
compensate for the cases where one/two of the attacks fail.
However, it is vital for the assessment of the AECs. As in
the results of the AECs, the BF attacker does not suggest any
savings in resources.

TABLE 5. AECs’ results The success (Suc) and save rates for each AEC of
the 4 VT scanners: Comodo, McAfee, Microsoft and Symantec. Each AEC is
optimized by precision (P) or recall (R). The Brute-Force Success (BF-Suc)
rates are presented as well for comparison. No save rate is presented for
the BF, in light of the fact that its definition is to attack by means of each
app sample.

Scanner | Opt | Attack | Save | Suc | BF-Suc
Comodo P MBI1 0.27 | 0.81 0.8
Comodo P MB2 0.83 | 0.86 0.63
Comodo P MB3 0.66 | 0.81 0.63
Comodo R MBI 0 0.8 0.8
Comodo R MB2 0.54 | 0.77 0.63
Comodo R MB3 0.28 0.7 0.63
McAfee P MBI 0.52 | 0.05 0.05
McAfee P MB2 046 | 097 0.94
McAfee P MB3 022 | 0.88 0.85
McAfee R MBI 0.52 | 0.05 0.05
McAfee R MB2 0.39 | 0.96 0.94
McAfee R MB3 0.17 | 0.87 0.85
Microsoft P MB1 0.94 | 0.18 0.13
Microsoft P MB2 0.75 | 0.26 0.18
Microsoft P MB3 0.96 0.4 0.18
Microsoft R MB1 0.01 0.13 0.13
Microsoft R MB2 0.37 | 0.22 0.18
Microsoft R MB3 039 | 0.24 0.18
Symantec P MB1 0.65 | 0.01 0.01
Symantec P MB2 0.57 | 0.34 0.2
Symantec P MB3 094 | 0.93 0.48
Symantec R MBI1 0.65 | 0.01 0.01
Symantec R MB2 0.57 | 0.34 0.2
Symantec R MB3 0.86 | 0.87 0.48

The results of the decision functions are presented in
Table 7. The Comodo and McAfee’s LR decision function
produced better success rates than the Random decision func-
tion. In the Symantec scanner, the Random function slightly
outperformed the LR function. In the case of the Microsoft
scanner, the Random function was more successful in fore-
casting the correct attack. The LR function was believed
to be a suitable solution for the decision between attacks,
but the random function demonstrated an impressive fight.
The change in the success rate between the optimization
factors that are incorporated in the AECs for the most part
is moderate.

In conclusion, the AECs showed that the predictability of
a successful attack is achievable. A BF attacker is a great
challenge for the AEC predicting an attack. Nonetheless,
the success rate of the AECs is better than that of the BF.
Moreover, their save rates demonstrated that wise use of

1328

TABLE 6. Attack feasibility results The success (Suc) and save rates for
the attack feasibility (AF) of the 4 VT scanners: Comodo, McAfee,
Microsoft and Symantec. Each AF is based on the AECs optimized by
precision (P) or recall (R). The Brute-Force Success (BF-Suc) rates are
presented as well for comparison. No save rate is presented for the BF,
due to the fact that its definition is to attack by means of each app
sample.

Scanner | Opt | Attack | Save | Suc | BF-Suc
Comodo P AF 0.31 0.93 0.91
Comodo R AF 0 0.91 0.91
McAfee P AF 0.2 0.97 0.96
McAfee R AF 0.29 | 0.97 0.96
Microsoft P AF 0.73 0.52 0.4
Microsoft R AF 0.01 0.4 0.4
Symantec P AF 0.59 | 0.69 0.48
Symantec R AF 0.58 | 0.68 0.48

TABLE 7. Decision function results The success (Suc) and save rates for
the decision functions (DF-function), both random (DF-Random) and
logistic regression (DF-LR) of the 4 VT scanners: Comodo, McAfee,
Microsoft and Symantec. Each DF is based on the AECs optimized by
precision (P) or recall (R).

Scanner | Opt | Random-Suc | LR-Suc
Comodo P 0.83 0.85
Comodo R 0.76 0.81
McAfee P 0.77 0.87
McAfee R 0.76 0.86
Microsoft P 0.48 0.41
Microsoft R 0.18 0.13
Symantec P 0.58 0.55
Symantec R 0.53 0.52

resources does not harm the evasion rate, as their success rate
sustained a fair rate against the BF attacker and outperformed
the success rate of BF. The attack feasibility showed better
results for the BF. In most cases, this advantage is accompa-
nied by a noticeable save rate. The decision functions showed
that while one AEC is good, a combination of multiple AECs
can create an advanced approach against detection systems.
The choice between several attacks is challenging. A logical
solution like logistic regression was theorized to be more
promising than a random choice. The results show that the
LR solution is not the best option for each of the VT scanners.
The best decision function is yet to be found.

VII. DISCUSSION

This section discusses the main insights from previous sec-
tions. First, the evasion attacks and their mitigation options
are discussed, and then the contributions of the AECs, attack
feasibility and attack decision functions are presented.

A. EVASION ATTACKS

The successful attacks on the targeted systems were the result
of the focus of these detection systems on the permission
tags of the Android manifest. As the Android APK has sev-
eral components, the malicious activity can be encapsulated
in other parts of the app, for example, in the Smali code
files. As a result, Drebin and its evenly weighted version,
Sec-SVM, were less affected by the MB attacks. The DNN
and FM detection rates decreased by at least ~70%. The

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

surprising result was that the VT scanners also failed to
detect some of the apps, and in some cases like Alibaba in
the MB2 attack or McAfee in the MB3 attack, miserably
failed to detect the malicious apps. The conclusion of this
phenomenon is that the VT scanners also suffer from the
problem of excessively relying on the permission tags.

The MB evasion attacks were compared to the AHIV
attacks. Fine preprocessing of the Smali code files will iden-
tify the manipulations and eliminate them from the code. For
example, the following process can identify the non-invoked
JSMA functions: First, run an enumeration of signatures of
the functions in the Smali code files to get the names of the
functions. Store it as f names_list. Second, for each file in
the Smali code files, scan the list. Erase a name of a function
from the f names_list if it is called in the file (neglecting
the signature of the function). Following this process, the
f_names_list is shortened. Finally, erase each function that
remains in the list.

Although the mitigation techniques of both MB and JSMA
evasion attacks are easy to implement, the MB attacks have
two clear advantages over JSMA attacks. First, their simplic-
ity. The actual manipulation of the code done by the MB
attacks is the change of the name of a tag in the manifest
file. The amount of the code is constant and small. The code
insertion of HIV is also constant but includes a new func-
tion addition and an API call for this function. Second, the
knowledge the adversary needs to orchestrate the attack. Each
attacker model in the JSMA attack is defined with additional
data to run the attack, such as: the training set, an AEC’s
black-box, or the feature set. The MB3 attack does not require
any prior knowledge in order to run.

Despite the advantages of the MB attacks, they have several
limitations. First, the MB1 attack was not efficient against
the McAfee and Alibaba VT scanner. Actually, the attack
improved their detection rate. Furthermore, its effective-
ness against the other VT scanners was limited (excluding
Comodo). The 3 MB attacks caused a small decrease in the
detection by the Microsoft VT scanner. Additionally, a pre-
process of the manifest file to identify the use of the different
name tags will eliminate the effect of the attacks, in the same
way it is done in the preprocess of Android HIV.

B. AECs’ CONTRIBUTION

The AECs in Section VI demonstrate the importance of good
analysis of the feature set to predict the success of an attack.
A complex adversary who knows when to run its attack is
more challenging than a Brute Force attacker that has a bag
of attacks and runs them all. A Brute Force attacker raises
more alarms when identified by the detection system. Also,
as mentioned in Section VI, it is costly. In future work this
cost may be analyzed by means of running time, memory,
or resources needed for the attack. In each of the cases, the
AECs’ success rate was better than the Brute Force attack.
The result was a more accurate and efficient model, which
means a more engaging and challenging adversary to the
targeted malware detection systems.

VOLUME 10, 2022

The attack feasibility and attack decision function showed
an improvement in the faults of the MB attacks. The AF
showed better performance than the BF in all cases. The save
rate of the AF was specific for each scanner and optimiza-
tion factor. Nonetheless, in most of the cases, the AF saved
resources. The results of the attack decision function raised
the following question: Is there a perfect model for choosing
between the AECs? A subtle function like logistic regression
was believed to be a promising choice. However, the random
function and the decision function resulted in a tie. The best
function to choose between the AECs is still lacking. Overall,
it was proven that an ensemble of more than one AEC, with
the addition of a simple decision function, fixes the flaws of
one evasion attack. Merging the AF and DF creates an attack
system that fuses resource maintenance and a smart decision
engine between attacks that may threaten various detection
systems or anti-viruses.

As the power of these AECs is great for an adversary, a mit-
igation technique may be suggested. The detection machine
may be updated by the use of a random distortion to the label-
ing mechanism. A flipping of the label of the answer from
malicious to benign can be added if the detection machine
senses that an attacker is trying to build an AEC against it.
This slight change can make it hard for the attacker to create a
precise AEC against the detection system. Some parameters
such as the distortion extent or the memory needed for this
kind of defense mechanism should be taken into account.

VIIl. CONCLUSION AND FUTURE WORK

Malware detection systems based on machine learning tech-
niques are widely used in the information security commu-
nity. These systems are the targets of various evasion attacks.
Recent studies show that adaptive and intelligent attackers
can easily find the weak spots of such systems. However, such
attackers lack the intel of whether the attack will succeed in
finding this weak spots or not.

The goal of this work was to shrink this gap. First, this
study introduced several innovative evasion attacks against
popular Android malware detection systems, like Drebin,
Sec-SVM, FM, and DNN. The evasion attacks included the
masking of permission requests. It was found that the targeted
systems’ detection rate decreased, ranging from 13% in the
case of Sec-SVM to almost 97% in the case of DNN. Drebin
and its successor versions are only one type of Android
malware detection systems. Consequently, the exploration of
different kinds of Android malware detection systems is still
a possible course of action in the future. For example, hitherto
it has not been established whether or not these attacks affect
hybrid malware detection systems. It may be interesting to
check whether or not a detection machine that gathers its
feature set from the code files and from the actual run of the
app will be affected by the MB attacks. In other words, will
changing the manifest file of an APK dramatically change the
classification of a hybrid detection system?

The impact of the evasion attacks on VT scanners
was presented. It was proved that although the evasion

1329

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

attacks target the open-source detection systems, they
decrease the detection rate of popular VT scanners, up to
70%. However, questions such as how these attacks affect
other AV frameworks and whether or not they can evade
other detection machines without any knowledge on their
model remain open. Future work will include other test-
ing frameworks to test the effectiveness of the MB
attacks.

Moreover, the attack efficiency AECs were defined. Fore-
casting a successful attack is a complex process. An absolute
strategy was not established and may not exist, but the fun-
damentals were presented to answer an interesting aspect of
evasion attacks: Does a good predictor of a successful attack
exist? Is a predictor that uses a tree algorithm better than a
neural network with this type of classification task, or perhaps
a simple SVM is the best method? If there is a specific
predictor that is superior to the others, does a combination
of various predictors improve the total forecast? What is the
best ensemble method to use? All of these questions are left
for future work.

The conclusion of the assessment of the Brute-Force attack
and the AECs is simple - running an attack on each malicious
APK is not cost effective and may raise too many alarms. The
issue of how to measure the costs of an evasion attack is still
at large, and is a topic for future research. In addition, the full
assessment of the AFs and DFs is incomplete. The correct
decision function is an interesting option for improvement.
The fundamentals are presented, but the full capacity of using
both as a full system is still an open issue. Moreover, the
mitigation techniques of the efficiency AECs will be explored
in the future.

APPENDIX A

COMPARISON OF THE AECs OF THE

SELECTED VT SCANNERS

The subset of VT scanners, analyzed in Section VI, were
the target of the attack efficiency assessments, to predict the
success rate of an attack. This appendix is an overview of the
analysis of these scanners and the creation of the attack effi-
ciency AECs. Eighteen classification algorithms were tested
for the AEC using the PyCaret Framework [99]. A model was
implemented for each algorithm,. The performance of each
model was evaluated. For each g value in the range of 0.2-5,
a Fg score was calculated for each model. The best model
was defined as the model which achieved the highest Fg score
for most of the B values. This evaluation was run twice with
two different hyper-parameter optimizations: precision and
recall. The results are presented in Table 8. Each model is
described by the VT scanner (Comodo, McAfee-GW-Edition
(McAfee), SymantecMobilelnsight, and Microsoft), the eva-
sion attack, the name of the ML algorithm with optimization
of precision(p) or recall(r), and three metrics: recall, precision
and accuracy. Each pair of models was correlated with a
specific VT scanner and the evasion attack was compared to a
Brute-Force attacker, which runs the evasion attack on every
APK sample.

1330

TABLE 8. Results of the models described by scanner (Scanner), evasion
attack (Attack), and specific algorithm (Algorithm). The evaluated
scanners included Comodo, McAfee-GW-Edition (McAfee), Symantec, and
Microsoft. The optimization factor appears in brackets. Each model was
evaluated by means of recall (Rec), precision (Prec), and accuracy (Acc).

Scanner Attack Algorithm | Rec | Prec | Acc
Comodo MB1 LDA(p) 0.8 0.8 0.8
Comodo MB1 ADA(r) 1 0.79 | 0.79
Comodo MBI - BF - 1 0.79 | 0.79
Comodo MB2 KNN(p) 0.75 0.8 0.72
Comodo MB2 XGB(r) 092 | 0.78 | 0.78
Comodo MB?2 - BF - 1 0.64 | 0.64
Comodo MB3 GB(p) 0.89 | 0.79 | 0.79
Comodo MB3 XGB(r) 098 | 0.72 | 0.75
Comodo MB3 - BF - 1 0.64 | 0.64
McAfee MBI1 RF(p) 0.67 | 0.05 | 0.48
McAfee MBI1 RF(r) 0.6 0.06 | 0.52
McAfee MBI - BF - 1 0.04 | 0.04
McAfee MB2 GB(p) 0.99 | 097 | 0.97
McAfee MB2 LGBM(r) 1 097 | 0.97
McAfee MB?2 - BF - 1 095 | 0.95
McAfee MB3 KNN(p) 097 | 0.87 | 0.86
McAfee MB3 XGB(r) 098 | 0.88 | 0.88
McAfee MB3 - BF - 1 0.85 | 0.85
Symantec MBI1 LR(p) 033 | 0.02 | 0.71
Symantec MBI1 LR(r) 0.47 | 0.02 | 0.67
Symantec | MBI - BF - 1 0.01 | 0.01
Symantec MB2 RF(p) 092 | 036 | 0.64
Symantec MB2 RF(r) 0.89 0.35 0.66
Symantec | MB2 - BF - 1 0.21 0.21
Symantec MB3 KNN(p) 0.91 093 | 0.92
Symantec MB3 XGB(r) 0.96 | 0.86 | 0.91
Symantec | MB3 - BF - 1 0.48 | 0.48
Microsoft MBI QDA(p) 0.11 0.14 | 0.83
Microsoft MBI1 XGB(r) 097 | 0.12 | 0.15
Microsoft | MBI - BF - 1 0.11 | 0.11
Microsoft MB2 NB(p) 0.32 | 027 | 0.69
Microsoft MB2 XGB(r) 0.88 | 0.26 | 0.46
Microsoft | MB2 - BF - 1 0.2 0.2
Microsoft MB3 LDA(p) 0.13 | 047 | 0.82
Microsoft MB3 XGB(r) 0.87 | 0.26 | 0.48
Microsoft | MB3 - BF - 1 0.2 0.2

It can be seen that in the Comodo VT scanner case, the
MBI models are identical to the BF attacker. For both MB2
and MB3 models, the precision and accuracy were higher
than the BF attacker. The McAfee case is more question-
able - the recall of the MB1 model was worse ~ 33%.
However, the total accuracy was better. The MB2 and MB3
models present a tradeoff between precision and recall. With
reference to Symantec, the MB1 model presented similar
results to the McAfee MB1 model. The MB2 presented a
good tradeoff between recall and precision. The MB3 model
presented an effective decrease in recall, which resulted in an
impressive increase in precision of more than 40%. Microsoft
presented poor performance, with slightly better precision
in most cases, accompanied by a significant decrease in
recall.

In conclusion, the Comodo scanner models showed
promising results in each metric that was inspected. The same
is true for MB2 and MB3 models of the McAfee scanner.
All in all, in most of the cases of the four VT scanners evalu-
ated, the price of a small decrease in recall was worthwhile.

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

IEEE Access

ACKNOWLEDGMENT

The authors would like to thank Xiao Chen for the Android
HIV models. They would also like to thank Prof. Lorenzo
Cavallaro, Prof. Pierazzi Fabio, Pendlebury Feargus, and
Cortellazzi Jacopo for their help regarding problem-based
evasion attacks and their Sec-SVM implementation. Last but
not least, a great thank is sent to Noa Hadad, Dean Carmi,
and Elon Ezra for their implementation of the algorithms and
evaluation system for VirusTotal.

REFERENCES

[1]

[2]
[3]
[4]

[51
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Aycock, Computer Viruses and Malware (Advances in
Information Security) vol. 22. Springer, 2006. [Online]. Available:
https://dblp.org/rec/books/sp/Aycock06.bib, doi: 10.1007/0-387-34188-9.
N. Leavitt, ““Malicious code moves to mobile devices,” Computer, vol. 33,
no. 12, pp. 16-19, 2000.

M. Hypponen, “Malware Goes mobile,” Sci. Amer., vol. 295, no. 5,
pp. 70-77, Nov. 2006.

M. Humphries. (2021). Over 10m Android Phones Infected With Grifthorse
Malware. [Online]. Available: https://www.pcmag.com/news/over-10m-
android-phones-infected-with-grifthorse-malware

D. Venugopal and G. Hu, “Efficient signature based malware detection on
mobile devices,” Mobile Inf. Syst., vol. 4, no. 1, pp. 33—49, 2008.

A. Ojugo and A. Eboka, ‘“Signature-based malware detection using
approximate boyer Moore string matching algorithm,” Int. J. Math. Sci.
Comput., vol. 5, no. 3, pp. 49-62, Jul. 2019.

M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature
based analytic system to collect, extract, analyze and associate Android
malware,” in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy Comput.
Commun., Jul. 2013, pp. 163-171.

W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. 16th ACM Conf. Comput. Commun.
Secur. (CCS), 2009, pp. 235-245.

W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permission usage
in Android applications,” in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.
(ISSRE), Nov. 2013, pp. 400-410.

W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Explor-
ing permission-induced risk in Android applications for malicious appli-
cation detection,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869-1882, Nov. 2014.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and explainable detection of Android
malware in your pocket,” in Proc. NDSS, vol. 14, 2014, pp. 23-26.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, J. G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),” ACM Trans.
Priv. Secur., vol. 22, no. 2, p. 14, 2019.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! A case study on Android malware detection,” IEEE Trans. Depend-
able Secure Comput., vol. 16, no. 4, pp. 711-724, Jul. 2019.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ‘“Andromaly’:
A behavioral malware detection framework for Android devices,” J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161-190, 2012.

I. I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” in Proc. USENIX Secur. Symp., 2006,
pp. 241-256.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware clas-
sification,” 2016, arXiv:1606.04435.

N. Rndic and P. Laskov, “Practical evasion of a learning-based classi-
fier: A case study,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 197-211.

D. Maiorca, I. Corona, and G. Giacinto, ‘“Looking at the bag is not enough
to find the bomb: An evasion of structural methods for malicious PDF files
detection,” in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun. Secur.
(ASIA CCS), 2013, pp. 119-130.

W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in Proc.
Netw. Distrib. Syst. Symp., 2016, pp. 21-24.

VOLUME 10, 2022

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

[41]

[42]

[43]

(44]

D. Liand Q. Li, “Adversarial deep ensemble: Evasion attacks and defenses
for malware detection,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3886-3900, 2020.

C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi, “Android
malware detection based on factorization machine,” IEEE Access, vol. 7,
pp. 184008-184019, 2019.

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android HIV: A study of repackaging malware for evading
machine-learning detection,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 987-1001, 2020.

H. Chen, J. Su, L. Qiao, and Q. Xin, ‘“Malware collusion attack against
SVM: Issues and countermeasures,” Appl. Sci., vol. 8, no. 10, p. 1718,
Sep. 2018.

H. Bostani and V. Moonsamy, ‘“EvadeDroid: A practical evasion attack
on machine learning for black-box Android malware detection,” 2021,
arXiv:2110.03301.

M. Melis, M. Scalas, A. Demontis, D. Maiorca, B. Biggio, G. Giacinto, and
F. Roli, “Do gradient-based explanations tell anything about adversarial
robustness to Android malware?”” 2020, arXiv:2005.01452.

Virus Total. (2012). Virustotal-Free Online Virus, Malware and URL Scan-
ner. [Online]. Available: https://www.virustotal.com/en

P. Peng, L. Yang, L. Song, and G. Wang, “Opening the blackbox of
VirusTotal: Analyzing online phishing scan engines,” in Proc. Internet
Meas. Conf., Oct. 2019, pp. 478-485.

A. Salem, S. Banescu, and A. Pretschner, ‘‘Maat: Automatically analyzing
VirusTotal for accurate labeling and effective malware detection,” ACM
Trans. Privacy Secur., vol. 24, no. 4, pp. 1-35, Nov. 2021.

H. Berger, C. Hajaj, and A. Dvir, “Evasion is not enough: A case study
of Android malware,” in Proc. Int. Symp. Cyber Secur. Cryptogr. Mach.
Learn. Cham, Switzerland: Springer, 2020, pp. 167-174.

H. D. Menéndez, D. Clark, and E. T. Barr, “Getting ahead of the arms race:
Hothousing the coevolution of VirusTotal with a packer,” Entropy, vol. 23,
no. 4, p. 395, Mar. 2021.

M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and
K.-W. Chang, “Generating natural language adversarial examples,” 2018,
arXiv:1804.07998.

G. Apruzzese and M. Colajanni, “Evading botnet detectors based on flows
and random forest with adversarial samples,” in Proc. IEEE 17th Int. Symp.
Netw. Comput. Appl. (NCA), Nov. 2018, pp. 1-8.

H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by morphing
in the dark,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 119-133.

J.Li, S.Ji, T. Du, B. Li, and T. Wang, “TextBugger: Generating adversarial
text against real-world applications,” 2018, arXiv:1812.05271.

V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating Android
anti-malware against transformation attacks,” in Proc. 8th ACM SIGSAC
Symp. Inf., Comput. Commun. Secur., 2013, pp. 329-334.

M. Zheng, P. P. Lee, and J. C. Lui, “Adam: An automatic and exten-
sible platform to stress test Android anti-virus systems,” in Proc. Int.
Conf. Detection Intrusions Malware, Vulnerability Assessment. Berlin,
Germany: Springer, 2012, pp. 82-101.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery Databases,
2013, pp. 387-402.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 39-57.
L. Chen, S. Hou, Y. Ye, and S. Xu, “DroidEye: Fortifying security of
learning-based classifier against adversarial Android malware attacks,” in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Aug. 2018, pp. 782-789.

M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial attacks
on mobile malware detection,” in Proc. IEEE 1st Int. Workshop Artif. Intell.
for Mobile (AIMobile), Feb. 2019, pp. 17-20.

R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative
deep domain generalization for face presentation attack detection,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10023-10031.

Q. Xu, G. Tao, S. Cheng, and X. Zhang, ““Towards feature space adversarial
attack,” 2020, arXiv:2004.12385.

1. A. Zikratov, V. Korzhuk, I. Shilov, and A. Gvozdeyv, ‘“Formalization of
the feature space for detection of attacks on wireless sensor networks,” in
Proc. 20th Conf. Open Innov. Assoc. (FRUCT), Apr. 2017, pp. 526-533.

1331

http://dx.doi.org/10.1007/0-387-34188-9

IEEE Access

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

1332

E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in Proc. Eur. Conf. Appl. Evol. Comput. Cham,
Switzerland: Springer, 2015, pp. 745-756.

L. Chen, S. Hou, Y. Ye, and L. Chen, “An adversarial machine learn-
ing model against Android malware evasion attacks,” in Proc. Asia—
Pacific Web Web-Age Inf. Manage. Joint Conf. Web Big Data. Cham,
Switzerland: Springer, 2017, pp. 43-55.

W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” 2017, arXiv:1702.05983.

J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao, ‘Replacement attacks:
Automatically impeding behavior-based malware specifications,” in Proc.
Int. Conf. Appl. Cryptogr. Netw. Secur. Cham, Switzerland: Springer, 2015,
pp. 497-517.

G. Zhao, M. Zhang, J. Liu, and J.-R. Wen, “Unsupervised adver-
sarial attacks on deep feature-based retrieval with GAN,” 2019,
arXiv:1907.05793.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ML attacks in the problem space,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 1308-1325.

A. Salem, F. F. Paulus, and A. Pretschner, “Repackman: A tool for
automatic repackaging of Android apps,” in Proc. Ist Int. Workshop Adv.
Mobile App Anal., Sep. 2018, pp. 25-28.

Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining API-level features
for robust malware detection in Android,” in Proc. Int. Conf. Secur. Privacy
Commun. Syst. Cham, Switzerland: Springer, 2013, pp. 86—103.
Droidapiminer Code, ChenJunHero, GitHub, San Francisco, CA, USA,
2018.

K. Wang, T. Song, and A. Liang, “Mmda: Metadata based malware detec-
tion on Android,” in Proc. 12th Int. Conf. Comput. Intell. Secur. (CIS),
Dec. 2016, pp. 598-602.

P. P. K. Chan and W.-K. Song, “Static detection of Android malware
by using permissions and API calls,” in Proc. Int. Conf. Mach. Learn.
Cybern., vol. 1, Jul. 2014, pp. 82-87.

R. Sato, D. Chiba, and S. Goto, “Detecting Android malware by analyzing
manifest files,” Proc. Asia—Pacific Adv. Netw., vol. 36, nos. 23-31, p. 17,
2013.

Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for
Android malware detection based on control flow graphs and machine
learning algorithms,” IEEE Access, vol. 7, pp. 21235-21245, 2019.

D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, ‘“‘Stealth
attacks: An extended insight into the obfuscation effects on Android mal-
ware,” Comput. Secur., vol. 51, pp. 16-31, Jun. 2015.

G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang, and
T. Chen, “Mystique: Evolving Android malware for auditing anti-malware
tools,” in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., May 2016,
pp. 365-376.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in Android and its security applications,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 356-367.

R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in Proc. Conf. Theory Appl. Cryptograph. Techn. Berlin,
Germany: Springer, 1987, pp. 369-378.

M. Ikram, P. Beaume, and M. A. Kaafar, “DaDiDroid: An obfuscation
resilient tool for detecting Android malware via weighted directed call
graph modelling,” 2019, arXiv:1905.09136.

Y. Piao, J.-H. Jung, and J. H. Yi, “Server-based code obfuscation
scheme for APK tamper detection,” Secur. Commun. Netw., vol. 9, no. 6,
pp. 457-467, Apr. 2016.

M. Sun and G. Tan, “NativeGuard: Protecting Android applications from
third-party native libraries,” in Proc. ACM Conf. Secur. Privacy Wireless
Mobile Netw. (WiSec), 2014, pp. 165-176.

A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, “Mobile malware detection through analysis of deviations
in application network behavior,” Comput. Secur., vol. 43, no. 6, pp. 1-18,
2014.

A. Shabtai, U. Kanonov, and Y. Elovici, “Intrusion detection for mobile
devices using the knowledge-based, temporal abstraction method,” J. Syst.
Softw., vol. 83, no. 8, pp. 1524-1537, Aug. 2010.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective
and efficient behavior-based Android malware detection and prevention,”
IEEE Trans. Dependable Secure Comput., vol. 15, no. 1, pp. 83-97,
Mar. 2016.

(68]

[69]

[70]

(71]

(72]

(73]

(74]

[75]

[76]

(77

(78]

(791

(80]

(81]
(82]

(83]

[84]

(85]

[86]

(87]
(88]

(89]

(90]

(91]

[92]

X. Wang and C. Li, “Android malware detection through machine learn-
ing on kernel task structures,” Neurocomputing, vol. 435, pp. 126-150,
May 2021.

B. Kang, B. Kang, J. Kim, and E. G. Im, “Android malware classification
method: Dalvik bytecode frequency analysis,” in Proc. Res. Adapt. Con-
vergent Syst. (RACS), 2013, pp. 349-350.

T. Chen, Q. Mao, Y. Yang, M. Lv, and J. Zhu, “TinyDroid: A lightweight
and efficient model for Android malware detection and classification,”
Mobile Inf. Syst., vol. 2018, pp. 1-9, Oct. 2018.

M. Damashek, “Gauging similarity with n-grams: Language-independent
categorization of text,” Science, vol. 267, no. 5199, pp. 843-848, 1995.
A. Martin, R. Lara-Cabrera, and D. Camacho, ‘‘Android malware detection
through hybrid features fusion and ensemble classifiers: The AndroPyTool
framework and the OmniDroid dataset,” Inf. Fusion, vol. 52, pp. 128-142,
Dec. 2019.

alexMyG. (2019). A Framework for Automated Extraction of Static
and Dynamic Features From Android Applications. [Online]. Available:
https://github.com/alexMyG/AndroPyTool

H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, ‘“Reevaluating Android
permission gaps with static and dynamic analysis,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2014, pp. 1-6.

M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., vol. 2,
Jul. 2015, pp. 422-433.

V. Kouliaridis, G. Kambourakis, D. Geneiatakis, and N. Potha, “Two
anatomists are better than one-dual-level Android malware detection,”
Symmetry, vol. 12, no. 7, p. 1128, 2020.

A. Alzubaidi, “Recent advances in Android mobile malware detection:
A systematic literature review,” IEEE Access, vol. 9, pp. 146318-146349,
2021.

I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against state of the art API call based malware
classifiers,” in Proc. Int. Symp. Res. Attacks, Intrusions, Defenses. Cham,
Switzerland: Springer, 2018, pp. 490-510.

F. Cara, M. Scalas, G. Giacinto, and D. Maiorca, “On the feasibility of
adversarial sample creation using the Android system APL” Information,
vol. 11, no. 9, p. 433, Sep. 2020.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting
millions of Android apps for the research community,” in Proc. 13th Int.
Conf. Mining Softw. Repositories, May 2016, pp. 468—471.

GooglePlay App Market, Google, Mountain View, CA, USA, 2008.

C. Wang, L. Zhang, K. Zhao, X. Ding, and X. Wang, “AdvAndMal: Adver-
sarial training for Android malware detection and family classification,”
Symmetry, vol. 13, no. 6, p. 1081, Jun. 2021.

R. Labaca-Castro, L. Mufioz-Gonzdlez, F. Pendlebury, G. D. Rodosek,
F. Pierazzi, and L. Cavallaro, “Universal adversarial perturbations for
malware,” 2021, arXiv:2102.06747.

S. K. Sasidharan and C. Thomas, ‘“‘ProDroid—An Android malware detec-
tion framework based on profile hidden Markov model,” Pervas. Mobile
Comput., vol. 72, Apr. 2021, Art. no. 101336.

L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik,
“Improving robustness of ML classifiers against realizable evasion attacks
using conserved features,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 285-302.

J. Chen, D. Wu, Y. Zhao, N. Sharma, M. Blumenstein, and S. Yu, “Fooling
intrusion detection systems using adversarially autoencoder,” Digit. Com-
mun. Netw., vol. 7, no. 3, pp. 453-460, Aug. 2021.

Z.Lin, Y. Shi, and Z. Xue, “IDSGAN: Generative adversarial networks for
attack generation against intrusion detection,” 2018, arXiv:1809.02077.
A. Desnos and G. Gueguen, “Android: From reversing to decompilation,”
Proc. Black Hat Abu Dhabi, pp. 77-101, 2011.

Statecounter GlobalStats. (2021). Mobile & Tablet Android Version Market
Share Worldwide. [Online]. Available: https://gs.statcounter.com/android-
version-market-share/mobile-tablet/worldwide

PYMNTS. (2021). NuData: Countering Account Hijacking With
Behavioral Analytics. [Online]. Available: https://www.pymnts.com/news/
biometrics/2021/nudata-countering-account-hijacking-with-behavioral-
analytics/

Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: A lightweight UI-guided
test input generator for Android,” in Proc. IEEE/ACM 39th Int. Conf.
Softw. Eng. Companion (ICSE-C), May 2017, pp. 23-26.

Drebin Implementation, Daniel Arp, GitHub, San Francisco, CA, USA,
2014.

VOLUME 10, 2022

H. Berger et al.: Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier I E E EACCGSS

[93]

[94]

[95]

[96]

[97]

[98]

[99]

V. Niculae. (2016). Polylearn—A Library for Factorization Machines
and Polynomial Networks for Classification and Regression in Python.
[Online]. Available: https://contrib.scikit-learn.org/polylearn/

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 729-746.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372-387.

M. Graziano, D. Canali, L. Bilge, A. Lanzi, E. Shi, D. Balzarotti,
M. van Dijk, M. Bailey, S. Devadas, and M. Liu, “Needles in a haystack:
Mining information from public dynamic analysis sandboxes for malware
intelligence,” in Proc. 24th USENIX Secur. Symp. (USENIX Security),
2015, pp. 1057-1072.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth anal-
ysis of current Android malware,” in Proc. Int. Conf. Detection Intru-
sions Malware, Vulnerability Assessment. Bonn, Germany: Springer, 2017,
pp. 252-276.

S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “StormDroid: A streamin-
glized machine learning-based system for detecting Android malware,”
in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., May 2016,
pp. 377-388.

M. Ali. (2020). PyCaret: An Open Source Low-Code Machine Learning
Library. [Online]. Available: https://pycaret.org/

HAREL BERGER received the B.Sc. degree in
computer science from Bar-Ilan University, Ramat
Gan, Israel, in 2016, and the M.Sc. degree in com-
puter science and mathematics from Ariel Univer-
sity, Ariel, Israel, in 2018, where he is currently
pursuing the Ph.D. degree in mobile security and
network security with the Department of Com-
puter Science.

VOLUME 10, 2022

CHEN HAJAJ received the B.Sc. degree in com-
puter engineering, the M.Sc. degree in electrical
engineering, and the Ph.D. degree in computer sci-
ence from Bar-Ilan University. From 2016 to 2018,
he was a Postdoctoral Fellow at Vanderbilt Uni-
versity. He is currently a Faculty Member with
the Department of Industrial Engineering and
Management, the Head of the Data Science and
Artificial Intelligence Research Center, and a
! member of the Ariel Cyber Innovation Center. His
research interests include machine learning, game theory, and cybersecurity,
specifically, the focuses of his work are on how to detect and robustify the
weak-spots of Al methods (adversarial artificial intelligence) and personal-
ized and preventative medicine using data-science-based methods.

ENRICO MARICONTI is currently a Lecturer at
the UCL Department of Security and Crime Sci-
ence. He has been part of the SECReT DTC and
during his Ph.D. degree, he focused mainly on mal-
ware detection. His main focus has been the use of
Al and statistical models for detecting automated
malicious activities as well as advanced threats on
the internet. Alongside this area of research, he is
trying to expand the use of Al in detecting other
cybercrime activities, such as hate crime on social
media.

AMIT DVIR received the B.Sc., M.Sc., and Ph.D.
degrees from Ben-Gurion University, Beer Sheva,
Israel, all in communication systems engineering.
From 2011 to 2012, he was a Postdoctoral Fellow
at the Laboratory of Cryptography and System
Security, Budapest, Hungary. He is currently a
Faculty Member with the Department of Computer
Science and the Head of the Ariel Cyber Innova-
tion Center, Ariel University, Israel. His research
interest includes enrichment data from encrypted
traffic.

1333

