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Regularized representation of bacterial hydrodynamics
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Fluid flows induced by a flagellated bacterial swimmer are often modeled as a simple
force dipole, valid in the far field. Such representations neglect the inherent rotation of
these bacteria as they swim, driven by a spinning helical flagellum or fascicle. Here,
we present a refined swimmer representation that makes use of regularized singularities,
retaining simplicity while capturing details of the complex flow field near the swimmer
that have previously been absent from basic models. We illustrate the significance of this
representation via a study of bacterial predator-prey dynamics, highlighting the importance
of detailed hydrodynamics in models of bacterial interactions and bacterial active matter.
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I. INTRODUCTION

Distilling simplicity from complexity is an extensive goal of scientific study. However, in the
microscale world of active matter and cellular swimming, simplicity is regularly ad hoc and not
uniformly valid, with the basic and intuitive reductions often neglecting significant aspects of the
dynamics. One such example is the representation of force-free swimmers purely as force dipoles,
popularized by computational necessity in the 20th Century and summarized in the extensive review
of Lauga and Powers [1]. Though the foundation of innumerable insightful studies into swimming
at the microscale, such a representation potentially neglects extensive detail in the near-field of the
microswimmer. Reliably capturing only the far-field flows, these models remain in widespread use,
even though hydrodynamic interactions between swimmers at closer scales can exhibit sensitivity
to both individual geometry and modality of locomotion [2–4], in addition to being of great interest
in active matter physics [5–7].

As a particular illustration, flagellated bacterial microswimmers, such as Escherichia coli,
Pseudomonas aeruginosa, Rhodobacter spheroides, and Bacillus subtilis, utilize the rotation of
one or more long slender flagella to achieve motility, with the multiple flagella of E. coli and
B. subtilis bundled into a single helical fascicle that resembles the lone helical flagellum of R.
spheroides or P. aeruginosa. While large-scale collective motion has been observed to generate
turbulent flows at high concentrations in the case of B. subtilis [8], at a more basic level the rotary
motion generally induces complex spiral-like velocity fields around the swimmers. However, this
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defining characteristic of bacterial flows is neglected in their entirety by minimalistic force-dipole
representations. Despite this significant absence of detail, and potential qualitative impacts on
resulting swimming behaviors [9], these force-dipole models are frequently used in studies of
bacterial swimming [10–18].

There are a multitude of more refined models of helically driven swimmers, from popular regu-
larized Stokeslet methods to fully resolved boundary integral formulations [19–23], each balancing
accuracy with tractability. Most reminiscent of simple force dipole models, the rotational motion
of torque-free swimmers may be incorporated into singularity representations via the inclusion of
torque dipoles, also known as rotlet dipoles, which can appear as higher-order singularities in the
far-field multipole expansion of the flow generated by a swimmer. Such terms are noted by Lopez
and Lauga [9] to be the source of the circular motion of cells near boundaries, and have been used
to study droplets of active fluid to reveal rich and varied behaviors [24]. However, the efficacy of
representing near-field flows via rotlet dipoles is yet to be evaluated in significant detail. Hence,
the primary aim of this study will be to construct a representation of bacterial hydrodynamics that
incorporates the characteristics of rotlet dipole flows, making use of the regularized singularities of
Cortez [25] to afford additional computational flexibility and accuracy.

Despite their noted importance in cell-surface interactions, the impact of the rotational flows
induced by rotlet dipoles on cell-cell interactions remains largely untested. Furthermore, in the
context of bacterial swimming, the importance of hydrodynamic cell-cell interactions is not entirely
resolved. For example, the detailed study of Drescher et al. [26] suggests that the effects of rotational
noise dominate swimmer interactions in the near-field, though notably makes use of a force dipole
model of bacterial swimming, with rotational effects absent. Somewhat contrastingly, it is suggested
that the hydrodynamic no-slip condition contributes significantly to the successful surface entrain-
ment of particles in the vicinity of swimmers [27–30]. Therefore, with both rotational diffusion and
hydrodynamics potentially relevant to swimmer-swimmer interactions, a further objective of this
study is to perform minimalistic illustrative simulations of a model in silico system of interacting
bacteria to determine the extent to which these distinct components impact on cell movement
and potential swimmer-swimmer collisions. We do this with particular reference to the biological
context of contact-mediated bacterial predation, a phenomenon in which one species predates upon
another via surface contact, for example in the case of the predation of Escherichia coli by the aptly
named Bdellovibrio bacteriovorus [31,32]. We direct the interested reader to the recent reviews of
Pérez et al. [33] and Negus et al. [34] for a comprehensive summary of bacterial predation.

Hence, in this work we will firstly aim to present a simple representation of helically driven
swimmers, focusing on archetypal bacterial morphology and utilizing the regularized singularities
of Cortez [25] to extensively capture the details of bacterial swimming. In particular, we will
incorporate the rapid rotational motion of the helix via discrete regularized rotlets, and evaluate
the efficacy of near-field flow approximation using these regularized singularities in comparison to
both singular and regularized force dipole models. We will then seek to exemplify the significance of
this representation to bacterial hydrodynamics by briefly considering idealized predatory bacterial
dynamics, adapting the methodology of Ishimoto and Gaffney [35] to simulate the pairwise
swimming of model predator and prey bacteria. We will examine the effects of including both
hydrodynamic interactions and rotational diffusion, aiming to quantify the significance of each of
these factors on overall swimmer-swimmer dynamics.

II. METHODS

A. Regularized singularities of Stokes flow

The fluid flows generated by the microswimming of various individual bacteria are governed by
the well-known Stokes equations, which for Newtonian stress tensor σ and applied force F may be
written as

∇ · σ + F = 0, (1)
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accompanied by force and torque-free conditions due to a negligibly small Reynolds number.
Associated with these linear equations are fundamental singularities, with perhaps the most basic
being the Stokeslet and the rotlet, corresponding to the action of a point force and torque on the fluid,
respectively. A regularized analog of the Stokeslet [25], which enables simple computation of the
associated flow fields owing to its nonsingular construction, has previously been used to represent
the swimming of another model organism, the human spermatozoon [36]. In this work we will
attempt to represent the flow fields around a bacterium using so-called regularized Stokeslets and,
in addition, regularized rotlets, which, when placed at a location x0, generate flows at a field point x
given by u(x) = f · GεS (x, x0) and u(x) = m × T εR (x, x0), where GεS and T εR are the regularized
Stokeslet and rotlet and f and m are their respective force and torque strengths. Explicitly, here we
take

GεS =
(
r2 + 2ε2

S

)
I + rr

(
r2 + ε2

S

)3/2 , T εR =
(
2r2 + 5ε2

R

)
r

(
r2 + ε2

R

)5/2 , (2)

where r = x − x0, r = |r|, and εS, εR > 0 are the regularization parameters associated with the
regularized Stokeslet and rotlet, respectively. These expressions for the regularized Stokeslet and
rotlet correspond to taking F = fφεS (r) and F = ∇ × [mφεR (r)] in Eq. (1), respectively, where

φε (r) = 15ε4

8π (r2 + ε2)7/2
. (3)

By linearity, the flow due to a collection of these regularized point forces and torques is simply the
sum of their individual flows.

B. Flow-field simulation

We compute, to high accuracy, the motion of a bacterial swimmer using the boundary element
method [37], as implemented and verified by Walker et al. [38], imposing force and torque-free
conditions on the virtual swimmer. We adopt the approximate morphology of the monoflagellate P.
aeruginosa [39], representing the body as a spherocylinder and the flagellum as a rigid helix rotating
with constant angular velocity relative to the swimmer body, with the details of the flagellar shape
as in Dasgupta et al. [39], Ishimoto [40]. In dimensionless units, the flagellum is taken to be of unit
length and radius 0.003, with the cell body of length 0.3 and radius 0.1. Computing the flow field
around the swimmer in the laboratory frame at sample points that translate with the linear motion
of the bacterium, as measured at the body-flagellum junction, we average the flow velocity u over
multiple periods of the cyclical motion of the helix. Denoting this time-averaged flow field by ua,
we show a slice of the flow and accompanying sample streamlines in Figs. 1(a) and 1(d), and 1(g)
from which the clear influence of the rapidly rotating helix can be seen. These flow profiles are
qualitatively different to the symmetric flow fields generated by simple force-dipole representations
of swimmers, with the apparent structural complexity of the cyclical streamlines evident here.

C. Simulation of predator-prey interactions

We will simulate the three-dimensional swimming of a pair of model swimmers by adapting
the methodology of Ishimoto and Gaffney [35] to include the contributions of regularized rotlets,
and we will include the effects of rotational diffusion where specified. For a full description of
the swimming model and implementation we direct the reader to the publication of Ishimoto and
Gaffney [35], and we briefly summarize the approach here. An individual swimmer is represented
by a collection of regularized singularities and moves with a prescribed linear velocity, which for a
given timescale is computed as a byproduct of the boundary element method flow-field computation.
This velocity, denoted U self, is augmented by the flow-field contribution of the other individual,
exploiting the linearity of Stokes equations. Explicitly, the centroid of the kth swimmer evolves
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(g) (h) (i)

FIG. 1. Sample flow fields (a, b, c) and streamlines (d, e, f) around a model bacterium positioned at the
origin, with combined plots showing swimmer geometry and orientation (g, h, i), where axis scales are in units
of flagellum length. Panels (a, d, g) correspond to the original flow field ua, while panels (b, e, h) show u f as
generated using the fitted representation. Panels (c, f, i) show the results of fitting singular coincident Stokeslet
and rotlet dipoles to the original flow field. The simple four-component regularized representation can be seen
to qualitatively reproduce both the flow field and complex streamlines around the swimmer, with the rotational
streamlines in particular unable to be well-approximated by the simple singular model. The magnitude of the
fluid velocity relative to the maximum magnitude of ua is shown in color in panels (a, b, c, g, h, i). Slices in
panels (a, b, c) are taken through z = 0, with streamlines in panels (d, e, f) projected onto this plane. Flow field
slices in panels (g, h, i) correspond to z = 0 and x = −1.

over time t as

dX k

dt
= U self + Uothers, (4)

where Uothers is the velocity field generated by the other swimmers, averaged over the locations of
the regularized singularities in the representation of the kth swimmer. Derived from the force and
torque-free conditions appropriate for a neutrally buoyant microswimmer, analogous expressions
hold for the angular velocity of the swimmers, as derived in previous works [35,38], given explicitly
as

dek

dt
= �others × ek, (5)

where ek is a body-fixed orientation vector and �others is the angular velocity calculated from
the velocity field induced by the other swimmers, averaged over the locations of the regularized
singularities. Where stated in the text, swimmer orientation is augmented with the effects of
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FIG. 2. Schematic of fitted swimmer representations and their associated geometries. Here, axis scales are
in units of the flagellum length corresponding to case (b), with dots denoting points on the bacterium, while
arrows correspond to strengths in both magnitude and direction, where the center and radius of the attached
circles are the associated locations xk

0 and regularization parameters, with values given in Table I. We note that
the regularized Stokeslet-rotlet pairs are positioned approximately at the geometric centers of the swimmer
body and helix, with this observation apparently robust to considerable variations in morphological scales.
Arrows are shown offset from their true positions for visual clarity, and strengths are uniformly rescaled for
visualization. Relative measures of the size of the residual flow, E f as defined in the main text, are also reported.

rotational noise, with simulations being repeated 1000 times to appropriately represent the inherent
stochasticity.

When first considering pairwise dynamics, we initialize two swimmers, referred to as predator
and prey, with their axes of symmetry lying in a common plane, without loss of generality the xy
plane of a Cartesian coordinate system centered on the head-tail junction of the prey swimmer, as
in Figs. 1 and 2. Here, we position the predatory swimmer at (x, y, 0) and align the prey swimmer
along the x axis as shown in Figs. 3(a) and 3(b). The xy-dependent initial orientation of the predatory
swimmer is defined such that a collision of the swimmer’s head-tail junctions would take place
in the absence of any hydrodynamic interactions or rotational diffusion, and may be determined
via elementary geometry as a function of relative swimmer speed and initial position. When later
considering a broader range of initial conditions, we orient the swimmers as above then translate
the predatory swimmer from (x, y, 0) to (x, y, c), equivalent to considering a range of initial out of
plane orientations of the predator. For large values of |c|, we note that the probability of a collision
from any given initial configuration (x, y, c) approaches zero, with the predator effectively facing
away from the prey. In practice, collisions are rarely observed when |c| is greater than the body radii
of the two swimmers.

For the purpose of detecting collisions when simulating swimmer motion, we represent each
swimmer by a sphere of radius ε2

S centered at x2
0, which are, respectively, the regularization

parameter and position of the regularized Stokeslet that is a posteriori coincident with the swimmer
body in Fig. 2. A collision between two swimmers is then defined as a collision between their
respective spheres, with the qualitative results presented in this work being insensitive to the details
of this definition.

III. RESULTS

A. Swimmer representation

Informed by the character of the flow field and consistent with an approximate far-field force
dipole representation, we approximate the computed flow field by a collection of two regularized
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FIG. 3. Predator-prey collision dynamics, as computed with (c, d) and without (e, f) the effects of regu-
larized rotlets, including and excluding rotational diffusion. (a, b) Definitions of predator-prey configuration
space for relatively slow (a) and fast (b) predators, with orientations defined such that collision would occur
in the absence of hydrodynamic interactions or noise, and swimmer headings initially coplanar. For each
initial configuration we simulate the unconstrained motion of the predator and prey until eventual collision
or separation. In panels (c–f) we report the probability of a collision event occurring from a given initial
configuration, with dashed red curves showing the boundaries of deterministic collision/separation regions
in the absence of Brownian noise. Rotational diffusion can be seen to minimally impact on the qualitative
dynamics, with both relative speed and swimmer representation dominating the predatory behaviors. In
particular, we see that the inclusion of the regularized rotlet terms greatly reduces the prevalence of collisions
in this case, while increased predator speed increases collision likelihood. Configurations in which swimmers
overlap initially are shown white.

Stokeslets and two regularized rotlets, noting that the regularized rotlet decays more rapidly than
the regularized Stokeslet as r approaches infinity. This representation, making use of regularized
singularities as in the work of Ishimoto et al. [36], in particular, may enable the capturing of the
rotational effects of the flagellum and counter-rotating body via the regularized rotlets, absent from
previous simple descriptions of the flow field around a bacterium. Informed by the approximate
symmetry of the bacterium about the axis of its flagellum, we constrain the positions of the
regularized singularities to be along this midline, and, seeking further simplicity, impose that the
representation consists only of coincident regularized Stokeslet-rotlet pairs with shared locations
xk

0. Here and throughout, k = 1, 2 indexes the pairs of regularized singularities, and we note that
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TABLE I. Fitted representation parameters corresponding to the bacterial morphologies of Fig. 2. Owing
to the approximate axial symmetry, we report only the x coordinate of the regularized Stokeslet-rotlet pairs xk

0,
denoted here as xk

0 for k = 1, 2, and analogously for Stokeslet and rotlet strengths. Here, k = 1 corresponds to
the regularized singularities located in x > 0 in Fig. 2.

Case x1
0 x2

0 ε1
S ε1

R ε2
S ε2

R f 1 m1

a 0.51 −0.31 0.12 0.15 0.17 0.15 3.2 × 10−4 0.66 × 10−4

b 0.50 −0.16 0.12 0.16 0.13 0.11 3.0 × 10−4 0.66 × 10−4

c 0.84 −0.17 0.21 0.25 0.11 0.13 3.7 × 10−4 1.29 × 10−4

their corresponding strengths and regularization parameters may be chosen independently. Denoting
the strengths of these regularized Stokeslets and rotlets by f k and mk , respectively, imposing the
force and torque-free conditions on this representation of the swimmer yields the simple constraints
f (2) = − f (1) and m(2) = −m(1), with the torque balance being measured about an arbitrary inertial
frame reference point [41]. Given these conditions, we compute the positions xk

0, regularization
parameters εk

S, ε
k
R, and strengths f k and mk via nonlinear least-squares fitting of the flow field,

utilizing the inbuilt MATLAB routine lsqnonlin. The computed optimal configuration for this
bacterial morphology is illustrated in Fig. 2(b), with fitted parameters given in Table I. Consistent
with the approximate symmetry of the time-averaged swimmer, we see the alignment of the
regularized singularities along the centreline, as prescribed, with their strength vectors f k and mk

oriented along the same axis. The proximity of the regularized Stokeslets gives rise to a far-field
flow resembling that of a force dipole, and similarly the pair of regularized rotlets is reminiscent of
a torque dipole.

Though we fit a regularized singularity representation to only the time-averaged flow around
the virtual swimmer, throughout its motion the bacterium undergoes minimal yawing along its
average trajectory. This is due to the approximate rotational symmetry of the swimmer about the
axis of its helix, broken only by the chirality and thus slight asymmetry of the helical driver.
Hence, an isolated bacterial swimmer may be well-represented as a time-independent collection
of only four regularized singularities, moving with a constant linear velocity. This is in contrast
to analogous approximations of the planar flagellar beating of human spermatozoa [36], which
necessarily include the motion of the regularized singularities relative to the average position of the
swimmer, and moreover the additional complexity of time-dependent strengths of the regularized
point forces used. Our proposed representation therefore recovers the simplicity of the most basic
force-dipole models of bacterial swimming, while improving upon the latter’s limited capabilities
to capture qualitative details of the complex flow field surrounding the bacterium.

B. Near-field accuracy

Qualitative comparisons of the original flow field with that produced by the proposed represen-
tation, each shown in Fig. 1, evidence a remarkable validity of this four-component model, with the
characteristics of the flow appearing well-captured by our simple representation and in stark contrast
to a fitted singular force and torque dipole representation. Similar consideration of the streamlines
generated by the flows highlights analogous strong agreement between the complex character of
the cyclical streamlines of the time-averaged flow and those generated by our approximate model.
Introducing the energylike measure E (u) := ∫

u2 dV of a flow u, where the integral is over the
computational domain, which excludes points internal to the swimmer, and is computed in practice
as a discretized sum over the 2.5 × 104 field points at which the flow is evaluated, we quantitatively
evaluate the quality of the swimmer representation by considering the energy of the residual flow.
Denoting the flow due to the fitted regularized representation by u f , we define the relative energy
of the residual as E f := E (ua − u f )/E (ua) = 0.139, where ua again denotes the time-averaged
flow field computed via the boundary element method and the units are relative to the flagellum
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rotation frequency and the flagellum length of case b) in Fig. 2. In comparison, the approximation
via singular Stokeslet and rotlet dipoles yields a relative residual energy of Es = 0.893, with the
proposed representation therefore being a marked improvement over previous singularity models
as a means of near-field flow approximation. Further, considering a generalised representation
of two regularized Stokeslets, of which a singular force dipole is a special case, yields a fitted
configuration with associated residual energy of E f = 0.718. Thus, despite being optimal amongst
force dipole models, this reduced representation still yields significantly reduced near-field accuracy
in comparison to the proposed four-component representation.

C. Robustness to morphological variation

Remarkably, for this sample bacterial morphology the regularized singularities are each approx-
imately positioned at the midpoints of the body and the helix, suggesting that this approximation of
the flow field is intuitively tied to the swimmer geometry. Sampling further from the diverse range of
morphological scales exhibited by bacteria, though remaining restricted to those whose bodies are
axisymmetric, we repeat the flow-field simulation and subsequent fitting process for model bacteria
with either the body length or the flagellum length doubled relative to our original swimmer. With
these morphologies and their accompanying fitted regularized singularities shown in Fig. 2, we
see reproduced the approximate correspondence between the fitted positions xk

0 and the swimmer
geometry, suggesting that this simple intuitive relation holds in more generality.

Further, calculations of flow-field accuracy in the case of these elongated morphologies again
yields low residual energies, as reported in Fig. 2. Thus, the proposed representation of bacterial
swimmers as a collection of four regularized singularities appears robust to realistic morphological
heterogeneity in this model context, as does the approximate coincidence of the fitted locations of
regularized singularities and the geometric centers of both the swimmer body and its helix.

D. Hydrodynamics and predator-prey interaction

We illustrate the significance of capturing near-field hydrodynamics by simulating the ideal-
ized predator-prey dynamics of two swimmers, incorporating hydrodynamic interactions via the
proposed representation of bacterial swimming and focusing in particular on swimmer-swimmer
collisions. As detailed in Sec. II C, we follow the approach of Ishimoto and Gaffney [35], extending
their framework to include the contributions of regularized rotlets. In particular, the predator-prey
simulations use a nondimensional model, obtained via a mass scale such that, without loss of
generality, the nondimensional fluid viscosity is unity, the lengthscale is a typical flagellum length
of the E. coli prey (10 μm [42]), and the timescale is given by a typical E. coli flagellar rotation
frequency (100 Hz [43]), with the resulting average free-space swimming speed predicted by the
simulation denoted by v1. Then, as previously, the E. coli prey flagellum radius, in nondimensional
units, is 0.003, with a cell body of length 0.3 and radius 0.1. The relative scales between predator
and prey are then informed by those of the canonical predatory bacterium, B. bacteriovorus,
which is modeled as having a reduced size compared to the prey, with dimensions scaled down
by a factor of three and noting that the proposed swimmer representation accounts for finite-size
effects, in contrast to basic dipole swimmers. Furthermore, and motivated by the wide range of
swimming speeds and flagellar rotation rates exhibited by bacterial predators and bacteria more
generally [32,44–46], denoting such predatory speeds by v2, we consider predator-prey pairs with
both v2/v1 = 1 and v2/v1 = 3, corresponding to slow and fast predators, respectively, with flagellar
rotation rates of 300 and 900 Hz.

We first consider swimmers with both their headings and relative positions initially in a plane
spanned by unit vectors ex and ey, as shown in Figs. 3(a) and 3(b), with position-dependent initial
orientations taken such that the swimmers would collide in the absence of any hydrodynamic
interactions or Brownian noise, as detailed in Sec. IIC. Sampling from a range of initial conditions,
we simulate the unconstrained three-dimensional motion of the two swimmers from a multitude of
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relative initial positions until their eventual collision or significant separation, with each swimmer
represented by the four-component configuration of regularized singularities fit to their morphology
and flagellar rotation rate.

The boundaries between regions of the configuration space resulting in deterministic collision
and in deflection are plotted on Figs. 3(c) and 3(d) as red dashed curves, with the connected compo-
nents in each plot that contain the bottom left-most point of the configuration space corresponding to
eventual collision. Clearly visible in the slow-predator case [Fig. 3(c)] is the vast proportion of initial
conditions from which collision events are unobserved, in contrast to the dynamics exhibited by
the fast-predator [Fig. 3(d)]. In the latter case, the increased swimming speed of the faster predator
appears to promote collisions across a broad range of initial configurations, while in the equal-speed
case we hypothesize that the predator is simply scattered by the high-magnitude rotational flows
generated by the counterrotation of the prey body and helix.

We examine this hypothesis more closely by repeating the simulations of predator-prey motion
utilizing newly fitted swimmer representations containing only regularized Stokeslets, with no
rotlets, which are thus an optimum amongst force dipole models. The analogous pairwise behaviors
resulting from these simulations are shown in Figs. 3(e) and 3(f), from which we note qualitative
differences between resultant behaviors when including or neglecting regularized rotlet terms.
In particular, from the initial conditions considered in Fig. 3, the noted pairwise attraction of
force-dipole swimmers [1] appears dominated by the rotational flow contributions of the regularized
rotlets, more generally suggesting that neglecting detailed hydrodynamic interactions in favor of
more basic representations of bacterial motion has the potential to limit the complexity and accuracy
of predicted dynamics, with such interactions emergent from the presented simple swimmer
representation.

This conclusion is further evidenced by considering a broader range of initial conditions, as
detailed in Sec. II C. Translating the predatory cell to z = c, shown in Fig. 4 for z = ±0.1,
we observe that the dynamics in the absence of rotlet terms, shown in Figs. 4(c) and 4(d), are
independent of the sign of the initial z coordinate, with the inherent chirality of the swimmers
not being captured by such models. Indeed, Figs. 4(a) and 4(b) highlight that the rotlet terms of the
proposed representation yield significant differences between the cases of z = c and z = −c, as may
be expected due to the signed rotation of the helical drivers of the idealized bacteria. Hence, overall,
we have seen that the most basic models of swimmer hydrodynamics can significantly overestimate
[Fig. 3(c) versus 3(e)] or significantly underestimate [Fig. 4(a) versus 4(c)] the prevalence of
bacterial collision, and thus contact-mediated predation, in the absence of rotational diffusion
depending on the initial configuration of the swimmers.

E. Effects of rotational diffusion on collision dynamics

Finally, we examine the effects of rotational diffusion on the collision behaviors, reasoned to
be significant by Drescher et al. [26] from force-dipole representations of bacterial swimmers.
Rotational diffusion coefficients of the swimmers are taken as in Drescher et al. [26] for E. coli
for both predator and prey bacteria, with this choice of coefficient qualitatively reproducing the
behaviors of B. bacteriovorus despite its reduced size (Supplemental Material movies in Ref. [32]).
Repeating each simulation 1000 times from the same initial conditions as the above deterministic
simulations, in Figs. 3 and 4 we show the empirically estimated probability of collision from a given
configuration as heatmaps, with the standard error of these estimates being bounded by 1.6% and
scaling with the reciprocal of the square root of the number of repeats. Perhaps surprisingly, we see
that the deterministic simulations have generally well-captured the broad features of the diffusive
simulations, with regions of configuration space resulting in collisions in the former being typically
associated with regions of higher probability of collision in the latter. Further, except in the far
field, we note that the effects of including the regularized rotlet terms remain significant even with
the inclusion of rotational noise, though this relation expectedly becomes weaker with increasing
distance from the prey bacterium. Therefore, this evidences that, even at larger cell separations,
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FIG. 4. Predator-prey collision dynamics, as computed with (a, b) and without (c, d) the effects of
regularized rotlets, including and excluding rotational diffusion and initially with z = 0.1 and z = −0.1 for
panels (a, c) and (b, d), respectively. For each initial configuration we simulate the unconstrained motion of
the predator and prey until eventual collision or separation, with v2/v1 = 3. The probability of a collision
event occurring from a given initial configuration is represented by color, with dashed red curves showing
the boundaries of deterministic collision/separation regions in the absence of Brownian noise. As in the case
of z = 0 in Fig. 3, rotational diffusion can be seen to minimally impact on the qualitative dynamics, with
swimmer representation dominating the predatory behaviors. Most notably, we see a qualitative difference
between panels (a) and (b), with only the rotlet terms successfully incorporating swimmer chirality. Unable to
capture this chirality, we see that the Stokeslet-only models of (c) and (d) predict the same dynamics regardless
of the sign of z. Configurations in which swimmers overlap initially are shown white.

hydrodynamics has a major impact on bacterial swimmer-swimmer interactions, in distinct contrast
to general inferences from force-dipole models [26].

Finally, we briefly consider a potential summary statistic of interest, the overall probability of
collision. Given prior knowledge of swimmer configuration, or a distribution of configurations,
one may compute a measure of the overall collision probability by summing over the possible
configurations, weighting by the prior. For example, taking the prior distribution to be uniform over
the initial conditions considered here, averaging between z = −0.15 and z = 0.15, the summary
statistics for fast-predator models with and without rotlet terms are similar, at around 23.3% and
24.9%, respectively. These summary statistics are therefore not representative of the significant
differences observed in Figs. 3 and 4, highlighting that simple summary statistics are not a suitable
proxy for the complex dynamics exhibited here.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a refined representation of the flow field around a flagellated
bacterial swimmer in the laboratory frame, utilizing regularized point forces and torques to simply
capture the complex qualitative features of fluid flow. By direct comparison, we have evidenced
the increased near-field accuracy afforded by this model over optimal singular and regularized
dipole models, at the cost of additional terms in the swimmer representation. Nonetheless, retained
in our representation is a simplicity that is reminiscent of these far-field dipole models, enabling
the straightforward incorporation of highly resolved near-field hydrodynamics into large-scale
simulations of active matter at little computational cost, for example, in the study of bacterial
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turbulence or the interactions of magnetically driven microswimmers [8,12]. The inclusion of
regularized rotlet terms in the swimmer representation was seen to dramatically increase near-field
accuracy, well-capturing both the qualitative and quantitative features of the complex spiraling flows
around a model bacterium.

Further, we have noted that the omission of rotlet terms in pairwise dynamics can have a profound
effect on overall behavior and any resulting predictions. Motivated by bacterial predator-prey
interactions, by the direct simulation of two morphologically and dynamically distinct swimmers
in close proximity we have evidenced that the characteristic hydrodynamics captured by our
time-invariant four-component representation give rise to a rich pairwise dynamics, qualitatively
distinct from those obtained with force-dipole models that have nonetheless seen widespread
use. Irrespective of the presence of rotational diffusion, the behaviors of collision and escape
between model predator and prey swimmers are greatly impacted by the explicit inclusion of the
rotational motion of the swimmer and its propulsive helix. This signifies the relative importance of
considering hydrodynamic interactions in models of bacterial swimming, with particular reference
to swimmer chirality, which may not be reliably replaced by rotational noise alone. Additionally,
these explorations suggest a potential configuration-dependent overestimation or underestimation of
bacterial predation by simple force-dipole models that may be of pertinence to more sophisticated
computational and theoretical evaluations of predatory bacteria that include relevant physiological
factors, such as the possible chemotaxis of predatory species, steric interactions between predator
and prey, or the presence of multiple predator or prey bacteria. With multiple recent works having
suggested and evaluated predatory bacteria for use in industry [47–49], we envisage that the refined
hydrodynamic model presented in this work will enable higher fidelity theoretical investigation into
the cell-level dynamics of these applications, in addition to forming the basis of models exploring
the effects of environment heterogeneity and the impacts of viscosity on predation [32,50–52].

In agreement with intuition, though without rigorous justification a priori, we have noted the
approximate geometric coincidence of optimally placed regularized singularities and the midpoints
of swimmer bodies and flagella. This approximate relation arises from flow-field optimization rather
than symmetry arguments, which would not allow for the observed imprecision. Nevertheless, this
relation does appear to hold across a range of relative morphological scales, noting the restriction
that we have considered only idealized polar swimmers in this study. The extension of such a relation
to more complex bacterial morphologies represents a potential direction for future study, with the
presented approach for swimmer representation readily extending to those containing additional
regularized terms, which may be necessary in accurately modeling swimmers with elongated or
irregular morphologies.

In summary, this study has emphasized the importance of the inclusion of detailed near-field
hydrodynamics when seeking to accurately capture the complex behaviors of bacterial active matter,
with pairwise interactions evidenced to be significantly affected by their omission. Further, this work
has constructed a simple four-component model of a bacterial swimmer, facilitating the inclusion
of near-field flows into existing approaches and frameworks at little computational expense via an
intuitive yet accurate regularized representation.

The research materials supporting this article have been made available at [53].
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