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Systematic financial trading strategies account for over 80% of trade volume in equities and a large
chunk of the foreign exchange market. In spite of the availability of data from multiple markets,
current approaches in trading rely mainly on learning trading strategies per individual market. In
this paper, we take a step towards developing fully end-to-end global trading strategies that leverage
systematic trends to produce superior market-specific trading strategies. We introduce QuantNet: an
architecture that learns market-agnostic trends and use these to learn superior market-specific trad-
ing strategies. Each market-specific model is composed of an encoder-decoder pair. The encoder
transforms market-specific data into an abstract latent representation that is processed by a global
model shared by all markets, while the decoder learns a market-specific trading strategy based on
both local and global information from the market-specific encoder and the global model. QuantNet
uses recent advances in transfer and meta-learning, where market-specific parameters are free to
specialize on the problem at hand, whilst market-agnostic parameters are driven to capture signals
from all markets. By integrating over idiosyncratic market data we can learn general transferable
dynamics, avoiding the problem of overfitting to produce strategies with superior returns. We eval-
uate QuantNet on historical data across 3103 assets in 58 global equity markets. Against the top
performing baseline, QuantNet yielded 51% higher Sharpe and 69% Calmar ratios. In addition, we
show the benefits of our approach over the non-transfer learning variant, with improvements of 15%
and 41% in Sharpe and Calmar ratios. A link to QuantNet code is made available in the appendix.

Keywords: Transfer learning; Trading strategies; Deep learning; Sequential transfer-learning;
Parameter-based transfer; Backtest overfitting

JEL Classification: C45, C52, G11

1. Introduction

Systematic financial trading strategies account for over 80%
of trade volume in equities, a large chunk of the foreign
exchange market, and are responsible to risk manage approx-
imately $500bn in assets under management (Allendbridge
IS 2014, Avramovic et al. 2017). High-frequency trading
firms and e-trading desks in investment banks use many trad-
ing strategies, ranging from simple moving-averages and rule-
based systems to more recent machine learning-based models
(Heaton et al. 2017, De Prado 2018, Molyboga 2018, Hiew et
al. 2019, Koshiyama and Firoozye 2019a, Thomann 2019, Gu
et al. 2020).

Despite the availability of data from multiple mar-
kets, current approaches in trading strategies rely mainly

∗Corresponding author. Email: adriano.koshiyama.15,
a.koshiyama@cs.ucl.ac.uk

on strategies that treat the relationships between different
markets separately (Ghosn and Bengio 1997, Bitvai and
Cohn 2015, Heaton et al. 2017, De Prado 2018, Koshiyama
and Firoozye 2019a, Zhang et al. 2019, Gu et al. 2020).
By considering each market in isolation, they fail to cap-
ture inter-market dependencies (Kenett et al. 2012, Rad-
dant and Kenett 2016) like contagion effects and global
macro-economic conditions that are crucial to accurately cap-
turing market movements that allow us to develop robust
market trading strategies. Furthermore, treating each mar-
ket as an independent problem prevents effective use of
machine learning since data scarcity will cause models to
overfit before learning useful trading strategies (Romano and
Wolf 2005, Harvey and Liu 2015, De Prado 2018, Koshiyama
and Firoozye 2019a).
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Figure 1. QuantNet workflow: from market data to decoding/signal generation.

Commonly used techniques in machine learning such as
transfer learning (Caruana 1997, Pan and Yang 2009, Blum-
berg et al. 2019, Zhang 2019) and multi-task learning (Caru-
ana 1997, Gibiansky et al. 2017, Blumberg et al. 2019) could
be used to handle information from multiple markets. How-
ever, combining these techniques is not immediately evident
because these approaches often presume one task (market) as
the main task and while others are auxiliary. When faced with
several equally essential tasks, a key problem is how to assign
weights to each market loss when constructing a multi-task
objective. In our approach to end-to-end learning of global
trading strategies, each market carries equal weight. This
poses a challenge because (a) markets are non-homogeneous
(e.g. size, trading days) and can cause interference during
learning (e.g.errors from one market dominating others); (b)
the learning problem grows in complexity with each market,
necessitating larger models that often suffer from overfitting
(El Bsat et al. 2017, He et al. 2019) which is a notable problem
in financial strategies (Romano and Wolf 2005, Harvey and
Liu 2015, De Prado 2018, Koshiyama and Firoozye 2019a).

In this paper, we take a step towards overcoming these
challenges and develop a full end-to-end learning system for
global financial trading. We introduce QuantNet: an archi-
tecture that learns market-agnostic trends and uses them to
learn superior market-specific trading strategies. Each market-
specific model is composed of an encoder–decoder pair
(figure 1). The encoder transforms market-specific data into
an abstract latent representation that is processed by a global
model shared by all markets, while the decoder learns a trad-
ing strategy based on the processed latent code returned by
the global model. QuantNet leverages recent insights from
transfer and meta-learning that suggest market-specific model
components benefit from having separate parameters while
being constrained by conditioning on an abstract global repre-
sentation (Ruder et al. 2019). Furthermore, by incorporating
multiple losses into a single network, our approach increases
network regularization and avoids overfitting, as in Lee et
al. (2015), Wang et al. (2015), Blumberg et al. (2019). We

evaluate QuantNet on historical data across 3103 assets in 58
global equity markets. Against the best performing baseline
Cross-sectional momentum (Jegadeesh and Titman 1993, Baz
et al. 2015), QuantNet yields 51% higher Sharpe and 69%
Calmar ratios. Also, we show the benefits of our approach,
which yields improvements of 15% and 41% in Sharpe and
Calmar ratios, respectively, over the comparable non-transfer
learning variant.

Our key contributions are: (i) a novel architecture for
transfer learning across financial trading strategies; (ii) a
novel learning objective to facilitate end-to-end training of
trading strategies; and (iii) demonstrate that QuantNet can
achieve significant improvements across global markets with
an end-to-end learning system. To the best of our knowl-
edge, this is the first paper that studies transfer learning as a
means of improving end-to-end large scale learning of trading
strategies.

2. Related work

Trading strategies with machine learning. Machine learning-
based trading strategies have previously been explored in
the setting of supervised learning (Aggarwal and Aggar-
wal 2017, Heaton et al. 2017, Fischer and Krauss 2018, Gu
et al. 2020, Sezer et al. 2020) and reinforcement learn-
ing (Pendharkar and Cusatis 2018, Li et al. 2019, Gao et
al. 2020, Zhang et al. 2020), nowadays with a major emphasis
on deep learning methods. Broadly, these works differ from
our proposed method as they do not use inter-market knowl-
edge transfer and (in the case of methods based on supervised
learning) tend to forecast returns/prices rather than to generate
end-to-end trading signals. We provide an in-depth treatment
in Section 3.1.

Deep learning. In the financial domain, data is predomi-
nantly sequential and, therefore, Recurrent Neural Network
approaches like Long Short-term Memory (LSTM) networks
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are frequent. Heaton et al. (2017) demonstrates LSTMs
networks as useful for asset returns movements and new
ways to model volatility. It also has been used for trad-
ing (Lim et al. 2019), particularly coupling it with Rein-
forcement Learning methods (Zhang et al. 2020). Fischer
and Krauss (2018) applied LSTMs to predict assets direc-
tional movement, benchmarking it against Random Forest
and Logistic Regression. A popular application has been
on NLP: Hiew et al. (2019) combined BERT (Devlin et
al. 2018a) with LSTMs to build a Financial Sentiment Index;
RNNs have also been used to read financial news arti-
cles (Vargas et al. 2017). LSTMs have also been used as
the underlying model for model-based Reinforcement Learn-
ing (Lu 2017). Some other applications using Feed-forward
nets, such as for hedging (Buehler et al. 2019) and to cal-
ibrate stochastic volatility models (Bayer et al. 2019), are
other promising applications that can be potentially enhanced
by the LSTM model. More generally, the reader interested
in a literature review on financial time series forecasting
with Deep Learning should refer to the work of Sezer
et al. (2020).

Transfer learning. Transfer learning is a well-established
method in machine learning (Caruana 1997, Pan and
Yang 2009, Zhang 2019). It has been used in computer
vision, medicine, and natural language processing (Blum-
berg et al. 2018, Kornblith et al. 2019, Radford et al. 2019).
In financial systems, this paradigm has primarily been stud-
ied in the context of applying unstructured data, such as
social media, to financial predictions (Araci 2019, Hiew
et al. 2019). In a few occasions such methodologies have
been applied to trading, usually combined with reinforce-
ment learning and to a very limited pool of assets (Jeong
and Kim 2019). We provide a thorough review of the area in
Appendix 4.

The simplest and most common form of transfer learning
pre-trains a model on a large dataset, hoping that the pre-
trained model can be fine-tuned to a new task or domain at a
later stage (Devlin et al. 2018a, Liu et al. 2019). While simple,
this form of knowledge transfer assumes new tasks are similar
to previous tasks, which can easily fail in financial trad-
ing where markets differ substantially. Our method instead
relies on multi-task transfer learning (Caruana 1993, Bax-
ter 1995, Caruana 1997, Ruder 2017). While this approach
has previously been explored in a financial context (Ghosn
and Bengio 1997, Bitvai and Cohn 2015), prior works either
use full parameter sharing or share all but the final layer
of relatively simple models. In contrast, we introduce a
novel architecture that relies on encoding market-specific data
into representations that pass through a global bottleneck
for knowledge transfer. We provide a detailed discussion in
Section 3.2.

3. QuantNet

We begin by reviewing end-to-end learning of financial trad-
ing in Section 3.1 and relevant forms of transfer learning
in Section 3.2. We present our proposed architecture in
Section 3.3.

3.1. Preliminaries: learning trading strategies

A financial market M = (a1, . . . , an) consists of a set of n
assets aj; at each discrete time step t we have access to a
vector of excess returns rt = (r1

t , . . . , rn
t ) ∈ R

n. The goal of
a trading strategy f, parametrized by θ , is to map elements
of a history Rm:t = (rt−m, . . . , rt) into a set of trading signals
st = (s1

t , . . . , sn
t ) ∈ R

n; st = fθ (Rm:t). These signals constitute
a market portfolio: a trader would buy one unit of an asset if
sj

t = 1, sell one unit if sj
t = −1, and close a position if sj

t = 0;
any value in between (−1, 1) implies that the trader is hold-
ing/shorting a fraction of an asset. The goal is to produce a
sequence of signals that maximize risk-adjusted returns. The
most common approach is to model f as a moving aver-
age parametrized by weights θ = (W1, . . . , Wm), Wi ∈ R

n×n,
where weights typically decreases exponentially or are hand-
engineered and remain static (Avramovic et al. 2017, Barclay-
Hedge 2017, Firoozye and Koshiyama 2019);

sma
t = τ(f ma

θ (Rt−m:t))

= τ

(
t∑

k=t−m

Wkrk

)
, τ : R

n → [−1, 1]n. (1)

More advanced models rely on recurrence to form an
abstract representation of the history up to time t;
either by using Kalman filtering, Hidden Markov Models
(HMM), or Recurrent Neural Networks (RNNs) (Fischer and
Krauss 2018, Zhang et al. 2019). For our purposes, hav-
ing an abstract representation of the history will be crucial
to facilitate effective knowledge transfer, as it captures each
market’s dynamics, thereby allowing QuantNet to disentangle
general and idiosyncratic patterns. We use the Long Short-
Term Memory (LSTM) network (Hochreiter and Schmidhu-
ber 1997, Gers et al. 1999), which is a special form of an
RNN. LSTMs have been recently explored to form the core
of trading strategy systems (Fischer and Krauss 2018, Hiew
et al. 2019, Sezer et al. 2020). For simplicity, we present
the RNN here and refer the interested reader to (Hochreiter
and Schmidhuber 1997, Gers et al. 1999) or Appendix 3.
The RNN is defined by introducing a recurrent operation that
updates a hidden representation h recurrently conditional on
the input r:

sRNN
t = τ(Wsht + bs),

ht = f RNN
θ (rt−1, ht−1) = σ(Wrrt−1 + Whht−1 + b), (2)

where σ is an element-wise activation function and θ =
(Wr, Wh, b) parameterize the RNN. The LSTM is similarly
defined but adds a set of gating mechanisms to enhance the
memory capacity and gradient flow through the model. To
learn the parameters of the RNN, we use truncated back-
propagation through time (TBPTT; Sutskever 2013), which
backpropagates a loss L through time to the parameters of the
RNN, truncating after K time steps.

3.2. Preliminaries: transfer learning

Transfer learning (Caruana 1997, Pan and Yang 2009,
Ruder 2017, Zhang 2019) embodies a set of techniques for
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sharing information obtained on one task, or market, when
learning another task (market). In the simplest case of pre-
training (Devlin et al. 2018a, Liu et al. 2019), for example, we
would train a model in a market M2 by initializing its param-
eters to the final parameters obtained in market M1. While
such pre-training can be useful, there is no guarantee that
the parameters obtain on task M1 will be useful for learning
task M2.

In multi-task transfer-learning, we have a set of M =
(M1, . . . , MN ) markets that we aim to learn simultaneously.
The multi-task literature often presumes one Mi is the main
task, and all others are auxiliary—their sole purpose is to
improve final performance on Mi (Caruana 1997, Gibiansky et
al. 2017). A common problem in multi-task transfer is there-
fore how to assign weights wi to each market-specific loss Li

when setting the multi-task objective L = ∑
i wiLi. This is

often a hyper-parameter that needs to be tuned (Ruder 2017).
As mentioned above, this poses a challenge in our case as

markets are typically not homogeneous. Instead, we turn to
sequential multi-task transfer learning (Ruder et al. 2019),
which learns one model f i per market Mi, but partition the
parameters of the model into a set of market-specific parame-
ters θ i and a set of market-agnostic parameters φ. In doing so,
market-specific parameters are free to specialize on the prob-
lem at hand, while market-agnostic parameters capture signals
from all markets. However, in contrast to standard approaches
to multi-task transfer learning, which either share all param-
eters, a set from the final layer(s) or share no parameters, we
take inspiration from recent advances in meta-learning (Lee
and Choi 2018, Zintgraf et al. 2018, Flennerhag et al. 2020a),
which shows that more flexible parameter-sharing schemes
can reap a greater reward. In particular, interleaving shared
and market-specific parameters can be seen as learning both
shared representation and a shared optimizer (Flennerhag et
al. 2020a).

We depart from previous work by introducing an encoder–
decoder setup (Cho et al. 2014b) within financial markets.
Encoders learn to represent market-specific information, such
as internal fiscal and monetary conditions, development stage,
and so on, while a global shared model learns to represent
market-agnostic dynamics such as global economic outlook,
contagion effects (via financial crises). The decoder uses these
sources of information to produce a market-specific trading
strategy. With these preliminaries, we now turn to QuantNet,
our proposed method for end-to-end multi-market financial
trading.

3.3. QuantNet

Architecture. Figure 1 portrays the QuantNet architecture.
In QuantNet, we associate each market Mi with an encoder–
decoder pair, where the encoder enci and the decoder deci are
both LSTMs networks. Both models maintain a separate hid-
den state, ei and di, respectively. When given a market return
vector ri, the encoder produces an encoding ei that is passed
onto a market-agnostic model ω, which modifies the market
encoding into a representation zi:

zi
t = ω(ei

t), where ei
t = enci(ri

t−1, ei
t−1). (3)

Because ω is shared across markets, zi reflects market infor-
mation from market M i while taking global information (as
represented by ω) into account. This bottleneck enforces local
representations that are aware of global dynamics, and so we
would expect similar markets to exhibit similar representa-
tions (Mikolov et al. 2013). We demonstrate this empirically
in figure 2, which shows how each market is being represented
internally by QuantNet. We apply hierarchical clustering on
hidden representation from the encoder (see also dendro-
gram in appendix 7) using six centroids. We observe clear
geo-economical structure emerging from QuantNet—without
it receiving any such geographical information. C5 consists
mainly of small European equity markets (Spain, Nether-
lands, Belgium, and France)—all neighbours; C6 encompass
developed markets in Europe and Americas, such as the UK,
Germany, the USA, and their respective neighbours Austria,
Poland, Switzerland, Sweden, Denmark, Canada, and Mexico.
Other clusters are more refined: C2 for instance contains most
developed markets in Asia like Japan, Hong Kong, Korea,
and Singapore, while C3 represents Asia and Pacific emerg-
ing markets: China, India, and some respective neighbours
(Pakistan, Philippines, Taiwan).

We experiment with different functional forms for ω;
adding complexity to ω can allow more sophisticated repre-
sentations, but simpler architectures enforce an information
bottleneck (Yu and Principe 2019). Indeed we find experimen-
tally that a simple linear layer works better than an LSTM
(see Appendix 8), which is in line with general wisdom on
encoder–decoder architectures (Cho et al. 2014a, 2014b).

Given a representation zi
t, we produce a market-specific

trading strategy by decoding this abstract representation into a
hidden market-specific state di

t; this state represents the trad-
ing history in market M i, along with the history of global
dynamics, and is used learn a market-specific strategy

si
t = f i(di

t) = tanh(W idi
t + bi), where di

t = deci(zi
t, di

t−1).
(4)

While f i can be any model, we found a simple linear layer suf-
ficient due to the expressive capacity of the encoder–decoder
pair. For a non-leveraged trading strategy, we chose tanh
as our activation function, which bounds the trading signal
si

t ∈ (−1, 1)n (Acar and Satchell 2002, Voit 2013).
From equation (4), we can see how transfer learning affects

both trading and learning. During trading, by processing a
market encoding ei

t through a shared global layer ω, we
impose a bottleneck such that any trading strategy is forced
to act on the globally conditioned information in zi

t. During
learning, market-specific trading is unrestricted in its param-
eter updates, but gradients are implicitly modulated through
the conditioned input; particularly for the encoder, which
must service its corresponding decoder by passing through the
global layer ω. Concretely, given a market loss function Li

with error signal δi = dL/dsi, market-specific gradients are
given by

∇θ i
deci
Li(si

t) = δi
t

∂si
t

∂di
t

∂ deci

∂θ i
deci

(zi
t; di

t−1),

∇θ i
enci
Li(si

t) = δi
t

∂si
t

∂di
t

∂di
t

∂zi
t

∂zi
t

∂ei
t

∂ enci

∂θ i
enci

(ri
t; ei

t−1). (5)
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Figure 2. World map depicting the different clusters formed from the scores of QuantNet encoder. For visualization purposes, we have
picked the market with the biggest market capitalization to represent the country in the cluster.

Figure 3. Histogram of Sharpe ratio contrasting QuantNet with baseline strategies.

The gradient of the decoder is largely free but must adapt
to the representation produced by the encoder and the global
model. These, in turn, are therefore influenced by what repre-
sentations are useful for the decoder. In particular, the gradient
of the encoder must pass through the global model, which acts
as a preconditioner of the encoder parameter gradient, thereby
encoding an optimizer (Flennerhag et al. 2020b). Finally, to
see how global information gets encoded in the global model,
under a multi-task loss, its gradients effectively integrate out
idiosyncratic market correlations:

∇φL(s1
t , . . . , sn

t ) =
n∑

i=1

δi
t

∂si
t

∂di
t

∂di
t

∂zi
t

∂ω

∂φ
(ei

t). (6)

Learning objective. To effectively learn trading strategies
with QuantNet, we develop a novel learning objective based
on the Sharpe ratio (Sharpe 1994, Bailey and Lopez de
Prado 2012, Harvey and Liu 2015). Prior work on finan-
cial forecast tends to rely on Mean Squared Error (MSE)
(Heaton et al. 2017, Hiew et al. 2019, Gu et al. 2020), as
does most work on learning trading strategies. A few works
have instead considered other measurements (Fischer and
Krauss 2018, Zhang et al. 2019, 2020). In particular, there
are strong theoretical and empirical reasons for considering
the Sharpe ratio instead of MSE—in fact, MSE minimiza-
tion is a necessary, but not sufficient condition to maximize

the profitability of a trading strategy (Bengio 1997, Acar and
Satchell 2002, Koshiyama and Firoozye 2019b). Since some
assets are more volatile than others, the Sharpe ratio helps to
discount the optimistic average returns by taking into account
the risk faced when traded those assets. Also, it is widely
adopted by quantitative investment strategists to rank differ-
ent strategies and funds (Sharpe 1994, Bailey and Lopez de
Prado 2012, Harvey and Liu 2015).

To compute each market Sharpe ratio at a time t, truncated
to backpropagation through time for k steps (to t − k), con-
sidering excess daily returns, we first compute the per-asset
Sharpe ratio

ρi
t,j = (μi

t−k:t,j)/(σ
i
t−k:t,j) ·

√
252, (7)

where μi
t,j is the average return of the strategy for asset j and

σ
j
t is its respective the standard deviation. The

√
252 factor

is included in computing the annualized Sharpe ratio. The
market loss function and the QuantNet objective are given by
averaging over assets and markets, respectively:

L({si
t−k:t, ri

t−k:t}N
i=1) = 1

N

N∑
i=1

Li(si
t−k:t, ri

t−k:t),
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Algorithm 1 QuantNet Training

Require: Markets M = (M1, . . . MN )

Require: Backpropagation horizon k
1: while True do
2: Sample mini-batch M of m markets from M
3: Randomly select t ∈ 1, . . . , T
4: Compute encodings ei

t−k:t, zi
t−k:t, and di

t−k:t for all
Mi ∈ M equations (3) and (4)

5: Compute signals si
t−k:t for all Mi ∈ M equation (4)

6: Compute Sharpe ratios ρ i
t:j for all assets ai

j ∈ Mi and
markets Mi ∈ M equation (7)

7: Compute QuantNet loss L
(
{si

t−k:t, ri
t−k:t}N

i=1

)
equation (8)

8: Update model parameters by truncated backpropaga-
tion through time equations (5) and (6)

9: end while

Li(si
t−k:t, ri

t−k:t) = 1

n

n∑
j=1

ρ i
t,j. (8)

Training. To train QuantNet, we use stochastic gradient
descent. To obtain a gradient update, we first sample mini-
batches of m markets from the full set M = (M1, . . . , MN )

to obtain an empirical expectation over markets. Given these,
we randomly sample a time step t and run the model from
t − k to t, from which we obtain market Sharpe ratios.
Then, we compute QuantNet loss function and differenti-
ate through time into all parameters. We pass this gradient
to an optimizer, such as Adam, to take one step on the
model’s parameters. This process is repeated until the model
converges.

4. Results

This section assesses QuantNet performance compared to
baselines and a No Transfer strategy defined by a single
LSTM of the same dimensionality as the decoder architecture
(number of assets), as defined in equation (2). Next section
presents the main experimental setting, with the subsequent
ones providing: (i) a complete comparison of QuantNet with
other trading strategies; (ii) an in-depth comparison of Quant-
Net versus the best No Transfer strategy; and (iii) analysis on
market conditions that facilitate transfer under QuantNet. We
provide an ablation study and sensitivity analysis of QuantNet
in appendix 8.

4.1. Experimental setting

Datasets. Appendix 1 provides a full table listing all 58 mar-
kets used. We tried to find a compromise between the number
of assets and sample size, hence for most markets, we were
unable to use the full list of constituents. We aimed to collect
daily price data ranging from 03/01/2000 to 15/03/2019, but
for most markets it starts roughly around 2010. Finally, due
to restrictions from our Bloomberg license, we were unable to

access data for some important equity markets, such as Italy
and Russia.

Evaluation. We compared QuantNet with four other tradi-
tional and widely adopted and researched trading strategies.
Below we briefly expose each one of them as well as provide
some key references:

• Buy and hold: This strategy is simply purchase a
unit of stock and hold it, that is, sBaH

t := 1 for all
assets in a market. Active trading strategies are sup-
posed to beat this passive strategy, but in some
periods just holding an S&P 500 portfolio passively
outperforms many active managed funds (Elton et
al. 2019, Dichtl 2020).

• Risk parity: This approach trade assets in a cer-
tain market such that they contribute as equally as
possible to the portfolio overall volatility. A simple
approach used is to compute signals per asset as

sRP
t,j :=

1
σ

j
t:t−252

1∑n
j=1 σ

j
t:t−252

(9)

with σ
j
t:t−252 as the rolling 252 days ( ≈ 1 year)

volatility of asset j. Interest in the risk par-
ity approach has increased since the late 2000s
financial crisis as the risk parity approach fared
better than traditionally constructed portfolios
(Choueifaty and Coignard 2008, Martellini 2008, Du
Plessis and Hallerbach 2016).

• Time series momentum: This strategy, also called
trend momentum or trend-following, suggests
going long in assets which have had recent positive
returns and short assets which have had recent neg-
ative returns. It is possibly one of the most adopted
and researched strategy in finance (Moskowitz
et al. 2012, Daniel and Moskowitz 2016, Baltzer et
al. 2019). For a given asset, the signal is computed
as

sTSMOM
t,j := μ

j
t:t−252 (10)

with 252 days ( ≈ 12 months, ≈ 1 year) the typi-
cal lookback period to compute the average return
μ

j
t:t−252 of asset j.

• Cross-sectional momentum: The cross-sectional
momentum strategy as defined by is a long-short
zero-cost portfolio that consists of securities with
the best and worst relative performance over a look-
back period (Jegadeesh and Titman 1993, Baz et
al. 2015, Feng et al. 2020). It works similarly as
time series momentum, with the addition of screen-
ing weakly performing and underperforming assets.
For a given market, the signal can be computed as

sCSMOM
t,j :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ
j
t:t−252, if μ

j
t:t−252 > Q1−q

(μ1
t:t−252, . . . , μn

t:t−252)

−μ
j
t:t−252, if μ

j
t:t−252 < Qq

(μ1
t:t−252, . . . , μn

t:t−252)

0, otherwise
(11)
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Table 1. Median and mean absolute deviation (in brackets) performance on 3103 stocks across all markets analysed.

Metric Buy and hold Risk parity TS Mom CS Mom No Transfer LSTM No Transfer Linear QuantNet

Ann Ret 0.000020 0.000193 0.000050 0.000042 0.002508 0.001537 0.005377
(0.13433) (0.00270) (0.00019) (0.00019) (0.07645) (0.08634) (0.02898)

Ann Vol 0.287515 0.001536 0.000290 0.000270 0.008552 0.007768 0.023665
(0.10145) (0.00537) (0.00036) (0.00036) (0.13455) (0.14108) (0.04540)

CR 0.000040 0.095516 0.139599 0.143195 0.158987 0.169345 0.241255
(0.33583) (0.29444) (1.05288) (1.18751) (0.55762) (0.57170) (0.59968)

DownRisk 0.202361 0.001076 0.000195 0.000178 0.005656 0.005124 0.015734
(0.07042) (0.00361) (0.00024) (0.00025) (0.09223) (0.09553) (0.03291)

Kurt 5.918386 6.165916 13.333863 18.112853 16.87256 15.73864 16.19961
(10.2515) (13.9426) (19.2278) (24.4672) (30.2204) (31.0395) (24.7336)

MDD − 0.419984 − 0.002935 − 0.000488 − 0.000444 − 0.014564 − 0.01286 − 0.03847
(0.14876) (0.00987) (0.00082) (0.00081) (0.16724) (0.17820) (0.07881)

SR 0.000051 0.155560 0.226471 0.234583 0.304244 0.306572 0.354776
(0.42324) (0.42028) (0.40627) (0.41547) (0.51552) (0.51182) (0.57218)

Skew − 0.087282 − 0.092218 0.427237 0.568364 0.256736 0.171629 0.297182
(0.82186) (0.96504) (1.28365) (1.60612) (1.77245) (1.74804) (1.66854)

SortR 0.217621 0.220335 0.333685 0.349124 0.443422 0.454035 0.52196
(0.59710) (0.61883) (1.02616) (0.633953) (0.78525) (0.86715) (1.02465)

TS Mom, time series momentum and CS Mom, cross-section momentum. We highlighted in bold only the metrics where a comparison can
be made, like Sharpe ratios, Calmar ratios, Kurtosis, Skewness, and Sortino ratios.

Figure 4. Average Sharpe ratios of QuantNet and No Transfer across 58 equity markets.

with Qq(μ
1
t:t−252, . . . , μn

t:t−252) representing the qth
quantile of the assets average returns. A signal for
going long (short) is produced if the asset j is at
the top (bottom) quantile of the distribution. In our
experiments, we used the typical value of q = 0.33.

Since running an exhaustive search is computationally
prohibitive, we opted to use random search as our hyper-
parameter optimization method (Bergstra and Bengio 2012).
Appendix B provides full description of the hyperparameter

search protocol. We sampled a total of 200 values in between
those ranges. We report results for trained models under best
hyperparameters on validation sets; for each dataset we con-
struct a training and validation set, where the latter consists of
the last 752 observations of each time series (around 3 years).
We have used 3 Month London Interbank Offered Rate in
US Dollar as the reference rate to compute excess returns.
We have also reported Calmar ratios, Annualized Returns
and Volatility, Downside risk, Sortino ratios, Skewness and
Maximum drawdowns (Young 1991, Sharpe 1994, Eling and
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Figure 5. (a) Average cumulative returns (%) of SPX Index, UKX Index, KOSPI Index and SASEIDX Index contrasting QuantNet and No
Transfer. Average Sharpe ratio difference between QuantNet versus No Transfer, aggregated by sample size (b) and number of assets per
market (c)—in both we have subtracted QuantNet SR from No Transfer SR to reduce cross-asset variance and baseline effect.

Schuhmacher 2007, Rollinger and Hoffman 2013). All met-
rics were computed using the Python package empyrical
(https://github.com/quantopian/empyrical).

4.2. Empirical evaluation

Baseline comparison. Table 1 presents median and mean
absolute deviation (in brackets) performance of the different
trading strategies on 3103 stocks across all markets analysed.
The best baseline is Cross-sectional Momentum (CS Mom),
yielding an SR of 0.23 and CR of 0.14. QuantNet outperforms
CS Mom, yielding 51% higher SR and 69% higher CR. No
Transfer LSTM and Linear outperform this baseline as well,
but not to the same extent as QuantNet.
QuantNet vs no transfer linear. When comparing Quant-
Net and No Transfer Linear strategies performance ( table 1),
we observe an improvement of about 15% on SR and 41%

on CR. This improvement increases the number of assets
yielding SRs above 1.0 from 432 to 583, smaller Downside
Risk (DownRisk), higher Skew and Sortino ratios (SortR).
Statistically, QuantNet significantly outperform No Transfer
both in Sharpe (W = 2,215,630, p-value < 0.01) and Calmar
(W = 2,141,782, p-value < 0.01) ratios. This discrepancy
manifests in statistical terms, with the Kolmogorov–Smirnov
statistic indicating that these distributions are meaningfully
different (KS = 0.053, p-value < 0.01).

Figure 4 outlines the average SR across the 58 mar-
kets, ordered by No Transfer strategy performance. In SR
terms, QuantNet outperforms No Transfer in its top 5 mar-
kets and dominates the bottom 10 markets where No Transfer
yields negative results, both in terms of SR and CR ratios.
Finally, in 7 of the top 10 largest ones (RTY, SPX, KOSPI,
etc.), QuantNet also outperforms No Transfer. Figure 5(a)
presents cumulative returns charts in a set of large regional
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markets, such as United States S&P 500 components (SPX
Index), United Kingdom FTSE 100 (UKX Index), Korea
Composite Index (KOSPI Index), and Saudi Arabia Tadawul
All Shares (SASEIDX Index). Across regions, we observe
2–10 times order of magnitude improvement in SRs and
CRs by QuantNet, with similar benefits in Sortino ratios,
Downside risks, and Skewness. Appendix 5 provides further
analysis.

QuantNet features. One of the key features of transfer learn-
ing is its ability to provide meaningful solutions in resource-
constrained scenarios—sample size, features, training budget,
etc. With QuantNet this pattern persists; figure 5(b) presents
the average SR grouped based on market sample size in the
training set. As transfer-learning would predict, we observe
large gains to transfer in markets with tiny sample size
(1444–1823 samples or ≈ 6–7 years) where fitting a model
on only local market data yields poor performance. Further,
gains from transfer generally decay as sample sizes increase.
Interestingly, we find that medium-sized markets (2200–2576
samples or ≈ 10 years of data) do not benefit from trans-
fer, suggesting that there is room for improvement in the
design of our transfer bottleneck ω, an exciting avenue for
future research. Another vital feature is coping with market
size—figure 5(c) outlines QuantNet performance in terms of
average SR. It demonstrates that the bigger the market, the
better QuantNet will perform.

5. Conclusion

In this paper, we introduce QuantNet: an architecture that
learns market-agnostic trends and use these to learn supe-
rior market-specific trading strategies. QuantNet uses recent
advances in transfer- and meta-learning, where market-
specific parameters are free to specialize on the problem at
hand, while market-agnostic parameters capture signals from
all markets. QuantNet takes a step towards end-to-end global
financial trading that can deliver superior market returns. In
a few big regional markets, such as S&P 500, FTSE 100,
KOSPI and Saudi Arabia Tadawul All Shares, QuantNet
showed 2–10 times improvement in SR and CR. Quant-
Net also generated positive and statistically significant alpha
according to Fama-French 5 factors model ( appendix 6).
An avenue of future research is to identify the functional
form of a global transfer layer that can deliver strong perfor-
mance also on markets where mixed transfer occurred, such
as those with medium sample size. Furthermore, by analysing
QuantNet encoders, it appears that they are mapping and
structuring the markets according to their development stage
and geographical proximity.

In future works, we aim to investigate different archi-
tectures, such as Transformer layers, as it seems that they
are providing significant outperformance in other tasks with
sequence data (mainly text). Expanding the empirical evalu-
ation to include other asset classes beyond equities, such as
foreign exchange, interest rate swaps, or commodities can
potentially improve the overall results since it can provide
additional knowledge to trade some equities and vice versa.
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Appendix 1. Datasets

Table A1 presents the datasets/markets used to empirically evalu-
ate QuantNet. All the data was obtained via Bloomberg, with the
description of each market/index and its constituents at https://www.
bloomberg.com; for instance, SPX can be found by searching using
the following link: https://www.bloomberg.com/quote/SPX:IND.
We tried to find a compromise between number of assets and
sample size, hence for most markets we were unable to use
the full list of constituents. We aimed to collect daily price
data ranging from 03/01/2000 to 15/03/2019, but for most mar-
kets it starts roughly around 2010. Finally, due to restrictions
from our Bloomberg license, we were unable to access data
for some important equity markets, such as Italy and Russia.
Full list with assets and respective exchange can be found at:
https://www.dropbox.com/s/eobhg2w8ithbgsp/AssetsExchangeList.
xlsx?dl=0

Appendix 2. Evaluation

Baselines. We compared QuantNet with four other traditional and
widely adopted and researched trading strategies. Below we briefly
expose each one of them as well as provide some key references:

• Buy and hold: This strategy is simply purchase a unit
of stock and hold it, that is, sBaH

t := 1 for all assets in
a market. Active trading strategies are supposed to beat
this passive strategy, but in some periods just holding
an S&P 500 portfolio passively outperforms many active
managed funds (Elton et al. 2019, Dichtl 2020).

• Risk parity: This approach trade assets in a certain mar-
ket such that they contribute as equally as possible to the
portfolio overall volatility. A simple approach used is to
compute signals per asset as

sRP
t,j :=

1
σ

j
t:t−252

1∑n
j=1 σ

j
t:t−252

(A1)

with σ
j
t:t−252 as the rolling 252 days ( ≈ 1 year) volatil-

ity of asset j. Interest in the risk parity approach
has increased since the late 2000s financial cri-
sis as the risk parity approach fared better than
traditionally constructed portfolios (Choueifaty and
Coignard 2008, Martellini 2008, Du Plessis and Haller-
bach 2016).

• Time series momentum: This strategy, also called trend
momentum or trend-following, suggests going long in
assets which have had recent positive returns and short
assets which have had recent negative returns. It is
possibly one of the most adopted and researched strat-
egy in finance (Moskowitz et al. 2012, Daniel and
Moskowitz 2016, Baltzer et al. 2019). For a given asset,
the signal is computed as

sTSMOM
t,j := μ

j
t:t−252 (A2)

with 252 days ( ≈ 12 months, ≈ 1 year) the typical look-
back period to compute the average return μ

j
t:t−252 of

asset j.
• Cross-sectional momentum: The cross-sectional momen-

tum strategy as defined by is a long-short zero-cost port-
folio that consists of securities with the best and worst
relative performance over a lookback period (Jegadeesh
and Titman 1993, Baz et al. 2015, Feng et al. 2020).
It works similarly as time series momentum, with the
addition of screening weakly performing and underper-
foming assets. For a given market, the signal can be

computed as

sCSMOM
t,j :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ
j
t:t−252, if μ

j
t:t−252 > Q1−q

(μ1
t:t−252, . . . , μn

t:t−252)

−μ
j
t:t−252, if μ

j
t:t−252 < Qq

(μ1
t:t−252, . . . , μn

t:t−252)

0, otherwise
(A3)

with Qq(μ
1
t:t−252, . . . , μn

t:t−252) representing the qth
quantile of the assets average returns. A signal for going
long (short) is produced if the asset j is at the top (bottom)
quantile of the distribution. In our experiments, we used
the typical value of q = 0.33.

Hyperparameters. Table A2 outlines the settings for QuantNet
and No Transfer strategies. Since running an exhaustive search
is computationally prohibitive, we opted to use random search
as our hyperparameter optimization strategy (Bergstra and Ben-
gio 2012). We randomly sampled a total of 200 values in between
those ranges, giving larger bounds for configurations with less
hyperparameters (No Transfer linear and QuantNet Linear-Linear).
After selecting the best hyperparameters, we applied them in a
holdout-set consisting of the last 752 observations of each time
series (around 3 years). The metrics and statistics in this set
are reported in our results section. After a few warm-up runs,
we opted to use 2000 training steps as a good balance between
computational time and convergence. We trained the different
models using the stochastic gradient descent optimizer AMSgrad
(Reddi et al. 2019), a variant of the now ubiquitously used Adam
algorithm.
Financial metrics. We have used 3 Month London Interbank
Offered Rate in US Dollar as the reference rate to compute excess
returns. Most of the results focus on Sharpe ratios, but in many
occasions we have also reported Calmar ratios, Annualized Returns
and Volatility, Downside risk, Sortino ratios, Skewness and Max-
imum drawdowns (Young 1991, Sharpe 1994, Eling and Schuh-
macher 2007, Rollinger and Hoffman 2013).

Appendix 3. LSTMs and QuantNet’s architecture

Given as inputs a sequence of returns from a history Rm:t =
(ri

t−m, . . . , ri
t) of market i, below we outline QuantNet’s input to trad-

ing signal (output) mapping, considering the LSTM and Linear mod-
els (Hochreiter and Schmidhuber 1997, Gers et al. 1999, Flennerhag
et al. 2018) defined by the gating mechanisms:

ei
t = LSTM(ri

t−1, ei
t−1)

=

⎧⎪⎨
⎪⎩

us∈{p,f ,o,g}
t = W (s)

ei rt−1 + V (s)
ei ei

t−1 + b(s)
ei

cei

t = σ(uf
t ) � cei

t−1 + σ(up
t ) � tanh(ug

t )

ei
t = σ(uo

t ) � tanh(cei

t )

(A4)

zi
t = ω(ei

t) = Zei
t + bZ (A5)

di
t = LSTM(zi

t, di
t−1)

=

⎧⎪⎨
⎪⎩

vs∈{p,f ,o,g}
t = W (s)

di zi
t + V (s)

di di
t−1 + b(s)

di

cdi

t = σ(vf
t ) � cdi

t−1 + σ(vp
t ) � tanh(vg

t )

di
t = σ(vo

t ) � tanh(cdi

t )

(A6)

si
t = tanh(Widi

t + bi) (A7)

where σ represents the sigmoid activation function, and us∈{p,f ,o,g}
t

and vs∈{p,f ,o,g}
t linear transformations. The remaining components

are the encoder cell cei

t and hidden state ei
t (equation A4);

Linear transfer layer mapping zi
t (equation A5); decoder cell

cdi

t and hidden state di
t (equation A6); and final long-short
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Table A1. Markets used during our experiment.

Region Index/Market Country # Samples # Assets Region Index/Market Country # Samples # Assets

Americas IBOV Brazil 3250 29 Europe HEX Finland 1882 65
Americas MERVAL Argentina 3055 11 Europe IBEX Spain 3499 23
Americas MEXBOL Mexico 3002 19 Europe ISEQ Ireland 2888 14
Americas RTY US 2356 554 Europe KFX Denmark 3345 15
Americas SPTSX Canada 3173 129 Europe OBX Norway 2812 17
Americas SPX US 3291 376 Europe OMX Sweden 3453 29
Asia and Pacific AS51 Australia 2363 91 Europe PX Czechia 3374 5
Asia and Pacific FBMKLCI Malaysia 3131 23 Europe SBITOP Slovenia 2995 6
Asia and Pacific HSI China 2599 37 Europe SMI Switzerland 3948 19
Asia and Pacific JCI Indonesia 2007 44 Europe SOFIX Bulgaria 1833 5
Asia and Pacific KOSPI South Korea 3041 297 Europe UKX UK 3664 75
Asia and Pacific KSE100 Pakistan 2036 41 Europe VILSE Lithuania 2765 5
Asia and Pacific NIFTY India 3066 38 Europe WIG20 Poland 3449 8
Asia and Pacific NKY Japan 3504 186 Europe XU100 Turkey 2545 76
Asia and Pacific NZSE50FG New Zealand 3258 21 MEA DFMGI UAE 2184 11
Asia and Pacific PCOMP Philippines 3013 16 MEA DSM Qatar 2326 16
Asia and Pacific SHSZ300 China 2881 18 MEA EGX30 Egypt 1790 22
Asia and Pacific STI Singapore 2707 27 MEA FTN098 Namibia 1727 16
Asia and Pacific TWSE Taiwan 3910 227 MEA JOSMGNFF Jordan 2287 15
Europe AEX Netherlands 4083 17 MEA KNSMIDX Kenya 1969 14
Europe ASE Greece 2944 51 MEA KWSEPM Kuwait 2785 11
Europe ATX Austria 3511 13 MEA MOSENEW Morocco 2068 27
Europe BEL20 Belgium 3870 14 MEA MSM30 Oman 2069 24
Europe BUX Hungary 3753 8 MEA NGSE30 Nigeria 1761 25
Europe BVLX Portugal 3269 17 MEA PASISI Palestine 1447 5
Europe CAC France 3591 36 MEA SASEIDX Saudi Arabia 1742 71
Europe CRO Croatia 1975 13 MEA SEMDEX Mauritius 2430 5
Europe CYSMMAPA Cyprus 2056 42 MEA TA-35 Israel 2677 23
Europe DAX Germany 3616 27 MEA TOP40 South Africa 2848 34

MEA, Middle East and Africa.

Table A2. No Transfer and QuantNet hyperparameters and configurations investigated.

No transfer QuantNet (encoder/decoder-transfer layer)

Hyper-parameter Linear LSTM Linear-linear Linear-LSTM LSTM-linear LSTM-LSTM

Batch size (L) 16-128 16-128 16-128 16-96 16-96 16-96
Sequence length (p) 21-504 21-504 21-504 21-252 21-252 21-252
Learning rate 0.0001-0.1 0.0001-0.1 0.0001-0.1 0.0001-0.5 0.0001-0.5 0.0001-0.5
E/D # layers 1-2 1-2 1-2
E/D dropout 0.1-0.9 0.1-0.9 0.1-0.9
TL # layers 1-2 1-2
TL dropout 0.1-0.9 0.1-0.9
TL dimension (N) 10, 25, 50, 100
Training steps 2000

trading signal si
t ∈ [−1, 1] (equation A7). In QuantNet, we inter-

leave market specific and market agnostic parameters in the
model. Each market is therefore associated with specific parame-
ters W (s)

ei , W (s)
di , V (s)

ei , W (s)
di , b(s)

ei , b(s)
di , Wi, bi, while all markets share

parameters Z and bZ (equation A5).

Appendix 4. Literature review

In this section, we aim to provide a general view of the different sub-
areas inside transfer learning (rather than a thorough review about
the whole area). With this information, our goal is to frame the cur-
rent contributions in finance over these subareas, situate our paper
contribution, as well as highlight outstanding gaps. Nonetheless, the
reader interested in a thorough presentation about transfer learning
should refer to these key references (Pan and Yang 2009, Goodfellow
et al. 2016, Zhuang et al. 2019)

A.1. Transfer learning: definition

We start by providing a definition of transfer learning, mirror-
ing notation and discussions in Pan and Yang (2009), Ruder et
al. (2019), Zhuang et al. (2019). A typical transfer learning prob-
lem presumes the existence of a domain and a task. Mathematically,
a domain D comprises a feature space X ∈ X and a probability mea-
sure P over X, where xi = {x1, . . . , xJ } is a realization of X. As an
example for trading strategies, X can be the space of all technical
indicators, X a specific indicator (e.g. book-to-market ratio), and
xi a random sample of indicators taken from X. Given a domain
D = {X , P(X )} and a supervised learning setting, a task T consists
of a label space Y ∈ Y , and a conditional probability distribution
P(Y | X ).† Typically in trading strategies, Y can represent the next

† A more generic definition, that works for unsupervised and rein-
forcement learning, demands that along with every task Ti we have
an objective function fi.
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Figure A1. Taxonomy of transfer learning sub-paradigms.

Table A3. Approaches and applications of transfer learning across finance and general domains.

Approach Brief description Financial applications Other references

Instance Re-weighting labelled data in
the source domain for use
in the target domain

News-rich to news-poor stocks (Li
et al. 2018); mitigating class
imbalance in credit scoring
(Li et al. 2018, Voumard and
Beydoun 2019)

Jiang et al. (2019), Qu
et al. (2019)

Feature Find a suitable feature
mapping to approximate
the source domain to the
target domain

Sentiment feature space (Li et al. 2018);
Portfolio selection factors (Hu et
al. 2015)

Zhuang et al. (2015),
Yang et al. (2018)

Parameter Learn shareable parameters or
priors between the source
and target tasks models

BERT specialized to financial sentiment
analysis (Araci 2019, Hiew et
al. 2019); Stock selection, forecasting
(Ghosn and Bengio 1997, Bitvai and
Cohn 2015); yield curve forecasting
(Nunes et al. 2019)

Devlin et al. (2018b),
Chen et al. (2019)

Relational-knowledge Learn a logical relationship or
rules in the source domain
and transfer it to the target
domain

Park et al. (2019), Wang
et al. (2016)

quarter earnings, and P(Y | X ) is learned from the training data
(xi, yi).

The domain D and task T are further split into two subgroups:
source domains DS and corresponding tasks TS , as well as target
domain DT and target task TT . Therefore, the objective of trans-
fer learning is to learn the target conditional probability distribution
PT (YT | XT ) in DT with information gained from DS and TS . Usu-
ally, either a limited number of labelled target examples or a large
number of unlabelled target examples are assumed to be available.

The way this learning is performed across the tasks, the amount of
labelled information as well as inequalities between DS and DT , and
TS and TT give rise to different forms of transfer learning. Figure A1
presents these different scenarios.†

† We should note that there are other possibilities, but they fall
into Unsupervised or Reinforcement transfer learning. These other
paradigms fall outside the scope of this work, which is mostly
interested in (Semi-) Supervised transfer learning.
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Figure A2. Average Sharpe (a) and Calmar (b) ratios of QuantNet and No Transfer across 58 markets.

Figure A3. World map of average relative (%) Sharpe ratio difference between QuantNet versus No Transfer. For visualisation purposes, we
have averaged the metric for the USA, China, and Israel/Palestine.
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Figure A4. Scatterplot of QuantNet and No Transfer average Sharpe (a) and Calmar (b) ratios of each market overlaid by a linear regression
curve.

In what follows, we analyse each sub-paradigm of figure A1.

A.2. Transfer learning: sub-paradigms

Inductive Transfer Learning: It refers to the cases where labelled data
is available in the target domain; in another sense, we have the typical
Supervised learning scenario across the different domains and tasks.
In inductive transfer methods, the target-task inductive bias is cho-
sen or adjusted based on the source-task knowledge. The way this is
done varies depending on which inductive learning algorithm is used
to learn the source and target tasks (Torrey and Shavlik 2010). The
main variations occur on how this learning is performed: simulta-
neously across source and target tasks (Multi-Task); sequentially by
sampling source tasks, and updating the target task model (Sequen-
tial Transfer); and with the constraints of using only few labelled
examples (Few-shot). We outline each variation:

• Multi-task Learning (Caruana 1997, Zhang and Yang
2017) is an approach to inductive transfer that improves
generalization by learning tasks in parallel while
using a shared representation; hence, PT (YT | XT ) and
PS(YS | XS) are intertwined, with the update in the tar-
get task affecting the behaviour of the domain tasks and
vice versa. In practice, the learned model architecture
and parameters are fully shared across domain and target
tasks—inputs, weights or coefficients, transfer functions,
and objective function. In finance, this mode of learn-
ing has been first used for stock selection (Ghosn and
Bengio 1997); lately, it has been applied for day trad-
ing (Bitvai and Cohn 2015) and yield curves (Nunes
et al. 2019).

• Sequential Transfer Learning (Ruder et al. 2019) is an
approach to inductive transfer that improves generaliza-
tion by learning tasks in sequence while using a shared
representation to a certain extent; therefore, PT (YT | XT )
and PS(YS | XS) are not completely intertwined, but the
update in the target task impacts the behaviour of the
domain tasks, and vice versa. In practice, the learned
model architecture and parameters are partially shared
across domain and target tasks—often weights, transfer
functions, and sometimes the objective function. By not
having to share the same inputs and other parts of the

architecture, this mode of learning can be applied across
different domains and make the learned model easier to
reuse in future tasks. In the context of financial applica-
tions, it has been mainly applied for sentiment analysis:
one of such applications is FinBERT (Araci 2019), a vari-
ation of BERT (Devlin et al. 2018b) specialized to finan-
cial sentiment analysis; it has obtained state-of-the-art
results on FiQA sentiment scoring and Financial Phrase-
Bank benchmarks. Hiew et al. (2019) provide a similar
application but feeding the sentiment analysis index gen-
erated by BERT in an LSTM-based trading strategy to
predict stock returns.

• Few-shot Learning (Fei-Fei et al. 2006, Goodfellow
et al. 2016, Wang et al. 2019): It is an extreme form
of inductive learning, with very few examples (some-
times only one) being used to learn the target task model.
This works to the extent that the factors of variation
corresponding to these invariances have been cleanly sep-
arated from the other factors, in the learned representation
space, and that we have somehow learned which fac-
tors do and do not matter when discriminating objects
of certain categories. During the transfer learning stage,
only a few labelled examples are needed to infer the
label of many possible test examples that all cluster
around the same point in representation space. So far
we were unable to find any application in finance that
covers this paradigm. However, we believe that such a
mode of learning can be applied for fraud detection, stock
price forecasting that has recently undergone initial pub-
lic offering, or any other situation where limited amount
of data is present about the target task.

Transductive Transfer Learning: It refers to the cases where
labelled data is only available in the source domain, although our
objective is still to solve the target task; hence, we have a situa-
tion that is somewhat similar to what is known as Semi-supervised
learning. What makes the transductive transfer methods feasible is
the fact that the source and target tasks are the same, although the
domains can be different. For example, consider the task of senti-
ment analysis, which consists of determining whether a comment
expresses positive or negative sentiment. Comments posted on the
web come from many categories. A transductive sentiment predic-
tor trained on customer reviews of media content, such as books,
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videos and music, can be later used to analyse comments about
consumer electronics, such as televisions or smartphones. There are
three main forms of transductive transfer learning: Domain Adapta-
tion, Concept Drift and Zero-shot learning. Each form is presented
below:

• Domain Adaptation (Kouw and Loog 2019): In this case
the tasks remain the same between each setting, but
the domains as well as the input distribution are usu-
ally slightly different; therefore XS ≈ XT or PT (XT ) ≈
PS(XS). The previous example of the sentiment predictor
is a typical case, where the domains and the input distri-
bution are somewhat different (books, videos and music
reviews transferring to consumer electronics). We can
presume that there is an underlying mapping that matches
a certain statement to positive, neutral or negative sen-
timent, and what makes the problem harder to solve is
the fact that the vocabulary and context vary between
domains. Surprisingly simple unsupervised pretraining
has been found to be very successful for sentiment analy-
sis with domain adaptation (Glorot et al. 2011). Similarly
to few-shot learning, this particular subarea of transfer
learning has received less attention from the finance com-
munity, since most of the sentiment analysis and similar
applications are handled using labelled data.

• Concept Drift (Žliobaitė et al. 2016, Escovedo et
al. 2018): In this case the tasks and domains remain
the same across settings, but the input distribution can
gradually or abruptly change between them; therefore
PT (XT ) 	= PS(XS). Often concept drift modelling and
detection focus on continuous data streams, such as time
series, text messages, videos, that is, data with a temporal
dimension or indexation. Using the previous example, we
would be concerned with changing views about a specific
film: reviews that were otherwise extensively positive,
gradually become negative due to changes in audience’s
view about how certain characters were portrayed, how
the topic was approached, etc. This particular subarea has
received substantial attention from the finance commu-
nity: it has been used to discover relations between port-
folio selection factors and stock returns (Hu et al. 2015);
price forecasting (Liu et al. 2019); and fraud detection
(Somasundaram and Reddy 2019).

• Zero-shot Learning (Socher et al. 2013, Wang et al. 2019)
is a form of transductive transfer learning, where the
domains and input distributions are different, and yet
learning can be achieved by finding a suitable representa-
tion; hence XS 	= XT and PT (XT ) 	= PS(XS). Following
the previous example, if we have a database with thor-
ough reviews about road bicycles, such as describing
their frame, suspension, drivetrain, etc. It would be pos-
sible to learn in principle what constitutes a good or bad
bicycle. Zero-shot learning would attempt to tap into this
knowledge and transfer it to a new bicycle that we do not
have reviews but use its design, 3d images, other descrip-
tions, etc. to come up with an expected score, just based
on users’ opinions about the product. In this case, the task
is the same (deciding the expected review of bicycle),
but the domains are radically different (textual descrip-
tion versus an image). Similar to few-shot learning, we
were unable to identify any piece of research from the
finance community.

Also, there are four different approaches where the transference
of knowledge from a task to another can be realized: instance, fea-
ture, parameters, and relational-knowledge. Table A3 presents a brief
description, applications of each to the financial domain, and other
key references. Undoubtedly, for financial applications parameter
transfer is the preferred option, followed by instance transfer and
feature transfer. Such approaches are mainly used for sentiment anal-
ysis, fraud detection, and forecasting, areas that have been widely
researched using more traditional techniques. Conversely, we were
unable to find research for relational knowledge. Despite that, we

believe that researchers working on financial networks, peer-to-peer
lending, etc. can benefit from methods in the relational-knowledge
transfer approach.

Using this taxonomy, QuantNet can be classified as part of
Sequential Transfer Learning, using a Parameter-transfer approach.
In this sense, we aim to learn the target task model by sharing and
updating the architecture’s weights and activation functions across
the tasks. Since each task has different number of inputs/outputs, this
component is task specific. All of these details are better outlined in
the next section.

Appendix 5. In-depth comparison: QuantNet and no
transfer linear

Market-level analysis. Figures A2(a) and A2(b) outline the average
SR and CR across the 58 markets, ordered by No Transfer strat-
egy performance. In SR terms, QuantNet outperforms No Transfer
in its top 5 markets and dominates the bottom 10 markets both in SR
and CR terms. Finally, in 7 of the top 10 largest ones (RTY, SPX,
KOSPI, etc., see table A1), QuantNet has also outperformed No
Transfer.

Figure A3 maps every market to a country and displays the rel-
ative outperformance (%) of QuantNet in relation to No Transfer
in SR values. In the Americas, apart from Mexico and Argentina,
Brazil, the USA (on average) and Canada, QuantNet has produced
better results than No Transfer. Similarly, the core of Europe (Ger-
many, the UK, and France), and India and China, QuantNet has
produced superior SRs than No Transfer, with markets like Japan,
Australia, New Zealand, and South Africa representing the reverse.

In a similar fashion to the global analysis, figures A4(a) and
A4(b) display the relationship between SRs and CRs of No Transfer
with QuantNet for each market, with overlaid regression curves. The
SR and CR models have the following parameters: SR intercept of
0.1506 (p-value = 0.036), SR slope of 0.7381 (p-value < 0.0001);
CR intercept of 0.1851 (p-value = 0.015), and CR slope of 0.7379
(p-value < 0.0001). Both cases indicate that in a market where No
Transfer fared an SR or CR equal to 0, we would expect No Trans-
fer to obtain on average 0.15 and 0.18 of SR and CR, respectively.
Since both models have slope < 1.0, it indicates that across markets
QuantNet will tend to provide less surprisingly positive and negative
SRs and CRs.

Table A4 presents a breakdown of the statistics in a few big
regional markets, such as United States S&P 500 components (SPX
Index), United Kingdom FTSE 100 (UKX Index), Korea Compos-
ite Index (KOSPI Index), and Saudi Arabia Tadawul All Shares
(SASEIDX Index). Each one of them show 2–10 times order of
magnitude improvement in SRs and CRs by QuantNet, with similar
benefits in Sortino ratios, Downside risks, and Skewness.

These results by QuantNet also translate in superior cumulative
returns ( figure A5), histograms with empirical distributions that
stochastically dominate the No Transfer strategy ( figure A6), and
finally positive transfer across assets ( figure A7). In summary, mar-
kets that were otherwise not as profit-generating using only lagged
information become profitable due to the addition of a transfer layer
of information across world markets.

Appendix 6. Fama-French 5 factor model

We fit a traditional Fama-French 5 factor model, with the addition
of Momentum factor (French 2012, Fama and French 2015) using
these four markets daily returns as dependent variables. Table A5
presents the models coefficients, t-stats and whether they were or not
statistically significant (using a 5% significance level). Regardless
of the market, QuantNet provided significant alpha (abnormal risk-
adjusted return) with very low correlation to other general market
factors.
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Table A4. Financial metrics of QuantNet and No Transfer strategies in SPX Index, UKX Index, KOSPI Index, and SASEIDX Index.

Americas_SPX Asia and Pacific_KOSPI Europe_UKX MEA_SASEIDX

Mean (SD) No transfer QuantNet No transfer QuantNet No transfer QuantNet No transfer QuantNet

Ann Ret 0.000133 0.041031 0.073337 0.054152 0.000406 0.006555 0.000642 0.026092
(0.001259) (0.029839) (0.25494) (0.046237) (0.001395) (0.00609) (0.002784) (0.012866)

Ann Vol 0.002436 0.053368 0.403113 0.07075 0.002717 0.009576 0.003598 0.01895
(0.00064) (0.012918) (0.144194) (0.025008) (0.00111) (0.004583) (0.003219) (0.004739)

CR 0.133073 0.756976 0.289853 0.822309 0.210127 0.813796 0.267246 1.783155
(0.377186) (0.616175) (0.620299) (0.785171) (0.445449) (0.708568) (0.745929) (1.133185)

DownRisk 0.001717 0.035575 0.271677 0.047184 0.001661 0.005364 0.002236 0.010502
(0.000522) (0.009612) (0.098263) (0.017854) (0.000433) (0.002129) (0.000513) (0.002464)

Kurt 33.29913 19.51515 13.87472 22.58056 95.31436 88.42658 41.8963 33.41796
(45.57039) (18.51033) (19.28247) (34.13021) (135.1503) (116.5215) (87.54653) (48.08607)

MDD − 0.00467 − 0.06681 − 0.50323 − 0.09328 − 0.00432 − 0.00988 − 0.00614 − 0.01755
(0.002296) (0.028684) (0.190464) (0.051306) (0.001905) (0.005301) (0.003198) (0.007012)

SR 0.061702 0.783197 0.347892 0.783428 0.108635 0.627227 0.12883 1.362307
(0.512651) (0.49204) (0.540274) (0.578968) (0.529708) (0.486396) (0.579286) (0.586632)

Skew − 0.21186 0.28355 0.374017 0.277958 2.943023 3.573138 0.495534 2.469297
(2.851112) (1.685894) (1.36364) (2.239952) (6.586847) (5.566353) (4.07845) (2.360219)

SortR 0.144905 1.245084 0.564466 1.256064 0.301707 1.207481 0.359786 2.587949
(0.760463) (0.847215) (0.839065) (0.979779) (0.898402) (0.979499) (1.206481) (1.344404)

Americas_SPX Asia and Pacific_KOSPI Europe_UKX MEA_SASEIDX

Median (MAD) No transfer QuantNet No transfer QuantNet No transfer QuantNet No transfer QuantNet

Ann Ret 0.000197 0.038476 0.059234 0.052772 0.000326 0.005321 0.000508 0.023614
(0.000982) (0.023214) (0.188703) (0.036438) (0.00108) (0.004778) (0.001666) (0.009858)

Ann Vol 0.002399 0.053732 0.380229 0.066449 0.002495 0.008573 0.003128 0.01865
(0.000497) (0.010269) (0.111283) (0.01968) (0.000695) (0.003598) (0.001038) (0.002928)

CR 0.045842 0.626018 0.133249 0.657845 0.092861 0.654498 0.091411 1.676411
(0.271252) (0.479759) (0.470007) (0.605487) (0.328843) (0.584447) (0.410032) (0.912643)

DownRisk 0.001648 0.035679 0.254761 0.044209 0.00157 0.004724 0.002257 0.009973
(0.000395) (0.007424) (0.076679) (0.013787) (0.000333) (0.00173) (0.000405) (0.001975)

Kurt 20.43113 14.44403 8.225536 13.04102 35.86203 30.40254 25.0625 28.02965
(23.64829) (10.23454) (10.6417) (17.31602) (96.22141) (86.32176) (30.82765) (15.90609)

MDD − 0.00419 − 0.06071 -0.49819 − 0.08132 − 0.00393 − 0.00841 − 0.00578 − 0.01573
(0.001741) (0.020741) (0.157264) (0.039347) (0.001549) (0.003937) (0.002449) (0.005458)

SR 0.085695 0.79579 0.366404 0.818361 0.154884 0.628875 0.184811 1.382302
(0.406313) (0.400688) (0.437163) (0.465154) (0.407551) (0.379645) (0.451943) (0.4808)

Skew 0.044563 0.407357 0.271776 0.148158 0.360259 1.385536 − 0.06615 2.559821
(1.742953) (1.110312) (0.811512) (1.318841) (4.960393) (4.198536) (2.102935) (1.412129)

SortR 0.112332 1.205009 0.55375 1.235756 0.203793 1.128096 0.26026 2.315208
(0.595473) (0.690404) (0.675314) (0.779847) (0.701329) (0.793781) (0.764835) (1.124332)

Table A5. Models coefficients and t-stats for the different markets and factors.

SPX UKX SASEIDX KOSPI

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Alpha 0.0003∗ 2.554 0.0002∗ 2.258 0.0006∗ 3.856 0.0003∗ 4.034
Beta − 0.0004∗ − 2.367 − 0.0002 − 1.558 − 0.0006∗ − 2.804 − 0.0001 − 0.213
Small minus Big 0.0003 1.158 0.0002 1.075 0.0006 1.856 0.0001 0.182
High minus Low − 0.0005 − 1.778 − 0.0006∗ − 2.813 − 0.0002 − 0.781 − 0.0001 − 0.148
Momentum − 0.0002 − 1.042 0.0001 0.08 − 0.0002 − 0.918 − 0.0001 − 0.538

∗p-value < 0.05.

Appendix 7. Dendrogram

An additional analysis is how each market is being mapped inside
QuantNet architecture, particularly in the Encoder layer. The key
question is how they are being represented in this hidden latent space
and how close each market is to the other there. Figure A8 presents
a dendrogram of hierarchical clustering done using the scores from
encoder layer for all markets.

By setting an unique threshold across the hierarchical clustering
we can form six distinct groups. Some clusters are easier to analyse,

such as C5 that consist mainly of small European equity mar-
kets (Spain, Netherlands, Belgium, and France)—all neighbours; C6
comprising mainly of developed markets in Europe and Americas,
such as the UK, Germany, the USA, and their respective neighbours
Austria, Poland, Switzerland, Sweden, Denmark, Canada, and Mex-
ico. Some clusters require a more refined observation, such as C2
containing most developed markets in Asia like Japan, Hong Kong,
Korea, and Singapore, with C3 representing Asia and Pacific emerg-
ing markets: China, India, and some respective neighbours (Pakistan,
Philippines, Taiwan).
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Figure A5. Average cumulative returns (%) of SPX Index, UKX Index, KOSPI Index and SASEIDX Index contrasting QuantNet and No
Transfer strategies. Before aggregation, each underlying asset was volatility-weighted to 10%.

Figure A6. Histogram of Sharpe ratio of SPX Index, UKX Index, KOSPI Index, and SASEIDX Index contrasting QuantNet and No Transfer
strategies.

Figure A7. Scatterplot of Sharpe ratio of SPX Index, UKX Index, KOSPI Index, and SASEIDX Index contrasting QuantNet and No Transfer
strategies.
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Figure A8. Dendrogram of hierarchical clustering using the scores from QuantNet encoder layer.

Table A6. Average Sharpe ratio per different dimensions and configurations of QuantNet and No Transfer strategies.

No transfer QuantNet (encoder/decoder-transfer layer)

Sharpe ratio Dimension Linear LSTM Linear–Linear Linear–LSTM LSTM–Linear LSTM–LSTM

Mean (SD) 10 0.324257 0.311424 0.355600 0.361986 0.370918 0.279758
(0.6541) (0.665251) (0.704641) (0.711988) (0.715636) (0.70962)

25 0.324257 0.311424 0.333565 0.324842 0.325667 0.275786
(0.6541) (0.665251) (0.702325) (0.755392) (0.707544) (0.699151)

50 0.324257 0.311424 0.319009 0.320583 0.234741 0.258272
(0.6541) (0.665251) (0.698568) (0.725952) (0.752143) (0.706733)

100 0.324257 0.311424 0.326090 0.353448 0.228464 0.298445
(0.6541) (0.665251) (0.695066) (0.730362) (0.722084) (0.702126)

Median (MAD) 10 0.306572 0.304244 0.338981 0.345072 0.354776 0.275548
(0.51182) (0.515521) (0.559216) (0.533789) (0.572184) (0.562)

25 0.306572 0.304244 0.314084 0.301769 0.273791 0.227461
(0.51182) (0.515521) (0.552154) (0.570677) (0.555298) (0.552615)

50 0.306572 0.304244 0.302167 0.303684 0.205637 0.219550
(0.51182) (0.515521) (0.546099) (0.537824) (0.583648) (0.554146)

100 0.306572 0.304244 0.307922 0.330039 0.188830 0.243308
(0.51182) (0.515521) (0.540111) (0.549627) (0.573707) (0.557717)

Appendix 8. Ablation study and sensitivity analysis

This section attempts to addresses the question: (i) could we get bet-
ter results for the No Transfer strategy and (ii) what are the impact in
QuantNet architecture by increasing its dimensionality, and perform-
ing some ablation in its architecture. Table A6 presents the Sharpe
ratio (SR) statistics for question (i) and (ii), by contrasting QuantNet
and No Transfer strategies.

In relation to No Transfer, we can perceive that there is no benefit
from moving to an LSTM architecture—in fact, we produced slightly
worst outcomes in general. Maybe the lack of data per market has
impacted the overall performance of this architecture. Similarly with
QuantNet, a full LSTM model generated worst outcomes regardless
of the dimensionality used. Linear components in QuantNet have

produced better outcomes, with Linear encoders/decoders and LSTM
transfer layers providing the best average results across dimen-
sions. However, small layer sizes are linked with better SRs, and
particularly for size equal to 10, the QuantNet architecture using
LSTM encoders/decoders and Linear transfer layer generated the
best average SRs.

Appendix 9. Code

QuantNet and other strategies implementations can be found in this
repository: https://www.dropbox.com/sh/k7g17x5razzxxdp/AABem
BvG8UI99hp14z0C8fHZa?dl=0

https://www.dropbox.com/sh/k7g17x5razzxxdp/AABemBvG8UI99hp14z0C8fHZa?dl=0
https://www.dropbox.com/sh/k7g17x5razzxxdp/AABemBvG8UI99hp14z0C8fHZa?dl=0
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