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Abstract 

Background:  
Health systems worldwide are often informed by evidence-based guidelines 

which in turn rely heavily on systematic reviews. Systematic reviews are currently 

hindered by the increasing volume of new research and by its variable quality. 

Automation has potential to alleviate this problem but is not widely used in health 

evidence synthesis. This thesis sought to address the following: why is automation 

adopted (or not), and what effects does it have when it is put into use? 

Methods: 
Roger’s Diffusion of Innovations theory, as a well-established and widely 

used framework, informed the study design and analysis. Adoption barriers and 

facilitators were explored through a thematic analysis of guideline developers’ 

opinions towards automation, and by mapping the adoption journey of a machine 

learning (ML) tool among Cochrane Information Specialists (CISs). A randomised 

trial of ML assistance in Risk of Bias (RoB) assessments and a cost-effectiveness 

analysis of a semi-automated workflow in the maintenance of a living evidence map 

each evaluated the effects of automation in practice.  

Results: 
Adoption decisions are most strongly informed by the professional cultural 

expectations of health evidence synthesis. The stringent expectations of systematic 

reviewers and their users must be met before any other characteristic of an 

automation technology is considered by potential adopters. Ease-of-use increases in 

importance as a tool becomes more diffused across a population. 

Results of the randomised trial showed that ML-assisted RoB assessments 

were non-inferior to assessments completed entirely by human researcher effort. The 

cost-effectiveness analysis showed that a semi-automated workflow identified more 

relevant studies than the manual workflow and was less costly. 

Conclusions: 
Automation can have substantial benefits when integrated into health 

evidence workflows. Wider adoption of automation tools will be facilitated by 

ensuring they are aligned with professional values of the field and limited in 

technical complexity.  
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Impact statement 
The results of this research will support the implementation of automation in 

evidence synthesis practice with strong empirical evidence. These findings justify 

and will promote a significant shift in methods of health evidence synthesis. The 

integration of such a powerful approach into the evidence synthesis pipeline will 

translate to higher quality in health guidelines, as they are able to connect the most 

current knowledge to day-to-day practice more quickly than ever before. As this 

knowledge translation grows more efficient, outcomes will improve for individuals 

accessing health services worldwide. 

Health guidelines play a crucial role in the everyday lives of many millions 

of people around the world. Efficient identification and summarisation of current 

knowledge – evidence synthesis – is vital to the support of these health guidelines. 

Evidence is currently produced at an ever-increasing rate, outpacing the ability of 

evidence syntheses to keep up. Applying automation to the evidence synthesis 

process presents a potential solution to this issue, but care must be taken to ensure 

that the high quality of health guidelines is maintained. Automation is also seldom 

used, and the reasons for this are unclear. The research presented in this thesis 

addresses both topics, and therefore addresses several barriers which had previously 

been hindering the broader adoption of automation. 

Cultural factors are the greatest contributor to the trust placed in automation 

processes and must be reliably demonstrated before implementation of a semi-

automated process is considered. Once individuals are open to integrating an 

automation tool, the first group to do so highly value the ability to control the 

parameters of the tool. This value drops over time as additional groups adopt a tool, 

while an emphasis on a tool’s ease of use grows in importance. This finding provides 

clarity to key stakeholders regarding the prerequisite for a shift in research 

methodology as it relates to the use of automation. 

This research also examined two implementations of automation in evidence 

synthesis. In both cases, it was found that automation either maintained equal quality 

to a manual method, or it improved quality. Concerns that automation would require 

a trade off in quality in favour of time or resource savings turned out to be 
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unnecessary in these instances, thus removing a critical barrier to future 

implementation. 

To summarise, this research has removed several important barriers to the 

adoption and implementation of automation in health evidence synthesis. By doing 

so, it supports a shift in the methodological practices of evidence synthesis 

professionals. In addition, developers of automation tools should take note of these 

findings in order to better validate their product development, as well as to better 

target the needs of their intended audience. Finally, key organisations which 

influence the field of health evidence synthesis are now equipped with empirical 

evidence to inform their ongoing discussions relating to the potential use of 

automation. 
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Chapter 1. Introduction 

Behind the scenes of every evidence-based healthcare decision that is made 

there are years, if not decades, of research that informed the training and the policies 

guiding that decision. Health evidence syntheses, such as health technology 

assessments, rapid reviews, recommendations, guidelines, and others, are the bridges 

that connect that research to practice. The systematic review, one of the most widely 

known and used forms of evidence synthesis, aims not only to summarise all of the 

existing evidence on a topic, but also to do so in a reproducible and transparent way 

[1]. Systematic reviews form the foundations of clinical guidelines, of drug licensing 

and regulation, and of health policy; the efficiency of systematic review production 

and their ultimate quality are therefore of enormous societal significance.  

Due to inefficiencies in research conduct and reporting, however, health 

evidence synthesis is both time- and resource-intensive, leading to suboptimal 

translation of knowledge into practice [2]. Decisions taken using out-of-date 

evidence syntheses, or taken without access to evidence syntheses at all, risk missing 

out on the latest benefits of scientific pursuit, needlessly harming population health 

in the process.  

Automation has been proposed as a solution (or partial solution) to this 

problem, as new natural language technologies may have the potential to aid or to 

complete many of the tasks currently performed by people. Automation tools exist 

that support much of the systematic review process, from search strategy 

development, assessing studies for eligibility, risk of bias assessment, data 

extraction, and even synthesis [3, 4]. With such a wealth of available automation 

tools, I originally intended for my PhD research to focus on the validation of a select 

number of them to inform best practice in the integration of automation to systematic 

reviews. It became clear, however, that despite the apparent widespread availability 

of tools, the overall state of the health evidence field was not inclined towards the 

uptake of automation: systematic reviewers generally did not, and do not, use 

automation.  

Such a realisation necessitated asking why this is the case, and partially 

shifted the direction of this work. The mere provision of evidence that automation 
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tools ‘work’ is clearly not sufficient to push those in decision-making positions to 

choose to adopt them, therefore a deeper understanding of that decision-making 

process is needed. My original focus and interest did remain, however, resulting in 

the two broad aims which determined the direction of the research presented here. 

The two aims of this thesis, both undertaken within the context of health 

evidence synthesis, are: 1) to understand why automation is or is not adopted; and 2) 

to discover what can happen in practice when it is adopted. These two aims are 

interrelated: I aim to describe and analyse decision-making in this context, and to 

provide evidence to inform those decisions and the people or systems making them. 

In other words, I will first create a map which describes these decisions and their 

influences, and then I will create new knowledge to add to this map, which will 

improve future navigation of the use of automation across health evidence syntheses. 

Before the detailed exploration of health evidence methodologies and 

automation presented in the remainder of this thesis, it is useful to position this 

discussion within the historical precedents that have led to the current moment. In 

addition to this historical context and orientation, I will provide my personal history 

which led me to this research, and which should be considered in framing my unique 

relationship to the research and its results. The rest of this introduction will outline 

the structure and main conclusions of the remaining chapters and conclude with what 

I expect to demonstrate by the conclusion of this thesis. 

Historical context of Evidence-based Medicine 

Before Evidence-based Medicine: 1753 through the 

1960s 

The first record of a randomised controlled trial (RCT), generally considered 

the bedrock of most health-focused evidence synthesis, is widely described as having 

been conducted by James Lind aboard a Scottish naval vessel in 1753. Seeking to 

determine which of six different popular treatments was the most effective against 

scurvy, Dr Lind split sailors suffering from the disease into groups, attempted to 

control for stage of the disease and living conditions, and randomly assigned one of 
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the treatments to each group. The cohort randomly allocated to receive fresh fruits 

improved, proving it to be the most effective treatment. 

This concept of a ‘fair comparison’ [5] has since been used as a foundational 

principle in the scientific method and was most significantly developed throughout 

the twentieth century. For the purposes of the medical field, the corollary concept of 

randomisation has become increasingly entrenched in research design. 

Randomisation’s generation of groups comparable in invisible and visible 

characteristics is crucial to accurately determining causation. When groups differ 

from one another only by random chance, any changes observed are more likely to 

be attributable to the intervention of interest. The Institute for Quality and Efficiency 

in Health Care (IQWiG, Germany) identifies a 1948 tuberculosis study as the first 

modern drug trial to use randomisation. Importantly, this trial included descriptions 

of the randomisation procedure and baseline characteristics of the participants when 

it was published. Put into the context of research today, this might be viewed as the 

beginning of standardised study or trial quality metrics. By the 1960s, randomisation 

was practically a requirement in medical trial reporting worldwide.  

The Rise of Evidence-based Medicine: 1971 through 

the early 1990s 

While trials utilising scientific comparisons had become commonplace by the 

1970s, the translation of basic science to medical practice was determined entirely by 

practitioners’ opinions. Archie Cochrane, the future namesake of the Cochrane 

Collaboration established in 1993, famously criticised this situation in 1971 in an 

evaluation of the British National Health Service [6]. In this seminal text, he 

advocated for scientific evidence to provide the basis of medical care rather than 

opinion. Several years later, Cochrane made the further suggestion that the lack of “a 

critical summary, by speciality and subspeciality, adapted periodically, of all 

randomised controlled trials" was medicine’s “greatest criticism” [7]. Systematic 

reviews, then termed ‘meta-analyses’, had already been produced in the area of 

psychology [8, 9], but researchers in obstetrics heeded Cochrane’s call in the late 

1980s and published systematic reviews of obstetric practice. Cochrane later praised 

these and encouraged that their approach should be “copied by other medical 

specialties” [10].  

https://www.evidentlycochrane.net/glossary/randomisation/
https://www.evidentlycochrane.net/glossary/control-group/
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Occurring in parallel to the academic discussions spearheaded by Archie 

Cochrane, the 1980s saw the beginning of a shift away from experience and 

individual opinions holding the most influence over patient care towards a more 

systematic and evidence-based approach. Many discussions of the evidence-based 

medicine movement begin with Dr David Sackett and Gordon Guyatt. They initially 

promoted the term ‘scientific medicine’, but were quickly met with derision from 

clinicians unimpressed by the implication that current practice was unscientific [11]. 

The term ‘evidence-based medicine’ (EBM) was introduced instead and has now 

become the standard term.  

EBM Today 

Today, evidence-based medicine is widely practiced and formally recognised 

via educational institutions and a number of international organisations. Many top 

universities have leading academic centres focused exclusively on evidence-based 

medicine, training, and production. Important organisations not based in universities 

include the aforementioned Cochrane Collaboration (now known simply as 

Cochrane), the Campbell Collaboration, the Joanna Briggs Institute (JBI), and 

Guidelines International Network (G-I-N). Further, many government bodies have 

dedicated resources to the development of health guidelines and to the systematic 

reviews that support these; such organisations include the World Health 

Organization (WHO), National Institute for Health and Care Excellence (NICE, 

United Kingdom), the National Medical Health and Research Council (NHMRC, 

Australia), and the Agency for Healthcare Research and Quality (AHRQ, United 

States). The links between evidence synthesis and health guidelines will be examined 

in more detail in the next section. 

Conceptual definitions 

Having considered both the broader global history that precedes my research, 

I will now define the concepts underlying EBM. Sackett and Guyatt defined EBM as 

“the conscientious, explicit, and judicious use of current best evidence in making 

decisions about the care of individual patients” [12]. It has been more succinctly 

described elsewhere as “the principle of integrating the powerful methods of science 

into the practice of medicine” [13]. 
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In addition to the connection between scientific evidence and care in practice, 

Chung and Ram (2009) write that five concepts are central to EBM: “gathering 

evidence, integrating evidence with experience to arrive at a clinical decision, 

implementing this decision at the bedside, assessing performance, and staying 

current with research” [13]. This might be thought of as a simplified cycle in which 

knowledge is gathered, knowledge is implemented, the implementation is assessed, 

and knowledge is gathered again to re-start the cycle. This thesis will focus on two of 

the five elements described: gathering evidence and staying current with research. 

‘Health evidence synthesis’ is used throughout this thesis to jointly denote these two 

concepts. 

The research presented in this thesis relates to two major components of 

synthesising health evidence: health or clinical guidelines, and systematic reviews. 

The former are defined in the literature as “systematically developed statements to 

assist practitioner and patient decisions about appropriate health care for specific 

clinical circumstances” [14], and they aim to improve quality of care and patient 

outcomes. More commonly, guidelines (and evidence-based medicine in general) are 

described as the combination of clinical experience, patient preferences, and the best 

research evidence.  

 

Figure 1.1. The principles of guidelines 

  

Clinical 
experience

Best 
research 
evidence

Patient 
preferences
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Systematic reviews are the evidentiary foundation for guidelines, forming the 

‘best research evidence’ arm as described above. Cochrane defines a systematic 

review as “attempting to identify, appraise, and synthesise all the empirical evidence 

that meets pre-specified eligibility criteria to answer a specific research question” 

[15]. It is key that a systematic review has a well-defined and reproducible search 

strategy, and this characteristic is an important distinction between a systematic 

review and other types of literature review. By following a protocol established 

prospectively, systematic reviews aim to eliminate or minimise bias to approach 

near-complete knowledge on a focused question; literature reviews have no such 

methodological obligation and instead aim for broad knowledge on a topic. In 

theory, a meta-analysis, the statistical synthesis of data from comparable sources 

[16], may or may not be conducted using the studies resulting from a systematic 

review. In practice, however, it is now expected that meta-analyses also synthesise 

the results from studies identified through a systematic, and not systematically 

biased, search strategy. Stages of a systematic review may slightly vary, but 

generally follow a standard set of steps, which will be referenced throughout this 

thesis (Figure 1.2). 

 
Figure 1.2. Stages in a systematic review 

These steps will be preceded by the formulation of an initial question and of a 

review protocol which defines the eligibility criteria and methods for the review. In 

the initial stages, a search strategy must be formulated. A review team, often in 

consultation with an information specialist or a search specialist, must decide which 

databases to use, which terms to search and which to exclude, when to conduct these 

searches, and how to manage and de-duplicate the results. Screening stages see the 

review team applying their pre-defined eligibility criteria. It is worth noting that it is 

not uncommon for teams to revise their original search strategy at this stage after 

conducting a sub-set of initial screening, which has implications for the role 

automation may play with this task. 

During the extraction stage, reviewers will collect information from eligible 

studies, typically in a structured format. This is particularly true of health 

Search Screen Extract Appraise Analyse Publish
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intervention focused systematic reviews (e.g., the efficacy of X treatment for Y 

condition in Z population) which often restrict inclusion of studies to RCTs and 

assess quantitative outcomes. Reviewers then assess the quality of included studies. 

In this way systematic reviews not only collate the results of relevant studies, but 

also describe the quality of these studies. Various appraisal tools are available [17] 

and will be discussed in more detail in the relevant chapters.  

In the analysis stage, results from included studies are collectively assessed. 

If conducting a meta-analysis, the review authors will pool the results of included 

studies to derive a final estimate of the magnitude of the intervention effect (if any). 

Finally, reviewers publish their findings using their preferred method of 

dissemination, typically a peer-reviewed journal article. 

‘Automation’ in this thesis refers to any tool, process, or system which 

operates independently of human labour, or with limited human supervision. In 

relation to systematic reviews, an ‘automation tool’ is “any computer tool that can 

fully or semi-automate a systematic review task” [18]. Further sub-categories of 

automation, such as machine learning and natural language processing (NLP), will 

be discussed in more detail in the following chapter.  

My pathway to EBM and to this PhD 

A proper historical orientation would be lacking without some personal 

historical context as well. Though academics ostensibly seek objective knowledge, I 

am closely intertwined with the nature of my own research. By simply asking the 

questions I ask, I have positioned myself within my own PhD research, and therefore 

this should be explicitly described. 

On a descriptive level, I consider myself a younger woman emerging from a 

fairly privileged (in my view) background. As above, while seemingly this should 

not factor into findings derived from a scientific methodology, on a practical level it 

cannot be unwound from the pursuit of this PhD. I grew up in a house with a 

computer and internet access. I am comfortable with smartphones. Automation is 

not, to me, hypothetical, but rather it is present in my daily life and existence. The 

framing of my research questions and my interpretation of the meaning of the results 

might be different if constructed by someone from a different set of life experiences. 
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There is also the presence and influence of my background in highly 

quantitative fields: biology and economics. These might seem unrelated, but to me 

they have always been similarly interested in system-wide behaviour given a discrete 

set of resources. Biology considers questions such as how the human body allocates 

units of energy, whereas economics considers questions such as how money supply 

affects allocation of wages. While both fields are immeasurably more complex than 

these descriptions, my fascination with them both centres on a sense of efficiency. 

This fixation on efficiency connects my backgrounds in biology and economics to 

my current research into EBM and automation. I believe a more efficient system to 

be a better one. Once again, the entire framing of this thesis is intrinsically entwined 

with that normative assumption.  

After my undergraduate degrees in the fields mentioned in the previous 

paragraph, and a few years spent working in biological research, I pursued a Master 

of Science (MSc.) in Global Health. It was here that I was first introduced to 

guidelines, systematic reviews, and evidence-based medicine. Like many, I was 

surprised to learn that many interventions initiated by governments or non-profit 

organisations were not evidence-based at all. My passion for health evidence grew 

out of the hope that better use of data would not only mean better health outcomes, 

but also more equitable ones. This value-driven aspiration continues to drive my 

career and my research today, and so in addition to my belief outlined above that a 

more efficient system is a better one, I also believe that a more equitable system is a 

better one (at least when it comes to health outcomes). The fact that guidelines and 

the research that feeds them are so resource-intensive is an undesirable state, in my 

perspective, because it constricts the availability of the highest quality evidence, 

often to those with the highest means. My pursuit of automation is at least in part to 

remedy this, and to make evidence-based practices more readily available to the 

entire global community, regardless of their resources and privileges, or lack thereof. 

The final piece of my personal pathway to this PhD was my connection with 

Covidence, an online systematic review tool. I began working for Covidence in June 

2015, and this work served as my introduction to many individuals in the systematic 

review and Cochrane community, including my supervisors, each of whom leads one 

or more systematic review automation tools. Though Covidence contains no 

automation itself, I view it as laying the groundwork for future automation potential. 
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Covidence plays a significant role in this work, particularly in Chapter 6, while tools 

managed by my other supervisors are featured heavily as well (RobotReviewer, also 

in Chapter 6; EPPI-Reviewer in Chapter 7; the Cochrane RCT classifier in Chapter 

5). Given my position and my connection to Covidence, to Cochrane, and to my 

supervisors and their respective tools, I was not operating in the world of health 

evidence synthesis as an outsider. Rather, I may have been known to the those who 

either provided data or collaborated for my research as someone associated with 

individuals in this field who are leading advocates of automation tools.  

The convergence of these influences led me to pursue this PhD. I see 

automation as a potential opportunity to further the pursuit of my core beliefs in 

efficiency and equity in health; the ultimate goal, however, remains the promotion of 

an evidence-based approach to health. It must be determined whether automation 

furthers this goal with efficient and accurate evidence synthesis, or if it undermines 

the accuracy or trustworthiness of EBM. My aim with this PhD is to further the 

evidence base towards the appropriate use of automation, and to determine 

empirically whether it improves efficiency while also meeting the standards of EBM. 

Automation and systematic reviews 

As discussed above, evidence-based medicine and systematic reviews are 

integral to the administration of health systems worldwide. In recent years, however, 

they have increasingly struggled to stay up to date, both because of increasingly 

rigorous methodological standards, and because of the explosion in the rate of 

primary research publication. This situation will be examined in more detail in 

Chapter 2. 

Given these pressures, researchers have looked to automation as a potential 

solution, or at least mitigating assistant, to keeping health evidence both current and 

high-quality. Each of the systematic review steps outlined in the previous section 

(Figure 1.2) may be automated to a certain extent and will be explored in detail in 

the literature review in the next chapter. The stages described intentionally excluded 

the protocol stages on the basis of a previous argument in the literature regarding 

what should and should not be automated [19]. Tsafnat argued that every review is 

part creative process and part technical process, that automation should focus on the 
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technical processes, and that “the review protocol is developed much like a recipe 

that can then be executed by machine.” Automation cannot, and should not, try to 

write these recipes, and my research incorporates this value assumption. Similarly, 

automation’s influence on guidelines (Figure 1.1) is currently limited to the best 

research evidence, as it cannot itself provide human opinions on patient preferences 

nor clinical experience.  

Significant work has been completed in the development of tools for the 

automation of health evidence synthesis, but automation is not yet widely used [20-

22]. The reasons for this are unclear. This situation requires research to determine 

why automation is not yet widely used, and it is of significant impact to the current 

and future state of health evidence. Without a methodological paradigm shift, the 

current rate of evidence production outpaces the capacity of resources available for 

its analysis and integration into guidelines [2]. That is, without automation, 

systematic reviews are likely to fall out of date, causing guidelines to decrease in 

quality, ultimately resulting in a negative impact on health outcomes.  

Thesis themes and structure 

The current model of evidence synthesis is failing to keep up with the rate of 

new research, leading to the overall aims of this thesis: to explore the adoption and 

the effectiveness of automation technologies in health evidence synthesis. Why do 

individuals, teams, or organisations choose to adopt automation? What happens if 

they do adopt automation? By exploring these questions, my PhD research aims to 

strengthen the evidence base used to inform decision-making by identifying and 

addressing key barriers, facilitators, benefits, and harms of applying automation to 

health evidence synthesis, and to document and analyse that decision-making in 

detail. It is further expected that the results of this research may be used to inform 

technology development and research and development priorities. 

The next chapter’s discussion of the state of the field of health evidence 

synthesis and of systematic reviews will establish an urgent need for more efficient 

systems. The literature described will also show there are numerous potential 

solutions available, as well as additional tools which are in ongoing development, 

but that these are not being widely adopted and put into practice.  
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With the current state of knowledge established and discussed, I will then 

draw further on existing literature describing the analytical frameworks which 

underpin my research. These are used in the design of my projects and in the analysis 

of their results, and most importantly in translating these results into 

recommendations for practice and creating meaningful connections among my 

findings. These frameworks also serve to place my PhD within the wider scope of 

research methodologies and to locate it within existing knowledge. 

Two projects were conducted to explore adoption of automation, and two to 

explore the effectiveness of automation. Each of these four individual projects will 

be presented in its own chapter and are outlined in the following sections.  

Adoption of automation 

Guideline developers are key gatekeepers in the translation of evidence into 

practice, including evidence produced using automation. Given this important role 

and the limited adoption of automation, I sought to understand their attitudes towards 

automation tools in order to better understand potential barriers and facilitators to 

adoption, and to make recommendations based on these findings. 

This qualitative exploration will be detailed in Chapter 4, underpinned by the 

thematic frameworks presented in Chapter 3. My results will show that guideline 

developers hold the values of their professional field above all other considerations. 

In short, guideline developers believe automation must show itself to be as 

uncompromising in systematic review quality as a human researcher, and any 

benefits it may or may not offer come second to this criterion. 

Like guideline developers, information specialists are key players in the 

evidence production pipeline. In Cochrane Information Specialists, I had a unique 

opportunity to analyse and understand their adoption of the Cochrane RCT classifier. 

As one of the few widely available and relatively widely adopted automation tools 

advocated within official Cochrane channels, this study is a unique case study 

providing insights into the adoption of automation in a high-profile systematic 

review organisation. 

This project will be presented in Chapter 5, and my results will show first 

that my selected thematic framework yields new insights into who trusts in 
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automation and why. I will show that as health evidence automation diffuses across a 

population, user experience (the positive or negative subjective quality of overall 

interactions of a user with a system) increases in importance, while user technical 

control decreases in importance.  

Effectiveness of automation 

The second half of my research chapters shift focus towards the effectiveness 

of automation in the context of health evidence synthesis.  

Much of the published research on systematic review automation has focused 

on screening, a relatively easier task than the appraisal and extraction stages of a 

systematic review. Even among the studies examining the use of automation in 

quality assessment, these have focused on efficacy rather than effectiveness. 

Understanding the effects of automation in ‘real-world’ practice, rather than its 

efficacy in controlled validation experiments during development, may be helpful to 

the uptake and implementation of automation. To begin to address this gap, I 

conducted a randomised trial of the of the effectiveness of integrating automation 

into quality appraisal in real-world, ongoing systematic reviews. 

This trial will be presented in Chapter 6, and the results will show that 

assistance from an automation tool did not negatively impact the accuracy of quality 

assessments in health-focused systematic reviews.  

Finally, the COVID-19 pandemic offered an opportunity to examine the cost-

effectiveness of automation. With the global emergency, more researchers than ever 

turned to automation to expedite their syntheses. I worked with researchers 

maintaining a living map of COVID-19 evidence to investigate the cost-effectiveness 

of integrating several automation tools into their weekly workflow. 

These results are presented in Chapter 7 and will show that switching from an 

entirely manual workflow to one assisted by automation resulted in both lower costs 

and higher effectiveness, as measured by study recall (i.e., search sensitivity). Two 

unique contributions arise from these results: first, cost-effectiveness of automation 

in health evidence synthesis is rarely presented in the previous literature on this 

topic. Second, my data showed that there was not only no sacrifice in the systematic 

review quality, but there was actually an improvement to it. 
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Conclusions of this thesis 

Priorities shift as adoption of automation in health evidence synthesis 

becomes more widespread, while consistently underpinned by a requirement for 

sound methodologies. Further, automation shows benefits even under real-world 

conditions. Combining the results of my research with several analytical frameworks 

to structure new connections in knowledge, an evidence-based roadmap for the 

adoption and implementation of automation in health evidence synthesis will be 

created by the conclusion of this thesis. By doing so, this PhD will newly equip the 

field of health evidence synthesis to move forward with automation as an 

indispensable part of its toolkit 

The following chapter will provide a thorough grounding in the existing 

literature on the automation of health evidence synthesis. We will see that the data 

deluge situation urgently calls for a shift in methodologies, and that automation has 

potential to address these.  
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Chapter 2. Literature review 

Why is this research needed? 

Chapter overview 

This literature review will build upon the definitions and historical context 

laid out in the introduction and provide the background knowledge critical to 

understanding and contextualising this thesis. Academic literature will be presented 

showing that systematic reviews are resource-intensive and becoming unsustainable 

due to the exponential growth in data production. Existing knowledge about 

innovations in evidence synthesis will be discussed, and gaps in knowledge will be 

highlighted. The chapter will conclude with available evidence on current adoption 

of automation in systematic reviews. Overall the literature will show that health 

evidence synthesis would benefit from automation, but that adoption is slow.  
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Systematic reviews are resource-intensive 

The introduction of this thesis established the important role systematic 

reviews play in translating knowledge into practice in health. Guidelines are often 

publicly funded and they impact the general public’s access to and experience of 

healthcare; systematic reviews that support guidelines therefore need to be robust 

and transparent to future examination. In addition to feeding into health guidelines, 

the focus systematic reviews have brought to primary research methods has 

contributed to an increase in primary research quality [1]. The high quality of 

systematic reviews is therefore of significant importance [2, 3]. Quality, in this case, 

should be used to refer not only to the content of the review, but also of the 

timeliness of its content – that is, how up-to-date and currently applicable is the 

information contained? 

The resources required to complete a systematic review of high quality are 

substantial [4]. Each of the main steps of a review (Figure 1.2) requires individuals 

with high levels of training and expertise. With respect to the time required, a 2017 

study published in the British Medical Journal found the mean time to complete and 

publish a systematic review was 67.3 weeks [5]. The study also concluded that 

funded reviews took more than 50% more time to complete. In addition, the median 

time from the latest search of a systematic review until its date of publication was 8 

months [6], further risking that the information contained in the review is not entirely 

up-to-date. 

Perhaps most relevant to the research presented in this dissertation is that the 

mean yield rate (the proportion of studies included out of the total screened) was 

2.94%. Using an estimate of 1 minute per study screened [7] and a 40-hour work 

week, every 10,000 studies retrieved during the search stage represents over four 

weeks of researcher time spent on screening studies that do not result in any helpful 

data for the review. This time-use estimate is even greater when it is considered that 

many tasks are done in duplicate in a review, with further time required to resolve 

discrepancies in researchers’ screening results (approximately 5 minutes per 

conflicting decision, according to one study [7]). While streamlining to a single 

reviewer workflow might appear tempting, a 2019 systematic review of the literature 

found studies were consistently missed when only one reviewer screened studies [8]. 
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Of equal or greater importance, the authors found that eligible studies missed when 

using a single reviewer often would have changed the conclusions of the resulting 

meta-analysis had they been correctly identified and included. More recent 

publications continue to confirm this conclusion; Gartlehner et al (2020) showed that 

screening by a single reviewer missed 13% of eligible studies, while screening by 

two reviewers only missed 3% [9]. Perhaps as a result of these issues, the literature 

shows that the median time from a primary study’s publication to its inclusion in a 

systematic review ranges from 2.5 to 6.5 years [10].  

Updating a review requires further resources and consequently difficult 

judgements in the prioritisation of research resources [11, 12]. Following completion 

of a review, it will need to be updated at regular intervals so the information 

continues to be relevant and accurate, but only a minority of reviews are updated 

within the recommended time frames [13]. Shojania et al conducted a survival 

analysis which examined the average time to changes in evidence sufficient to 

substantially change the conclusions of an existing systematic review; they found 

that within 2 years, 23% of reviews required updating based on new evidence [14]. 

This likely contributed to Cochrane changing its former guidance of a two-year 

updating schedule in favour of one focused on prioritisation of systematic reviews 

most in need of updating [15].  

Health guideline developers face challenges owing to the difficulties of 

keeping systematic reviews up to date. Prior research has shown that in some fields, 

some systematic reviews were already out of date by the time that they were 

published [6, 16]. Consequently, guidelines run a risk of working from out-of-date 

information, and thus risking inaccurate recommendations for patient care.  

Considering the typical time to include primary research in a systematic 

review, to complete and to publish a systematic review, the lag time between 

searches and review publication, and the difficulty of prioritising and completing 

review updates, the evidence begins to draw a picture of a slow-moving health 

evidence pipeline. 
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Increasing data growth 

Alongside the challenge already presented by the time-intensive evidence-to 

practice pipeline, current rates of data growth often exceed the ability of researchers 

to keep up with screening tasks [17]. The growth rate of articles published each year 

has been increasing for decades, and does not show any signs of stopping [18]. As of 

2010, eleven systematic reviews of trials were published per day, along with 75 trials 

[19]. Consider this in comparison to the previous decade: in 1995, 429 meta-analyses 

were published in PubMed, compared to 4739 in 2011 [20]. In the nearly three 

decades since the founding of the Cochrane Collaboration in 1993, the rate of 

evidence publication has increased more than eleven times over. Figure 2.1, 

reproduced from Marshall et al (2020) shows the rate of randomised trial publication 

on PubMed; the trend is clear, whether examined by manual effort or by automated 

estimates [21]. 

 
Figure 2.1. RCTs indexed in PubMed, estimated by manual indexing (yellow) versus automation (blue), from 

Marshall et al (2020) 1 

 

 

 

 

1 Note: This paper was published in May 2020, and this accounts for the seeming drop-off for 2020 RCTs.  
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Systematic reviews and evidence synthesis are not limited to trials, of course, 

and including other types of evidence also contributes to data growth. Growth in case 

reports and non-systematic reviews has been even faster, and these too potentially 

contribute to an increased workload in health evidence synthesis [19]. 

Superficially, a wealth of information might seem to be inherently positive. 

Surely with so much information, decisions can always be well-informed. However, 

high availability does not necessarily indicate high quality of data, and indeed can 

mean the opposite (discussed further in the following section). Bountiful data is also 

negative in that it is labour-intensive to process it all. It is easy to wonder if such a 

circumstance as that we see today was ever foreseen in the early days of EBM, but it 

has been the subject of academic discussion at least since the 1990s. In a 1994 

editorial, Doug Altman called for “less research, [but] better research” [22]. From 

the perspective of systematic reviewers and health guideline developers, this ‘era of 

data deluge’ – information becoming available at a faster rate than it can be put into 

use and/or usable formats – is unsustainable and worsening without a major 

paradigm shift in health evidence synthesis methodology. The evidence-to-practice 

pipeline needs to adapt. 

The dangers of messy methods 

The era of data deluge was clearly evident before 2020, but the COVID-19 

pandemic threw a sharp spotlight onto the problems that can occur when evidence is 

needed quickly. Though the scientific community sprang into action at the onset of 

the pandemic and quickly produced evidence syntheses, the quality and consequent 

utility of such synthesis was variable to a problematic degree. Abbot et al (2021) 

conducted a systematic review of reviews to “explore the relationship between 

review quality and researcher, policy, and media interest” [23]. This study provides 

three noteworthy and relevant findings: (1) reviews were often of low quality, (2) 

review quality had no association with review impact, as measured by altmetrics and 

citations, and (3) a significant number of reviews had conflicting findings. Stamm et 

al (2021) similarly found most COVID-19 evidence syntheses “fell short of basic 

methodological standards” [24]. In short, in the case of COVID-19, rapidly 

conducted reviews were not conducted well, and their low quality was no hindrance 

on the reach of their results. Policy makers and the public trust in systematic reviews 
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overall and put their evidence into action even when that evidence is discordant and 

of low quality. 

Innovations in systematic reviews 

Conventional wisdom dictates that you can only select two of the three 

attributes of fast, good, and cheap. Continued innovations in machine learning and 

natural language processing, however, may eventually challenge that assumption, but 

significant caution is warranted before trusting these tools. In the context of health 

evidence syntheses, by reducing the resources required to conduct and maintain 

systematic reviews and meta-analyses, automation presents one possible means of 

addressing the data deluge challenge, and one way to discourage the creation and 

impact of low-quality evidence. Alternatively, automation may actually have the 

opposite effect and enable mass production of low-quality evidence. Research is 

therefore needed to ensure proper consideration has been taken in the validation of 

any automation tools. 

The following sections will describe various innovations in automation which 

aim to address some of the specific challenges in systematic reviews established in 

the preceding section. All of these innovations are potential targets for further 

research. Where available, primary literature investigating efficacy and effectiveness 

is described, and attention drawn to gaps in the literature which might be useful 

research targets. 

Each stage of a systematic review, as defined in Chapter 1 (Figure 1.2), 

presents a potential target for automation. That is, the automation strategies 

examined in this thesis operate on the existing framework of how to complete a 

systematic review. Discussion on how and whether to change the broader format of 

evidence synthesis exist elsewhere [25, 26].  

Most often, the aim of using automation in systematic reviews is to reduce 

the time required from specialists on lower level tasks, such as screening, so they 

may redirect effort to more complex tasks [27]. As automation becomes more 

sophisticated, however, it may also be used for more complex tasks, allowing human 

researcher effort to be rendered unnecessary or to be redirected to increasingly 
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nuanced tasks. Some call for the field to move towards a future vision in which an 

entire systematic review can be conducted by a computer programme, with the only 

human input being the protocol [28]. 

Living Systematic Reviews 

Living Systematic Reviews (LSRs) present one such scenario in which the 

entire systematic review process could be expedited via automation, or even entirely 

automated. LSRs aim to create a review which is kept constantly up-to-date, 

incorporating the latest available evidence in real time as it becomes available [29]. 

Automating or partially automating every stage of a typical systematic review would 

certainly make this endeavour more achievable, with human effort shifted towards 

final judgements informed by the preceding automated steps. Though not yet 

automated, LSRs represent an important shift in the framing of systematic reviews: 

from a static and discrete data synthesis to a dynamic and real-time summary of 

current knowledge. Activities thus far have largely focused on the monitoring of 

evidence availability. Several LSRs have already been published [30-32], and main 

challenges identified have included how to prioritise key topics and maintain 

consistent methodology [33].  

Search 

The search stages of a systematic review – searching for references and 

managing them prior to beginning screening – present a simultaneously highly 

specialised and time-consuming task. Recall and precision are typically two metrics 

used to assess the strength of a search. Recall, or sensitivity, refers to the proportion 

of studies identified out of the total number of relevant studies, while precision, or 

specificity, is the proportion of identified studies which are relevant to the search 

question. Perfect recall means every eligible study has been found, while perfect 

precision would mean the search retrieved zero ineligible studies. It is practically 

impossible to achieve perfect recall and precision, so trade-offs are in order. 

Systematic reviewers often operate on the assumption that current approaches 

achieve close to perfect recall and tend to be reluctant to sacrifice this ostensibly 

‘perfect’ model by accepting lower precision, despite the investment of time required 

to screen large reference sets [34-36]. Automation could, in theory, achieve the same 
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or improved recall with the same time resource allocation as a fully manual search. 

As importantly, and technological development depending, this maintained or 

improved recall could simultaneously improve precision, saving reviewer time 

without the methodologically costly trade-offs. 

Because trials are sometimes found only on one database, multiple databases 

should be searched to maximise recall under the current standard workflow [37-39]. 

Each database, however, tends to have its own specialist terms and operators, 

requiring extensive training for researchers to make the best use of the databases [40-

42]. Automated translation between databases is therefore another target of 

automation development [43].  

Microsoft Academic Graph (MAG) is one example of an effort to shift away 

from the limitations of a multi-database standard workflow by making use of 

automation. MAG uses a graph structure to map citation information, as would be 

found on a database, with information about its connections to other citations. This 

relationship information about the relationships between documents is frequently 

updated by software which automatically extracts structured identifying information 

from publications. The availability of a single unified data set of not only 

publications, but also the meta-data associated with them, unlocks myriad 

possibilities of further automation in terms of searching. MAG also has been found 

to be a less costly and more effective alternative to human-curated content [18].2 

More broadly, MAG represents a shift away from databases which rely on publishers 

indexing their data, and instead relies on wide automated searches of information on 

the internet. Such a model has the potential to be more comprehensive than manual 

searches, avoiding selection biases such as location and language in search 

 

 

 

2 Shortly before submission of this thesis, it was announced that MAG would close at the end of 2021; 

SemanticScholar and OpenAlex are taking over the existing data feed [44]. 
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strategies, but creates new challenges in creating clean data from highly variable web 

page sources. 

Tsafnat et al (2014) identified two, non-mutually exclusive approaches of 

automation systems during the development of a search strategy: first in improving 

the precision and recall of queries, and second in prompting the user to improve their 

query themselves [43]. Search precision and recall might be improved through 

Automatic Query Expansion (AQE): algorithms that modify the user’s query before 

it is processed [45]. AQE can be integrated into the database search interface itself or 

can be third-party programs. Strategies of AQE include automated inclusion of 

synonyms, clarification of their word choices, and spelling corrections [43]. User 

prompts can be observed in several search engines, in which keyword suggestions 

might appear as a user enters their query.  

Deduplication of search results is another critical part of the search stage and 

could potentially be supported by automation programs. Many reference 

management programs already include partially automated deduplication algorithms, 

and evidence shows they perform fairly accurately [46, 47].  

Screening 

There are various potential approaches to applying automation to screening. 

As a consequence of the preference for high recall/sensitivity noted previously, in 

addition to fragmented bibliographic data and absence of quality metadata, search 

results tend to have low precision/specificity. Throughout the screening stages, the 

overwhelming majority of records retrieved in the previous step are excluded under 

typical review conditions [48]; significant reviewer time is thus spent on ultimately 

irrelevant work. The screening tasks of systematic reviews have been the subject of 

the majority of published studies concerned with the automation of health evidence 

synthesis [49]. Despite this, disparate methods and conclusions mean it remains 

unclear which approach is best. 

Machine learning (ML) generally refers to the approach of providing an 

algorithm with a set of inputs (‘training data’) and desired outputs, from which it 

derives a new general rule (‘learning’). This can then be applied to a new set of 

inputs to predict new outputs. In the context of screening in a systematic review, an 
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example use case might be a ML model created by a review author to align with their 

prespecified review protocol; it would then be able to screen records on its own 

based on the training data (a sample of included and excluded records) created prior 

to beginning the review. Active learning [50], a specific type of ML, can continually 

update its training inputs and consequent predicted outputs rather than following 

static program instructions, as is typical for conventional statistical model. In the 

context of screening during systematic reviews, active learning usually refers to the 

continual use of previous screening decisions to train the ML prediction algorithm 

[51]. The idea is to reviewer decisions in real-time and continually use these as 

training data, ideally building a better ability to predict screening decisions over time 

until a point when it can screen autonomously.3 

A systematic review of current automation approaches [49] identified four 

methods in the published literature of semi-automating screening stages of 

systematic reviews: (1) reducing the number of references to manually screen; (2) 

using text mining (e.g., ML) as a second screener; (3) increasing screening speed; 

and (4) prioritisation of references. Prioritisation and reduction in the number of 

references to screen were the two most common approaches examined in the 

literature; see Table 2.1, reproduced from the O’Mara-Eves (2015) [49]. One 

additional application could be to use automation as a tiebreaking vote on previous 

conflicting votes, though this was not identified in any existing literature.  

 

 

 

3 Note that this relies on the assumption that reviewer decisions are correct – ethicists and 

commentators have raised valid concerns throughout the literature about the risk of ML further 

entrenching flawed methodologies and/or existing human biases. Health evidence synthesis should by 

no means be considered exempt from this risk. 
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Table 2.1. Automation approaches to screening reduction, from O'Mara-Eves (2015) 

Workload reduction approach Number of studies 

Reducing number needed to screen 30 

Text mining as a second screener 6 

Increasing the speed of screening 7 
Improving workflow through screening prioritisation 12 

In a prioritisation approach, the full list of references retrieved during the 

search is sorted such that those at the top are the most likely to be relevant. This may 

or may not include an active learning approach which observes reviewer decisions 

and periodically updates the prioritisation of the reference list. While technically this 

approach does not itself reduce overall workload, it can potentially expedite reviews 

and reduce the overall time required to complete them by better focusing researcher 

effort and permitting full text screening to commence before title and abstract 

screening is complete in the knowledge that most relevant records will be found 

early in the process [49]. However, there is also risk that prioritisation could 

prejudice human decisions.  

Prioritisation classifiers can also be used by applying a threshold to the list 

and excluding references within a ‘negative prediction zone’ [35, 52-54]; when used 

in this way, they can indeed reduce overall workload, though the overall reduction is 

dependent on the threshold selected, which is itself dependent on previous human 

decisions. The Cochrane RCT classifier is one such tool that works in this manner by 

discarding studies below a particular prediction threshold [55]. Chapter 5 reports on 

a qualitative study relating to the RCT classifier; the tool will be described in greater 

detail in that chapter. Similarly, Chapter 7, which presents an economic evaluation of 

automation, makes use of prioritised screening and will discuss its specific 

application in that chapter. 

Several tools which use the active learning approach are already available. 

Abstrackr is one such tool that records human screening decisions and uses these 

data to build automated screening models [56]. EPPI-Reviewer Web (ER-Web) also 

includes in-built machine learning tools as well as active learning tools which can be 

user-constructed [57].  

DistillerSR, a commercially available systematic review software, has also 

recently introduced DistillerAI which uses user decisions to predict and apply (with 
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user permission) future decisions [58]. This tool is able to act independently or to act 

as a second reviewer, and the latter approach was independently evaluated by 

Gartlehner et al (2019) [59]. This study first trained DistillerAI with the decisions of 

dual screeners on 300 randomly selected citations out of a set of 2472 total. After 

training the automation tool, the remaining studies used DistillerAI as its second 

screener; this approach resulted in reduced sensitivity, and the authors concluded that 

DistillerAI’s accuracy is currently insufficient to replace human screening. 

Evidence has shown that use of ML for screening can reduce reviewer 

workload substantially [60]. Some published reports have shown no adverse effect 

on recall at all [61], while others have shown recall lowered to 70% [62]; this 

variation undoubtedly affects researcher confidence in automation as a whole. Each 

of these cases targeted specific sets of citations, and it will be important for the field 

moving forward to evaluate ML performance against a broad range of reviews and 

topics, as well as to develop open evaluation datasets to encourage internally valid 

comparisons. 

In addition to these approaches, natural language processing (NLP), which 

aims to teach computers to intelligently analyse language and word associations, can 

be used in various ways to expedite this process. Currently, this includes decision 

support tools which use NLP to highlight content to inform an individual reviewer’s 

decision [63-65]. Visual data mining (VDM) may also be applied to create a visual 

representation of connections between already classified documents, and then to 

provide the screeners with prompts to reduce their screening time. O’Mara-Eves et al 

identified five evaluations of VDM [66-70], the results of which suggested that 

humans can indeed screen more quickly with VDM assistance without substantially 

changing their screening accuracy. A weakness of current NLP technologies, 

however, is the lack of algorithms for non-English languages [43], potentially further 

reinforcing the North American publication bias identified elsewhere [49, 71]. 

Extraction and Appraisal 

In common with the range of potential approaches in screening, automation 

may be applied in various ways to evidence extraction and evaluation of data: as a 

second reviewer, as a tiebreaker, or as a prompter for a human decision-maker, to 
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name a few. Given the complexity of extraction and subsequent meta-analysis, 

however, these stages of a systematic review are relatively difficult to automate and 

are limited by current technology. One challenge to the advancement of automation 

in data extraction is a lack of training data [72]. Current machine learning systems 

need manual input in order to train the system to perform future tasks, and 

completing this work is expensive and time-consuming. As described in Chapter 1, 

the “recipe” of a systematic review should not be automated [28], and moreover 

currently cannot be automated; while a computer can perform complex calculations 

when directed to do so, it cannot decide on the most appropriate method of analysis 

for a given dataset, nor make an entirely autonomous decision on what data to 

collect. These limitations do not mean that extraction automation offers nothing of 

use for these stages, however.  

Automation may be used to reduce the amount of text to be reviewed [60], or 

it may be used to collate data from the study in a structured manner which can then 

be used in the meta-analysis [73]. Automation could also be used to convert distinct 

data types so they may be compared with one another [43]. A systematic review of 

methods to automate data extraction was published in 2015 [74]. While 26 published 

reports were identified in this review, it was found that the scope of extraction was 

limited in the elements extracted, and it did not provide information on the 

performance of the extractions in terms of accuracy. 

Methods previously assessed for partially automated data extraction include a 

template [73] or a statistical model [75]; these can be used to extract information on 

number of patients in each arm and number of events in each arm. There are also 

tools available and in development to digitise graphs [76-78]. Unfortunately, these 

do not currently support survival curves, a common data type in clinical trials and 

thus in systematic review data extractions. One tool currently available for the 

reduction of the amount of text to be reviewed is ExaCT [60]. This tool classifies 

PICO characteristics, randomisation, and select intervention and outcome elements.  

A further attempt to automate the quality appraisal stage of a review was 

reported in 2015. In this study, supervised machine learning was used to train two 

models for three of the seven different domains of the Cochrane Risk of Bias (RoB) 

template. One model dealt with prediction of sentences relevance to the assessment, 
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while the other model attempted to assign a RoB score for each study. They found 

that a third of studies could be assessed by one reviewer only by applying machine 

learning, saving significant reviewer time [79].  

A significant tool to note among the efforts to automate synthesis, including 

Risk of Bias assessments and PICO (participants, interventions, comparators, and 

outcomes) extraction, is RobotReviewer [80]. RobotReviewer is an open-access 

platform designed to partially automate elements of data extraction using ML and 

NLP. RobotReviewer produces RoB reports on uploaded trial PDFs, along with 

identifying relevant supporting annotations. In addition, RobotReviewer 

automatically assesses study sample size and PICO (participants, interventions, 

comparisons, and outcomes) characteristics of uploaded study reports. A more 

extended discussion of RobotReviewer will be presented in Chapter 6, which reports 

on a randomised trial of the tool.  

Adoption of automation in systematic reviews 

Though there are numerous automation tools available for systematic 

reviews, as described in the previous sections, uptake of these tools has been limited 

in scope and slow in pace [81, 82]. Marshall and Wallace (2019) write that potential 

reasons for this include the lack of interoperability of automation systems, poor 

performance, opaque methodologies, or unintuitive user interfaces, but could also 

come down to a lack of clarity to practitioners regarding when to use and when not 

to use such tools [72].  

The most thorough research to date on why automation is not widely used is 

van Altena et al (2019) [82]. They found that less than a third of reviewers surveyed 

had used automation tools, and also that reviewers often started using a tool but then 

stopped. Although participants in this study indicated that automation reduced their 

workload, the researchers did not find any relationship between size of workload and 

use of automation; in other words, even those who would benefit the most from 

uptake of automation in their workflows did not appear to be using it. The study also 

identified poor usability and a steep learning curve as barriers to automation 

adoption. Other barriers identified were lack of support, a lack of time to properly 

validate the tool, insufficient literature validating the performance and benefits of a 
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given tool, and a lack of transparency on how a tool works. Organisational and peer 

endorsement were identified as facilitators; respondents tended to learn about 

automation tools from others in their environment. 

These results have been supported by more recent literature. Scott et al 

(2021) also found that while approximately half of the respondents to their survey 

reported using a tool during their review, the tools were also frequently abandoned 

[83]. Among those who reported using a tool, a strong majority (80%) thought they 

saved time, while 54% felt they had increased accuracy. In the opinion of O’Connor 

et al (2019), a general perception among the evidence synthesis community of the 

non-inferiority or superiority of automation methods is key to their adoption [84]. In 

other words, while the perception of time savings appears to be encouraging of 

adoption, the accuracy and quality perception is currently less certain, according to 

existing academic opinions. Two caveats need to be noted in relation to both of the 

above-cited articles. First, the 2021 survey examined ‘automation tools’, but would 

have more accurately been described as ‘technology tools’; many of the tools 

examined do not replace any human decisions with ones autonomously nor semi-

autonomously taken by a computer. Second, the 2019 discussion from O’Connor et 

al is presented as commentary; while this is helpful in informing my research of the 

current thinking in the field, it is not empirically based, and its utility in informing 

adoption strategies is therefore unclear.  

Conclusions 

In surveying the available literature, a chain of insights becomes clear: 

Automation tools exist for most stages of the systematic review process, and these 

tools are more advanced for the early search and screening stages of reviews than 

they are for the synthesis stages. A wide range of screening automation techniques 

are available but are limited in their availability (e.g., DistillerAI and EPPI-

Reviewer) to typical users. 

Finally, automation is not being widely used for systematic reviews, and 

robust evidence to explain the potential reasons why is limited at best. While at least 

one systematic review using automation throughout its process has been documented 

[85], the remaining evidence on the use of automation tools is narrow in its scope, 
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usually isolated to validation studies of specific tools in case study settings, thus 

limiting its generalisability. Though these validation studies are necessary and 

invaluable, they lack insight into the real-world outcomes of adopting automation. 

This PhD will therefore seek to fill these gaps in knowledge. I aim to enhance 

academic understanding of why the adoption of automation has been lagging despite 

widely available tools, and to further understand the outcomes of adoption of 

automation in current practice of health evidence synthesis.  
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Chapter 3. Methodological 

frameworks 

Chapter overview 

Building on the foundational knowledge presented in the previous chapter, 

this chapter will first provide the rationale for using specific existing theoretical 

frameworks to locate my research in the academic literature. Three frameworks are 

then described: one to classify and describe automation as it is used throughout this 

thesis, and two to inform the design and analysis of each of the individual projects 

presented in this dissertation. To describe and classify different levels of automation, 

a hierarchy of human-automation interactions is presented; examinations of specific 

examples of automation will be classified according to this hierarchy in future 

chapters. Second, the three factors which influence trust in automation will be 

presented. This three-layered trust model was generated from a previous systematic 

review focused on empirical research on human-computer interactions. Finally, 

Rogers’ Diffusion of Innovations framework will be detailed and related to the 

research to be presented in the remainder of the dissertation. The chapter will 

conclude with my research questions and discussion on how the chosen theoretical 

frameworks will be used to analyse my results.  
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The conceptual frameworks used in this thesis 

Before presenting the research and results chapters, the next sections will 

establish three frameworks. First, a framework is presented to define automation and 

describe the tools I will examine. Existing literature on systematic review automation 

is often framed as semi-automation (as compared to full automation); the distinction 

between semi- and full automation is necessary, but the current standard descriptions 

are insufficiently detailed. My selected descriptive framework addresses this lack of 

detail and will help to define the types of human-automation interactions 

investigated. Next, I will present the two central frameworks which were used to 

inform my studies’ designs and analyses. These will act together to describe the 

underlying mechanisms of human trust in technology, and my findings on user 

behaviour, beliefs, trust, and preferences will be mapped within existing theory on 

adopter persona and innovation characteristics.  

As stated in my introductory chapter, the first of my research themes focusses 

on the adoption of automation in health evidence synthesis. In other words, I wanted 

to explore the decision-making process with respect to the use of automation in this 

field. Decision-making can be examined through a variety of lenses. One might 

focus on an individual’s decision-making process and the factors influencing that 

single person. One could also focus on decision-making at an organisational level; in 

this context, we might look at why Cochrane recommends a specific piece of 

software, for example, but not others. In examining decision-making around 

automation for health evidence synthesis, both individual decisions and 

organisational decisions are present, located in the professional environment, small 

team dynamics among a guideline or systematic review team, and other contextual 

factors, including the expectations and demands of funders and users of systematic 

reviews.  

Broadening our view, all of these influences operate in the wider cultural 

context of health evidence synthesis. There are rigorous methodological standards 

and expectations around accountability: an individual or an organisation does not 

decide merely for themselves; they are accountable to the culture within which they 

operate. The dynamics of the wider system may both shape individual adoption 

decisions, but also be shaped over time by those decisions. Moreover, health 
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evidence synthesis is not a field which benefits from a long history on which to draw 

insights to answer these normative questions, having really only taken off since 

1993. Though we can observe the evolution of methodological standards and 

expectations to some degree over these 30 years, they are under constant 

development and re-evaluation. This places my own research, as well as the subjects 

of it, in a situation in which they are both subject to the cultural context, but also 

highly influential in continually shaping it. 

No one level of these perspectives is sufficient when considering my research 

themes. Exclusively focusing on an individual would miss out on the organisational 

decision-making which is influencing that individual. Exclusively focusing on the 

organisational level would leave out the building blocks of individuals first making 

decisions that then combine to make up the organisation of interest; each level is 

interactive with another, and further is subject to but also influential in the 

construction of a wider cultural context. We therefore need a way to consider 

multiple levels of decision-making and simultaneously consider the interactions 

between those levels. To accomplish this in a structured way, it can be useful to use 

existing theoretical frameworks which locate an individual’s decisions within the 

multiple levels of influence and contextual factors described above.  

As well as providing a multi-faceted and interconnected analytical structure 

for my thesis, the use of theoretical frameworks assists in applying my findings to 

advance the field of evidence synthesis. In observing and explaining adoption 

decisions as they relate to automation and health evidence synthesis, this thesis will 

make recommendations for practice in how to influence decision-makers, as well as 

providing evidence to be consumed by those same decision-makers. Seeking to 

influence decision-making incorporates the assumption that such an impact is 

possible, and that insights from one context can be used to inform and predict 

behaviours in another context. For this to be possible, the knowledge gathered in my 

PhD must be structured, categorised, and constructed in such a way that it can be 

transferred to other settings. This can be facilitated by the application of theoretical 

frameworks. Clear categorisation and identification of interactions between elements 

described in these frameworks first allows my results to be used to form hypotheses 

about causal pathways; because of the structured relationship of the ideas, I can 
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reasonably propose which elements lead to which results within my own findings, 

and these hypotheses can provide the basis for further empirical research. Describing 

such causation explicitly facilitates the transfer of this knowledge elsewhere and 

supports prediction of outcomes in other settings. By prospectively planning for 

these explanatory mechanisms and pathways in the findings of each of these 

projects, the potential impact of the results is strengthened.  

Further, use of these frameworks allowed for a unified structure through a 

methodologically diverse PhD. My descriptive and qualitative chapters (Chapters 4 

and 5) aimed to gain a thorough understanding of the existing priorities of the 

decision-makers I am studying, while the experimental and quantitative chapters 

(Chapter 6 and 7) aimed to evaluate and understand the effects of specific adoption 

decisions. Having this breadth of study designs is a strength of this thesis, and the 

theoretical frameworks enabled me to tie the empirical studies together in a coherent 

way. They allowed me first to analyse and understand the context within which 

participants framed adoption decisions, and then to perform empirical studies which 

can inform adoption decisions with robust evidence. The greatest strength in the end 

will be in the combination of these analytical frameworks moving forward to form 

an evidence-based guide with a strong theoretical grounding in existing knowledge. 

With this structured guide to user decisions, trust, and behaviour, in addition to the 

evidence to further inform each of these, software developers and researchers will be 

empowered to prioritise the development and the advocacy of automation tools in the 

most effective ways. 

These analytical models provide further benefits. First, by using these 

frameworks in combination, it is hoped that it will make this thesis easier for the 

reader and the wider audience to understand. I believe that clear reporting of science 

is not only a value-driven best practice, but also maximises the likelihood of greater 

impact of my research. Second, I can assess how well these frameworks fit the needs 

of this area of research. This is a relatively novel area of research, and therefore 

methodological refinement is required. This thesis can either encourage future 

research to use a similar approach, or it can discount this approach as less than useful 

and one to be avoided in future experimentation. Either outcome would be a benefit 

for the literature on this topic. Finally, these frameworks locate my thesis within an 
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existing field of scholarship. In this way, my research is related to existing 

knowledge enabling future researchers to relate to and to build upon my work as part 

of a wider body of literature. With my aim to analyse the decision-making process 

around the adoption of automation, it was helpful to build upon existing knowledge 

rather than to set out with no anchoring guide for any discoveries I made. In building 

my map of decision-making processes, and then contributing new insights for its 

navigation, these theoretical frameworks kept me accountable to broader knowledge 

rather than simply following my own assumptions.  

To summarise, I have chosen to establish my PhD research within these 

theoretical frameworks in order to better describe and communicate my findings, to 

locate them within a wider field of academic research, to test the effectiveness of my 

approach, and most importantly to maximise the ability of my findings to translate 

across multiple contexts. 

The next section will first consider a descriptive framework for categorising 

the degree of automation present in the tools I will inspect. 

Levels of automation 

The academic literature offers a highly relevant and helpful foundation for 

building a framework for defining the levels of automation (LOA) in this research. 

Specifically, a 2016 literature review presented an overview of the evolution of 

taxonomies describing the levels of automation, starting from the 1950s [1]. Twelve 

approaches to LOA are described in detail in this review. While the authors sought to 

understand the strengths and weaknesses of each, they eventually concluded that 

there “does not exist such a thing as a ‘best taxonomy’”. Their discussion, however, 

provides an excellent starting point to determine which is the best taxonomy for the 

purposes of this PhD.  

As previously mentioned, the frameworks (or taxonomies) presented in this 

chapter were selected to inform my design and analysis, but also to maximise impact 

of results by aiming to propose explanatory variables for my results, and to test the 

applicability of these frameworks and of their combination. Therefore, I selected the 

framework which seemed to be both the most exhaustive categorisation of levels of 
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automation, and that which seemed to have the broadest uptake in the current 

academic literature. With these goals in mind, this research will use the levels of 

automation taxonomy proposed by Sheridan and Verplank [2, 3]. 

Description of the framework 

Ten levels of potential automation are described in the taxonomy, from an 

entirely human-run system at the ‘low’ end of the scale to an entirely autonomous 

computer at the ‘high’ end (Table 3.1). 

Table 3.1. Levels of automation, from Sheridan and Verplank (1978) 

Level Description 

10 Full computer control 

9 Computer informs human only if it decides to 
8 Computer informs human only if asked 

7 Computer executes automatically, then informs the human 

6 Computer allows the human a restricted time to veto an automatic decision 
5 The computer executes a suggestion if the human approves 

4 The computer suggests one alternative 
3 The computer narrows the selection down to a few 

2 The computer offers a complete set of decision/action alternatives 

1 Full human control 

In the case of screening automation technologies currently described in 

literature (and summarised in Chapter 2), many of these fit into level 3: narrowing 

the selection down to a few. For instance, automation may filter out citations below a 

certain threshold of anticipated relevance. The Abstrackr system potentially provides 

an example of level 7 automation, as part of the screening process may take place 

without explicit human input (if the operator opts into this mode), as well as fitting 

in to level 3 as it narrows down the work to be completed by human effort. The 

Cochrane RCT classifier is essentially a level 7 tool: it automatically decides on the 

identification of a citation as a likely RCT or as a non-RCT. However, the 

subsequent action is taken by the human researchers: they might double-check the 

results of the classifier, then falling into a level 4 system, or they may allow for the 

classifier to completely make the decision for them, more closely aligning with a 

level 7. 

Shifting focus to the extraction phases of a review, RobotReviewer would fit 

into level 4 or level 5, depending on the nature of the integration to the evaluation 

process. For example, a person completing a Risk of Bias assessment might be 
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presented with suggested text annotations as they are working; it does not truncate 

the individual’s workflow, but instead provides an option which the human may then 

decide to use, or to ignore. Much like the first scenario described above in relation to 

the Cochrane RCT classifier, this would be a level 4 use-case. For a level 5 use-case, 

the RobotReviewer system may be integrated in such a way that the Risk of Bias 

assessment is more or less completed before the human accesses the assessment 

form, and their input is limited to approving or rejecting the suggested judgement 

and annotations. The difference is subtle, but subtle prompts can have profound 

effects on human behaviour, which in turn might have profound effects on the 

evidence synthesis output and on the amount of human effort required.  

From the previous two paragraphs, a clear theme is already emerging from 

the choice of this framework: with all the currently available technologies, the level 

of automation category is highly dependent on how the technology is applied. This 

realisation already has important implications for future research in this area. First, 

when applying this taxonomy, it will be helpful to specify which level of automation 

is being investigated, most importantly in cases where a single technology might fit 

into several levels depending on use. Second, when analysing results, it may be 

helpful to examine results through multiple lenses; that is, I suggest analysing results 

through the potentially appropriate levels of automation for a given tool. It is very 

possible that implications for the adoption and use of a single tool will vary 

according to the level of automation selected with the nature of its integration.  

Contribution to this thesis 

The most notable contribution of this framework in relation to this PhD is to 

clarify that automation exists as a spectrum rather than as an all-or-nothing process. 

A later author who borrowed heavily from this framework for their own proposed 

taxonomy rightly pointed out that the evidence shows that “automation does not 

simply supplant human activity but rather changes it” [4]. Given the range of 

available automation design options, Parasuraman (2000) also posited that “system 

designers [must] consider some hard choices regarding what to automate and to what 

extent, given that there is little that cannot be automated.” While Parasuraman tended 

to operate in the more mechanical sphere of automation (e.g., manufacturing), a 
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similar position might be taken in health evidence automation: what to automate, and 

to what extent, will be a hard but crucial choice in this process.  

Placed into the context of health evidence synthesis research, the utility of 

applying these classifications is to clarify that automation need not mean wholesale 

erasure of human effort in a systematic review or in a guideline. This clarification is 

important to describing the results of this research, but also in disseminating its 

results more broadly. To explore the use and the adoption of automation in health 

evidence synthesis is not to examine the difference between a level 1, entirely 

manual, process versus a level 10, entirely automated process. Parts of a systematic 

review may be automated while others are entirely manual, or parts may be partially 

automated in combination with human effort. The combinations of potential 

applications and levels are extensive.  

Throughout this thesis, this framework will be applied to all experimentation 

to classify the level of automation being explored. Doing so facilitates orientation of 

further discussion of the technology and builds a practical basis for any future 

experimentation. As I explore the consequences of the choice to adopt automation in 

a particular workflow, results may show that these consequences differ along the 

LOA axis. Results may also show that adoption decisions similarly hinge on the 

level of automation proposed. 

It is worth noting that many of the previous authors who have proposed LOA 

taxonomies have included stages of automation functions in their discussions. For 

example, Parasuraman included a four-stage model of potential automation functions 

in a combined human-computer interactive workflow: sensory processing, 

perception / working memory, decision making, and response selection. However, 

given that this research largely focuses on systematic reviews, which themselves 

have discrete and well-defined stages, these stages are more applicable to the context 

of this research and will be used instead. Each of these may have its own optimal 

automation level and therefore requires individual research to build evidence to best 

determine the current ideal.  

To summarise the use of my chosen levels of automation framework: I have 

selected the taxonomy proposed by Sheridan and Verplank because of its relatively 
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more exhaustive description of levels of automation, and on its time-tested and wide-

reaching influence in the automation literature. Because of the context in which this 

research is conducted, I have opted not to use the models of information processing 

included with many LOA taxonomies and instead continue to use the defined stages 

of systematic reviews. Use of this framework will allow for clearer discussion of my 

results, and additionally highlights the spectrum on which automation exists. 

I will now examine two analytical frameworks concerning trust and the 

diffusion of innovations, which inform my analysis and conclusions. 

Trust in automation 

Connecting back to the broad themes which underpin this thesis – why do 

individuals choose to adopt automation, and what happens once they do? – this 

research will also use a framework to define trust in automation. When deciding on 

automation and how to interact with it, trust is a foundational concept [5]. Therefore, 

it is useful to apply a framework of human-automation trust, and I will use the 

framework detailed by Hoff and Bashir [5].  

While ‘trust’ may seem a rather nebulous concept to define, let alone to 

measure and to predict, the literature on trust is extensive. For the purposes of my 

research, I will use the definition of trust which the authors of my selected trust 

framework also used, namely from Lee and See [6]: “the attitude that an agent will 

help achieve an individual’s goals in a situation characterised by uncertainty and 

vulnerability.” In this context, the ‘agent’ would likely refer to one or more 

automation technologies or software programs. ‘Uncertainty’ and ‘vulnerability’ are 

likely to play large roles when considering the effects of automation in health 

evidence synthesis. While ‘vulnerability’ may initially conjure up emotions of 

personal exposure, in terms of health evidence synthesis it may imply more system-

level effects. By giving control – even incrementally as outlined in the levels of 

automation framework – to automation systems, the people who had formerly taken 

charge of setting health standards may feel vulnerable and uncertain. 

The three-layered model proposed by Hoff and Bashir was selected for this 

research because it is situated in the same context as this PhD. That is, their 
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framework directly concerns trust in the context of human interaction with 

automation technologies. To build their model, Hoff and Bashir conducted a 

systematic review on empirical research on the factors that influence trust in 

automation. The authors found three variables which interact to influence human-

automation trust: the human operator, the environment, and the automated system. 

These three variables in turn build upon and reflect the three layers previously 

described by Marsh and Dibben and reiterated by Hoff and Bashir [7]: dispositional 

trust, situational trust, and learned trust. 

Dispositional trust 

“Dispositional trust represents an individual’s overall tendency to 

trust automation, independent of context of a specific system.” 

Dispositional trust refers to the inherent characteristics of an individual which 

influence their ability to trust a system; dispositional trust corresponds to the 

automation-specific trust source of the human operator. Hoff and Bashir identified 

four primary inputs to dispositional trust: culture, age, gender, and personality. They 

notably describe these as an “enduring tendency”; such traits do not change over the 

long-term. They are notably distinct from other characteristics which may change in 

the short-term – mood, self-confidence, or social influences.  

Culture was identified as “a particularly important variable,” and it is 

anticipated that this assessment is likely to remain true throughout the analysis of 

this research. First, it is inherently important to note variations in trust across human 

cultures (e.g., geographic regions, national identities, religions, etc.). Substantial 

evidence supports this assertion in the realm of interpersonal trust, with some 

selected evidence relating to automation as well [8, 9]. Second, like all work 

environments, the evidence-based medicine community has its own values, and it 

should be anticipated that these will influence individuals’ trust levels within that 

community. These may also share significant overlap with personality traits, as 

personal interests naturally play a significant role in choice of professional direction. 
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Dispositional trust may not vary over time, but there is evidence that 

behaviour may vary over time in alignment with individuals’ dispositional trust. 

Unsurprisingly, several empirical studies found that those with greater dispositional 

trust in automation tended to more readily accept the initial results of automated 

programs such as navigational equipment. Merritt and Ilgen [10] conducted an 

additional study on this observation that is worth detailing. They found that should 

an automation aid fail or perform poorly, individuals expressed lower trust in the aid 

just as one might expect. However, individuals with higher baseline dispositional 

trust experienced a more significant decline in trust in the aid than did those with 

lower baseline dispositional trust. Hoff and Bashir concluded that “these results 

suggest that individuals with high levels of dispositional trust in automation are more 

inclined to trust reliable systems, but their trust may decline more substantially 

following system errors.” 

Situational trust 

Situational trust may be thought of as trust that varies depending on the 

context in which the human-automation interaction takes place. Unlike dispositional 

trust, these are likely to vary in the short term. Hoff and Bashir linked this layer of 

their trust model to the environment in which an interaction takes place, and they 

divided situational trust into two general categories: internal variability and external 

variability.  

Internal variability 
Internal variability includes self-confidence, subject matter expertise, mood, 

and attentional capacity. Subject matter expertise seems the likely candidate to play a 

relatively more significant role in this research, given that the population targeted in 

my PhD research is composed of extremely highly trained and skilled individuals. 

Moreover, many are likely to have invested significant time in their area of expertise, 

potentially influencing their self-confidence.  

Empirical evidence can inform some predictions as to how internal variability 

may influence the results of studies looking at the integration of automation. 

Looking first at self-confidence in general, evidence suggests that when individuals 

have about the same level of self-confidence as they have trust in an automation aid, 

they prefer manual control; that is, people tend to favour themselves over a computer 
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when all else is equal [11]. Self-confidence also plays a role more specifically in the 

form of computer self-efficacy, or an individual’s perception of their own ability to 

use a computer. The current evidence here shows that higher levels of perceived 

computer self-efficacy are positively correlated with trust in automation [12]. 

Next examining subject matter expertise (SME), the current evidence shows 

that those with higher expertise are less likely to trust automation than individuals 

with less experience in their field [13, 14]. In the context of this thesis, it is important 

to note that the role of subject matter expertise would relate to established systematic 

review methods, and not relate to automation tools for systematic reviews or other 

health evidence. This instead would fall under initial learned trust, discussed in 

subsequent sections. 

External variability 
External variability includes the type of system in use, its complexity, the 

difficulty of the task it has been assigned, workload, perceived risks and benefits, the 

organisational setting, and the framing of the task. The potential impacts of each of 

these in the context of health evidence synthesis are significant. 

Though a particular automation technology may excel at one task but not at 

another, perception bias clearly can influence the trust that humans decide to place in 

automation. A previous experiment found that when a poorly performing automation 

aid was juxtaposed with a well-performing aid, people tended to put more trust in the 

poorly performing aid than they previously had [15]. If such an observation were 

repeated in the context of health evidence synthesis, this could be hugely 

problematic for evidence quality. For example, if a screening automation system 

works particularly well, but a data extraction automation system does not, the 

reviewer might perceive the latter as more effective than it actually is, place undue 

trust in its results, and disseminate evidence of diminished quality. 

Organisational settings and perceived risks and benefits should also be 

carefully considered in the context of health evidence synthesis. The researchers and 

academics who provide systematic reviews and guidelines are a highly interactive 

community, and the expectations therein factor significantly into methodological 

choices. Moreover, the intended impact of health guidelines is quite personal, and 

therefore the potential impact of a significant methodological change (such as 
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automating this research) may be felt quite personally by the individuals in this field. 

These expectations, and the potential risks introduced by the use of automation, are 

foundational to the context of health evidence synthesis and of this PhD. 

Learned trust 

“Humans are creatures of experience.” 

Learned trust is the cumulative effect of a user’s past experiences and/or 

current interactions on their trust in a system. Like situational trust, learned trust is 

further sub-divided into two categories: initial and dynamic. The former relates to 

past experiences that an individual may have had prior to the interaction of interest, 

while the latter relates to the variation throughout the specific interaction with an 

automation tool. Both of these types of learned trust stem from the characteristics of 

the tool itself, rather than characteristics of the end user or of the environment.  

Initial learned trust 
Like people, automation tools may be at the mercy of their pre-established 

reputation. When a system is portrayed as ‘expert’, people tend to trust it more. 

However, this may come with a higher risk: like the quick degradation of trust found 

by Merritt and Ilgen [10], an initially high reputation may suffer greater 

consequences in operator trust from initial mistakes.  

Naturally, the most important factor in initial learned trust is how much 

experience a person may have had previously with the specific automation tool being 

considered. Someone with a previously negative experience is less likely to make 

themselves vulnerable to a further negative experience, while someone with a 

previously positive experience with automation is more likely to put trust in the tool. 

Here is where the previously mentioned distinction between subject matter expertise 

in a field and significant previous experience with a particular automation tool is 

important to highlight once more. Experience with the automation itself contributes 

to initial learned trust, while significant experience with the field or subject matter 

potentially being automated contributes to the internal validity of situational trust. 
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Dynamic learned trust 
Of all of the types of trust presented, dynamic learned trust is the one most 

impacted by the design features of an automation system [5]. This layer of trust 

refers to the knowledge gained by a user over the course of a single interaction with 

a system. Performance can, of course, be highly variable overall as well as within the 

course of a single interaction.  

How information is presented regarding system performance will affect how 

users perceive the automation system. This may be in design features, aesthetics, or 

an interface. However, the effect size of system aesthetics on user trust depends on 

the service being automated. For example, e-commerce websites seem to be more 

affected by their aesthetics than in-vehicle automation [16]. Similarly, these same 

websites benefitted from higher ease of use [17]. Hoff and Bashir write that the 

evidence regarding ease of use’s effect on trust in automation, however, is somewhat 

lacking [5]. 

Overall, in considering dynamic learned trust in the context of health 

evidence synthesis, it is likely to be important to consider how an automation system 

communicates its results and its performance to its end users. 

Diffusion of Innovations 

As the overarching theme of this thesis is the adoption of automation in 

health evidence synthesis, the most relevant framework to use in approaching the 

analysis is the Diffusion of Innovations theory [18]. Diffusion of Innovations theory, 

as a highly regarded and time-tested and supported theory, was the first and most 

obvious lens to select of the three frameworks. The utility of its use in this thesis was 

two-fold: first, to inform the study design, particularly in relation to the qualitative 

studies; second, collecting data and assessing it within this framework allowed for 

reflection on how well or how poorly this framework fits this area of research in 

general. Diffusion of Innovations is particularly important for the first of my broad 

research questions: why might individuals adopt automation? 

This theory, first published by Rogers in 1962, was developed to detail how 

and why an innovation spreads in a given population or setting over time. In the case 



63 

 

of this thesis, it will be applied to consider how and why the innovation of interest – 

automation – spreads through a particular setting – health evidence synthesis.  

It will be useful to first define certain terms in relation to this theoretical 

framework for discussion later in this thesis. First, Rogers’ theory defines an 

innovation as a new idea, behaviour, or product. Adoption is used to refer to an 

individual changing a practice or a behaviour, wherein they now do something 

differently than they did before. This change happens over time, that is to say it is 

diffused throughout a population.  

Two additional taxonomies, both detailed in Diffusion of Innovations theory 

must be laid out in more detail: adopter categories, and innovation characteristics.  

Adopter categories 

As established above, the diffusion of an innovation happens over time. If the 

proportion of a population that has adopted an innovation is plotted against time, this 

produces an adoption curve (Figure 3.1). This curve can then be split into five 

sections which represent the five groups or categories of adopters: innovators, early 

adopters, early majority, late majority, and laggards. Each persona has particular 

tendencies, and these are essential to consider if one is promoting or discouraging an 

Figure 3.1. Diffusion of Innovations adoption curve 
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innovation adoption. Human beings tend to not fit into any descriptive box without 

some leaning into another, but these categories are nonetheless useful descriptors in 

order to interpret the behaviour observed in a population. 

Innovators 

The first group to adopt an innovation are, unsurprisingly, termed innovators. 

The first 2.5% to adopt an innovation, they try to be on the forefront of new ideas 

and technology, and moreover enjoy doing so.  

Early Adopters 

Early adopters tend to be opinion leaders within a population, but not as risk-

taking as innovators. The next 13.5% to adopt an innovation, they enter an adoption 

decision already having acknowledged the need for a change, and therefore seek out 

solutions and opportunities to try new things. No information is generally required to 

convince them of a need to change, but rather information relating to the change 

process itself such as a how-to manual or documentation is helpful.  

Early Majority 

Early majority individuals are the final category to fall on the earlier side of 

the adoption curve. With a predicted 34% of the population, they tend to seek 

evidence in support of a change before considering it.  

Late Majority 

The first category on the second half of the adoption curve, late majority 

adopters are generally quite sceptical of a proposed change. Holding an equal 

proportion of the population as early majority with 34%, they also tend to need 

evidence to be convinced that existing methods require an innovation and, like the 

early majority, seek out evidence of an innovation’s effectiveness before considering 

it. Contrasting with early majority’s need for evidence, however, they are more 

likely to seek out success stories from their peers, rather than generic case studies or 

trials. 

Laggards 

As the name implies, laggards are the last adopters, making up 16% of the 

normal adoption curve. They are described as traditional by nature and highly 

sceptical of change. Laggards are predicted to take input from peer pressure in 

considering whether to adopt or not to adopt an innovation.  
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Innovation characteristics 

In addition to adopter personas, Diffusion of Innovations provides a 

framework of innovation characteristics which influence the adoption and diffusion 

of the innovation. Like adopter personas, there are five categories identified as most 

affecting the speed and extent of the widespread adoption of a technology. These 

five attributes are relative advantage, compatibility, complexity, trialability, and 

observability. Note that none of these five alone guarantees widespread adoption, but 

rather they act in concert with each other, and with the above personas, to influence 

diffusion. In the context of this thesis, it is likely that some attributes will play a 

larger role in particular areas of systematic reviews, or perhaps even in conjunction 

with the LOA framework, some innovation attributes may shift in prominence from 

one level to the next.  

Relative advantage 

Relative advantage refers to how much better an innovation is, or is 

perceived to be, than the system it is replacing. The greater the improvement, the 

more likely that an innovation will spread and at greater speed. 

Compatibility 

Compatibility refers to an innovation being in line with existing values and 

practices, and the needs of potential future users. In the context of health evidence 

synthesis, compatibility will play a role in two distinct ways.  

First, an innovation may need to demonstrate compatibility in a technical 

sense; a well-established workflow may be disrupted by an incompatible novel 

method (whether automation or otherwise), and individuals may wish to avoid this 

disruption. Conversely, a highly compatible novel method would act as a facilitator 

for this adoption process.  

Second, an innovation may need to demonstrate compatibility in terms of 

values and practices of health evidence synthesis as a professional culture. The 

discussion on the dispositional layer of trust in automation identified culture as a 

highly influential aspect of dispositional trust. This influence is likely to extend to 

the professional culture of systematic reviewers and guideline developers. For an 

intended population for the potential diffusion of automation, automation’s perceived 
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alignment with cultural and professional values and needs will play significantly into 

the diffusion of automation systems. 

Complexity 

Complexity refers to how easily an innovation is to comprehend and to put 

into use. Real or perceived complexity will inherently depend on the audience; some 

users may readily understand a new technology, while others may require more 

guidance and time. Some reviewers may not require that they understand the deeper 

workings of automation, while others may rely heavily on their ability to understand 

how something works in order to trust it and consequently put an automation system 

into practice. These possibilities will be explored in my research. 

Trialability 

Trialability refers to the ability of users or potential future users to 

experiment with an innovation prior to adopting it. Currently this is a significant 

barrier, as most of the automation technologies available require significant technical 

expertise prior to use and are not well-integrated with commonly used systematic 

review tools. 

Observability 

Observability is the degree to which potential users may examine the results 

of an innovation. In the context of automation in health evidence synthesis, the 

current primary route of observing results of automation would be via journal articles 

or conference proceedings. Alternatively, individuals may learn from the experience 

of their peers (particularly important for the late majority adopter persona), but given 

the currently low level of automation adoption, this may also be a barrier to adoption 

in the current climate. 

Research questions 

These three frameworks are now established as the analytical lenses that will 

be used in this thesis. The broad level themes have also been specified: to explore 

why individuals may or may not adopt automation in health evidence synthesis, and 

to explore what happens if and when they do. Chapter 1 provided an introduction to 

each of my research chapters, with their overall designs and most impactful 

conclusions stated. Now that we are able to draw on these theoretical frameworks, 
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my research questions will be described in more detail and connected to the 

theoretical frameworks described previously in this chapter.  

As mentioned in the introduction, each of the two broad themes of this thesis 

is aligned more closely to two of the four empirical studies conducted as part of my 

PhD. Chapter 4 explores the acceptability of automation to guideline developers, and 

Chapter 5 sought information on the adopter personas found in the community of 

Cochrane Information Specialists, and their respective adoption (or non-adoption) 

journeys. These two chapters relate more closely to the theme of why and how 

individuals, communities, or organisations choose to adopt or not to adopt 

automation tools. Broadly speaking, these two chapters provide data more qualitative 

in nature to contribute to the evidence base which will test and strengthen the chosen 

analytical frameworks. Chapter 6 examines the effects of combining human and ML 

effort in the Risk of Bias stage of systematic reviews, and Chapter 7 looks at the 

economic implications of adopting a particular automation tool in a living evidence 

map. These two chapters are more quantitative than the previous two, and they relate 

more closely to the broad theme of the effectiveness of automation when it is 

adopted into health evidence synthesis workflows. 

Chapter 4: Acceptability – guideline developer views 

towards automation 

To begin the exploration of the ‘why’ component of this thesis – why 

individuals or organisations do or do not adopt automation in their health evidence 

synthesis methods – I conducted a qualitative study gathering information from 

guideline developers on their views regarding automation. Given that guideline 

developers are key gatekeepers in the evidence-to-practice pipeline (determining the 

use or non-use of health interventions) they are a relevant population to consult.  

This project used a structured interview for data collection, followed by a 

combined deductive and inductive thematic analysis of the interview transcripts. 

Given the focus of the work on understanding the wider context around the adoption 

(or non-adoption) of automation, I used the Diffusion of Innovations framework to 

structure this inquiry, and as the deductive themes for my analysis. Research 

questions for this project were: 
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RQ1.1) How do the opinions of guideline developers towards automation of 

health evidence synthesis fit into the Diffusion of Innovations 

framework? 

RQ1.2) Within the Diffusion of Innovations themes, what important concepts 

were identified by participants? 

As this study was undertaken at the broad level, discussing guideline 

developers’ attitudes towards automation in a generalised rather than a specific 

sense, the project does not fit in to the LOA framework. Finally, the three-layered 

trust model from Hoff and Bashir was used to inform discussion of the analysis and 

results, but not in the design of the project itself.  

The results of the acceptability component of this PhD directly tested the 

utility of the Diffusions of Innovations framework, contributed to the knowledge of 

dispositional and situational trust, identified opportunities to contribute to learned 

trust, and provided insights into how to do so most effectively. This study has since 

been peer-reviewed and published in Systematic Reviews [19]. 

Chapter 5: The User Journey – mapping adopter 

personas among Cochrane Information Specialists 

Chapter 5 also falls into the first of my broad themes, exploring why 

individuals may or may not adopt automation in their health evidence synthesis 

workflows. Furthering knowledge of how well the Diffusion of Innovations 

framework fits into this context, Chapter 5 reports on a mixed methods project which 

sought to map adopter personas among Cochrane Information Specialists (CISs) and 

to explore their experience in adopting the Cochrane RCT classifier. Like guideline 

developers, CISs are a key stakeholder group, particularly in methodological 

standard setting for the search stage of systematic reviews, and therefore an 

important group to study. 

Research questions for this project were: 

RQ2.1) How applicable are the Diffusion of Innovations adopter personas to 

this context?  
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RQ2.2) How do users interact with the RCT classifier? 

RQ2.3) To what extent do users trust the RCT classifier, and what factors 

inform this trust (or lack thereof)? 

The first of the three research questions for this chapter was addressed using 

a survey. The adopter personas from Diffusion of Innovations were used to inform 

the design of this survey and to analyse its results, thus answering RQ2.1. The 

survey results also provided information to address RQ2.2, and interviews were 

conducted to gather additional detail. This second research question drew from the 

LOA framework to categorise the RCT classifier usage as described by the research 

participants. I aimed to identify differences, if any, in the way in which some 

personas use the tool. Finally, both the survey and interviews provided data for 

RQ2.3 to present any insights regarding the trust mechanisms of the various 

personas.  

The results of the user journey component of this PhD tested the applicability 

of the adopter personas from the Diffusion of Innovations framework, used the LOA 

framework to map RCT classifier user behaviour, and used the trust framework in 

combination with the mapped personas to explore and explain this behaviour. 

Chapter 6: Validity – a clustered non-inferiority 

randomised trial examining the effect of combined 

human effort and automation on Risk of Bias 

assessments 

Chapter 6 begins to explore what happens if individuals or teams choose to 

adopt automation systems into their systematic reviews. Rather than testing the 

applicability of the selected frameworks, it leans instead towards using them as an 

analytical lens. That is, rather than testing how well the Diffusion of Innovations 

characteristics or personas apply to the context of health evidence synthesis, this 

chapter instead begins to contribute evidence which may influence diffusion, and this 

evidence will be analysed using the Diffusion of Innovations framework. 

Specifically, Chapter 6 reports on a randomised controlled trial of combining human 
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effort with automation in the Risk of Bias stage of a systematic review. Research 

questions for this trial were: 

RQ3.1) Is the accuracy of RobotReviewer-assisted RoB assessments non-

inferior to human-only RoB assessments? 

RQ3.2) Is the person-time required for RobotReviewer-assisted RoB 

assessments less than the person-time required for human-only RoB 

assessments? 

By testing the validity of an automation-augmented approach, this trial 

provides data for the Diffusions of Innovations framework regarding the relative 

advantage of partially automated systematic review methods. Moreover, by 

disseminating these results, the trial also contributes to the observability of 

automation in adopted into a real-world systematic review, and potentially to the 

initial learned trust of the health evidence synthesis community at large. This study 

has been submitted to Annals of Internal Medicine for peer review. 

Chapter 7: Economic evaluation – the cost-

effectiveness of a semi-automated workflow to 

maintain a living evidence map 

Chapter 7 is similar to the preceding chapter in terms of its framework use 

and contributions, and in relating to the second unifying theme of this PhD: what 

happens when teams adopt automation into their health evidence synthesis 

workflows. Reported in this chapter are the results of a cost-effectiveness analysis 

which examined the effects of adopting a partially automated workflow into a living 

evidence map. This map sought to find and classify all evidence relating to COVID-

19. This project’s research question was: 

RQ4.1) What is the cost-effectiveness in terms of costs, recall, and precision 

of a semi-automated study identification method for a living 

evidence map of COVID-19 evidence? 

By analysing the cost-effectiveness of this case study adopting automation, 

this project also contributed to the evidence base for relative advantage within the 
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Diffusions of Innovations framework. This relative advantage was measured both in 

the effect of cost, but also in the effect on effectiveness as measured by the recall and 

precision of the map. That is, this analysis sought to understand whether an evidence 

map using a partially automated strategy would identify fewer, the same, or more 

eligible included studies as compared to an entirely manual method. Like the 

previous chapter, dissemination of the results of this study also contributed to 

community-wide observability of automation in a health evidence context. Finally, 

because multiple automation tools were tested, this project represents a more 

extensive coverage of the LOA framework than the previous chapters. The tools 

assessed fit in to levels 3, 7, and 8; these will be described in more detail in Chapter 

7. This study has produced two publications: one in the Journal of the European 

Association for Health Information and Libraries [20], and one in Wellcome Open 

Research [21]. 

Summary 

This thesis has two overarching themes. First, to explore the adoption of 

automation in health evidence synthesis, its barriers and its facilitators, or, framed as 

a question: why do decision-makers choose or not choose to adopt automation in this 

context? Second, to test the effectiveness of automation in health evidence synthesis, 

or, framed as a question: what happens when automation is used in this context?  

Three frameworks have informed my study design and analysis in answering 

these questions: Sheridan and Verplank’s levels of automation, Hoff and Bashir’s 

three-layered model of trust, and Rogers’ Diffusion of Innovation theory. They 

served two primary purposes: first, they were used to inform the design and analysis 

of the research projects undertaken during this PhD. Second, I sought to determine 

how well they fit the context of health evidence synthesis. Building from this second 

point, there were two possible outcomes: that these frameworks fit flawlessly into 

this context, or that the results of this research can be used to inform improvements 

to the frameworks to better suit research into automation in health evidence 

synthesis. By jointly using these frameworks to provide structure for the reporting of 

the results of my research, I hope to maximise the clarity and impact of these results.  
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Chapter 4. Acceptability 

Guideline developer views towards 

automation 

Chapter overview 

This chapter reports on the first component of this PhD: research into the 

acceptability of automation. It will first briefly summarise relevant context and 

background described in previous chapters, namely the state of automation and the 

literature describing its adoption in health evidence synthesis, and the Diffusion of 

Innovations theory which provides one of the three analytical frameworks for this 

thesis. The methods of a qualitative study undertaken consulting guideline 

developers regarding their opinions towards automation will then be described, 

followed by the results of this analysis. These results will then be framed in the 

existing literature, key insights for the field will be described, potential weaknesses 

of the research discussed, and suggestions for future directions made. The chapter 

will conclude with a summary of this study’s most significant findings.  
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Introduction 

Evidence-based guidelines are overwhelmed by data 

production rate 

To encourage the best health outcomes at the population level, as well as to 

maximise consistency in high-quality patient care, various organisations publish 

clinical guidelines. Such organisations include the National Institute for Health and 

Care Excellence (NICE) in the United Kingdom, the National Health and Medical 

Research Council (NHMRC) in Australia, and the World Health Organization 

(WHO) globally. Each of these organisations has certain standards of quality and 

teams dedicated to the production of research and guidelines. Formerly, guidelines 

were expert-decision-based, but in recent years have trended instead towards 

evidence-based practice and evidence-based medicine (EBM) [1, 2], supported by a 

belief that interventions must be supported by ‘unbiased’ clinical research [3]. 

Systematic reviews are a crucial component of the evidence incorporated into these 

guidelines [4]. 

As outlined in the literature review in Chapter 2, running parallel to the shift 

from expert-decision-based towards evidence-based guidelines, the rate of 

publication of evidence has increased to the point that researchers are hard-pressed to 

produce and to keep systematic reviews up to date [5]. With nearly 4000 health 

research articles published daily, systematic reviews cannot keep up with the deluge 

of data [6]. Evidence is then at risk of being lost and wasted due to a lack of 

sufficient resources to process such large-scale data, leading to out-of-date 

healthcare and guidelines, and consequently risking worsened population health 

outcomes [7]. 

Literature addressing adoption of automation is 

lacking 

The use of automation to assist, expedite, or even replace human effort in the 

production of systematic reviews is one proposed solution for the data deluge 

challenge [8-11]. This proposition is not without controversy, however, and there is 

some concern that the potential benefits will come at the cost of evidence quality 
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[12]. Uptake of automation has been notably slow [10, 13], despite the broad 

availability of various tools. This leads to the question: what are the barriers and 

facilitators to the slow uptake of automation into systematic reviews and health 

guidelines? 

Primary research into barriers and facilitators to uptake of automation in 

health evidence synthesis contexts is limited [13, 14]. Considering the slow adoption 

rate, filling the gap in the literature addressing barriers and facilitators should be a 

high research priority. In particular, perceptions of key stakeholders in evidence 

production towards the uptake of automation will be useful, as they are foundational 

to the translation of knowledge to practice. These perceptions could aid not only in 

identifying barriers and facilitators to the adoption of automation, but in designing 

approaches to most effectively address them. As outlined above, guidelines are a key 

component in the translation of knowledge to practice, therefore evidence from 

guideline developers detailing their opinions towards the use of automation could be 

helpful in elucidating the reasons for slow automation adoption, and in identifying 

strategies to encourage wider uptake. 

Diffusion of Innovations 

As discussed in the preceding chapter, Rogers’ Diffusion of Innovations [15] 

is a highly applicable framework for analysis to understand the adoption of 

automation in health evidence production. This theory describes how and why an 

innovation spreads, the characteristics of the innovation that play a role in this 

process, and the typical categories of adopters. This project most heavily drew from 

the innovation characteristics portion of the theory, as will be further detailed in the 

following section on methods. Recall from Chapter 3 the five characteristics of an 

innovation as described by Rogers: relative advantage, compatibility, complexity, 

trialability, and observability. 

These five elements collectively influence potential adopters’ decisions 

toward adoption of an innovation. In distinct contexts, and with distinct populations, 

some characteristics may play a greater role than others. Understanding the 

comparative role of these characteristics in the context of systematic reviews’ and 

health guidelines’ potential use of automation should prove useful in describing the 
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current state of adoption, as well as considering future research concentrations and 

organisational norm setting. 

Methods 

In addition to my three PhD advisors, Dr Tari Turner provided methodological 

guidance for this study. 

Research questions 

The goal of this project was to gather data from guideline developers 

regarding their attitudes and perceptions of automation, and specifically automation 

applied to health evidence production. This aim supported the broader goal of this 

thesis to explore why individuals or teams do or do not adopt automation in their 

workflows. As stated in the previous chapter, research questions were: 

RQ1.1) How do the opinions of guideline developers towards automation of 

health evidence synthesis fit into the Diffusion of Innovations 

framework? 

RQ1.2) Within the Diffusion of Innovations themes, what important concepts 

were identified by participants? 

Semi-structured interviews were identified as the most suitable method of 

data collection. Applying a similar interview instrument for each participant allowed 

for the easier comparison of data collected from each individual, while also allowing 

space for follow-up questions which facilitated richer, more explanatory information 

around each structured question. These follow-up questions were generated 

spontaneously for each participant in response to the answers they provided for the 

structured questions. This study is reported in line with the Consolidated Criteria for 

Reporting Qualitative research (COREQ) checklist (included as Appendix A) [16].  

Participants 

Potential participants were eligible for study participation if they were 

previous or current developers of health policy or clinical practice guidelines, or if 

they had first-hand experience with current practices of guideline development. 
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Participants whose experience was limited to systematic reviews or other research 

not including guideline development were excluded. The study aimed for between 15 

and 20 participants, and for roughly equal gender distribution of participants. 

Recruitment 

A convenience sample was used to recruit participants. Potential participants 

were invited via email from an existing contact list provided by Dr Turner. This list 

included organisational representation from the Guidelines International Network 

(G-I-N), NICE, NHMRC, and online evidence-based healthcare discussion groups. 

Individuals known to the research team were directly emailed invitations to 

participate in an interview and invited to forward the invitation to other potentially 

interested contacts. 

Consent and data collection 

Potential participants were invited to participate in a semi-structured 

interview conducted via phone or via Skype. Interviews were recorded with 

permission from the participant. I was not personally acquainted with any of the 

participants prior to the interviews; each individual was provided with information 

on my background and PhD research and invited to ask any clarifying questions 

prior to participation. 

Interview questions were based on a pre-formulated interview instrument, 

with follow-up questions to clarify or to elaborate on responses provided. I initially 

drafted the interview instrument, followed by feedback and validation from the rest 

of the study team. The final interview instrument is provided in Appendix B. 

Participants were provided with an explanatory statement regarding this 

specific study prior to the interview and were not provided with the questions in 

advance of the interview. 

Data were collected in relation to: 

● Current methods used for collecting or using evidence in the production of 

guidelines and policy 
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● Interviewees’ knowledge of, and attitudes toward, the use of automation 

(including text and data mining, and machine learning) in the production of 

systematic review evidence 

● How these technologies might affect the translation of evidence into 

guidelines and policy, including barriers and facilitators 

Following the interview, I transcribed the interview and provided the 

transcript to the participant for verification. Data were stored on password-protected 

and encrypted storage devices and managed in accordance with University College 

London (UCL) research policies. 

Data analysis 

Following verbatim transcription of the interviews and participant validation, 

the transcripts were entered into the QSR NVivo 12 data management program [17].  

A thematic analysis approach, as outlined by Braun and Clarke [18], was 

selected as the most appropriate method of data analysis for the study’s research 

questions. The thematic analysis combined deductive and inductive methods. The 

chosen method of combining a deductive and an inductive approach allowed for a 

framework analysis to be conducted in addition to the reflexive and iterative insights 

driven by the resulting grounded data [19].  

Rogers’ Diffusion of Innovations characteristics are relevant to this work as 

the leading framework of why new technologies or practices do, or do not, become 

the new standard of practice, and were therefore applied as the deductive, or pre-

existing, framework. This framework has been applied to a wide variety of fields, 

and empirical data has consistently supported the themes it lays out. Applying it in 

this context both tested the applicability of the framework, as well as providing 

structure to the first phase of analysis. 

Deductive analysis is best applied when driven by specific research questions 

[18], and was therefore appropriate for RQ1.1. Once it was clear how the collected 

data answered this first question and how it fitted into the chosen framework, the 

grounded inductive approach provided further insights in identifying and explaining 

the reasons behind these findings. 
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I performed the analysis in five stages, described in more detail below. 

Stage 1: Assignment within predefined frameworks 
First, Rogers’ Diffusion of Innovation framework was used as the top-level 

deductive codes, using a line-by-line verbatim assignment of transcripts to one or 

more of the five themes (relative advantage, compatibility, complexity, trialability, 

and observability). Thematic coverage, referenced throughout the results, indicates 

the proportion out of total coded material which was coded to a particular theme.  

This initial stage also allowed for thorough familiarisation with the data, as 

suggested as the first phase of analysis by Braun and Clarke. 

Stage 2: Open coding within Diffusion of Innovations 

framework 
Once each transcript was coded according to the top-level frameworks (i.e., 

Diffusion of Innovations), a codebook – a document containing all data belonging to 

a code or theme – was generated for each of the five themes. These codebooks were 

then examined with an open coding method. Codebooks were examined in detail to 

identify grounded open codes; that is, in this stage, all concepts expressed by 

participants were identified individually. 

Stage 3: Generation of themes 
The codebook of each Diffusion of Innovation theme was reviewed across all 

transcripts together to identify shared patterns among the grounded open codes. Each 

individual code was grouped with others with similar meaning and content, forming 

preliminary explanatory themes. For example, codes which individually expressed 

an opinion relating to a trade-off between time and quality were grouped into a 

preliminary theme. 

Following formation of these themes, a further review process was 

undertaken to reconsider how the themes fit together. In this process, initial groups 

of themes are re-examined to both ensure that the groups have been formed 

appropriately, and to identify any connections with other themes or concepts. In 

addition, outlying codes were identified as those that either had not been grouped 

with codes from other transcripts, or those that had relatively few grounded codes 

grouped together.  
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Stage 4: Generation of matrices 
In this stage, a matrix was generated comparing each of the top-level 

framework themes against the grounded data-driven themes. This approach not only 

allowed me to describe the relative significance of each overall theme – thus 

addressing research question 1.1 – but also to examine this significance through 

different lenses.  

This stage resulted in formation of sub-themes for each of the five deductive 

themes. Identification of shared themes that appeared across multiple participants’ 

transcripts allowed for explanation of the results observed in the top-level themes. 

That is, a sub-theme may provide insight as to what ideas are important within the 

context of relative advantage or in the context of trialability, or insight as to why 

participants weighted one theme over another.  

Stage 5: Identifying patterns and outliers 
These matrices were finally used to describe the data in relation to the first 

research question (i.e., how do guideline developers’ opinions on automation relate 

to the Diffusion of Innovations framework?), and to expand upon these data in 

relation to the research question 1.2 (i.e., what important concepts were identified by 

participants?). 

Results 

Participants 

Twenty individuals responded to the email invitations. Eighteen interviews 

were conducted and varied in length from approximately 30 minutes to 80 minutes. 

The remaining two respondents were deemed ineligible due to lack of first-hand 

guideline development experience. Table 4.1 presents the characteristics of the final 

sample. In addition to NICE and NHMRC, organisations represented included the 

Agency for Healthcare Research and Quality (AHRQ, United States), the Joanna 

Briggs Institute (JBI, Australia), the World Health Organization (WHO), and private 

consultancies. No participants withdrew from the study, and no repeat interviews 

were required. 
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Table 4.1. Participant characteristics 

Characteristic  n 

Years of experience in evidence synthesis  

Less than 5 years 
5-10 years 
10-20 years 
20+ years 

2 
9 
5 
2 

Gender  
Female 

Male 

13 

5 
Age range  

30s 
40s 
50s 
60s 

3 
8 
3 
4 

Location  
Australia 

United Kingdom 
European Union 

United States 

11 

5 
1 

1 

Primary affiliation  
Academic 
Government 

Private sector 

10 
7 

1 

Disciplines represented:  
Aged care, Allied health, Cardiovascular, Diabetes, 
Health promotion, Infectious diseases, Information 

science, Nutrition, Occupational health, Primary 
care, Psychology, Research translation, Speech 
pathology, Stroke, Women’s health 

 

 

The following sections provide an overview of the results, followed by 

details of the sub-themes identified within the Diffusion of Innovations framework, 

and conclude with the contextual factors identified during the analysis. 

Overview 

Interview transcripts demonstrated high consistency in distribution of themes 

discussed. Following initial coding (Stage 1 as described in the Methods section), 

compatibility had approximately 45% coverage across all transcripts. Relative 

advantage and observability had roughly equal coverage with about 25% each, while 

trialability and complexity demonstrated fairly low coverage with approximately 5% 

each.  

Sub-themes identified under compatibility were an ability to double-check 

and transparency as accountability. When discussing relative advantage, 
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participants focused on the freeing up of human resources, and to a lesser extent on 

time and cost saving. The sub-themes identified within observability were a need for 

evidence and a personal need for double-checking. Complexity and trialability were 

not emphasised in the data provided by participants. Upon reflexive examination of 

how the data informed the deductive framework, several contextual factors were 

identified. Participants overwhelmingly cited a lack of hands-on experience with 

automation tools as a moderating factor prior to providing their input. While this 

might initially be read as data informing trialability, it is important to note that 

participants did not focus on this as its own theme, but rather used it as a disclaimer.  

Figure 4.1 on the following page provides a visual overview of these results. 



84 

 

 
Figure 4.1. Visual overview of guideline developers' opinions via the Diffusion of Innovations characteristics4 
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Compatibility 

All participants discussed their values as guideline developers at length. 

Overall coverage of the compatibility theme – how values relate to use and adoption 

of new tools – was consistently far greater than any of the other four themes in the 

deductive framework being applied in this analysis. Some examples of values were a 

rigorous approach to evaluation and synthesis of evidence, careful construction of 

questions, and a need for human and organisational input. While some of the values 

important to participants varied, some were consistent and discussed in further detail 

below. 

“How you synthesise it, how you pull it together is kind of key” 

Participant 3 

“I think it would be a shame if humans weren’t involved in 

[synthesis].” Participant 9 

In discussing the values involved in their work, existing practices were often 

described and used to contextualise potential uses of machine learning (ML). 

Participants expressed a desire to map ML onto existing evidence synthesis 

practices. For example, it was highlighted that current practices emphasise task 

completion by multiple researchers (e.g., dual screening, dual extraction), and that 

for evidence produced by machine learning to be accepted, any results it produces 

should also be subject to this same double-checking process.  

Two sub-themes were identified within the data sorted into the compatibility 

theme which further detailed participants’ desire to match new practices with the 

values which underpin current practices: ability to double-check, and transparency 

as accountability. In discussing the former, participants described how existing 

practices require that multiple checkpoints are applied to the process of collecting 

and synthesising data and applied this same requirement to any novel methods. In 

discussing the latter, guideline developers highlighted that any method, including 

automation, must be transparent so those ultimately using the results have access to 

information about the methods and decision processes. 
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Ability to double-check 
Most participants indicated the importance of the ability to double-check the 

work of automation by a human researcher. These discussions often cited as a 

rationale that current practices usually involve a human double-checking the work of 

another human and posited that newer workflows should therefore maintain this 

pattern with a human double-checking the work of a computer. 

Even among participants who were optimistic and broadly encouraging of the 

adoption of automation in health evidence synthesis, their comments were typically 

qualified by the caveat that results must be double-checked, as they are in current 

manual methods. The application of this principle to double-checking was extremely 

clear throughout the collected data; it was less clear which other workflow norms are 

considered important to maintain. Some indicated that reproducibility was the 

underlying reason for the double-checking status quo. It is possible that this result 

might change over time should rigorous research alter overall perceptions of the 

reproducibility of automated screening and extraction; this is further discussed as a 

contextual factor in subsequent sections. 

Finally, attention should be drawn to a common feature in both of the quotes 

below: both participants indicated that “someone” should be checking the results, but 

not necessarily the individual themselves. This point differentiates this sub-theme 

from the later discussed sub-theme of personal need for double-checking.  

“I can see it could be done. But surely it would need to be checked 

by someone anyway. Because even if it’s done by a human with 

vast experience, it’s always important to have a second person to 

check it.” Participant 5 

“At the minute the standard is for two operators. So you’d want it 

to have been checked by a second method, if not person. So that 

would be my only thing – the reproducibility.” Participant 7 

Transparency as accountability 
Several participants wanted to ensure that the methods used in synthesising 

evidence were freely accessible and transparent to examination. In particular, many 
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emphasised that they are accountable to stakeholders who need to be sure they have 

not missed any information. 

Trustworthiness of evidence in general is integral to the professional culture 

of guideline development, and this was readily apparent throughout the collected 

data. In the views of participants, trustworthiness and methods to verify it therefore 

extend to new tools that use automation in the form of transparency and validation. 

“We have to make sure that if you’re getting information from, 

from whatever source, that source should be valid, that source 

should be credible. And, um, if you have to come up with a tool, or 

like a short checklist, or background check of some sort, then that’s 

probably a way to validate the source.” Participant 18 

“A group of experts can apply judgement to that body of evidence 

and needs to know they can trust the evidence that you’d found.” 

Participant 12 

“The key part of working with a face-to-face committee ... is you 

have they have to have total confidence in what the technical team 

has done” Participant 16 

Relative advantage 

Overall, relative advantage and observability were both prominent themes 

among participants’ discussions, though not to the same extent as compatibility. 

While some participants did mention that the ability to lessen the time required to 

develop a health guideline would be desirable, it was not given as much importance 

in discussion as other points. No participants indicated an openness to a trade-off 

between accuracy and time. When prompted to discuss ML directly (in contrast to 

general views of evidence synthesis and guideline development approaches), 

participants tended to more frequently discuss ideas relating to the relative 

advantage of automation. Participants were interested in freeing time and money, but 

contingent upon the automation perfectly matching perceived human quality. 

Two sub-themes were identified in the data as significant in relation to the 

potential advantage of switching to automated or partially automated evidence 
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synthesis practices: direct time and cost savings and freeing up human resources to 

be redirected to other tasks. 

Freeing up human resources 
The primary advantage specified in data relating to relative advantage was 

the potential to make human resources more freely available for rededication to other 

tasks within the health evidence workflow. While instinctively it might be expected 

for an individual concerned about the financial burdens of research to aim to 

minimise person-time required, participants indicated they would instead seek to 

redirect person-time expenditure given the opportunity. For example, one respondent 

talked about the “drudgery” of tasks like screening being taken over by computers, 

with other tasks receiving additional attention as a result. 

It may be helpful to view this statement through the lens of the later 

discussed contextual theme overall scepticism towards ML. Many participants were 

sceptical that a machine could offer the judgement calls that a human could. As they 

clearly view this as a unique and irreplaceable contribution, unable to be replicated 

by machine, it makes sense that they would prefer to spend more human resources 

on these judgements (i.e., “research-related tasks”). 

“In research time is always limited and you know there’s never 

enough grant money to help employ staff. So, then kind of take that 

load off by having a machine do it, it would be cost-effective, and 

spare the researchers’ time to do other research-related tasks.” 

Participant 17 

Time and cost saving 
While respondents more typically discussed relative advantage in terms of 

allowing person-time to be better spent on other tasks, some respondents also 

identified that automation might potentially save time and/or save money.  

“No matter how quickly a guideline’s done, everybody always 

wants it faster and to be of high quality. So anything that can 

improve on that would be welcome, I think.” Participant 11 
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It should be noted in the above example that the participant has implied that 

stakeholders care about the cost and speed, while the data indicate that guideline 

developers themselves value quality above all other attributes. 

Observability 

A need for observability of potential automation was made clear throughout 

the interviews. More specifically, users communicated that they would like to see 

evidence prior to implementing new practices (need for evidence), as well as a 

continued ability to directly observe the behaviour of the technologies (personal 

need for double-checking). 

Need for evidence 
The need for rigorously produced, disseminated, and easily accessed 

evidence was clear in the responses. Participants tended to use language indicative of 

deep unease in the absence of validation, such as “concern”, “risk”, or “distress”. 

Several participants expressed an openness to automation being integrated into 

evidence synthesis, on the condition that accuracy has been demonstrated.  

“I think at the moment it has a potentially high level of risk of 

being incorrect. But I don’t really know enough about it. I’d need 

to be convinced about it I think to consider it.” Participant 9 

 “If the whole process were done by some machine or machine 

learning application, I think it would need to be properly trialled.” 

Participant 5 

“As long as there was clear data to support that ... machine 

learning is a reliable method, but you know, better than or equal to 

humans doing it.” Participant 17 

One notable outlier indicated they were already convinced of automation’s 

abilities within the specific context of screening. This unusual case raises the 

possibility that this study’s participants would provide different data if repeated at a 

later time, pending further evidence production and dissemination. 
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“I do think it’s been well demonstrated for the screening aspects, 

for the hit rates of what gets included and what doesn’t, and how 

correct it is.” Participant 11 

Personal need for double-checking 
Expanding from the need for evidence prior to implementation, participants 

also often wanted an established and ongoing method of observing the inner 

workings of the ML processes. This was frequently described as a desire to “check” 

what the machine had done to ensure it was correct. While similar to the previous 

theme under compatibility of an ability to double-check, this is a personal desire to 

look into the methodology of the automation (e.g., “I need to be able to look under 

the hood myself”), rather than a continuation of the guiding principles of the field 

(e.g., “it is important to us that someone can check under the hood”). In other words, 

compatibility: ability to double-check states that guideline developers believe the 

ability to check methods should be available as a matter of principle, while 

observability: personal need for double-checking states that guideline developers 

want to do such checking themselves.  

This need to be able to continually check how the machine learning has 

processed information could be interpreted as a desire to maintain control over the 

evidence synthesis process. As previously discussed, guideline developers must 

convince other stakeholders of their recommendations’ integrity, so personal quality 

control fits in with the cultural expectations of guideline development. 

“The thing that’s sort of a little bit distressing from a novice point 

of view with machine learning is not feeling like I have a way to 

check it… I’d need some way to be confident …. [I’d need] a way 

to check the algorithms” Participant 3 

Complexity and Trialability 

Participants did not significantly highlight a need to trial technologies prior to 

their implementation themselves, though they expressed a need for others to do so as 

previously described (see need for evidence above). A small number of participants 

briefly mentioned that the complexity of any tool, in particular the initial on-boarding 

cost in person-time, would need to be balanced against the relative advantage. In 
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these instances, participants made clear that a significant relative advantage would 

need to be present in order to justify the change to a new methodology. They also 

expressed an overall preference for familiarity over the novel.  

“Whenever you try and really change things, I think there’s a 

degree of scepticism anyway...I think that might just be the nature 

of human beings.” Participant 9 

“If they have to learn the process, and if it’s hard, then that sort of 

discourages them.” Participant 18 

“So unless the technology offers a value add that’s substantial 

enough to overcome the learning curve…however much time it 

takes to do that has to not be more time than you’re gonna save.” 

Participant 3 

Contextually significant themes 

In completing my framework analysis using the Diffusion of Innovations 

framework, several contextual factors arose which could be notable modifiers on the 

above-described outcomes. 

Participant familiarity with automation 
Participants nearly always offered disclaimers prior to commenting further, 

indicating that they felt they did not have sufficient experience with automation 

technologies to be able to comment at their desired level of expertise. 

Following on from these disclaimers, participants tended to offer what 

knowledge they did have. These data were of significant interest as they 

demonstrated a current lack of robust knowledge within the target population of the 

capabilities of what automation can accomplish.  

“I’ve done a very little bit with machine learning.” Participant 3 

“It’s just my concern would be that I’ve not had any experience 

with it.” Participant 7 

“I haven’t had much to do with machine learning. Like I’ve kind of 

heard about it” Participant 17 
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“I think that’s something I have no personal experience with” 

Participant 11 

“To be honest I actually haven’t had much experience with it” 

Participant 8 

“Yeah, I don’t know, I don’t really understand that process.” 

Participant 5 

Overall scepticism towards ML 
Overall scepticism or mistrust towards automation, both towards current 

technologies and anticipated future ones, was clear in the contributions from 

participants. They particularly expressed doubt over the ability of a machine to 

mimic human judgement calls they felt are currently essential to well-formulated 

health guidelines. 

“I guess I’d be dubious about the accuracy of that … systematic 

reviewing is very much about value judgement... It would be very 

difficult to train a machine to make the sort of value decisions that 

we have to make” Participant 10 

“I’m still a bit nervous about some of the interpretation of that … it 

just might be a distrust about it, I think?” Participant 13 

It is clear that guideline developers feel judgement and interpretation are 

important elements of their work. The participant quoted above drew attention to the 

nuanced judgements and interpretation required in health evidence, then juxtaposed 

this point with a mistrust of applying automation. The proximity in discussion of 

these two points can be reasonably used to conclude the participant believes 

automation incapable of producing such nuance. 

One participant offered a slightly different perspective from previous points 

about scepticism towards ML’s ability to replace human judgements. While they 

indicated some confidence that the analysis itself could be completed by automation, 

it would rely on human input for the choice of analysis in order for it to be 

considered accurate. They have also linked back to the previously discussed sub-

theme of a need for evidence, underlining the interconnectedness of the contextual 
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factors with the overall Diffusion of Innovations framework results. This contrasts 

with the two previously mentioned participants’ contributions: while they had a 

blanket mistrust of automation’s abilities, the quote below signals a conditional 

openness, while still maintaining a degree of disbelief. 

“Obviously the analysis can be done automatically, but choice of 

analysis I think would be very suspect… I’d be a little leery of that 

now until I knew more about the accuracy of the techniques.” 

Participant 11 

Further illustrative quotes are provided below: 

“I don’t think it could fully replace a human ... I think there can be 

subtleties between how things can interact... I think there’s always 

going to be some sort of human element.” Participant 9 

“I don’t know if we’re there yet. Maybe we’ll get to the point where 

we can do that, but to do that, like, quality rating, or to do, um – a 

level of evidence, or strength of evidence… I mean there’s still a lot 

of value judgements in that. And I don’t know how much machine 

learning could help with that at this point.” Participant 3 

“How can a computer apply judgement? ...There’s judgement 

required when it comes to things like quality or – they are not 

things I expect to be evidence that could be accurate.”  

Participant 12 

Discussion 

This section will describe the key findings of this study, examine some of the 

potential underlying reasons for those results in the context of existing literature, 

reflect on this study’s limitations, and conclude with recommendations for future 

research.  
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Summary 

The most compelling conclusion of this study is that guideline developers 

have deeply held values in relation to their work (compatibility), and that these 

values are foundational when considering transitioning towards novel tools. The 

culture of guideline developers is highly focused on the expectations and attitudes of 

their peers and key stakeholders, as demonstrated by the identified sub-themes and 

the skew towards compatibility in the results. Rigorous evaluation prior to adoption 

(observability: need for evidence) and an ongoing ability to examine and re-examine 

the work of the machine (compatibility: transparency as accountability and personal 

need for double-checking) are also important themes throughout participants’ 

contributions. These results must be considered within the context of a lack of 

expertise within the guideline development community regarding the current and 

potential abilities of machine learning (participant familiarity with automation) and 

possible reluctance to trust it even in future scenarios (overall scepticism towards 

ML). 

While compatibility was clearly identified by participants as the most 

important contributor to their responses, relative advantage and observability also 

provide noteworthy contributions which should not be overlooked, according to 

these results. Time and cost saving are important features to develop, but they are not 

at the core of the decision to adopt or not to adopt a tool, as evidenced by the lack of 

more significant discussion. Participants spoke in more detail about the freeing up of 

human resources, and generally saw automation tools as allowing for more person-

time to be dedicated to deeper and more nuanced analyses. That is, they did not see 

automation as replacing human effort, but instead as re-directing it.  

A high proportion of the participating guideline developers indicated that 

while they are open to the more widespread use of automation in health evidence 

production, it was contingent upon the availability of high-quality evaluations 

supporting the reliability of the tools (observability: need for evidence). In addition, 

participants indicated that throughout the integration of an automated process – 

before, during, and after – they would want a method of double-checking the 

methods of the machine themselves (observability: personal need for double-

checking). Both the need for evidence and the personal need for double-checking 



95 

 

methods could be interpreted as a need on the part of guideline developers, and most 

likely on the part of systematic reviewers, to continue to feel in control over all steps 

of evidence production.  

Cultural standards of practice greatly influence 

decision-making 

Perceived cultural standards (i.e., dispositional trust) around the quality of 

evidence production were the strongest influencer of participants’ opinions towards 

automation. The alignment of the theme of compatibility with the framework of 

dispositional trust is especially important because dispositional trust tends to remain 

consistent over time; it should not be expected to change this cultural expectation in 

the short- or even medium-term. Guideline developers demonstrated deeply held 

core beliefs surrounding the methods of their work, and these will be central to 

consider in the potential adoption of automation to health evidence synthesis. This 

fits in with what is typically observed in the field of evidence-based medicine: 

researchers (particularly in the public sector) greatly emphasise methodology and 

perceived quality. While the results of this study provide more robust evidence 

demonstrating this cultural tendency, in isolation they do not provide direct 

explanation of the underlying reasons for this culture. Examined together with other 

sources, it is possible to infer potential explanations; these are further discussed later 

in this section. 

In communicating their values around how to create high-quality evidence, a 

sense of unease was apparent in relation to maintaining a sense of end-to-end control 

of their work. Participants indicated a need to directly manage evidence synthesis, 

and they are reluctant to relinquish this control to a computer. This reluctance is 

largely related to the expectations of regulators, end users, and the demands of the 

EBM environment, according to the evidence gathered in this study.  

This study provides empirical evidence in support of previous hypotheses in 

the literature. A 2013 paper commenting on the reasons for slow uptake of 

automation posed the broad question: “why is [automation] not yet widely used?” 

[20]. At the time, the authors concluded that “further technical and empirical work is 

needed … [to] develop solutions which have a demonstrative relative advantage, and 
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which are clearly compatible with the needs of systematic reviewers and their users.” 

That is, relative advantage and compatibility were the most key themes in their 

opinions, playing a co-equal role in the adoption of automation. Considering the data 

presented in this study in relation to Thomas et al’s question, the prior conclusions 

should be adjusted slightly.  

The most significant reason appears to be that automation has not fully 

demonstrated to key stakeholders of EBM that it is compatible with their guiding 

values, principles, or standards. While relative advantage was important, it was 

secondary to the far more prominent discussion of compatibility. Further, the 

identified sub-themes of compatibility focused more on automation’s fitting in with 

the values behind current practices than on fitting in with existing infrastructure, 

rather than the current practices themselves.  

The preceding points not only represent a shift from the hypotheses presented 

in the literature, but also from the focus of previous discussions at relevant 

conferences. The International Collaboration for the Automation of Systematic 

Reviews (ICASR), formed in 2015, is a global network endeavouring to successfully 

automate all parts of systematic review production. In the notes of the third ICASR 

meeting in 2017, the group concluded that the “most pressing needs at present are to 

develop approaches for validating” automation and integration with existing system 

architecture [21]. Stated another way, ICASR believed observability to be critical to 

uptake, as well as compatibility specifically in reference to fitting into existing 

practice.  

Again, as in the previous case discussed, this research has provided some 

evidence to support this assertion but also supports reprioritisation of which 

attributes are best suited to promotion of automation adoption. While evidence 

gathered in this study reinforced that compatibility plays a significant role, it also 

demonstrates that alignment with values is more highly prioritised that alignment 

with current practice and system architecture. In addition, the “most pressing need” 

may not be validation (observability), but instead is the demonstration and 

communication of methodological standards and cultural coordination 

(compatibility).  



97 

 

Potential sources of cultural norms of guideline development 
In considering why EBM has such an emphasis on perceived quality, a 

logical first place to look are the mission statements of prominent guideline 

organisations. Given that the sample of participants was largely from either Australia 

or the United Kingdom, NICE and NHMRC were examined. 

Mission statements of NICE [22] and NHMRC [23] emphasise quality and 

transparency, but do not necessarily give obvious insight to contextualise systematic 

reviewers’ and guideline developers’ focus on expectations of the regulatory 

environment. The concept of reproducibility is found in many guiding documents for 

both evidence synthesis and guideline development (e.g., NICE, Cochrane 

Handbook [24]); reproducibility may inch closer to identifying the core issue driving 

the preoccupation with accountability of research results.  

Some of the participants’ quotes regarding what constitutes high-quality 

evidence are directly mirrored in NHMRC’s “Guidelines for guidelines” [25], 

making it a helpful resource in contextualising these results. In this publication, it is 

emphasised that researchers must take care that absolutely nothing is missed and 

recommends replication of each stage by a second expert as the best method of 

ensuring this goal. For instance, a search strategy should be reviewed by a second 

information specialist. Stated another way, it appears that sensitivity (i.e., missing 

nothing) is valued far more than specificity (i.e., minimising superfluous records) in 

assessing the quality of literature and database searching. 

An intriguing point to note in the data collected during this study is that these 

two things – double-checking / replicating work, and certainty of an exhaustive 

search (i.e., near 100% sensitivity) – are a single concept in the NHMRC 

documentation but are two separate ideas when discussed by guideline developers. In 

the NHMRC guidance, double-checking is explicitly assigned the purpose of 

ensuring an exhaustive search; given this, it might be expected that if there were 

another way of ensuring an exhaustive search, double-checking would then be 

considered unnecessary. However, in the interviews here, participants indicated that 

double-checking has become an end in itself as a principle of good practice in and of 

itself, and in addition to ensuring high-quality searches. 
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Proponents of automation might have a choice ahead of them here: whether 

to align with the documented guidance, or whether to align with how this guidance 

plays out in practice.  

Researcher effort will be redirected rather than 

replaced 

Guideline developers anticipate that automation will be most useful in 

redirecting person-time rather than replacing it. This observed anticipation of 

automation allowing for refocusing of effort is what should be expected if the results 

of this study are situated in the historical evidence and context. From the late 

nineteenth century onwards, there have been repetitive waves of automation of 

production and consequent population-level job panic [26]. With each wave, 

however, human effort has not been erased, but rather redirected. In some cases, job 

opportunities have actually expanded rather than contracted as a by-product of 

widespread automation. Therefore, in addition to enabling the valuable skills of 

EBM researchers to be better spent, it is very possible the field will see an expansion 

of opportunities. 

Participants highlighted that a critical (and in their view, irreplaceably 

human) part of their professional contribution is the nuanced judgements applied to 

collected evidence, often derived from lived experience. In their view, any person-

time freed due to automation would most likely be redirected towards this judgement 

and consensus process. That is, automation could contribute to an improvement in 

guideline quality by providing additional resources (namely, person-time) to more 

difficult aspects of guideline development, and not simply by cutting costs, 

workload, and human resource demand. 

In this case, contributions from participants in this study relating to 

reluctance to relinquish human judgement align with notes from the previously 

mentioned ICASR meeting [21]. They stated: 

“For example, external stakeholders might believe the current 

vision is automated reviews devoid of valuable human control and 

input, that is, a general autonomous artificial intelligence system. 

That view, however, was neither represented nor sanctioned at the 
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meeting. Therefore, improving the terminology associated with 

systematic review automation to reflect the goal more accurately is 

likely valuable.” 

This study provides evidence in support of this proposition: participants were 

wary of automation in part due to their perception that it might remove crucial 

human judgement in the process of guideline development. Notably, however, that is 

unlikely to be the goal of automation in the foreseeable future. Potentially even more 

important is the point that encouraging complete and total replacement was “neither 

represented nor sanctioned.” Given that participants in this study echoed this 

sentiment, it raises the question of why guideline developers hold this view, and also 

how to best communicate a more accurate representation of the goals of advocates 

for automation in systematic reviews and guidelines.  

Overall, the results of this study support previous conversations surrounding 

the use automation in the context of EBM, namely that guideline developers 

inaccurately perceive automation as aiming to entirely replace human effort and 

would prefer instead to use it to redirect researcher time to more complex tasks. 

Given historical precedent, it should be both anticipated and encouraged that 

automation will redirect human contributions in evidence production. This 

reallocation of human effort will increase efficiency by reducing time spent on some 

tasks, and it will improve quality by dedicating more human resources to complex 

tasks. 

As in the previous section, perhaps proponents of automation have a choice 

to steer the general conversation to clarify that expert opinion will not be supplanted, 

but instead made more accessible by freeing up person-time and other resources. An 

enabling environment for the promotion and adoption of automation in a manner that 

redirects rather than replaces research effort could be an effective strategy in 

building consensus among guideline developers, as key stakeholders of the evidence 

synthesis process, in accepting, implementing, and promoting automation practices.  

Comparison with a previous similar study 

The results of this study can be further understood by contrasting the results 

with a study conducted in 2016 regarding implementation of new technology tools 
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for dentists [27]. As this study also used the Diffusion of Innovations framework in a 

health-focused setting, it is an appropriate comparator. Relative advantage is the 

most weighted of the Diffusion of Innovations themes when dentists are considering 

adoption of new tools, according to the findings of Matthews et al (2016). This 

differs distinctly from the findings of this study that guideline developers are more 

influenced by their perceptions of a tool’s compatibility with the values system 

underlying their work.  

Given the similar designs of each of these studies, these contrasting results 

provide an interesting opportunity to consider why dentists and guideline developers 

have offered such differing insights. What is the difference between these two 

groups? 

To begin to understand this, the similarities and differences between the two 

groups should be examined. Professional associations of both groups typically 

include better health outcomes and accessibility in their mission statements, so it can 

be reasonably inferred that the ultimate goals of each are similar in relation to health 

outcomes. Both dentists and guideline developers appear to feel accountable to 

themselves in assessing whether they have met their own standards of work and 

methodology. Dentists and guideline developers occupy distinct positions, however, 

in the causal pathway leading to this goal, and have different stakeholders to whom 

they are most immediately accountable. This difference appears to influence how 

their opinions towards technology adoption fit into the Diffusion of Innovations 

framework. The dentists in this study indicated repeatedly that they are accountable 

to their patients; a sub-theme of relative advantage described in the report is will it 

benefit my patient? The authors wrote: “[study participants] felt strongly that any 

new technology should benefit the patient and enable tailoring of treatment to the 

individual’s needs.” Guideline developers tended instead to express accountability to 

methodological requirements (see: compatibility: transparency as accountability). 

Enforcement of these requirements was described within the working environment of 

the guideline developers (i.e., their peers), and at other times in relation to 

institutional sponsors, if applicable to a specific guideline. The evidence that they 

integrate into guidelines must be perceived as rigorous, bordering on infallibly 

trustworthy.  
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Overall, this stance seems to have led guideline developers to favour 

compatibility rather than Relative advantage. These two studies juxtaposed could 

lead to the hypothesis that the group considered as the most important stakeholders 

will strongly influence which of the five items outlined in the framework will 

emerge as the most prominent in adopting an innovation. Further research is 

warranted to determine if this holds true across multiple contexts, or if the difference 

in the conclusions of these two studies is situationally unique. 

Contribution of analytical frameworks 

Hoff and Bashir’s trust model [28] is useful to explore potential reasons 

behind the emphasis in these results on compatibility. Two components of trust seem 

to appear here: external variability in situational trust, and culture as an influence on 

dispositional trust. Organisational setting is identified as a contributor to external 

variability in situational trust, and it is therefore reasonable to expect that this is 

playing a role in bringing compatibility to the forefront as an influence on guideline 

developers’ opinions. However, the more significant potential contributor from the 

trust framework to these data is dispositional trust. These results provide further 

support for Hoff and Bashir’s assertion that culture is a “particularly important 

variable.” Using dispositional trust as a lens through which to view these results 

brings out a new and significant conclusion: the prominence of compatibility in 

influencing guideline developers’ opinions on automation is unlikely to change over 

time. Future applications of the trust in automation framework in the context of 

health evidence synthesis should be strengthened by this conclusion. 

Of the three conceptual frameworks applied to this thesis, this chapter most 

heavily relied upon Rogers’ Diffusion of Innovations. Guideline developers most 

prominently expressed interest in the ideological compatibility of automation-

enabled workflows with their existing professional values, anticipated the greatest 

relative advantage in freeing up person-time resources, and generally felt uncertain 

about their own understanding of automation technologies. 

In addition, the levels of automation taxonomy [29, 30] can be applied to the 

conclusion that guideline developers anticipate the redirection of researcher effort, 

rather than the replacement of it. It was noted in Chapter 3 that a contribution of the 
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levels of automation taxonomy was the assertion that automation need not mean 

wholesale erasure of human effort. This assertion has been shown to be highly 

applicable to this context by the results of this study. Further, given the ideas put 

forth by study participants, it might be concluded that guideline developers tend to 

prefer mid-level automations (i.e., levels 3 through 7). These specific levels appear 

to align most closely with the guideline developers’ need to observe any automated 

results.  

Study limitations 

A potential limitation of a study of this kind is the construction of the sample 

and whether a different sample might lead to different conclusions. The limitations 

of convenience sampling and the resulting potential impacts on generalisability must 

be noted.  

Convenience sampling was used to efficiently target potential participants 

from the specified group of interest. This resulted in a sample of 18 participants from 

a relatively small number of organisations. Though efforts were made to ensure 

some varied representation across gender, origin, and career stage, identifying 

similar respondents remains a possibility when using this method [31]. A more 

diverse sample might have been desirable; however, consistency in data contributed 

from participants suggests that additional participants might not have changed the 

results and conclusions. 

 It might be expected that convenience sampling used in this manner (i.e., 

using personal direct contacts and networks) would result in respondents with similar 

views to the investigators. Moreover, as the identity of a researcher is intrinsically 

linked with any qualitative research they conduct, it also might be expected that my 

association with known automation researchers would influence the responses of 

participants. Neither of these risks was readily apparent in the data, however. The 

generally low awareness of the capabilities of ML, and of the aims of integration of 

ML into EBM, indicate that participants had minimal prior knowledge of my 

research associations. They did not appear to hold similar opinions to my own and 

were able to express those opinions openly in our interviews. 
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One clear skew in the resulting sample was the inclusion of only 28% male 

participants. Despite this, distribution of data points within the Diffusion of 

Innovations framework did not appear to vary according to gender. It is possible that 

this balance is representative of the current balance in the field of guideline 

development; for example, according to data available from NICE, they employ 

68.63% women and 31.37% men [32].  

An additional vulnerability of the sampling technique was the potential over-

representation of Australian professionals. Five participants, however, had direct 

experience in low-resource settings and/or originated from countries other than their 

current base, broadening the potential perspectives for this analysis. Nevertheless, 

any use of these results should be tempered by awareness of the strong Australia-, 

UK-, and US representation in the data collected. 

Though the data do not demonstrate many of these negative impacts of 

convenience sampling, it nevertheless must be highlighted that these risks exist in 

this study; results should therefore be considered with this context. 

Current state on the adoption curve 
Finally, as previously outlined in the chapter introduction and in Chapter 3, 

Diffusion of Innovations theory describes the typical categories of innovators 

(personas) and provides an approximation of the expected proportions of each 

category (Figure 3.1 from Chapter 3). As time progresses, successive groups will 

adopt a given innovation, until a critical mass of the market share is reached.  

The finding that many of the participants perceived themselves to be 

inexperienced with automation in the context of evidence synthesis raises the 

question of where the field currently resides within this adoption curve. The 

evidence of this study suggests that the field is in very early stages of adoption (i.e., 

innovators) with only a small minority taking on use of this new technology.  

Once a later stage has been reached, subsequent studies may well return 

different results. For example, the case from Participant 11 in observability: need for 

evidence, while certainly an outlier in the context of this study, may fall under an 

innovator or early adopter persona while other participants may fall under late 

majority or laggards. Additional analysis and/or data collection using persona 
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categories as the deductive framework could build upon the results of this study. 

However, until a later stage of diffusion is reached, it may be difficult to find 

sufficient contributors within each category.  

Suggestions for future research 

While guideline developers are a crucial group within the field of evidence-

based medicine, they are far from the only one. As mentioned in the chapter 

introduction, patients/consumers, caregivers, healthcare professionals, policymakers, 

and researchers are also key stakeholders in evidence synthesis. Therefore, it would 

be logical to repeat this study with different population groups. Systematic reviewers 

could be considered a high priority for consultation, as these individuals will be 

using automation software directly, as opposed to guideline developers who act as 

gatekeepers of the output (i.e., health evidence) of such software. They may also 

represent a different point on the adoption curve. 

Further to the above, patient stakeholders are an integral group to consult. 

Patients are often involved on guideline panels, and there have been recent pushes to 

include more consumers and patients in health guidance [33]. Health guidelines 

should ultimately aim to benefit patients and the community, and organisational 

mission statements often (and rightly) include statements about patient transparency 

and empowerment. Finally, policy makers should also be examined, as they were 

identified by some of the participants in this study as fellow stakeholders in the 

process of creating guidelines, and whose values influence the practices of evidence 

synthesis. 

In comparing this study to Matthews (2016), it appears that the results of this 

study were influenced by the most proximal stakeholder group to whom the 

participants felt accountable. In proposing further work using systematic reviewers 

as the participant pool, it would also be intriguing to determine who systematic 

reviewers consider their stakeholders when considering the adoption of automation. 

That is, to whom are systematic reviewers accountable, and how does this affect 

their responses in the framework of Diffusion of Innovations? It is possible that with 

additional data, additional insights into the effect of stakeholders on views of 
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technology adoption can be drawn, and results could be further generalised to predict 

Diffusion of Innovations priorities in different contexts.  

The above-outlined research should be prioritised and should proceed in 

parallel to the forms of validation highlighted by participants as crucial to their 

decision making. Select examples of automation have long been available for 

evidence synthesis, and several prominent organisations are encouraging automation 

uptake. Despite this reality, it is clear that they are not being integrated into 

workflows at large or even medium scale. The data from this study shows justified 

hesitation from a key stakeholder group, and additional data relating to other user 

stakeholders will be helpful in identifying barriers and facilitators for these groups.  

Conclusion  

Analysed via the lens of the Diffusion of Innovations framework, the results 

of this study strongly conclude that compatibility with professional cultural values is 

the most significant consideration for guideline developers in the potential adoption 

of automation. Participating guideline developers identified increased availability of 

person-time as a primary relative advantage, and desired rigorous validation 

(observability) to occur both prior to adoption and on an ongoing basis. A lack of 

knowledge of ML among participants is a contributing contextual factor to the slow 

uptake of automation, though it was unclear whether this was a real or perceived lack 

of knowledge. Participants also showed a generalised anxiety around relinquishing 

human control to a computer. The data demonstrate a common but inaccurate 

perception that nuanced human judgement is to be removed from evidence synthesis 

in favour of automation technologies. Future studies may return different results if 

and when the evidence synthesis field reaches a later stage in the Diffusion of 

Innovations adoption curve.  

The creation and dissemination of empirical evidence that systematically 

demonstrates automation’s alignment with the values and standards of guideline 

development and EBM should therefore be prioritised. In addition, disseminated 

evidence and communications around automation tools may benefit from focusing 

on the combination of human and ML effort, rather than the replacement of human 

insight.  
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Chapter 5. The User Journey 

Mapping adopter personas among Cochrane 

Information Specialists 

Chapter overview 

This chapter will report the results of a study examining the adoption of the 

Cochrane RCT classifier among Cochrane Information Specialists. The study was 

undertaken in two parts: a survey followed by individual interviews. The 

applicability of the Diffusion of Innovations adopter personas to this context was 

examined primarily by the survey, while the interviews were used to investigate the 

adoption decisions and trust levels of participants from each adopter category. The 

chapter will conclude with insights drawn from these interviews, recommendations 

for practice, and recommendations for future research.  
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Introduction 

In the previous chapter, this thesis began its exploration of the first of its two 

broad themes: to explore why individuals may or may not adopt automation in health 

evidence synthesis. The opinions of guideline developers were examined via the 

Diffusion of Innovations framework in relation to innovation characteristics, and the 

results demonstrated that compatibility, especially in terms of professional culture 

norms and practices, was the greatest contributor to guideline developers’ 

willingness to accept evidence which uses automation. Participants also indicated a 

perceived lack of self-capability around automation tools, though it was unclear 

whether this perception was accurate or projected. Among the conclusions of the 

study was that other key stakeholder groups should be consulted, not only to gather 

additional data which could be used to inform recommendations for practice, but to 

further test the applicability of the selected framework to the context of health 

evidence synthesis. 

Another key group to consult in the adoption of automation for health 

evidence synthesis are information specialists, including Cochrane Information 

Specialists (CISs). Just as key organisations play a significant role in the field of 

guideline writing and development, certain key organisations are foundational to 

systematic reviewing. Cochrane is one such organisation and is an important thought 

leader in the field of evidence-based medicine. Their methodological standards form 

the basis for many other bodies’ practices, as well as the training and education of 

many systematic reviewers [1]. Other organisations follow Cochrane’s 

methodological lead, therefore, Cochrane’s positions towards automation tools are 

important to consider and likely to be informative of broader practices. Where 

guideline developers enter the evidence pipeline in the later stages and provide a 

crucial link in translating knowledge to practice, information specialists are key to 

the early stages of systematic review production. High levels of expertise and 

specialisation are required to formulate a search strategy, to execute it on multiple 

databases, and to manage the resulting information in the most efficient and practical 

manner. 

The search and screening stages of systematic reviews have been a 

significant target of systematic review automation and include many different 
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approaches, several of which were described briefly in Chapter 2. Methods to 

automate search and screening include but are not limited to active learning 

prioritisation (which will be examined further in Chapter 7’s economic evaluation), 

automated query expansion, and improved deduplication. As detailed in the literature 

review in Chapter 2, a 2015 systematic review identified 55 studies which targeted 

workload reduction in screening, 30 of which focused on reduction of the number of 

records needed to be manually screened [2]. The conclusions of Chapter 4 noted the 

possibility that the adoption curve for automation in overall evidence synthesis is in 

early stages, and it further suggested future research might examine the same results 

once a later stage is reached. Given the more advanced state of automation research 

relevant to search and screening stages, at least in comparison to the rest of the 

evidence pipeline, it is possible these stages – and by extension information 

specialists – may be further progressed on the adoption curve, and therefore are a 

useful group in which to undertake this research. 

The RCT classifier is one of the first machine learning tools widely available 

and advocated within the Cochrane community. It uses a ML routine to generate a 

score indicating the likelihood a study record describes an RCT. Records with a 

score below a pre-defined threshold score are discarded, reducing the number of 

records needing to be screened. Several characteristics of this tool make it a unique 

case study for assessing automation adoption. First and foremost, the RCT classifier 

is built on a large, high-quality dataset, and these datasets and source code are 

available for user examination [3, 4]. Further strengthening this point, the rigorous 

standards of the classifier were determined in collaboration with the Cochrane 

Information Retrieval Methods Group (IRMG), prospectively encouraging 

organisation-level endorsement of the tool. Cochrane IRMG set quite stringent 

standards during development; previous work on the classifier had set recall (i.e., 

sensitivity) at 0.95, whereas in response to input from the IRMG, recall was raised to 

0.99. The IRMG also requested transparency of classifier scores, along with 

validation work using previously published Cochrane reviews. The RCT classifier is 

built into the tools already used by many (though not all) CISs, namely CRS Web, 

the online program used by CISs to interact with the Cochrane Registry of Studies 

(CRS) and to manage their study registers. While many automation tools are 
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available, few are sanctioned in the way that Cochrane has promoted usage of the 

RCT classifier. 

As might be expected in these favourable circumstances, the RCT classifier is 

relatively widely adopted among CISs. If the Diffusion of Innovations personas are 

applicable to this population and this context, then we are at a relatively later stage 

on the adoption curve. This consequently presents a valuable and timely situation in 

which we may be able to identify multiple adopter personas and discuss their 

adoption process with them or to seek information from non-adopters about their 

rationales. Either option could provide useful data which could then be combined 

with the trust framework to provide structured insights about how different personas 

approach the process of adoption of and trust in automation. These insights could 

then be used to make recommendations for practice in other contexts, including 

those earlier on the adoption curve. However, it is also possible that the population 

of CISs is skewed towards one end of the adoption curve. In this case, it would be 

less useful – though still informative – to examine their user journeys, as it would 

not be possible to reliably compare and contrast the journey of one adopter persona 

over another. 

Therefore, to analyse CIS insights to adopter persona user journeys, it must 

first be established whether the adopter personas are normally distributed among this 

population. Broadly, two outcomes are possible from such an endeavour. First, that 

the persona categories present in this population are significantly skewed, and it is 

therefore not useful to consider adoption of the RCT classifier from the perspective 

of multiple personas. With this outcome, it might also be expected that the adoption 

curve would not follow the pattern predicted in the Rogers framework. If the 

population is skewed towards innovators, the total market share would rise quickly 

and level off, whereas a population skewed towards laggards would take longer to 

achieve a majority market share of adoption. The second potential outcome is that 

the CIS populations maps as expected against the persona categories, and that 

advancement along the adoption curve can be informed by all the respective 

personas according to the current stage of diffusion. 
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Methods 

Research questions 

The goal of this project was to describe and to understand the user journey of 

each Diffusion of Innovations persona in adopting automation in systematic reviews. 

To achieve this, Cochrane Information Specialists’ use of the RCT classifier was 

identified as a relevant and informative case study. To achieve the project goal, it 

was first necessary to test the applicability of the Diffusion of Innovations personas 

to this context; I needed to know the observed distribution of adopter personas 

among the population of interest (i.e., CISs) to then subsequently gather information 

about their behaviour and attitudes towards the tool of interest (i.e., the RCT 

classifier) and whether they behaved in a manner consistent with their persona. 

Specific research questions for this project were: 

RQ2.1) How applicable are the Diffusion of Innovations adopter personas to 

this context?  

RQ2.2) How do users interact with the RCT classifier? 

RQ2.3) To what extent do users trust the RCT classifier, and what factors 

inform this trust (or lack thereof)? 

A multi-phase mixed methods approach was used in this study. An initial 

survey was used to gather information about adopter persona characteristics and 

general engagement and behaviour with the RCT classifier. These results were used 

to identify potential participants for interviews from each of the persona categories 

and to inform the approach of the subsequent unstructured interviews.  

To answer RQ2.1, descriptive data of the population of interest (CISs) was 

required. Given the presence of a discrete, clearly defined research question relating 

to a similarly well-defined target population, a survey was selected as an appropriate 

research method for the first phase of this project. This approach made use of the 

advantages of surveys: the collection of empirical, descriptive information which is 

likely to be generalisable [5]. Surveys also have disadvantages, namely the lack of 

explanatory data, and the unstructured interviews in the second phase of this project 

were used to address this weakness, as well as to answer RQ2.2 and RQ2.3. A 
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further advantage to this mixed methods approach was that in addition to answering 

RQ2.1, survey data could be used to formulate hypotheses in relation to RQ2.2 and 

RQ2.3 which could then be tested via the unstructured interviews in the second 

phase of the project. 

This study was explicit in classifying no correct nor incorrect use, but strictly 

to describe the current state of use and user experience in interacting with the tool. 

More detail on each study phase is provided in the following sections. This study is 

reported in line with the Checklist for Reporting of Survey Studies (CROSS) 

checklist (included as Appendix C) [6]. 

Phase 1: Survey 

Design 
The survey facilitated the collection of standardised data points used to 

assign respondents into adopter persona categories. By inviting the entire target 

population to respond, it was hoped to achieve maximum population coverage for 

the most accurate – and generalisable – data collection possible. Guidance was taken 

from Kelley et al [5] to optimise survey quality, which also provided guidance on the 

weaknesses of surveys which should be addressed by the subsequent interviews. The 

survey was hosted on Google Forms; by using Google’s feature requiring sign in, 

participants were limited to one response. 

Survey questions covered two general topic areas. first, respondents’ 

interaction, if any, with CRS Web and/or the RCT classifier. Second, the Diffusions 

of Innovations persona framework was used to draft questions aimed at revealing the 

dispositional characteristics of the respondents. That is, the questions were designed 

to reveal to which, if any, adopter persona designation the respondent belonged. This 

designation acts independently of the behaviour covered by the first topic area of the 

survey; adopter categories were positioned as personal tendencies that are not 

dependent on context or on the tool being examined, and certainly not tied to usage 

of the RCT classifier nor to CRS Web. The distinction between these two topic areas 

should be highlighted and reiterated: user interactions with technology tools were not 

used to inform their persona category during data analysis; adopter persona 

categorisation was informed solely by the dispositional characteristic questions in the 
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second portion of the survey. Questions relating to dispositional characteristics were 

marked as required to avoid missing data points. 

Using such an approach maximised the potential implications derived from 

this research; insights into user trust in automation mapped against adopter persona 

should be able to translate across similar populations, even if the automation tool 

being examined varies. It also enabled me to form hypotheses about user behaviour 

towards automation according to adopter persona category which could then be 

partially tested against the interaction questions and further tested using the 

qualitative data collected in phase two. 

Participants and recruitment 
Following initial development, the survey instrument was piloted with the 

Cochrane Information Specialists Executive, a group of CISs which functions as 

advisory body for the wider group, and which liaises with the Cochrane Central 

Executive. Its feedback was incorporated into the final version of the survey. 

The survey was then circulated using the CIS listserv, an email list which 

reaches all current individuals working as a CIS for all Cochrane Review Groups. 

The survey instrument is included in Appendix D. 

Participants were provided with an explanatory statement at the beginning of 

the survey. This statement identified the research team, and specified that they may 

withdraw at any time, including withdrawal post-participation. Contact information 

was made available to participants, and I was readily available to participants 

throughout the study for any enquiries. 

The survey could be completed anonymously according to individual 

preference. Any questions which contained potentially identifiable information 

included an anonymised option (“Prefer not to say”).  

In order to proceed with the survey, individuals had to indicate their 

understanding of the explanatory statement and consent to proceed.  
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Data collection and analysis 
The survey was active for six weeks, from mid-May 2020 through to the end 

of June 2020. After the survey was closed to new responses, results were 

downloaded and coded. 

Responses from the second portion of the survey, relating to persona 

characteristics, were used to assign adopter categories; responses relating to CRS 

Web and/or RCT classifier behaviour were not used to inform coding of persona. 

Individuals were coded into the adopter category for which their self-reported 

behaviour and characteristics most closely aligned. To validate coding results, two 

rounds of analysis were performed. First, survey responses were coded in the 

numerical order in which they were completed: first respondent coded first, second 

respondent coded second, and so on. The second round of coding was performed in a 

randomised order in order to blind outcome assessment. The results of these two 

rounds were then assessed for agreement; where there was an initial disagreement, a 

third round of coding was used to determine the final identification for the 

respondent.  

Once each respondent was assigned into the appropriate adopter persona, 

data relating to behaviour were assessed to identify broad patterns. The unstructured 

interviews from Phase 2 were informed by these commonalities among responses, 

whether among the whole participant pool or solely within a persona category. Data 

from open response questions on the survey were also used to address RQ2.2. 

Phase 2: Interviews 

Design 
To explore RQ2.3, as well as to provide further data and explanatory 

reasoning for the results of RQ2.2 from the survey phase, an unstructured interview 

was used. This interview was designed as a discussion of how the participant uses 

the RCT classifier, and to gather qualitative data around how they had arrived at 

their current stage of trust (or lack thereof) in the classifier. 

Individual survey responses were also used to frame the discussion with each 

of the invited interview participants. As each participant was distinct, interview 

questions varied among each. A common theme for all participants, however, was to 
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talk through their experience from their first use of the RCT classifier through the 

present day. The purpose of going over this history was to identify their initial trust 

level in the classifier, if they had evolved in their trust since then, and what had 

caused this shift. For example, a user of the RCT classifier might explain that they 

had a personalised set of tests that they like to run on any new reference technology 

or software, while another might instead completely trust in the RCT classifier 

output from the beginning. 

Participants and recruitment 
Only participants who had positively indicated their availability for a follow 

up interview during the survey phase were contacted in relation to interview phase 

participation. One respondent from each of the adopter persona categories was 

invited via email for a brief interview on their preferred online platform. The audio 

of each interview was recorded, and key segments were transcribed for analysis. 

Participants were free to withdraw at any time, including after completing 

their participation. 

Data collection and analysis 
A combined framework analysis was conducted using both Diffusion of 

Innovations adopter personas in conjunction with the Hoff and Bashir three-layered 

trust model.  

Analysis was conducted using the guidance for framework analysis from 

Ritchie et al [7]. The basic stages of this method are: 

1. Generate a research question 

2. Identify ‘best fit’ conceptual framework from the literature  

3. Code evidence to identify themes 

4. Map themes against the selected framework 

5. Identify and interpret relationships between data and framework 

The first two stages of this method have already been described in Chapter 3 

and in the introduction to this chapter. That is, the research question has already been 

stated (RQ2.3), and the most appropriate conceptual models have already been 

identified in the literature, namely Diffusion of Innovations and Hoff and Bashir’s 

trust framework. In the third stage of this framework analysis, data from interviews 
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were coded to identify prominent themes in how users interact with the RCT 

classifier (RQ2.2) and what processes inform their trust or lack thereof in the 

classifier (RQ2.3). These themes were then mapped against both the trust framework 

and the personas framework in the fourth stage, allowing for interpretation in the 

fifth and final stage of analysis with respect to the combination of the two 

frameworks. This combination was used to assess common and divergent themes in 

how and why each adopter persona trusts in the classifier.  

Ethical considerations 

In relation to ethical considerations for this study, there was no risk 

associated with participants’ safety through participation in this study. All external 

communications of the survey’s results are completely anonymised in this report and 

all future dissemination. This study was prospectively approved in accordance with 

UCL Institute of Education Research Ethics policies. 

Results 

Phase 1 

The survey was completed by 24 individuals; given one information 

specialist for each of the 54 Cochrane Review Groups, this provides a participation 

rate of approximately 44%. Descriptive characteristics of participants (i.e., from first 

topic section of the survey) are presented in  

 

 

 

Table 5.1. After mapping the responses against the Diffusion of Innovations 

adopter personas framework (i.e., the responses from the second topic section of the 

survey), distribution was similar, but not identical to, the distribution expected by the 

framework. Figure 5.1 shows the observed distribution among participants and the 

expected distribution of adopter personas. Of the 24 participants, there were 3 

innovators, 4 early adopters, 6 early majorities, 9 late majorities, and 2 laggards. 
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Table 5.1. Survey participant characteristics 

Characteristic / response n 

Years of experience in Information Science  
Less than a year 

1-5 years 
5-10 years 
10-20 years 
20+ years 

Prefer not to say 

0 

1 
2 

12 
8 

1 
Years of experience as Cochrane Information Specialist  

Less than a year 

1-5 years 

5-10 years 
10-20 years 

20+ years 
Prefer not to say 

0 

6 

5 
10 

2 
1 

Aware of Cochrane RCT Classifier  
Yes 
No 

24 
0 

Previous use of Cochrane RCT Classifier  

Yes 
No 

17 
7 

Frequency of use of Cochrane RCT Classifier*  
Tried once or twice 

Sometimes 
Frequent 

2 

7 
8 

Cochrane RCT Classifier rating (out of 5)*  

5 

4 
3 

6 

6 
5 

Use of CRS Web for study management  
Yes 

Sometimes 
No 

9 

3 
12 

* questions presented only to participants with previous use of 
Cochrane RCT Classifier (n = 17) 

 

 

Figure 5.1. Observed and expected distributions among Cochrane Information Specialists 
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Several notable results emerged apart from the distribution of adopter 

personas.  

First, in response to the question “what are your main considerations in 

selecting a study or reference management workflow / tool?”, a majority of every 

persona sub-group responded in a way that included the innovation characteristic of 

complexity (e.g., “ease of use”). Innovators were the exception; of the three 

identified innovator respondents, none mentioned complexity in their response to 

this question. Complexity was mentioned by 75% of early adopters, 66.6% of early 

majorities, 55.6% of late majorities, and 100% of laggards. 

Second, users’ interactions with the RCT classifier correlated in the expected 

manner according to adopter persona. In describing their use of the RCT classifier, 

two out of the three identified innovators moved studies in bulk according to 

classifier results: that is, they trusted the results and did not double-check them. On 

the same question, 50% of respondents from the early adopter and early majority 

categories, respectively, behaved the same. Only 22.2% of late majority respondents 

used the classifier in this way, and neither of the two identified laggard respondents 

moved studies in bulk according to judgements from the RCT classifier. 

Finally, when asked to rate the RCT classifier on a scale of 1 to 5 (with 5 as 

the positive rating; see Appendix D), the responses aligned with adopter persona. All 

innovator respondents rated the classifier 5 out of 5, while laggards rated the 

classifier as 3 out of 5. Results are shown in Figure 5.2. 
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Figure 5.2. Average rating of RCT classifier versus adopter category 

Phase 2 

Four individuals were interviewed: one from each adopter category except 

for laggard, as none of the individuals who were coded as a laggard persona 

indicated availability for a follow-up interview. 

Innovator 

“I love a bit of new technology!” 

The innovator interviewed demonstrated typical innovator persona 

characteristics. They repeatedly indicated their excitement about trying any new 

piece of technology, and that attitude extended into their interactions with the RCT 

classifier. Such enthusiasm was not dampened by their perception of a tool being 

complex; this aligned with the phase 1 survey results in that complexity was not 

mentioned as part of their main considerations in choosing a reference or study 

management tool. In fact, the participant indicated enjoying the process of 

experimentation with less obvious or intuitive features of new tools. The interviewee 

also indicated that they had shared their experience with the RCT classifier with 

several colleagues and believed they had likely persuaded a few to try it out, 

confirming the expectation that those earliest on the adopter curve may play a role in 

the next stages of innovation diffusion. 

The innovator’s journey into deciding how and why to trust the RCT 

classifier was largely guided by institutional guidance. They used the threshold score 
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recommended by the Cochrane documentation and did not do any testing of their 

own. The interviewee indicated their initial attraction to the tool was driven by a 

large backlog of work, and they saw the classifier as an opportunity to finally get on 

top of that backlog. They also mentioned initially hearing about the classifier from 

specific individuals involved in its development, and consequently knew relatively 

more about its previous validation than they did about how it works. Cochrane’s 

promotion of the tool was described by the interviewee as sufficient to feel that it 

had been validated and approved, and therefore was trustworthy. 

The innovator interviewed emphasised their own documentation throughout 

their process, to a greater degree than others mentioned. In describing their process 

in initially adopting the classifier, they had not only shared information about the 

process with their Managing Editor and Coordinating Editor, but they had also 

uploaded documentation to their group website.  

Overall, the innovator stated that they preferred more automation in their 

workflow. However, they also noted that while the RCT classifier used to display 

scores for each of the studies it processed, it no longer does this, and they would 

prefer that it display the scores once again. This request fitted in with the rest of their 

comments indicating a preference to be able to try out new things with new 

technologies, once again typical of the innovator category. 

Early Adopter 

“It was available, so I started using it.” 

Of the four individuals interviewed, the early adopter was the only one who 

had experimented themselves with the threshold of the RCT classifier. They initially 

tried a very cautious cut off and trialled the tool with several systematic reviews 

before adopting in more generally in their standard workflow. 

Like several of the other individuals interviewed, the early adopter indicated 

feeling overwhelmed by their workflow, and that their adoption decision was 

informed by this feeling. The early adopter felt that the classifier had not necessarily 

objectively reduced their workload but had subjectively reduced the pressure they 
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felt in keeping on top of the number of citations they were managing. They indicated 

that using the classifier “takes the pressure off of needing to catch everything.”  

One of the more notable results from the interview with the early adopter was 

their rationale in trying the RCT classifier in the first place. While they indicated that 

it does help with workload, more prominent in their discussion was the simple fact 

that the tool was available. This fits in with what is expected from early adopters: 

they are already convinced of the need to change, and do not rely on others to 

prompt them to do so.  

Another striking feature of the early adopter interview data was the 

discussion around audit trails. While it could be assumed that this is generally 

important to all information specialists, it was discussed much more prominently by 

the innovator and by the early adopter. As a secondary reason behind their adoption 

decision, the early adopter indicated that as the RCT classifier is signed off by 

Cochrane, it establishes a framework for its use, and they therefore incorporated it to 

their workflow. On a related note, they talked about the increasing methodological 

standards from the Cochrane community and felt that using the classifier would 

improve their transparency for methodological scrutiny.  

Early Majority 

“I still follow the instructions” 

Like the innovator interviewed, the early majority individual mentioned 

several individuals within the Cochrane community who had influenced their 

decision to start using the classifier. Their approach in incorporating this influence 

into their user journey, however, differed in that they “followed instructions” of 

these individuals in order to start using the RCT classifier rather than learning 

through their own experimental use as the innovator had; they did not feel capable of 

figuring it out on their own and therefore relied on external guidance. This is in line 

with what is expected from the early majority persona, as they typically rely on 

success stories from peers to inform their adoption decision. Early adopters and early 

majorities alike are expected to find documentation helpful, and this held true with 

the early majority individual interviewed for this project. They indicated that they 
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continue to use the documentation for using the classifier to this day, despite now 

being a regular user of the tool. 

In describing their experience in adopting the classifier, the early majority 

participant indicated a need to “feel safe” that the tool was working correctly. When 

asked to describe this in more detail, they indicated that they wanted to be sure it was 

not losing RCTs, but also indicated an openness to a workflow trade-off: “not that 

it’s perfect, but that it’s pretty good.”  

In another similar decision point to the innovator interviewed, the early 

majority individual described being moved towards adoption of the classifier out of 

“desperation” in the face of their ever-growing workload. Continuing through their 

usage today, they only apply the RCT classifier to the results of specific databases 

according to the relatively high number of search results they tend to retrieve. 

Overall, it was clear through the interview that the early majority individual 

relied heavily on the information they were provided from their peers, both in their 

understanding of how the classifier works, and in instructing their day-to-day usage 

of it. 

Late Majority 

“More online trainings please!” 

Like others, the late majority individual interviewed mentioned first hearing 

about the classifier from individuals in the Cochrane community who had been 

involved in its development. Initially they thought it was the ‘holy grail’ of study 

management, but they have ended up mostly double-checking the results of the 

classifier. Unlike previous interviewees, the late majority individual did not indicate 

feeling overwhelmed by their previous workload and did not cite this as a reason for 

the transition. Instead, they described their current workflow as having the same set 

of records but in a different order. They indicated a desire to adopt more technology 

to improve their workflow but cited time constraints as holding them back in this 

regard; the time they perceive as required to adopt a given technology is greater than 

the time they currently have available. Though they have already adopted the 
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classifier, they expressed interest in more ongoing training sessions. They saw the 

lockdowns from the Coronavirus pandemic as a good opportunity to conduct regular 

online training sessions but were disappointed in the lack of these. They were unsure 

whether there might be new elements of the classifier or in CRS Web of which they 

were unaware, and they hoped that regular training sessions would help with this.  

The late majority individual went into comparatively more detail compared to 

other participants in relation to the interface of tools they had tried. They described a 

tool similar to the classifier they had previously trialled as “clunky” and “a bit 

fiddly” and went into further detail about the lengthy process of opening each record 

to retrieve results. Continuing on this theme, they described their decision to rate the 

RCT classifier as a 4 out of 5 as informed by the annoyance of having to open 

separate tabs for each result, resulting in many “extra clicks”. This was the only 

discussion from any participant that provided data for the internal variability of 

situational trust in the trust framework. 

The late majority individual described their author team as “quite sceptical” 

of adopting the RCT classifier. This differed from other participants, who generally 

indicated indifference from their author teams. 

Discussion 

In addressing research question 2.1, results of the survey indicate that the 

distribution of adopter categories among Cochrane Information Specialists maps 

closely to the distribution predicted by Rogers’ Diffusion of Innovations framework. 

While there were slightly more innovators than predicted, and slightly fewer 

laggards, the overall trend of the distribution indicates that the adoption curve and 

adopter categories fit into the context of CISs use of the RCT classifier well. The 

data from phase 1 therefore indicate that the Diffusion of Innovations framework is 

applicable in the context of Cochrane Information Specialists’ adoption of the RCT 

classifier.  

This result was strengthened by the results of the unstructured interviews. 

Each of the individuals interviewed displayed characteristics of their coded category 

from the phase 1 results, especially with respect to their initial adoption decision. 
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More specifically, the innovator and early adopter indicated an immediate 

willingness, if not eagerness, to switch to a new tool and workflow. This aligns with 

the description of those adopter personas as being already aware of the need to 

change practices [8]. The early majority and the late majority individuals instead 

relied on information from their peers in order to inform this decision, once again 

aligning with the expected and predicted behaviour of their respective adopter 

categories. 

In relation to research question 2.2, data showed trust in the RCT classifier is 

inversely correlated to adopter persona: those earlier on the adoption curve indicated 

higher levels of trust in the classifier than did those later on the curve. Earlier 

adopters were less likely to double-check the results of the classifier and more likely 

to bulk-approve automated decisions.  

When considering the results within the levels of automation framework, 

those earlier on the adopter curve tended to use the RCT classifier in a way that fell 

higher on the levels of automation framework [9, 10]. Bulk approval of RCT 

classifier decisions fits into a level 5 automation (computer executes a suggestion if 

the human approves; see Table 3.1), whereas double-checking of results reduces the 

RCT classifier to a level 2 automation (computer provides a full set of decision 

alternatives). These results show that not only is the Diffusion of Innovations 

framework applicable in this context, but it is also useful in predicting adopter 

behaviour, and in drawing novel insights to user behaviour when combined with the 

levels of automation framework.  

Negative data produced in this study should be noted here as well. The 

survey requested information from respondents about their years of career 

experience, both as a Cochrane Information Specialist and in the field at large. It 

might be reasonably assumed that more experience would correlate with more 

expertise, and according to the selected trust framework, greater subject matter 

expertise is a strong influence on internally variable trust. However, in this study I 

observed no relationship between years of experience, trust tendencies, and adopter 

persona. Though it was expected to play a strong role in my results (as noted in 

Chapter 3: Trust in automation: Situational trust - Internal variability), internally 
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variable situational trust and subject matter expertise does not appear to play a strong 

role in adoption decisions among CISs. 

Finally, in relation to research question 2.3, interview participants indicated 

differences in their adoption processes, in their ongoing use of the RCT classifier, 

and in the factors affecting their trust in the tool. The early adopter was the only 

participant to indicate that they had run their own validation tests. The innovator 

experimented with the RCT classifier, but not specifically with the threshold nor 

with piloting the tool before fully adopting it, as the early adopter had. The innovator 

did, however, indicate a preference for being able to see the underlying scores 

assigned by the classifier. In contrast, both the early majority and late majority 

interview participants indicated a high level of reliance on the institutional guidance 

in relation to their initial adoption and their continued use of the RCT classifier. The 

late majority individual appeared to have a continuing reliance on this guidance, as 

indicated by their request for regular online training sessions, whereas the early 

majority individual spoke more about the documentation to assist in using the tool. 

In addition, the late majority individual was the only interview participant to speak 

significantly about the tool’s user interface. Taken together, the results of this study 

show that user interface and experience is more influential on trust for later adopter 

personas. Earlier adopters instead place relatively more importance on the ability to 

inspect results; in the case of the early adopter this also included direct 

experimentation with the technical aspects of the tool.  

This result connects into some of the results found in the previous chapter. 

Guideline developers repeatedly raised the importance of the transparency of any 

applied machine learning. Recall that there were two variations on this idea: 

transparency as accountability (compatibility) and personal need for double-

checking (observability). Though this study was primarily focused on the adopter 

personas of Diffusion of Innovations framework, the themes found by applying the 

innovation characteristics in the previous chapter’s study have appeared again in this 

study, and therefore warrant further attention. Innovators and early adopter 

participants appear to focus relatively more on the personal need for double-

checking; they have either experimented with or examined the threshold scores 

generated by the classifier themselves. In contrast, the early majority and late 
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majority participants cited the validation others had performed, thus aligning more 

closely with the theme of transparency as accountability. Given this finding, two 

questions for future research arise: what is the distribution of adopter personas 

among guideline developers, and do adopter personas in guideline developers and in 

CISs show the same behavioural tendencies when using an automation tool? Overall, 

the results of the survey combined with the results from the interviews showed that 

users on the first half of the adoption curve – innovators, early adopters, and early 

majorities – entirely trust in the results of the classifier, while late majorities and 

laggards prefer to double-check its results. 

The evidence presented in this chapter suggests that all adopter personas rely 

on external variability in situational trust to inform their trust in automation. All 

adopter categories considered institutional guidance (e.g., from formal Cochrane 

documentation and presentations) in their adoption decision, and early majority and 

late majority individuals further used this guidance in shaping their ongoing 

interactions with the classifier. In an additional layer of externally variable trust in 

automation, individuals later on the adoption curve placed more importance on their 

user experience than did earlier adopters. Innovators and early adopters did also cite 

externally variable situational trust, but also demonstrated more dispositional trust in 

their adoption decisions and in their trust of the RCT classifier. 

Implications for practice 

Initial uptake 
An overwhelming workload and/or backlog was cited in three of the four 

interviews conducted, with the single exception being the late majority interview. 

Considering this result, it should be expected that larger workloads and/or stricter 

deadlines might result in stronger motivation for uptake of potentially time-saving 

tools, including automation. Coinciding with the time of writing this thesis, in April 

2021 a funder of Cochrane noted the tendency of review groups to deliver projects 

late [11]. This may contribute to an understanding of the primary importance of 

review production efficiency in the Cochrane community, and it will be interesting 

to see if this affects attitudes to or uptake of automation. The results of this study 

indicate a climate of urgency could be an opportune moment to advocate for further 

trialling among review groups of the automation tools that are already available. 
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In addition to overwhelming workloads informing the initial trialling of 

automation tools, data collected from the interviews indicated the importance of 

institutional guidance (externally variable situational trust). This influenced all 

personas’ adoption decisions, and furthermore continued to influence the ongoing 

user experience for later adopters. Cochrane and organisations that wish to pursue 

methodological innovation should therefore invest in institutional level evaluation, 

approval pathways and communications that continue even after the initial approval 

of a tool.  

Complexity becomes increasingly important over time 
All adopter personas, except for innovators, indicated a high prioritisation of 

the complexity innovation characteristic in informing their technology selection. 

Evidence from this study therefore suggests that complexity is the most heavily 

weighted innovation characteristic among CISs, but that innovators are an exception 

to this observation. This result could be highly useful in designing not only 

automation tools for information specialist users, but also for optimising 

communications. In other words, these results indicate that a majority of information 

specialists are not going to use something that is not easy to use, even if other 

innovation characteristics are positive (e.g., relative advantage in timesaving). The 

late majority participant reinforced this observation with an explanatory barrier to 

uptake; a lack of time to learn a new technology was cited as a reason for continuing 

a known workflow over a new one, even if it offered a relative advantage. Similarly, 

they also provided more detail on the relative difficulty of their user experience both 

with the RCT classifier and with other tools they had trialled; this point further 

reinforces that later adopters are more influenced by user experience than are earlier 

ones. 

Automation advocates might use this result to inform research and 

development prioritisation. In early stages, while innovators are being targeted for 

the initial rollout of a tool, user experience can be temporarily sacrificed in favour of 

the tool’s performance, assuming limited resources available for technology 

development. Further, given the innovator participant indicated enjoyment of playing 

with the technical details of the classifier, other innovators might be persuaded to 

adopt by including this ability in the initial version of a tool, in contradiction to the 

intuitive tendency to simplify a tool as much as possible. This sacrifice and technical 
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detail become more and more risky over time, however, according to these results; 

late majority and laggards, already resistant to change by disposition, are quite 

unwilling to take up use of a tool which is not simple to use. 

The observed result becomes even more insightful when contrasted against 

the results of Chapter 4: where guideline developers placed cultural expectations 

(compatibility) at the forefront, information specialists instead raised complexity. 

The expectation that different populations involved at different points of the 

evidence pipeline would return different results from a framework analysis using 

Diffusion of Innovations proved true, at least in this case. The different results could 

also be due to the different current stages on the adoption curve of the respective 

populations. It is nevertheless clear that application of these two frameworks in 

combination yields insightful results. Future work will benefit from continuing to do 

so, filling in the remaining gaps of stakeholder populations in addition to CISs and 

guideline developers.  

Study limitations 

While 24 respondents to the initial survey delivered some meaningful results, 

a higher proportion of respondents of the pool of potential participants would have 

provided more confidence that my results are representative of the full CIS 

population. The response rate indicates approximately half of the Cochrane Review 

Groups’ Information Specialists completed the survey, and it is difficult to estimate 

what the distribution of adopter personas among non-respondents might be. The 

results might be representative, and the distribution does indeed map closely to the 

Diffusion of Innovations framework, or the remaining non-respondents might fall 

disproportionately into particular categories (most likely laggards or non-adopters, 

given the topic of the survey).  

Most likely as a consequence of the final sample size of the survey, the 

availability of potential participants for the second phase of this project was limited. 

Specifically, no laggards indicated availability for follow-up in the final segment of 

the survey, and therefore no interview was conducted with an individual who had 

been coded into the laggard adoption persona. This study therefore is unable to draw 

any strong conclusions in relation to how and why laggards do or do not trust an 
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automation tool. Furthermore, the practical decision to interview only one participant 

of each persona category limits the generalisability of this study’s findings. While 

the qualitative results provided by participants in their interviews provided rich 

individual data, the limited sample means that it cannot be assumed that such results 

would translate across additional contexts. Further research in more depth is 

warranted to determine the generalisability of these findings. Given that the results 

of this study did confirm the applicability of the adopter categories framework, such 

research should continue to apply this framework in order to confirm and expand the 

conclusions presented here. 

Conclusion 

The results of this survey demonstrated that the Cochrane Information 

Specialists’ distribution of Diffusion of Innovations adopter personas maps quite 

closely to the predicted distribution, indicating a good fit of this framework to this 

context. Adopter personas’ behaviour towards automation correlated well with their 

predicted characteristics. This behaviour, examined through the Hoff and Bashir trust 

framework, showed strong influences of externally variable situational trust in all 

personas, and dispositional trust in innovators and early adopters. Later adopter 

categories maintained this reliance on situational trust even after adopting the RCT 

classifier, and also identified user experience (dynamic learned trust) as influential 

on their interactions with the tool. Of the Diffusion of Innovations innovation 

characteristics, complexity was identified as significantly influential for CISs in their 

selection of workflow management tools. Organisations which wish to advocate for 

adoption of automation for health evidence synthesis should initially focus on 

technological abilities to bring innovators and early adopters on board, and over time 

shift focus to simplification of the user experience and to providing ongoing training 

and support.  
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Chapter 6. Validity 

A clustered non-inferiority randomised trial 

examining the effect of combined human 

effort and automation on Risk of Bias 

assessments  

Chapter overview 

This chapter presents the results of a randomised trial investigating the effect 

of integrating RobotReviewer into an automation-augmented Risk of Bias workflow. 

The results of the trial will be contextualised in the available literature, and in 

particular will be contrasted with prior trials of RobotReviewer. The analytical 

frameworks selected for this PhD will then be used to interpret the conclusions of the 

trial. The chapter concludes with a discussion of the trial’s weaknesses and 

recommendations for practice.  
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Introduction 

The first two research chapters of this thesis presented qualitative studies 

investigating the first theme of my PhD: the adoption of automation in health 

evidence synthesis. I will now shift to the second theme: the effectiveness of 

automation for health evidence synthesis. As outlined in the introduction and 

detailed in the literature review of Chapter 2, much of the existing automation 

literature focuses on screening tasks. Study quality evaluation and data synthesis, 

though some of the most time-consuming stages of a systematic review, have 

relatively less automation evidence currently available. Furthermore, the majority of 

existing research focuses on efficacy – performance under ideal and controlled 

circumstances – rather than on effectiveness – performance under ‘real-world’ 

conditions. While efficacy trials have high internal validity and are important in 

identifying interventions with observable effects, they can also overestimate an 

intervention’s effect compared to implementation in practice [1]. Effectiveness trials, 

in contrast, are less standardised and can account for other factors which may 

moderate an intervention’s effect. With the trial presented in this chapter, I improve 

upon the evidence base on both fronts: this trial examines real-world effectiveness of 

a data synthesis automation tool, namely RobotReviewer [2]. 

The RobotReviewer tool is an open-access platform which partially 

automates several elements of data extraction, including Risk of Bias (RoB) 

assessments that use the Cochrane RoB template, using machine learning (ML) and 

natural language processing (NLP) [3]; an example assessment is shown in Figure 

6.1.  
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Figure 6.1. An example RobotReviewer assessment 

The literature provides some excellent examples of previous research into 

RobotReviewer’s performance, strengths, and weaknesses. In a 2016 study it was 

shown that RoB judgements produced by RobotReviewer were only modestly 

inferior in quality to human-produced judgements [4]. In this study, 12,808 PDFs 

were annotated and used to train a ML model. These were compared against 

assessments published previously in the Cochrane Database of Systematic Reviews 

(CDSR) by a panel of 20 blinded experts who rated judgement accuracy and the 

relevance of supporting annotations. Judgements provided by RobotReviewer were 

found to be less accurate, but the absolute difference from judgements in the CDSR 

were generally less than 10%.  

Two previous publications examining RobotReviewer found slightly 

different results. A 2018 publication used a cross-sectional evaluation to evaluate 

reliability of RobotReviewer using Cohen’s Kappa coefficient and comparing with 

human-produced assessments [5]. This evaluation also examined differences by 

domain and outcome type. RobotReviewer was used to evaluate 1,180 studies, and 

these RoB assessments were directly compared against assessments completed by 

human reviewers. They found that RobotReviewer reliability compared to humans 

was similar for most domains, and superior for selected domains. This is in contrast 

to a 2020 paper [6] which compared assessments between RobotReviewer and 

human reviewers for 372 studies. The 2020 study found that accuracy was highly 

variable across assessment domains, and the study authors therefore concluded that 

RobotReviewer should not replace evaluations performed by human experts, which 

aligns with the developers’ guidance. 
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Studies with similar designs continue to be conducted and published as of the 

writing of this thesis. Hirt et al (2021) compared the performance of RobotReviewer 

against human reviewers again, and similarly found variable quality across the 

domains assessed by the tool [7]. The observed agreement between the automated 

RoB reports and the human reviewers’ assessments ranged from 50% for the 

‘blinding of outcome assessors’ domain to 87% for the ‘blinding of participants and 

personnel’ domain. Like Armijo-Olivo et al (2020), the authors here concluded that 

while RobotReviewer might be helpful, “human reviewer should supervise the semi-

automated process.” 

Despite multiple instances in the literature which concluded that 

RobotReviewer should be used under human supervision, and direct 

recommendations from the developers, only one previous publication is available 

examining this workflow, and is authored by the RobotReviewer developers 

themselves. Soboczenski et al (2019) [8] recruited 41 participants and assigned four 

RCTs to each to assess for Risk of Bias. Of these four, two were assessed in a fully 

manual manner, and the other two in a semi-automated manner with RobotReviewer 

suggestions. Rather than strictly examining the accuracy of the final assessment, the 

primary outcome of this study was the time taken to complete RoB assessments. The 

study showed that the semi-automated workflow reduced time spent on Risk of Bias 

assessments by 25% (Figure 6.2).  



136 

 

 
Figure 6.2. Time in seconds to complete Risk of Bias using machine learning versus standard (fully manual), 

from Soboczenski et al (2019) 

With only a single evaluation of RobotReviewer using a semi-automated 

method rather than a direct comparison of human-only versus fully automated 

results, the literature largely leaves open the question of the effect of a semi-

automated Risk of Bias workflow using RobotReviewer. While these previous 

evaluations of RobotReviewer accuracy are useful, the lack of published evidence 

investigating the effect of combining this automation system with human processes 

is a significant shortcoming. As a semi-automated method is likely to be the manner 

in which automation is incorporated into evidence synthesis initially, and moreover 

is the intention of the team creating RobotReviewer, further evidence is needed on 

the effects of RobotReviewer when used in combination with human systematic 

reviewers [9].  

Finally, all of this previous evidence on RobotReviewer takes a constructed 

and controlled approach; specific reviewers are given specific and selected RCTs, 

and their assessments directly compared to those produced by RobotReviewer. 

Literature with a more ‘real-world’ focus, in which a larger number of reviewers is 

given a larger number of trials to assess, which have not been pre-selected by the 

research team, would be useful. 

As previously discussed in detail, adoption of automation in health evidence 

production has been low [10]. In Chapter 4, guideline developers, key gatekeepers in 
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translating health evidence to practice, expressed the need for robust evidence in this 

area in order to inform automation adoption decisions, and moreover expressed a 

preference for augmenting human resources with automation tools over replacement 

[11]. Current literature falls short on both needs. First, it has focused on laboratory 

settings (i.e., on the efficacy of automation tools rather than the effectiveness). 

Second, it has mostly offered simplistic and direct comparisons of automation 

performance against human performance rather than evaluated the performance of a 

combination of human and automation effort.  

Hesitancy to trust automation in systematic reviews has also contributed to 

the slow adoption of automation [12]. The well-established foundation of trust in 

systematic review results is crucial to the evidence ecosystem and to knowledge 

translation, and thus new methodologies may result in concern around the quality of 

the results. O’Connor et al (2019) conclude that “automation… must not be 

perceived as an erosion of current practice standards.” The foundation of trust in 

evidence synthesis methods must now be renewed to include automation to 

encourage its adoption, and the evidence necessary is currently lacking. 

To address this gap in the currently available literature, this study sought to 

determine whether, in the context of ‘real-world’ systematic reviews, Risk of Bias 

(RoB) assessments conducted with machine learning assistance from RobotReviewer 

were non-inferior in accuracy and in person-time to assessments conducted with 

human effort alone. 

Methods 

Given that this trial sought to mimic real-world systematic review conditions 

as closely as possible, several challenges arose: The design had to account for two 

distinct individuals conducting assessments within one review, as well as the 

similarity of studies within a review. A simpler study design was previously 

considered in which one reviewer was consistently assigned to the RobotReviewer 

assisted arm, while the other was consistently assigned to the control arm. This 

presented a number issues in design. First, after the initial assessment, both 

reviewers would be un-blinded to their allocation. Second, consistent interaction 

with the intervention also increases the opportunity of a learning effect; with 
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relatively more interactions with the intervention (i.e., RobotReviewer), there are 

more opportunities for a reviewer to learn how it performs and pre-judge its 

assessments. Third, I judged that this also introduced a higher risk that the consensus 

reviewer – whose assessment was crucial to the primary outcome of accuracy – 

would be able to determine intervention allocation. Like the individual reviewers 

knowing their allocation after the initial assessment, the consensus reviewer was 

likely to learn quickly which reviewer had been assigned to which arm, and therefore 

potentially have bias before ever examining their individual assessment for that 

study. That is, a design in which reviewers were randomised rather than studies 

risked un-blinding of an outcome assessor (the consensus reviewer). Finally, 

allocation by study rather than by reviewer lessened the impact of an individual 

reviewer’s ‘skill’ in RoB assessments; if a senior reviewer, or a reviewer otherwise 

naturally more likely to complete an assessment accurately, were assigned to the 

RobotReviewer-assisted arm, this would skew the results in favour of the 

intervention. A paired trial design was therefore selected instead to minimise these 

risks. 

Design 

A two-arm, clustered, randomised, single-blind, parallel group, non-

inferiority trial was conducted between February 2018 and March 2020. A clustered 

design was selected to account for similarities of studies and reviewers within each 

review. Teams of individuals conducting systematic reviews (hereafter ‘reviewers’ 

and ‘review’, respectively) using Covidence, an online systematic review platform 

[13], were recruited. Each review acted as a cluster, and each study served as the unit 

of randomisation.  

This trial is reported in line with the Consolidated Standards of Reporting 

Trials (CONSORT) checklist (included as Appendix E). 

Objectives 

The aim of the trial was to assess the effectiveness of machine learning 

assistance for systematic review RoB assessments. This was assessed using two co-

primary study objectives: 
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RQ3.1) Is the accuracy of RobotReviewer-assisted RoB assessments non-

inferior to human-only RoB assessments? 

RQ3.2) Is the person-time required for RobotReviewer-assisted RoB 

assessments less than the person-time required for human-only RoB 

assessments? 

Participants 

Eligibility 
Review teams were eligible for inclusion if their reviews met the following 

criteria:  

1. The systematic review was health related. 

2. Risk of Bias assessment was planned to be undertaken in Covidence using 

the Cochrane Risk of Bias 1.0 template. 

3. Risk of Bias assessment would be completed by two independent reviewers, 

and a consensus assessment by a third reviewer. 

4. The systematic review could contribute a minimum of four controlled trials 

to the analysis. 

5. The review authors had not used RobotReviewer previously. 

Within eligible reviews, individual studies were eligible for trial inclusion if: 

1. A readable PDF could be retrieved. 

2. RobotReviewer was able to complete an assessment of the study’s PDF. 

Recruitment 
Recruitment emails were sent to Covidence users who: 

1. Were leading a health-related systematic review. 

2. Had elected to use the Cochrane RoB 1.0 template. 

3. Were leading a review with at least four included studies for which RoB 

assessment had not been initiated. 

The list of potentially eligible users was generated in collaboration with the 

engineering team from Covidence. Specifically, they assisted in writing a SQL query 

of the Covidence database to identify users who (1) had at least three collaborators 
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on their review, (2) had at least one study in the included stage with a blank 

Cochrane RoB template, (3) had not yet completed full text review, and (4) were 

active within the previous month on Covidence. This query was originally slightly 

narrower, seeking users who had at least ten studies with blank Cochrane RoB 

templates in their included list; a second iteration targeted users with at least five 

studies meeting this criterion. However, after the low recruitment rate became clear 

(discussed in the next paragraph), the SQL query was broadened to gain more 

potential participants. Twitter was also used as a potential recruitment tool to make 

use of personal networks; this did not result in any successfully recruited 

participants. 

Recruitment emails were sent fortnightly for the duration of the trial. 

Recipients of these emails were documented; if an individual had previously been 

contacted and they appeared on a subsequent SQL query result as a potential 

participant, they were not re-contacted for four months.  

Individual video chat sessions were offered to respondents to clarify trial 

details. Where these were not arranged, all details in relation to trial participation 

were established via email. The research team was available to participants 

throughout trial participation if they had any questions or concerns. Potential 

participants were offered a free Covidence review (value US$240) and a US$150 

Amazon gift card as compensation for trial participation. 

Risk of Bias assessment 

The established approach to Risk of Bias assessment is for two reviewers to 

complete separate, blinded assessments, followed by adjudication by a third reviewer 

to resolve any discrepancies between the two initial assessments [14]. Various 

assessment tools and templates are available which describe criteria for quality 

evaluation [15]. Cochrane Risk of Bias 1.0 is a domain-based evaluation tool and 

uses seven domains to assess study quality [16]. RobotReviewer performs 

assessments for four of these domains: Sequence Generation, Allocation 

Concealment, Blinding of Participants and Personnel, and Blinding of Outcome 

Assessment. The remaining three domains are not assessed by RobotReviewer partly 

due to current technological constraints; Incomplete Outcome Data and Selective 



141 

 

Outcome Reporting both require calculations and consultation of a review protocol 

current outside of RobotReviewer’s capabilities, while Other Sources of Bias is by 

its design a domain to record non-standardised human judgements on study bias. 

When completing a systematic review using Covidence, users may select to 

use customised assessment domains or to use a pre-formatted Cochrane Risk of Bias 

1.0 template. Users may then select a high, low, or unclear risk of bias judgement, 

record a justification for their decision, usually by recording a relevant section of the 

study text, and provide additional supporting comments. A blank Covidence 

Cochrane Risk of Bias 1.0 assessment form is shown in Figure 6.3. 

 

 

Figure 6.3. Blank Cochrane Risk of Bias template in Covidence 

 

Trial Procedure 

Random sequence generation 
For reviews that met the inclusion criteria, I assigned participating reviewers 

alphabetically to be defined as either Reviewer 1 or as Reviewer 2 for the purposes 

of intervention allocation. I then used a computer random number generator [17] and 

simple randomisation to assign the review’s included studies in a 1:1 ratio to have 

either Reviewer 1 or Reviewer 2 receive RobotReviewer assistance.  



142 

 

RobotReviewer assistance 
Study PDFs, previously uploaded to Covidence by review authors, were 

downloaded from Covidence and uploaded to RobotReviewer for assessment. 

Judgements and supporting text generated by RobotReviewer were entered into the 

Covidence RoB form for the reviewer randomised to the intervention arm.  

Allocation concealment 
Individual reviewers were unaware of each study’s allocation until they 

opened their individual RoB form. At this time, they were presented either with a 

blank form if the reviewer was allocated to the comparison arm for that study, or a 

form pre-populated with RobotReviewer suggestions if the reviewer was allocated to 

the intervention arm for that study. 

Blinding of outcome assessment 
The consensus reviewer was blinded to individual reviewer allocation on 

each study. Reviewers were instructed not to discuss study allocation with each 

other, nor with the individual completing consensus. Reviewer names and study IDs 

were replaced with numeric identifiers during data analysis.  

Intervention  

In the intervention arm, Risk of Bias forms in Covidence were pre-populated 

with suggested judgements and annotations generated by RobotReviewer. Reviewers 

were advised that they were free to retain all, none, or some RobotReviewer 

suggestions as they saw appropriate. An example of how a pre-populated RoB form 

might appear in an intervention-arm study is shown in Figure 6.4. 
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In the comparison arm, empty individual Cochrane RoB 1.0 forms (Figure 

6.3) were presented to participants and completed without RobotReviewer 

assistance. 

Figure 6.5 provides an overview of the trial study design. 

 

Figure 6.5. Trial study design 

Outcome measures 

The trial had two co-primary outcomes: accuracy of individual assessments, 

and person-time required to complete individual assessments.  

Figure 6.4. Risk of Bias form pre-populated with RobotReviewer assistance 
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Accuracy 
Accuracy was defined as agreement between an individual RoB assessment 

and the consensus RoB assessment completed by a third reviewer. Covidence 

records judgements from both individual forms and the consensus form. Once the 

consensus assessment was marked as complete, all included studies’ judgements 

were downloaded. Because RobotReviewer combines ‘high’ and ‘unclear’ 

judgements, these were treated as the same for the purposes of assessing accuracy.  

Overall accuracy was assessed as a primary outcome. Accuracy at the domain 

level was assessed as a secondary outcome.  

Person-time 
Person-time was measured as the total time spent on the RoB form for each 

study, from beginning an assessment until it was marked as complete. Covidence 

records all actions with a timestamp, providing an approximation of session time on 

the RoB form. The total time spent in all sessions, excluding any idling time, which 

was defined as a period of inaction greater than 20 minutes, was used in the analysis. 

Statistical analysis 

Statistical methods and analysis for this trial were designed and conducted by 

Dr Joanne McKenzie. Analyses were conducted in Stata [18]. 

Sample size calculation 
The sample size was calculated prior to trial commencement for the accuracy 

co-primary outcome. The potential accuracy outcomes of a single RoB assessment 

can be described in a 2x2 table (Table 6.1).  
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Table 6.1. Potential accuracy outcomes of an individual Risk of Bias assessment 

  RobotReviewer- 

assisted 

  Correct (1) Incorrect (0) 
H

u
m

a
n

-o
n

ly
 

C
o

rr
ec

t 
(1

) 
p11 p10 p1+ 

In
co

rr
ec

t 
(0

) 

p01 p00 

  p+1 

 

The null and alternative hypotheses are as follows: 

• H0: The accuracy of RobotReviewer-assisted RoB assessments are inferior to 

human-only RoB assessments 

• H1: The accuracy of RobotReviewer-assisted RoB assessments are non-

inferior to human-only RoB assessments 

Previous studies found 78.3% accuracy of two reviewers measured against a 

previously published expert RoB judgement, while the accuracy of an entirely 

automated assessment was 71.0% [4]. In this slightly altered scenario of combining 

human and ML-generated assessments, we conservatively assumed the higher rate of 

approximately 30% inaccuracy. A type I error rate of 2.5% [19] was used, and an 

intra-review correlation of 0.10 and an average of 10 studies per review were 

assumed.  

Based on these assumptions, a series of potential scenarios were modelled to 

detect a risk difference between arms; detection of a smaller risk difference requires 

a greater sample size to have sufficient power for analysis. While aiming to set the 

non-inferiority limit as narrow as possible to maximise the strength of the trial 

results, it was also necessary to ensure that a practical and achievable sample size 

was used. I therefore selected a non-inferiority limit –0.10, which required 26 

reviews to detect a difference between p01 and p10 with 90% power.  

With a non-inferiority limit set at –0.1, this is equivalent to testing: 
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• H0: p+1 – p1+ ≤ –0.1 

• H1: p+1 – p1+ > –0.1 

Figure 6.8 depicts the regions of inferiority and non-inferiority based on the 

non-inferiority limit.  

 
Figure 6.6. Regions of inferiority and non-inferiority 

Accuracy 
Differences in the marginal proportions of studies with accurate RoB 

assessments with and without RobotReviewer assistance were calculated across all 

RoB domains for the primary accuracy outcome, and for each domain individually 

for the secondary accuracy outcome. An adjusted McNemar test, which adjusts the 

variance of the difference to account for the clustered and matched-paired design of 

this trial [20], was used to calculate 95% confidence intervals for accuracy. 

Clustering was at the level of the review, with each cluster including multiple studies 

and also including four RoB judgements for each study in calculation of the primary 

outcome (i.e. overall accuracy). The adjusted McNemar statistic and its associated 

Wald confidence interval have been shown to perform well for a small number of 

clusters [21]. 

Person-time 
A mean difference between RobotReviewer-assisted person-time and human-

only person-time required to complete an individual assessment was calculated. The 

variance of the difference was adjusted for clustering of observations within the 

same review, arising from the same reviewers undertaking multiple assessments 

within each review (cluster) it was also then adjusted to account for the effect of 

clustering. 

-0.2 -0.1 0 0.1
Risk difference in accuracy

Inferior

(p+1 – p1+) ≤ –0.1

Non-inferior

(p+1 – p1+) > –0.1
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Ethical considerations 

The study protocol was registered with the Monash University Human 

Research Ethics Committee (MUHREC) for approval as Project 11256, and 

additionally received approved according to UCL Institute of Education Guidelines 

for postgraduate research. Funding was provided by a joint PhD studentship from 

University College London and Monash University. 

There was no risk associated with participants’ safety from participation in 

this study. No names or identifying information are included in any published data, 

including presentations and publications. Names of participants and their systematic 

reviews were stored in a separate log on a password-protected file, stored securely on 

a University College London network server. This identifying information was 

available only to research team members. 

Participants were free to withdraw at any time during the trial. 

Results 

Under the filters for recruitment emails described in the methods, an average 

of 68.32 potential participants were contacted with each recruitment round, for a 

total of 1,708 review teams directly contacted. On average, 4.2% responded to the 

initial email; some of these forwarded information about the trial to colleagues, 

resulting in 86 potential leads. Of these, 27 were immediately lost to follow-up and 

were never assessed for eligibility. For reviews that were assessed for eligibility in 

the trial, 19 were eventually deemed ineligible after discussion of the review method 

requirements with the potential participants; a further six declined to participate after 

learning more details about the trial, and 19 were lost to follow-up after their 

eligibility assessment. 

Fifteen review teams were recruited between February 2018 and March 2020, 

all of which received RobotReviewer assistance. The decision in March 2020 to 

close the trial stemmed two practical decisions: first, to ensure analysis from this trial 

could be included in this PhD thesis; second, to exclude the possibility of any 

longitudinal effects (e.g., changes in practice, uptake of a new Cochrane RoB 

template) affecting the findings. Eight reviews had not completed RoB assessment as 
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of May 2020; seven of these indicated these assessments had been indefinitely 

postponed due to other work commitments or lack of funding, and one changed the 

search criteria resulting in the exclusion of all previously included eligible studies. 

Topic areas examined in these excluded reviews were: airways, brain injury, 

exercise, heart, occupational health, pain, and stroke. The remaining seven reviews 

were included in the analysis, and included 145 studies, 290 individual assessment 

forms, and 1160 Risk of Bias judgements across the four Cochrane Risk of Bias 

domains for which RobotReviewer provides assistance. Topic areas examined in 

these reviews were: airways, anaesthesia, heart, hepato-biliary, musculoskeletal, and 

public health. 

 
Figure 6.7. Trial flow diagram 

Note: Because each study is assessed twice in this paired design, every study is allocated to both trial arms. 

 

Lost to follow-up: 
Reviews (n = 8) 

(mean studies per review 26, range 4-50) 

• Incomplete RoB consensus (n = 7) 

• Change in search criteria (n = 1) 
Studies (n = 218) 

• Review excluded (n = 207) 

• Excluded from review due to change in 
search criteria (n = 11) 

Enrolment 

Assessed for eligibility: (n = 59 reviews) 

Excluded (n = 44 reviews) 

• Not eligible (n = 19) 

• Declined to participate (n = 6) 

• Lost to follow-up (n = 19) 

Randomised: (n = 15 reviews) 

 

Allocated to human-only arm: 
Reviews (n = 15) 
Studies (n = 404) 

• Not eligible (n = 41) 

Received allocated intervention: 

Reviews (n = 15) 
(mean studies per review 19, range 4-64) 

Studies (n = 363) 

Did not receive allocated intervention: (n = 0) 

Analysed: 
Reviews (n = 7) 

(mean studies per review 21, range 4-64) 
Studies (n = 145) 

Excluded from analysis: (n = 0) 

Allocated to RobotReviewer-assisted arm: 
Reviews (n = 15) 
Studies (n = 404) 

• Not eligible (n = 41) 

Received allocated intervention: 

Reviews (n = 15) 
(mean studies per review 19, range 4-64) 

Studies (n = 363) 

Did not receive allocated intervention: (n = 0) 

Allocation 

Lost to follow-up: 
Reviews (n = 8) 

(mean studies per review 26, range 4-50) 

• Incomplete RoB consensus (n = 7) 

• Change in search criteria (n = 1) 
Studies (n = 218) 

• Review excluded (n = 207) 

• Excluded from review due to change in 
search criteria (n = 11) 

Analysed: 
Reviews (n = 7) 

(mean studies per review 21, range 4-64) 
Studies (n = 145) 

Excluded from analysis: (n = 0) 

Follow-Up 

Analysis 
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Accuracy 

The risk difference between RobotReviewer-assisted RoB judgements versus 

human-only RoB judgements was –0.014 (95% confidence interval: –0.093, 0.065). 

As both the result and inferior bound of the 95% confidence interval are above the 

pre-defined inferiority threshold of –0.10, these results support the conclusion that 

the accuracy of RobotReviewer-assisted RoB judgements are not inferior to human-

only RoB.  

For the secondary outcome of domain-level accuracy, the risk differences 

(and 95% confidence intervals) were –0.014 (–0.091, 0.063) for Sequence 

Generation, –0.055 (–0.211, 0.101) for Allocation Concealment, –0.021 (–0.213, 

0.172) for Blinding of Participants and Personnel, and 0.034 (–0.142, 0.211) for 

Blinding of Outcome Assessors. Results are illustrated in Figure 6.8, and detailed 

data are presented in Table 6.2. 

  
Figure 6.8. Effect of RobotReviewer assistance on RoB accuracy, overall and by domain 

 

 

 

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
Risk difference in accuracy

Overall 

 
Sequence Generation 

 
Allocation Concealment 

Blinding of Participants and Personnel 

Blinding of Outcome Assessors 

RobotReviewer-assisted RoB is non-inferior RobotReviewer-assisted RoB is inferior 
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Table 6.2. Accuracy data for Risk of Bias 

  RobotReviewer-assisted Human-only  

 N Accurate Inaccurate Accurate Inaccurate Risk Difference [95% CI] 

Overall 580 515 65 523 57 –0.014 [–0.093, 0.065] 

Sequence 

Generation 
145 131 14 133 12 –0.014 [–0.091, 0.063] 

Allocation 
Concealment 

145 122 23 130 15 –0.055 [–0.211, 0.101] 

Blinding of 

Participants 
and 

Personnel 

145 126 19 129 16 –0.021 [–0.213, 0.172] 

Blinding of 

Outcome 

Assessors 

145 136 9 131 14 0.034 [–0.142, 0.211] 

 

Person-time 

The weighted mean difference in person-time per individual assessment was 

1.40 minutes faster for RobotReviewer-assisted assessments (95% confidence 

interval: –5.20, 2.41). Values across all reviews ranged from 51 seconds to 49 

minutes, with a mean of 9 minutes and 40 seconds. These results are insufficient to 

conclude that the person-time required for RobotReviewer-assisted RoB assessments 

is less than person-time required for human-only RoB assessments. Results are 

illustrated in Figure 6.9, and individual review results are presented in Figure 6.10. 

 

-6 -4 -2 0 2 4 6

Difference in RoB time (minutes)

RobotReviewer-assisted is faster Human-only is faster

Figure 6.9. Effect of RobotReviewer assistance on time to complete RoB 
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Figure 6.10. Person-time results grouped by review 

Discussion 

Accuracy of automation-assisted Risk of Bias is non-

inferior to human-only Risk of Bias 

Establishing the safety of automated or partially automated workflows in 

systematic reviews is key to building the trust necessary to facilitate adoption of 

these systems [11, 12]. In this randomised trial in ‘real-world’ systematic reviews, 

results support the conclusion that machine learning assistance does not negatively 

impact the accuracy of Risk of Bias assessments. Effect on person-time, while 

suggesting a potential benefit, remained uncertain. In summary, this trial found a 

partially automated process resulted in no erosion of systematic review quality; 

systematic reviewers can therefore incorporate suggestions from RobotReviewer in 

their methods with confidence the high quality of their evidence will be maintained. 

In the face of increasing volume of research output [22], rising 

methodological expectations [14], and an increasing demand for review currency 

[23], improving the efficiency of health evidence synthesis is a critical challenge for 

the field. Machine learning for systematic reviews has the potential to make a 

significant contribution to these challenges, but despite many years of active research 

there has been limited uptake of automation innovations [10]. 

 

 Human-only 

 RobotReviewer-assisted 
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Two novel aspects of the design of this trial substantially strengthen the 

evidentiary foundations for automation in health-focused systematic reviews: a focus 

on combining human and machine effort and conduct in real-world conditions rather 

than artificial or constructed laboratory comparisons.  

This trial is the first randomised trial of machine-assistance, rather than 

machine-only Risk of Bias assessments. As discussed in this chapter’s introduction, 

previous studies have examined the reliability and accuracy of RobotReviewer 

assessments alone in comparison to human assessments alone. Building on these 

previous results, this trial now shows that RobotReviewer can be combined with 

human effort while maintaining a similar quality of output in RoB accuracy. 

Although studies that examine the combination of machine and human effort 

are more difficult to conduct than direct comparisons, they are critical to the 

identification of automation tools that meet the standards of this community and 

enable widespread use [24, 25]. As in many other fields of machine learning 

research, this augmentation of human effort in systematic reviews may be a more 

feasible short- or medium-term aim than replacement. Current literature also 

suggests it is the preference of evidence synthesis professionals that automation is 

used in this assistive manner. The previous qualitative work, presented in Chapter 4, 

showed that guideline developers are wary of automation that removes human 

judgement in evidence synthesis [11]. This point has also been highlighted by the 

International Collaboration for the Automation of Systematic Reviews (ICASR), 

who have noted that external stakeholders may be concerned that automation will 

completely erase valuable human judgement and nuance [26].  

In addition to previous literature’s somewhat narrow focus on direct 

comparisons of ML versus human-only RoB assessments, the vast majority of 

research into the use of machine learning for systematic reviews, and all previous 

research into RobotReviewer, has been conducted in artificial conditions, testing 

efficacy in highly selected reviews and reviewer subjects. These idealised conditions 

provide invaluable foundations upon which this trial was built, but they are not 

easily generalisable to the variable skill-levels and approaches of systematic 

reviewers, and to the highly heterogeneous topics of ongoing real-world reviews. As 

such, their findings do not provide information regarding ‘effectiveness’ and fall 
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short of supporting real-world adoption. This is also supported by findings from my 

qualitative study of health guideline developers; though substantial ‘efficacy’ 

research is available, they still raised the need for further evidence to support 

automation adoption [11], which suggests that effectiveness research may be a 

critical contribution towards adoption.  

The challenges of conducting an ‘effectiveness’ trial of this type should be 

noted, however. The recruitment rate was consistently low and for feasibility reasons 

the trial was stopped before the planned sample size was reached. While the final 

dataset proved sufficient for analysis of the primary accuracy outcome, it likely 

impacted on this study’s ability to assess the effect of machine assistance on the 

person-time outcome and on domain-level accuracy. The selected statistical 

approach, while methodologically strong, also meant that clustering effects were 

taken into account, reducing the power of the study to detect a true effect. It might be 

wise to learn from this for future research and select an analytical approach that is 

less vulnerable to these effects. Future studies should also endeavour to develop 

novel methods of promotion and recruitment to address these feasibility challenges.  

In summary, this study and its results should encourage well-controlled 

effectiveness studies, and I suggest they are essential for the development and 

adoption of machine learning in systematic reviews. Furthermore, these results 

support a research focus on ‘hybrid’ systems which “combine the strengths of human 

volunteers and AI” [27].  

Contribution of analytical frameworks 

It is useful to restate the results of this trial as examined through the lenses of 

the selected methodological frameworks, as described in Chapter 3. First, this trial 

tested the non-inferiority of a level 4 or a level 5 automation tool [28, 29]. Because 

of the flexibility in the choice given to the human researcher, RobotReviewer cannot 

be entirely fitted into either of these levels, at least not in the context of this trial nor 

in typical use and under its current guidance. However, given that the trial’s results 

showed the quality of automation-augmented RoB were non-inferior to human-only 

RoB, it can also be concluded that allowing human researchers to choose to some 
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extent between levels of automation according to their situational preference is 

feasible methodologically defensible. 

The results were not sufficient to draw confident conclusions around the 

effect of automation on person-time use for Risk of Bias, and this trial has left this 

question open. Regarding automation accuracy, this trial has contributed to 

observability for potential future adopters by making its methods and data available 

for review. As for relative advantage in the accuracy of partially automated Risk of 

Bias, the results of this trial can be used to allay any concerns that incorporating 

machine learning into judgement tasks would negatively impact review quality or 

negatively influence reviewer behaviour to become negligent in their assessments. 

That is, while this trial does not show a relative advantage per se, it does instead 

address existing concerns that automation might introduce a relative disadvantage in 

the quality of health evidence. 

Trial limitations 

Several limitations of this trial should be noted. Most importantly, the 

methods of time data collection proved to be insufficiently precise to draw confident 

conclusions. Data on the time taken to complete each Risk of Bias assessment was 

captured as keystrokes or clicks while participants were interacting with the RoB 

form in Covidence. Mean time to complete an assessment varied between reviews 

from seconds to many minutes, but was generally consistent within a review (i.e., 

cluster). This suggests heterogeneity in the way individual reviewers interacted with 

the Covidence Risk of Bias form. Some reviewers seemed to have worked through 

each assessment, inputting data as they went, whereas others completed all 

assessments within seconds, suggested they completed their assessments and 

subsequently recorded their decisions in Covidence.  

The choice of this method of data collection was intended to avoid the bias 

and workflow disruption of self-reported outcomes. These results suggest that in the 

context of variation in human-computer interaction, self-reported outcomes might 

provide better data, but further work is needed to determine the best approach given 

the risks of self-reported measurements. On the other hand, the average time to 

complete an assessment (9 minutes 40 seconds) was generally similar to that found 
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in previous literature [30], suggesting the measurement was not entirely inaccurate. 

Finally, a more precise measurement would be preferable in order to exclude the 

time spent on domains other than those assisted by RobotReviewer. Including total 

time increases the signal to noise ratio in observing the effect of the intervention, and 

therefore reduced the ability of this statistical analysis to detect any effect. While 

both arms included the same number of extraneous assessment domains, and 

therefore should be inflated by the same amount of time on average, more selectively 

measuring the time spent on RobotReviewer-assisted domains would strengthen 

these conclusions. The limitations of this approach are an important methodological 

finding, and future studies in this field should include multiple methods of data 

collection in order to triangulate a more precise measure of person-time.  

An additional limitation was the failure to meet the intended sample size. 

While the data proved to be sufficient for the statistical analysis of the primary 

accuracy endpoint, a larger sample size would undoubtedly have been preferable. 

Persistent delays in recruitment made reaching the target sample size infeasible and 

risked the successful completion of the trial. I therefore decided to halt recruitment 

and disseminate the study results in order to contribute to the evidence base in the 

use of automation in health evidence. A larger sample size might also have mitigated 

another risk to the generalisability of these results which must be acknowledged: 

given that each individual participant interacted with RobotReviewer multiple times 

in the course of their review, it is possible that a learning effect influenced one or 

both of the primary outcomes examined in this trial. For example, a reviewer might 

feel sceptical at first of the RobotReviewer suggestions, but after several interactions 

determine that they tend to be accurate. This would influence the extent to which 

they retain the RobotReviewer suggested judgements and annotations, and 

consequently impact the time required to complete their assessments. However, it is 

also possible that a learning effect could have the opposite effect: a reviewer might 

determine they tend to disagree with the suggestions, creating additional work for the 

reviewer to remove the suggestions and create new judgements. 

Lastly, certain characteristics of RobotReviewer and of Cochrane Risk of 

Bias 1.0 could weaken the sensitivity and consequent impact of these findings. First, 

the combination of the ‘high’ and ‘unclear’ judgements, while consistent with 
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Cochrane methods, could conceal possible differences between study arms, resulting 

in a more positive result than is merited. Similarly, Cochrane’s method of applying 

an overall high/unclear rating for a study with any domain-level high/unclear rating 

might mask inaccuracies in RobotReviewer assessments. Finally, RobotReviewer 

currently only offers judgements on four of the seven Cochrane RoB 1.0 domains 

and does not support Cochrane’s RoB 2.0 tool, leaving some of the work of RoB 

assessment unassisted by automation and diminishing potential gains of adopting the 

tool. 

Conclusion 

This randomised controlled trial found that the accuracy of combined 

machine learning and human effort in Risk of Bias assessments is non-inferior to 

human effort alone. Study results indicated that use of RobotReviewer suggestions 

did not negatively impact on assessment accuracy overall and for the sequence 

generation domain; results for other domains were not conclusive. Systematic 

reviewers can safely adopt RobotReviewer to assist their individual RoB 

assessments. The study did not provide strong evidence in either direction regarding 

the impact of ML on the person-time of individual RoB assessments. Further 

research is warranted to better understand the effect of RobotReviewer-assistance on 

this outcome. Further studies are also appropriate to replicate these results for both 

person-time and for accuracy. 

In the context of health evidence synthesis methods, this randomised 

controlled trial has demonstrated the feasibility and benefits of randomised 

controlled effectiveness trials, and of focusing on combined human and machine 

learning effort. It is hoped these results and novel methodology will encourage 

others to pursue these methods and will facilitate wider adoption of ML systems for 

health evidence synthesis.   
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Chapter 7. Economic evaluation 

The cost-effectiveness of a semi-automated 

workflow to maintain a living evidence map 

Chapter overview 

This chapter will report on the results of a case study economic evaluation of 

a partially automated workflow applied to an ongoing living map of COVID-19 

evidence; this analysis has since been published. A background of the living 

COVID-19 evidence map will first be provided, followed by the methods used in 

this cost-effectiveness analysis. The three automation tools tested, along with two 

modifying methodological choices concerning screening options, will be described, 

resulting in the comparison of eight study arms. These study arms were evaluated for 

their incremental effectiveness in terms of recall compared against the baseline 

workflow, as well as for their cost over a four-week time horizon. The results 

presented will demonstrate that the partially automated workflow dominated the 

baseline workflow; that is, use of automation proved less costly and more effective 

than the manual comparator. These results will then be examined through several 

sensitivity analyses, and finally placed within the context of the broader literature 

and within the analytical frameworks selected for this thesis.  
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Introduction 

The early months of 2020 saw the beginning of what would become the 

global COVID-19 pandemic. While economies and societies struggled with the 

implications, the serious and rapidly evolving situation led to an unprecedented 

growth in health evidence synthesis effort.  

COVID-19 literature grew exponentially. The United States National 

Institute of Health (NIH) had indexed more than 28,000 articles as of early June 

2020 [1]; as of 20 July 2021, this has grown to a dizzying 168,000 articles. As 

described in earlier chapters, keeping up with peer-reviewed literature has become 

near impossible, and this was repeated in the context of the COVID-19 pandemic. 

This created a unique opportunity and need for artificial intelligence or automation 

systems to be put into current use, and many took advantage of the opportunity. 

Several academic and clinical centres began creating living evidence 

summaries, systematic reviews, evidence maps, and guidelines, in addition to some 

private sector efforts towards automation-curated search results and crowd-sourced 

evidence development. A thorough, though non-systematic and non-exhaustive, list 

published by the EPPI-Centre identified more than 250 COVID-19 maps, auto-

searches, and databases as of 19 June 2020 [2]. Each had slightly differing aims, 

scope, and deliverables. 

In addition to the list of COVID-19 resources, the EPPI-Centre started 

producing a living systematic map of COVID-19 research evidence, commissioned 

by the Department of Health and Social Care England (DHSC), via the Evidence 

Reviews Facility, a team drawn from University College London, the University of 

York, and the London School of Tropical Hygiene and Medicine [3]. The first search 

(used as the starting point for subsequent numbering of searches) for this map was 

published online on 4 March 2020; the initial few searches varied slightly in their 

interval, but searches were consistently published weekly following search #3 on 24 

March 2020.  
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Figure 7.1. Living COVID-19 evidence map published by the EPPI-Centre.  

The top row (“All versions”) shows the total studies found in each topic area, while subsequent rows show the 

relative number of studies found in each version. 

A team from the DHSC Reviews Facility (‘the map team’) continues to 

maintain this living systematic map of COVID-19 evidence (‘the evidence map’ or 

‘the COVID-19 map’). The COVID-19 map was originally created, updated, and 

maintained using a largely manual workflow, underpinned by conventional search 

and study selection methods and coding tools, hosted in EPPI-Reviewer Web (ER-

Web), and repeated on a weekly cycle. However, the rapidly increasing rate of 

publication of articles with COVID-19-related terms included in their titles or 

abstracts meant the manual workload involved in maintaining the COVID-19 map 

was predicted to exceed the capacity of resources available for screening and coding 

articles. Screeners found themselves pressed for time to complete their share of work 

by the end of each week, and search specialists found the task of maintaining their 

study list and deduplication increasingly time-consuming as the number of previous 

included and excluded records continuously grew. Search yields steadily rose from a 

few hundred each week to between two and three thousand records per week [4]. 

Therefore, in parallel with continued maintenance of the COVID-19 map 

using the current workflow, the map team decided to develop, pilot, and evaluate a 
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new, semi-automated workflow, enabled by Microsoft Academic Graph (MAG) and 

MAG Browser (also hosted in EPPI-Reviewer Web).  

Microsoft Academic Graph (MAG) is an open access dataset comprising 

more than 245 million bibliographic records of research articles from across all 

sciences, with the aim of creating a single, comprehensive dataset of citation 

information [5]. These are then connected in a large network graph of concept and 

citation relationships. MAG represents a significant innovation in search in several 

ways. First, it eliminates the need to search multiple databases by consolidating all 

information into one database, eliminating the need for complex, bespoke Boolean 

searches which require significant human expertise and time. Second, MAG 

automatically indexes records rather than the standard model of relying on publishers 

for manual updates. Two key questions arise in relation to these innovations. First, 

does MAG match the recall of multi-database Boolean searches? Second, if MAG is 

substantially larger than standard sources, does its size negatively impact its 

precision? 

Because of its design, MAG not only offers an opportunity to streamline the 

searching process to a single source, but also facilitates the integration of machine 

learning (ML) tools. Put another way, under the Diffusion of Innovations 

framework, MAG enables expanded compatibility in the pragmatic sense of 

interoperability with existing systems and automation strategies. Finally, the map 

team sought to test several other automation tools, namely a binary (include or 

exclude) ML classifier and active learning priority screening, in conjunction with 

other methodological variations explained further in the following Methods section. 

The intention of this new MAG-enabled, semi-automated workflow was to 

make the process of maintaining the COVID-19 map more efficient and therefore 

more sustainable. If the simulated performance of the new semi-automated, MAG-

enabled workflow reached acceptable levels during an initial trial period, the map 

team planned to adopt this new workflow for maintaining the COVID-19 map, 

instead of the original manual workflow.  

Typical concerns regarding automation in systematic reviews were raised 

within the team. Most importantly, given the risk-aversion of EBM communities and 
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consequent focus on exhaustive searches which aim to not miss any relevant 

information, the map team needed to know the effectiveness of the new MAG-

enabled workflow in terms of sensitivity (recall). Should the new workflow prove 

less costly but also less effective, requiring less time and human resources but not 

identifying as many eligible includes, a specific value of cost per eligible record 

missed would be helpful in informing the team’s decision regarding their preferred 

workflow. 

This study therefore aimed to conduct an economic evaluation to assess the 

cost-effectiveness of this new semi-automated, MAG-enabled workflow, compared 

with the conventional manual workflow (current practice), for maintaining the 

COVID-19 map. 

Methods 

This study was designed in collaboration with Dr Ian Shemilt. Dr Shemilt 

contributed simulation data, while I performed the data collection, analysis, and 

presentation. 

Objective 

The purpose of this project was to inform the decision-making process of the 

map team in determining whether to adopt the semi-automated workflow or to 

continue with the manual workflow (both described in further detail in the following 

sections). More specifically, the research question was: 

RQ4.1) What is the performance and cost-effectiveness in terms of recall, 

costs, and precision of a semi-automated search and screening 

method for a living evidence map of COVID-19 evidence? 

To answer this question, a cost-effectiveness analysis was conducted using a 

basic decision-analytic modelling framework comparing the semi-automated 

workflow (treated as the intervention) with the manual workflow (treated as the 

comparator). This model-based economic evaluation framework had previously been 

used to assess the cost-effectiveness of using different screening methods in a case-

study systematic review of the effects of undergraduate medical education [6]. This 
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cost-effectiveness analysis is reported in line with the Consolidated Health 

Economics Evaluation Reporting Standards (CHEERS) statement (included as 

Appendix F) [7].  

Study arms 

The incremental costs and effects of using eight different potential workflows 

were simulated. The study took a pragmatic approach; these eight arms were defined 

by the adoption decisions made in practice in the live workflow by the map team. 

These included three comparator (manual) arms and five intervention (semi-

automated) arms. Costs and effects were simulated over a four-week time period in 

June and July 2020, representing searches 16 through 19, immediately preceding the 

incremental adoption of automation tools in the live map workflow.  

The eight study arms differed across five domains, described in more detail 

in the following sections. All arms included manual screening of studies and 

deduplication of search results against all previous searches’ included and excluded 

studies, but differed in their search method, use of a binary machine learning 

classifier, use of prioritised screening, use of a fixed screening target, and target 

recall.  

Table 7.1. Characteristics of study arms 

 Arm Search 
Binary ML 
classifier 

Priority 
screening 

Fixed 

screening 
target 

Target 
recall 

M
a

n
u

a
l Comparator A MEDLINE & Embase    1.0 

Comparator B MEDLINE & Embase    0.95 

Comparator C MEDLINE & Embase   ● 0.95 

S
e

m
i-

a
u

to
m

a
te

d
 Intervention A MEDLINE & Embase ●   0.95 

Intervention B MEDLINE & Embase ● ● ● 0.95 

Intervention C MAG    1.0 

Intervention D MAG ●   0.95 

Intervention E MAG ● ● ● 0.95 

Search: MAG versus MEDLINE & Embase  

MAG 

Prior to the commencement of this study, members of the EPPI-Reviewer 

team, in collaboration with Microsoft [5] had developed a novel machine learning 
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recommender model to automatically search each update of the MAG dataset. Recall 

from this chapter’s introduction that MAG searches represent a substantial 

methodological shift for search in several ways: it is a single source rather than 

multiple databases; it automatically updates rather than relying on publishers to 

index new records; and it can be searched with machine learning rather than with 

human-developed bespoke (and therefore costly) Boolean search strategies. This 

model was used to score new records published in each MAG update; records above 

an optimised threshold are then imported into the map project in EPPI-Reviewer 

Web (ER-Web) [8]. Once imported to ER-Web, duplicates were semi-automatically 

identified against known included studies and excluded studies and discarded.  

MAG was adopted as the single source of potentially eligible records by the 

map team from search 35 onward. To simulate the use of MAG in study arms 6 to 8, 

the records uniquely identified in the MAG dataset during the evaluation period were 

screened.  

MEDLINE & Embase 

Conventional Boolean searches were run on MEDLINE and Embase by 

information specialists on a weekly basis. Each week, the search results were 

downloaded to an EndNote library and duplicate records discarded, assisted by 

EndNote’s semi-automated duplicate detection. This process leaves the final decision 

entirely up to the information specialist but suggests duplicates that should be 

removed. In other words, de-duplication could be viewed as a level 5 automated task 

in the framework presented in Chapter 3. Once the weekly search was deduplicated, 

the results were also deduplicated against all previously identified included studies 

and excluded studies. It is worth noting here that due to the progressively larger 

library of known includes and excludes, this second round of deduplication steadily 

increased in time demand. The search results were then provided to the screen-

coding team for screening in ER-Web [8]. Once the citations were imported into the 

ER-Web tool, the screening tasks (i.e., study records) were randomly allocated 

among the map team. The screen-coders of the map team then completed their 

screening, including retrieval of any full-texts as they judged necessary. 

The MEDLINE and Embase workflow was used from search 1 through 

search 34, when the team adopted the MAG-enabled workflow. Screening data from 
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the live workflow between searches 16 through 19 were used to simulate 

comparators A, B, and C and interventions A and B. 

Binary machine learning classifier versus none 
A binary machine learning classifier was designed and developed to 

determine study eligibility. The classifier scores new records according to the 

likelihood, according to the ML classifier model, that they are eligible for inclusion 

in the living map. The threshold for inclusion was calibrated during development of 

the classifier by members of the map team with a target 0.95 recall. The model was 

trained on known included and excluded studies resulting from the MEDLINE and 

Embase searches for searches 1 through 15. Once the model was trained on these 

data, it was applied to the search results from either MAG or MEDLINE/Embase 

(depending on the study arm) for the evaluation period (searches 16 through 19). 

Priority screening versus none 
Priority screening used an active learning model to build upon the results of 

the binary ML classifier. When studies for screening are initially displayed in ER-

Web, they are ordered according to the results of the binary ML classifier; higher 

scoring studies, which are more likely to be included according to the classifier, are 

listed at the top, and lower scoring studies, which are less likely to be included 

according to the classifier, are listed at the bottom. As screeners begin to record their 

decisions, the priority screening mode observes these decisions and periodically 

updates the order of the study list such that studies more likely to be included 

according to previous decisions are now listed towards the top. This approach of 

observing a user’s decisions and updating a machine learning model accordingly is 

called active learning, as was described in Chapter 2. This ‘priority screening mode’ 

was adopted by the map team from search 30 onwards. 

Fixed screening target versus none 
The final two variable decision points of the variant workflows are not forms 

of automation, but rather other methodological choices which may or may not 

impact the effects of automation on the map workflow. Given that the map team – 

like any group of people with a given task – had a finite amount of person-time to 

spend on the task of screening, they selected an overall screening target of 1,500 

study records to be screened each week. For the purposes of data collection in this 
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study, this fixed screening target was simulated in searches 16 through 19 to produce 

evaluation data. For study arms not using a fixed screening target, simulated manual 

screening continued until either 1.0 recall or 0.95 recall was reached, depending on 

the study arm. The map team adopted a fixed screening target in their live workflow 

from search 30 onwards. 

Target recall = 1.0 versus target recall = 0.95 
The target recall, in theory, of most systematic reviews should be 1.0. That is, 

author teams aim to exhaust all available literature, and to identify every single 

eligible study for inclusion in their review (or in this case, evidence map). Thus, the 

baseline workflow was working to a target recall of 1.0, and this target was evaluated 

in the first of the MAG-enabled study arms (intervention C). When the target recall 

is lowered to 0.95, this signals a slightly relaxed standard, which is willing to lose or 

sacrifice 5% of the available literature. Because the binary ML classifier was 

calibrated to 0.95, any workflow including this tool implicitly works to a target recall 

of 0.95. For this reason, comparators B and C were included to ensure the inclusion a 

fair comparison for comparators A, B, D, and E. When the map team adopted the 

binary ML classifier from search 20 onward, the target recall of 0.95 was also 

implicitly adopted. 

Comparator arms  

A summary of study arm information from the previous section and from 

Table 7.1 is as follows. Each of the three comparator arms used MEDLINE/Embase 

as a search method. The baseline workflow, comparator A, used a target recall of 

1.0, while comparators B and C used a target recall of 0.95 and were included in this 

study to ensure fair comparisons for intervention study arms which implicitly 

adopted a target recall of 0.95 via the binary ML classifier. Comparator C was also 

included to ensure the presence of a fair comparison for intervention arms using a 

fixed screening target of 1,500 records. 

Intervention arms 

Each of the intervention arms used one or more novel automation methods. 

The resulting five intervention arms are the result of distinct combinations of three 

automation tools, the inclusion or exclusion of a fixed screening target, and either a 
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1.0 or 0.95 target recall. The three automation tools tested were (1) an automated 

MAG update search, (2) a binary machine learning classifier determining inclusion 

or exclusion, and/or (3) active learning prioritisation of the screening list. Final 

inclusion/exclusion decisions and study categorisation were conducted by human 

screen-coders in all study arms. Note that any arms using the binary ML classifier 

implicitly adopt a target recall of 0.95. 

Intervention A maintained the MEDLINE and Embase search strategy and 

simulated the use of the binary ML classifier. Intervention B also used MEDLINE 

and Embase for search, the binary ML classifier, in addition to active learning 

priority screening and a fixed screening target of 1,500 records. Interventions C, D, 

and E all used MAG as a single source for searching. Intervention C used no other 

automation tools, and therefore had a target recall of 1.0. Interventions D and E used 

the binary ML classifier, and finally intervention E added priority screening and a 

fixed target, thus testing all the potential automation tools examined in this study. 

Analytical perspective and time horizon 

The analytic perspective of the cost-effectiveness analysis was a single 

employer, specifically a university employer. With this perspective, the main drivers 

of cost differences between study arms were staff (screen-coder) time required to 

complete the review of each week’s identified potentially eligible studies, and the 

staff (information specialist) time required to complete search and de-duplication. 

The time horizon for the study was four weeks; all costs and effects included in the 

analysis occurred within this isolated time horizon and therefore no discount rate was 

applied.  

Outcomes and measurements 

The outcome of interest was the incremental cost-effectiveness of each 

variant workflow. Effectiveness was defined as the recall or sensitivity of each 

workflow; that is, perfect effectiveness would be retrieval and identification of 100% 

of the records eligible for map inclusion. Combined with the cost estimates, cost-

effectiveness was defined as the incremental cost per eligible study ‘saved’ from 

inappropriate exclusion. Selection of this outcome assumed a preference for avoiding 

exclusion of eligible studies at the lowest possible cost of doing so.  
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To calculate this ratio, the following outcomes were measured: recall 

(sensitivity), precision (specificity), screening workload (number of records), percent 

of records requiring full-text examination, number of records included, resource use 

(screen-coder time-on-task and information specialist time-on-task), and costs (unit 

cost of staff time). To provide for the possibility that either the MEDLINE-Embase 

search strategy and/or the MAG-enabled search would retrieve unique records, 

and/or that either method might inappropriately exclude an eligible record, a ‘gold 

standard’ recall was constructed which included the combined set of final inclusions 

from both workflows. Overall recall is reported against this gold standard, while 

incremental recall is compared against comparator A, i.e., the previous workflow in 

place prior to the commencement of this study. Precision, screening workload, and 

the number of records included were automatically collected by ER-Web.  

Costs were calculated through the most recently available published 

university pay scales for University College London (United Kingdom, GBP £) [9] 

and Monash University (Melbourne, Australia, AUD $) [10]. Specifically, for the 

former, spine point 46, grade 9 on the UCL non-clinical grade salary schedule, 

inclusive of London allowance, was selected. For the latter, the mid-point (salary 

step 4) of academic level B was selected. These were £30.13 per hour and $53.94 per 

hour, respectively. For information specialists, this was calculated as a constant 

weekly time-use based on their self-reported estimated average. For the comparator 

workflows and interventions A and B, i.e., those that did not use MAG, interviews 

were conducted with the two information specialists from the map team to estimate 

the time required weekly, on average, to complete study retrieval and de-duplication 

(both between MEDLINE and Embase and against prior searches). For the MAG-

enabled workflows, i.e., interventions C, D, and E, the time required each week to 

de-duplicate was recorded. Self-reported time-use data was collected weekly for the 

duration of the study using a reporting template ( see 0 for supplementary data) 

supplied to each screen-coder. These were used the average time per 100 records 

screened, which was then combined with the number of studies screened in each arm 

to produce the total screening time for each variant workflow. Screening time and 

either search/deduplication of MEDLINE/Embase or deduplication of MAG then 

combined with the unit costs to calculate the total cost of each arm. Incremental cost 
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was calculated for each study arm compared against comparator A, the baseline 

manual workflow. 

Analytical assumptions 
In addition to the previously mentioned value assumption of a preference for 

avoiding inappropriate study exclusion, the base case analysis of this study 

incorporated three additional assumptions. First, it was assumed that the precision of 

comparator C was equal to the precision of comparator A (baseline workflow); in 

other words, that studies are screened in a random order and that the pool of studies 

not screened contained the same proportion of truly eligible studies as the pool of 

studies screened. Second, it was assumed that the studies which were identified both 

by searching MAG and by searching MEDLINE and Embase had the same inclusion 

rate (i.e., precision) of 0.50. This level of precision is equal to the precision observed 

while screening the records uniquely identified in the MAG dataset. Finally, of the 

hypothetical additional studies added to intervention D and intervention E, the 

distribution of studies that would have been included or excluded was assumed to be 

the same as the distribution of the known included or excluded studies in the 

evaluation data (searches 16 through 19). 

Sensitivity analyses 

Two deterministic, univariate sensitivity analyses were performed. In the first 

sensitivity analysis, time-on-task needed to screen 100 records was held constant 

between the study arms. This first analysis was defined prospectively due to the use 

of self-reported measurements of reviewer efficiency, and moreover because in 

practice it could be reasonably expected that this measurement could be influenced 

by factors outside of control of this study. The second sensitivity analysis was 

conducted post-hoc after observation of variations in precision in the ‘live’ workflow 

used to identify studies for the evidence map after adoption of a MAG-enabled 

workflow from search 35 onwards. In this analysis, precision was varied between 

plausible lower- and upper-limit values. Because the semi-automated elements of 

intervention E were effectively the workflow adopted in practice by the map team, 

this sensitivity analysis was only conducted on that study arm. Results of this 

analysis address the impact of the second analytical assumption relating to assumed 

precision, as described in the previous section. 
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Results 

Overall cost-effectiveness 

Workflows which used Microsoft Academic Graph (intervention arms C, D, 

and E) in place of the conventional MEDLINE-Embase search method (comparators 

A, B, and C) resulted in a higher recall and a lower cost; these results therefore 

showed that MAG-enabled workflows dominated MEDLINE/Embase workflows. Of 

the remaining two automation-enabled study arms, intervention arm A (binary ML 

classifier) resulted in a cost of £15.16 or AU$27.15 per record saved from 

inappropriate exclusion, while intervention arm B (binary ML classifier and active 

learning) resulted in a cost of £13.57 or AU$24.29 per record saved from 

inappropriate exclusion. While resulting in substantially different effectiveness, 

comparator arms B and C each resulted in nearly identical cost per record saved from 

inappropriate exclusion. Comparator B showed a cost of £1.82 or AU$3.26 per 

record saved from inappropriate exclusion, while comparator C showed a cost of 

£1.83 or AU$3.28 per record saved from inappropriate exclusion. 

Overall cost-effectiveness results are illustrated in a cost plane in Figure 7.2. 

Note that any data points in the lower-right quadrant represent a workflow that 

dominates the comparator workflow. The raw data contributing to these calculations 

are available as supplementary material (see 0).  
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Figure 7.2. Results of cost-effectiveness analysis 

Effectiveness 

Ranked strictly in terms of recall, the most effective workflow was 

intervention C (semi-automated searches of MAG with no other ML tools), while the 

least effective was comparator C (manual searches of MEDLINE/Embase with a 

fixed screening target).  

Table 7.2. Effectiveness results by study arm 

 Arm Recall * Precision † 
Incremental 

effectiveness ‡ 

M
a

n
u

a
l Comparator A 0.83 0.40 - 

Comparator B 0.79 0.40 –180 

Comparator C 0.55 0.40 –1243 

S
e

m
i-

a
u

to
m

a
te

d
 

Intervention A 0.79 0.55 –167 

Intervention B 0.79 0.57 –194 

Intervention C 0.99 0.50 678 

Intervention D 0.94 0.52 469 

Intervention E 0.94 0.86 469 

* Recall is the number of eligible records identified divided by the total eligible records from the constructed ‘gold 

standard’ recall, which included both MAG-identified and MEDLINE-Embase identified eligible records 
† Precision is the number of records included divided by the number of records screen-coded 

‡ Incremental effectiveness refers to the number of eligible records identified compared to baseline workflow 
 

Effectiveness in terms of recall (i.e., sensitivity, or the total proportion of all 

eligible includes identified) was higher in all of the MAG-enabled workflows 

(interventions C, D, and E). Of the 4378 included studies in the gold standard 

included studies set, 65 studies were uniquely identified by manual search methods, 

while 743 were uniquely identified by MAG. Recall was highest in intervention C, 
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which used a MAG-enabled search strategy but none of the other automation tools 

tested. In this workflow, 678 additional eligible studies were identified compared to 

the base case in comparator A, providing a 0.99 recall rate compared against the gold 

standard recall. Interventions D and E both found an additional 469 eligible studies 

compared to the base case, or a 0.94 recall. In contrast, the base case (fully manual 

workflow) resulted in a 0.83 recall; the other comparator arms were even lower at 

0.79 recall and 0.55 recall for comparator B and comparator C, respectively. 

Among non-MAG-enabled (i.e., MEDLINE/Embase) search workflows that 

used automation – interventions A and B – both resulted in a modest number of 

missed eligible studies. Intervention A used the binary ML classifier and identified 

167 fewer included studies compared to the base case workflow (comparator A). 

Intervention B used the binary ML classifier in addition to active learning prioritised 

screening and found 194 fewer eligible studies than the baseline workflow. These 

both resulted in a 0.79 recall rate compared to the gold standard recall.  

Cost  

Two factors influence the total cost of each workflow: the number of studies 

screened, and the time on task (calculated as hours per 100 records). These data are 

presented in Table 7.3. 

Table 7.3. Cost data by study arm 

 Arm 
Time on task (hours 

per 100 records [SD]) 

Number of studies 

screened 

Resource use 

(hours) * 

M
a

n
u

a
l Comparator A 2.38 (0.95) 9180 234.08 

Comparator B '' 8722 223.18 

Comparator C '' 6000 158.45 

S
e

m
i-

a
u

to
m

a
te

d
 

Intervention A 2.13 (0.56) 6315 150.03 

Intervention B 2.18 (0.47) 6000 146.71 

Intervention C 2.22 (0.13) 8639 184.67 

Intervention D '' 7898 168.92 

Intervention E '' 6000 128.57 

* Resource use includes 15.75 hours for information specialist time in arms which used manual search, and 1 hour for 
information specialist time in arms which use MAG search 

 

Ranked strictly in terms of cost, the least costly workflow was intervention E, 

which cost £3,179.01 or AU$5,692.21 less than the comparator workflow. The other 
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two MAG-enabled workflows showed £1,488.48 or AU$ 2,664.74 cost saving with 

intervention C, and £1,963,16 or AU$3,514.54 cost saving with intervention D. 

Table 7.4. Cost results by study arm 

 Arm Total cost (£) 
Incremental 

cost (£) 
Total Cost (au$) 

Incremental 
cost (au$) 

M
a

n
u

a
l Comparator A £7,052.72 - $12,626.08 - 

Comparator B £6,724.53 –£328.19 $12,038.54 –$587.54 

Comparator C £4,774.01 –£2,278.71 $8,546.63 –$4,079.45 

S
e

m
i-

a
u

to
m

a
te

d
 

Intervention A £4,520.48 –£2,532.25 $8,092.75 –$4,533.34 

Intervention B £4,420.50 –£2,632.22 $7,913.76 –$4,712.32 

Intervention C £5,564.24 –£1,488.48 $9,961.34 –$2,664.74 

Intervention D £5,089.56 –£1,963.16 $9,111.55 –$3,514.54 

Intervention E £3,873.71 –£3,179.01 $6,934.88 –$5,691.21 

 

Among the intervention arms which did not use a MAG-enabled search, 

results also demonstrated cost savings but decreased effectiveness or recall as 

previously discussed. Intervention A used the binary ML classifier but no other 

automation tools and cost £2,532.25 or AU$4,533.34 less than the comparator. 

Intervention B saved £2,632.22 or $4,712.32 compared to comparator A (baseline 

workflow).  

Sensitivity analyses 

Time-on-task 
To account for the possibility of external factors influencing coders’ time 

required to screen 100 records, and therefore influencing the resulting cost, a 

deterministic univariate sensitivity analysis was conducted in which time-on-task 

was held constant between study arms. In this calculation, the overall average time-

on-task among all arms was used. The overall results were the same when this 

scenario was examined: interventions C, D, and E dominated the base case. The cost 

per inappropriate exclusion avoided in intervention arms A and B was similar but 

slightly decreased compared to the base case calculations. Intervention A showed a 

cost of £15.16 or AU$27.15 per record saved from inappropriate exclusion, while 

intervention B showed a cost of £13.57 or AU$24.29 per record saved from 

inappropriate exclusion.  

The results of this first sensitivity analysis are illustrated in Figure 7.3. 
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Figure 7.3. Results of cost-effectiveness sensitivity analysis for time-on-task 

Precision 
An additional sensitivity analysis was conducted post-hoc due to an observed 

fluctuation in precision observed in practice after adopting a MAG-enabled 

workflow. Because intervention E was closest to the workflow adopted in practice, 

the impact of varying precision in this study arm was investigated. The 95% 

confidence interval of precision observed in practice was 0.55 and 0.72; these values 

were therefore used in this sensitivity analysis. Though a decrease in precision is 

typically associated with an increase in recall in traditional screening workflows, 

lowering the precision significantly impacted the recall (effectiveness) of 

Intervention E due to the fixed screening target of 1,500 studies. In this scenario it 

identified 335 fewer records compared to comparator A. The decrease in recall 

shifted its outcome from one of dominance over the baseline workflow to one of an 

incremental cost of £9.29 or AU$ 16.63 per inappropriate exclusion saved. The 

results of the lower and upper limits of precision sensitivity analysis are illustrated in 

Figure 7.4 and Figure 7.5. 
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Figure 7.4. Results of cost-effectiveness sensitivity analysis for precision, lower limit 

 
Figure 7.5. Results of cost-effectiveness sensitivity analysis for precision, upper limit 

Discussion 

The main key finding of this cost-effectiveness analysis was that the semi-

automated MAG-enabled workflows dominated the baseline comparator workflow, 

meaning it was both better in terms of effectiveness and cheaper in terms of cost. 

This conclusion provides a noteworthy advancement in the evidence relevant to 

evidence search, given that much of the discussion about applying automation to 

systematic reviews has centred on the concern of sacrifice in systematic review 

quality, particularly in terms of recall, a concern which has been reinforced by the 
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prior research reported in this thesis. While this is a case-specific conclusion, it 

nonetheless should be considered evidence that automated searches of Microsoft 

Academic Graph outperform manual database searches. 

The semi-automated but non-MAG-enabled arms (interventions A and B), 

however, showed a decreased recall but cost savings, more in line with the 

expectations at the outset of this project. This result gives a case study estimate of 

the cost per inappropriate exclusion avoided that systematic reviewers may now use 

to inform their adoption decisions. Further work is needed to determine a typical 

willingness-to-pay with respect to an incremental cost-effectiveness ratio (ICER) in 

systematic reviews; this is discussed further in the following sections relating to the 

sensitivity analyses and suggestions for future research. Integrating Microsoft 

Academic Graph into a live workflow is likely to be a daunting task for the majority 

of individual researchers, so it might be reasonably expected that they will take a 

greater interest in intervention arms A and B, which simulate a more probable 

workflow to be adopted. However, the results of interventions C, D, and E should be 

noted by the EBM field as encouragement to more seriously consider integration of 

MAG into their workflows, or more broadly to consider comprehensive single-

source bibliographic databases in their systematic review search strategies (such as 

those published by Semantic Scholar, OpenAlex and The Lens). Perhaps more 

likely, those working on systematic review tool development might begin 

exploration of integration of MAG, or its alternatives, to their respective software 

tools.  

The data collected in the course of this analysis reveals further noteworthy 

time-on-task observations. As shown in the results, all five semi-automated 

workflows were lower in cost. When examined more closely, it appears that 

reviewers gained efficiency when using a semi-automated workflow. The average 

person-time required to screen 100 records under the baseline workflow was 2.37 

hours (95% confidence interval: 1.67, 3.08), while the adopted workflow 

(intervention E) showed 2.13 hours per 100 records screened (95% confidence 

interval: 1.61, 2.64). Combined with the observed self-reported percentage of records 

requiring full-text examination, it seems likely that this efficiency gain was partly 

due to a lower proportion of records requiring full-text examination: the baseline 
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workflow showed 63.29% records requiring full-text examination (95% confidence 

interval: 46.35%, 80.24%), while intervention E showed 37.09% (95% confidence 

interval: 21.29%, 52.90%). From reviewer observations during screening, this is 

potentially due to a decreased number of records imported without an abstract. Even 

among those that required full text examination, this was often a quicker process 

under MAG-enabled workflows due to direct linking to full-text resources; reviewers 

did not need to put in as much manual work to retrieve the full-text. In any case, the 

increased efficiency under MAG and other semi-automated workflows should be 

highlighted in these conclusions. 

An additional observation of MAG-enabled screening should be highlighted: 

the increase in non-English-language records. Further research is required to 

determine the proportional contribution of these records to the higher recall rate of 

MAG compared to MEDLINE and Embase, however it was consistently noted 

during screening that MAG seemed to retrieve a more language-inclusive set of 

studies for screening, including many studies which met the criteria for map 

inclusion. While this conclusion is purely observational in nature, if it is reproduced 

in future research, it could improve equity in research synthesis. 

Additional potential comparisons 

This analysis elected to use the conventional approach in cost-effectiveness 

analyses and compared all study arms against current practice, i.e., comparator A. 

The choice to include several additional comparators to ensure inclusion of a fair 

comparison, in addition to the pragmatic adoption approach resulting in five 

intervention arms, enabled observation of the isolated effects of each of the 

automation tools examined in this study.  

Specifically, the incremental effect of the binary ML classifier alone can be 

examined by comparing intervention A against comparator A (already included in 

the base analysis), and by comparing intervention D against intervention C; each of 

these comparisons differ only in the inclusion of the binary ML classifier in the 

former study arm compared to the latter study arm, respectively. In these 

comparisons, somewhat similar incremental recall was observed: 167 fewer studies 

and 209 fewer studies, respectively, in each workflow including the binary ML 
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classifier. The similar values found in each of these comparisons could be indicative 

of the overall impact that the classifier tends to have on recall; further investigation 

is needed in other scenarios, however, to explore and confirm this hypothesis.  

Using a similar approach, it is possible to isolate the effect of MAG 

integration alone using three comparisons: intervention C versus comparator A 

(already included in the base analysis), intervention D versus intervention A, and 

intervention E versus intervention B. Each of these comparisons hold all workflow 

variables equal, apart from the use of MAG as a single source. These comparisons 

result in incremental effectiveness of 678 studies, 636 studies, and 663 studies, 

respectively, in the intervention arms which included MAG. Once again, very similar 

incremental inclusion is observed, suggesting this is attributable to MAG alone. 

Further research should seek to replicate these results in other contexts. 

Sensitivity analyses 

The first sensitivity analysis included in this study strengthens the initial 

conclusions, that a semi-automated workflow is both more effective and less costly 

than the baseline manual workflow. When time-on-task was held constant between 

arms, the results were the same, indicating that variations in time-on-task – which is 

to say, variations in reviewer efficiency – are unlikely to impact the conclusions 

drawn by the initial analysis. 

The second sensitivity analysis, however, provides reason for reflection on 

these results. The precision observed in practice fluctuated significantly on a weekly 

basis; as indicated in the results section, the lower 95% confidence interval of these 

fluctuations showed a 0.55 precision, while the upper confidence interval showed a 

0.72 precision. This lower limit changed the initial conclusion of semi-automated 

workflow dominance to a scenario in which the semi-automated workflow was less 

costly but also less effective. In such a scenario, an adoption decision would be 

determined by the maximum acceptable incremental cost. That is, in order to 

determine the adoption outcome, the cost a given review team is willing to pay for 

each inappropriate study exclusion avoided would need to be known. Such a cost 

estimate is highly difficult to estimate. For instance, as discussed in Chapter 4, 

guideline developers tended to indicate an unwillingness to sacrifice any 
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effectiveness at all. Those discussions were, however, hypothetical; perhaps in this 

more concrete scenario, attitudes towards a cost and effectiveness trade-off could be 

determined.  

Finally, it is useful to note that the point at which this sensitivity analysis 

shifts away from dominance occurs when precision is equal to 0.61. Future efforts in 

continuing to semi-automate this workflow might aim to raise the lower precision 

bound to this level, as well as observing the live workflow precision to see if, over 

time, fluctuations might decrease. 

Study limitations 

First and foremost, this cost-effectiveness analysis relates to a case study of 

several semi-automated workflows in the maintenance of a specific living evidence 

map. The generalisability of these results is therefore limited. However, given the 

limited research into the cost-effectiveness of semi-automated search methods, in 

particular taking the approach taken here of calculating ICERs with recall as the 

designated measure of effectiveness, the results reported from this study still 

represent a significant contribution to the understanding of the outcomes of adopting 

automation in health evidence synthesis. 

The generalisability of the findings of this analysis are also complicated by 

the fact that a main driver of the semi-automated workflows’ dominance was the 

substantially higher effectiveness of MAG in terms of recall compared to 

MEDLINE/Embase searches. This complication is lessened, however, by the 

presence of fair comparison arms: when intervention arms examined automation 

tools without the use of MAG searches, they still performed better than comparison 

arms that adjusted for a fair comparison in target recall and for the use of a fixed 

screening target. 

As described in the methods section, both estimates of unit cost were taken 

from self-reported measures: first, from interviews with information specialists, and 

second, from self-reported weekly templates on time-use and number of studies 

screened. Much like the preceding chapter, the development of an unobtrusive 

application which observes reviewers’ time-use would be very useful for this type of 

research. The variation in time-use per 100 records screened was minimal, 
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suggesting that the results are fairly precise and accurate; self-reported outcomes 

remain, however, open to bias. The first sensitivity analysis aims to address this, and 

the results of that analysis strengthen the conclusions found in this study. 

Suggestions for further research 

In addition to the previously mentioned more isolated examination of each of 

the automation and semi-automation tools considered in this study, several other 

aspects would benefit from future research. 

As has been described in these results and in this discussion, the MAG-

enabled workflows (interventions C, D, and E) demonstrated an increased recall 

compared to the baseline workflow, while the semi-automated but non-MAG-

enabled arms (interventions A and B) showed cost savings but decreased recall. This 

analysis did not examine the more granular aspects of this increased or decreased 

recall, and instead treated the value of each included or excluded study as equal. That 

is, I did not examine whether the recall differed among arms with respect to specific 

study types or designs. Whether the true value of each included study is equal is 

certainly an open question; the NHMRC, for example, specifies a “hierarchy of 

evidence” in which certain types of evidence (e.g., RCTs) are more weighted than 

others (e.g., case reports). It would be highly informative, therefore, to perform a 

value of information analysis to determine the effect of the presence or absence of 

particular records on the final results of the review.  

Similarly, this analysis did not examine whether one method was superior to 

another in terms of topic-specific recall. There are nine inclusion topic codes in the 

living evidence map, and these results did not address the respective distribution of 

topic codes in the studies uniquely identified by either MAG or by MEDLINE and 

Embase searches. As above, further information around this distribution would be 

useful in further informing adoption decisions, assuming certain topics are more 

valuable than others. 

Finally, because this study was focused on informing an adoption decision of 

already existing and integrated automation tools, the costs of developing each tool 

were omitted. This study looked primarily at the ongoing cost and effectiveness 

(recall), rather than development costs. It would, however, be highly informative to 
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have this information for future groups to use in their own assessments and adoption 

decisions. Therefore, I suggest to future researchers to examine the relationships 

between up-front costs of development of automation or semi-automation tools for 

health evidence synthesis, ongoing costs, and ongoing effectiveness. In particular, 

given the results of this study have shown dominance of the adopted semi-automated 

workflow, it opens the door to determine the future point at which the semi-

automated workflow is not only dominantly cost-effective, but retroactively 

dominant when research and development costs are included as well. In other words, 

at what point do the ongoing savings from a tool pay for its own initial development? 

Contribution of analytical frameworks 

As in previous chapters, it is helpful to examine the results of this study 

through the lenses of the three analytical frameworks laid out in Chapter 3. All three 

frameworks provide insight into the design and analysis of this study, though to 

varying degrees. The qualitative chapters of this thesis – Chapters 4 and 5 – relied 

more heavily on the trust framework than Chapters 6 and 7. From its inception, the 

design and analysis of this study was slanted more towards levels of automation and 

Diffusion of Innovations. 

Trust can be viewed in an observational manner in this project. The map team 

sought to inform their adoption decision by seeking information about costs and 

effectiveness of semi-automated workflows. Viewed through the trust framework, 

the map team positioned their decision as one informed by external variability in 

situational trust. Recall from Chapter 3 that external variability includes workload 

and perceived risks and benefits. It could be argued that this project was established 

largely because of an increasing workload – with more and more evidence being 

produced related to COVID-19, the map team found themselves hard pressed to keep 

up with the literature. In addition, information about the risks and benefits was 

gained through this study; and, as it turned out, the risks were minimal and the 

benefits substantial, hence the adoption decision to move to the semi-automated 

workflow. 

The applications of automation used in this study covered several levels of 

the automation taxonomy from Sheridan and Verplank [11, 12], generally at higher 



183 

 

levels than approaches covered in previous chapters. While the development of the 

automation tools used in this study, namely the MAG search algorithm, the binary 

ML classifier, and priority screening, were developed prior to its commencement, 

they each represent a level 10 automation: full computer control of a process. In the 

case of MAG searching, studies are retrieved from the MAG dataset and imported to 

ER-Web entirely automatically. Likewise with the ML classifier: this classification 

takes place without any human input. Finally, priority screening in ER-Web applies 

active learning to continuously re-order the studies as they are being screened, all 

without input from a human reviewer, nor informing the human reviewer that it has 

done so. 

Finally, this study contributes significantly to the concept of relative 

advantage within the Diffusion of Innovations framework. When developing the 

protocol, it was expected that there would be some sacrifice in recall, or perhaps 

even a sacrifice in person-time if the automation tools tested proved to be poorly 

performing; this expectation was informed by previous academic literature [6, 13]. It 

was thus also expected that the map team would be making their adoption decision 

by weighing up the benefits against the costs (monetary or simply workload 

frustration) of the semi-automated workflow. The results of the study, however, 

indicating semi-automated approaches dominated: it was both more effective, and 

cheaper. Put in terms of Diffusion of Innovations, in this particular case there was no 

‘relative’ advantage, but simply multiple advantages, and consequently an easy 

decision for the team to make. 

Conclusion 

This study is the first reported cost-effectiveness analysis of a semi-

automated workflow used to maintain a living evidence map. The results 

demonstrate that a workflow using automated searches of Microsoft Academic 

Graph, a binary machine learning classifier, and an active learning prioritised 

screening list dominate the baseline manual workflow. More precisely, an 

automated, single-source database (in this case, MAG) showed higher recall than 

multi-database manual searches, and in addition machine learning tools improved 

search efficiency (i.e., saved costs). Further analyses demonstrated that this result is 
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not sensitive to changes in reviewer time-on-task efficiency. However, variations in 

precision did show a weakening of the initial conclusions, and MAG-enabled 

workflows did not dominate manual workflows when precision dipped below 0.61. 

These results support the use of MAG-enabled search methods, especially in 

combination with other ML tools. 
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Chapter 8. Discussion 

The new knowledge gained from this PhD  
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This thesis aimed to understand why automation is or is not adopted in health 

evidence synthesis, and what happens in practice when it is adopted. In addition to 

examining these questions, I also sought to test the applicability of several analytical 

frameworks, to assess their utility in the context of health evidence synthesis, and to 

recommend how they might be used in future research and practice.  

As described in the introduction of this thesis, these results and analytical 

frameworks connect to form a novel, evidence-based roadmap for the adoption and 

implementation of automation in health evidence synthesis. My chosen frameworks 

interact in new and unique ways to establish this roadmap, which will be discussed 

in the following sections. The key results from my research will be used in 

structuring this process and described throughout the following sections. Because of 

the application of these frameworks and their role as a foundation for my 

conclusions, the results of this PhD can be translated more easily into other contexts, 

connected to existing academic literature, and further reinforced by applying and 

testing them in future studies. 

The following sections include the main findings of my research, but it is 

helpful to summarise each of the individual conclusions from the preceding chapters 

first.  

Health outcomes rely on high-quality health evidence, and this ‘high quality’ 

should require timely evidence synthesis using rigorous methodological standards. In 

surveying the current context of health evidence synthesis, however, it is clear that 

publication of research is outstripping the ability of present resources to keep up. 

Automation, as a possible solution to this situation, is being developed for many 

systematic review tasks, but is not widely used. 

To begin examining potential barriers to the uptake of automation, I collected 

qualitative data from guideline developers. They perceived themselves as unfamiliar 

with automation tools and were conservative in their approach to applying 

automation. Most importantly, they identified cultural compatibility with the 

methodological standards of their field as the predominant factor influencing the 

acceptability of automation in health evidence synthesis. 
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Information specialists fitted well into the Diffusion of Innovations adoption 

curve, suggesting this framework is a useful approach in this context. Cochrane 

Information Specialists generally behaved in alignment with the behaviour expected 

from their identified adopter personas, and because of this I was able to identify 

specific strategies for appealing to each. More specifically, externally variable 

situational trust appeared to influence all personas, while dispositional trust was 

stronger in innovators and early adopters. Ease of use (i.e., complexity) increased in 

importance for personas on the latter half of the adoption curve. 

In a clustered randomised trial of RobotReviewer assistance for Risk of Bias 

assessments, I demonstrated that machine learning assistance does not negatively 

impact the overall quality of RoB assessments. The results of the trial were 

insufficient to draw confident conclusions about the impact of ML assistance on the 

time required to complete an assessment. 

 Finally, the cost-effectiveness analysis showed that use of a single database 

created using automated web searches had higher recall than searches of multiple, 

publisher-driven databases. Moreover, the analysis showed that use of this single 

database in combination with other automation strategies resulted in a more effective 

(i.e., higher recall) search at a lower cost. 

An evidence-based road map of automation in 

health evidence synthesis 

Part 1: Values-based prerequisites 

The first entry point on this pathway is that alignment with the values of the 

field of evidence-based medicine comes before all other priorities. Viewed through 

the lens of the Diffusion of Innovations framework [1], this is described as the 

innovation attribute of compatibility. Both of my qualitative chapters support this 

conclusion, and furthermore draw on the other thematic frameworks which tie this 

thesis together. 

Chapter 4 presented the results of the thematic analysis of guideline 

developers’ opinions towards automation. Above all else, they emphasised 
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compatibility with the values of the field and alignment with the values which 

underpin existing practices. When discussing compatibility, they concentrated more 

on the cultural aspects of this theme rather than on the practical ones. This represents 

a departure from the ideas put forth in previous literature. ICASR identified 

interoperability as an “urgent need” in 2019 [2]; my findings do not directly disprove 

this, but they do present empirical evidence of higher priorities. While interoperable 

systems are undoubtedly important to the eventual diffusion of automation in health 

evidence synthesis, the focus on compatibility is associated with a focus on 

professional values and not on the ability to translate automation data between 

existing infrastructures. 

That guideline developers also highlighted a lack of familiarity with 

automation tools (whether perceived or real) reinforces the point that alignment with 

cultural values is a non-negotiable prerequisite for any further discussion of 

automation in the field of health evidence synthesis. The guideline developers who 

participated in my first research chapter presented their perspectives outside of an 

immediate adoption decision and offered up the broad contextual influence of a 

(perceived) lack of knowledge of automation. Because they view themselves in this 

way, their insights should be considered as existing around and throughout a 

hypothetical adoption curve (Figure 3.1), rather than at any particular point. Their 

concerns are both contextual, influencing the entire process of the diffusion of 

automation, should it occur, as well as a precondition for the process of diffusion to 

be considered at all.  

When analysing the opinions of the participating guideline developers, 

Rogers’ innovation characteristics were applied as the deductive analytical 

framework, but these conclusions can also be situated within the Hoff and Bashir 

trust framework. Recall the three layers of trust in human-automation interactions: 

dispositional, situational, and learned [3]. The layer of trust that relates to cultural 

compatibility is situational trust, and more specifically in this case externally 

variable situational trust. This aspect includes the cultural expectations and factors 

outside of the potential user of automation that will influence that specific user’s 

trust. This description aligns well with the discussion of cultural compatibility: in 
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relation to a user of automation, the relevant cultural values are organisational 

(external), fluid (variable), and contextual (situational). 

The results presented in Chapter 5 reinforce this argument. As highlighted in 

that chapter, Cochrane Information Specialists (CISs) are a useful case study because 

of their potentially advanced stage on the adoption curve for the Cochrane RCT 

classifier. The data collected from Cochrane Information Specialists (CISs) thus 

provided insights primarily in relation to the adoption curve, rather than information 

relating to conditions that precede it. However, interviewees repeatedly raised points 

which align with the conclusion that engaging with cultural expectations are a 

prerequisite for the adoption of automation for health evidence synthesis. Several 

participants described initially hearing about the RCT classifier from specific 

individuals within the Cochrane community. Such organisational influence can be 

categorised as another instance of externally variable situational trust, in which 

individuals are influenced to trust in automation due to the influence of peers and 

institutional structures. Furthermore, participants’ descriptions of these 

organisational sources were not merely anecdotal recommendations. Rather, they 

described hearing from these colleagues the steps that had been taken to ensure the 

RCT classifier met the methodological standards of the CISs. Once again, proof of 

the cultural expectations of the population of interest, i.e., the methodological 

standards of CISs, was a threshold for any consideration of adoption of the 

automation tool. 

To summarise these two aspects of the frameworks for this thesis, when 

considering adoption of automation for health evidence synthesis, cultural 

compatibility in terms of the Diffusion of Innovations framework and externally 

variable situational trust in the form of cultural values, norms, and expectations are 

minimum and seemingly non-negotiable entry requirements for any adoption or 

diffusion. 

On the roadmap being drawn with my PhD results, cultural compatibility and 

situational trust are the gatekeepers to starting down the road. 
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Part 2: Strategies for innovators 

Once the necessary conditions, as described above, for the beginning of the 

diffusion of automation are established, more targeted strategies can be taken, 

informed by the results of this thesis. Location on a potential adoption curve should 

first be determined or estimated, and then the personalised strategies described in the 

following sections can be used. These strategies represent the insights I found in the 

intersections of my chosen frameworks: adopter personas, innovation characteristics, 

and trust levels each play a role in the adoption curve, and each interact with one 

another.  

Innovators are the first on the adoption curve and anticipated to account for 

2.5% of adopters. They are a crucial first step for several reasons. First, they tend to 

provide useful feedback and refinement for research and development. Second, and 

more importantly, they act as influencers for later adopter categories; they are 

therefore an important population to onboard properly. They are also, according to 

my results, unique among the adopter personas.  

First, from the perspective of the trust framework, innovators are most 

influenced by dispositional trust. That is, the way they approach trust in automation 

is inherent to their person, and not very likely to be influenced by external factors. 

An innovator is an innovator, and individuals (generally) are not made into 

innovators. The dispositional characteristics found in innovators include being non-

risk averse and attracted to novelty. They are also self-confident with technological 

experimentation, which relates to the next aspect from the thematic frameworks 

which is important to innovators: complexity. 

Innovators were unique among the participants of the project presented in 

Chapter 5 in that they did not identify ease of use (i.e., complexity) as a high priority 

in software selection. That every other adopter persona identified this innovation 

characteristic, but innovators did not, demands attention, and should be translated 

into practice in automation priorities. Given unlimited time and resources every 

software or automation tools would work perfectly and would be intuitive to use for 

every possible person; in reality, priorities in research and development must be set. 

The results of Chapter 5 show that initial priorities do not need to include a simple-
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to-use tool and can instead rely on the confidence of innovators with new 

technologies.  

In fact, they expressed a preference for the ability to personally test and 

manipulate a new tool, and to be given details in relation to how it is working. These 

preferences could be examined through the Diffusion of Innovations characteristics 

either as observability or as trialability. They wanted to see how the machine 

learning (ML) algorithm was working, fitting more closely with observability, but 

they also wanted to experiment with this algorithm, fitting more closely with 

trialability. Unlike the innovator participants in Chapter 5, trialability did not 

significantly appear in the results of guideline developer participants in Chapter 4. 

However, when combined with the results of the CISs, further conclusions about the 

Chapter 4 participants might be drawn. Recall that guideline developers indicated 

two layers of ‘double-checking’: ability to double-check (compatibility), and 

personal need for double-checking (observability). CISs who indicated that they 

personally double-checked the results of the classifier were in the innovator 

category, so it is possible that the guideline developers who indicated this need 

might also be innovators. In addition, it seems likely that guideline developers would 

be encouraged by the hands-on approach of innovators given that the former felt 

more positively about automation when someone else (in this case, innovator CISs) 

had the ability to transparently examine ML-produced results. In short, innovators 

may play a role not only in encouraging other adopters on the benefits of automation, 

but in demonstrating automation’s trustworthiness to external stakeholders such as 

guideline developers.  

To summarise, when targeting innovators, automation proponents and/or 

developers should provide hands-on technical functionality for users, even if this 

comes at a cost of ease of use. Innovators’ use of these transparent features also 

impacts on the perception of non-user stakeholders. As diffusion continues, however, 

lowering the prioritisation of ease of use will not always be the best route to wider 

adoption.  
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Part 3: Situational trust returns  

Innovators are unique in that they do not need to be convinced of a need to 

change. This likely contributed to the empirical data observed in their automation 

tool preferences. Other adopter personas, however, do not share this characteristic. 

Situational trust has already been established as a contextual prerequisite for the 

consideration of automation, but it becomes more specific as a road marker for the 

other adopter personas at this stage. 

Participants in Chapter 5 highlighted organisational validation, as has already 

been discussed. However, in addition to it influencing the initial adoption decision, 

participants in the middle of the adoption curve indicated it also influences their trust 

levels after they have adopted a tool. They favour continued support from 

organisational structures to inform their use of a tool (e.g., in the case of my 

research, the Cochrane RCT classifier as integrated into the Screen4Me workflow, a 

Cochrane-endorsed workflow which uses ML as well as crowdsourcing to complete 

study selection).  

The participants in my research cited at least two ways that this situational 

trust is structured. First, they cited the validation that organisations, and individuals 

within an organisation, perform. Rather than personally test threshold scores, for 

example, as the innovators did, middle-curve adopters founded their trust on the 

recommendations and documentation from their networks (both peers and 

organisational). As it is derived externally from the individual user, this aligns with 

externally variable situational trust in the Hoff and Bashir three-layered trust model.  

A second aspect of externally variable situational trust was also cited: a 

demanding workload. Participants in my research indicated feeling a necessity to 

adopt automation due to an increasingly overwhelming set of tasks accruing in their 

backlog. That my final PhD year coincided with the COVID-19 pandemic only 

reinforced this observation. After many in the field spent years being reluctant to 

integrate automation systems to any great extent, a significant number of automated 

or partially automated health evidence syntheses suddenly appeared throughout 2020 

[4]. Having already observed this in my own results when CISs were prompted to 

adopt Screen4Me due to an overwhelming pace of work, it seems that this sudden 

switch in adoption attitudes may have been influenced by the urgent nature of the 
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pandemic. Once again, necessity dictated an adoption decision with respect to 

automation in health evidence syntheses. Such a circumstance, like organisational 

endorsement of a tool, is situational, and it is external to the individual user. 

To summarise, at the transition from innovators into the middle parts of the 

adoption curve, externally variable situational trust holds the greatest influence. On 

the constructed ‘road map’, the best way to continue a path after initial adoption by 

innovators is to focus on two signposts: organisational endorsement and ongoing 

validation, and on establishing a context in which automation is seen as a necessity 

due to workload or an otherwise pressing situation. 

Part 4: Complexity 

Thus far, I have combined my analytical frameworks to provide insights as to 

how to initiate diffusion of automation in health evidence synthesis, how to target 

innovators, and how to reach the middle of the adoption curve (Figure 3.1). Focus 

will now shift to the latter half of the adoption curve, and into the post-adoption 

realm to examine the effects of automation in practice. The previous sections and 

strategies would set the conditions for adoption by convincing later adopters of the 

need to change. To best support them in actioning this change, complexity becomes 

the dominant theme. 

The previous sections established that innovators appreciate technological 

advancement and transparency and do not share the focus on ease of use observed in 

all other adopter categories. This focus was notable because it was shared across 

every adopter persona except for innovators; clearly, it is of significant reach and 

importance. Later categories not only contrasted against innovators in this focus, but 

their results also contrast against those provided by guideline developers, who 

provided very little qualitative data related to complexity. These results as a whole 

indicate that complexity is significant, but as a precondition of automation adoption, 

and not to innovators; complexity is therefore most suitably targeted to the middle 

and later portions of the adoption curve. 

When examined through the trust framework, the results from middle and 

later adopters continue to differ from those described previously. Perceptions of a 

tool’s complexity can be classified as learned trust; recall from Chapter 3 that 
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specific characteristics of a tool are categorised under learned trust. In this case, the 

specific characteristic which receives attention is the complexity, or lack of it, in an 

automation tool.  

Middle and late-curve participants were very clear that a tool must be simple 

to learn and to use in order to be considered. However, the late majority participant 

reinforced this further by speaking at length about the impact of a poor user 

experience with a tool. Because these personas focus on complexity, but the later 

personas focused on it even more, it can be inferred that complexity increases in 

importance over the course of an automation’s diffusion. 

To summarise, once the previous strategies have succeeded, middle and later 

adopters are primed to be supported in changing practice, having now been 

convinced of the need to do so. To best support them in this change, learned trust and 

lack of complexity are the highest priorities.  

Part 5: Post-adoption 

 With the process of how to most effectively encourage and support adoption 

of automation in health evidence synthesis described above, focus can now shift to 

the effects of automation in practice. 

 Previous academic commentary has focused on semi-automation as a strategy 

to encourage adoption. This appears to have multiple assumptions: first, that 

automation will be more acceptable to users if they retain some control, and second, 

that automation will perform better when paired with human effort. Empirically, 

according to the results of my thesis, the first assumption is true. The second 

assumption should be adjusted according to the evidence found in this thesis, 

however. Every application researched in this thesis represents a semi-automated 

workflow, and yet they differed greatly in their positions along the levels of 

automation (LOA) framework [5, 6]. Higher levels of automation, as defined by the 

levels of automation framework from Sheridan and Verplank (Table 3.1), seemed to 

have greater success, while still maintaining an overall semi-automated workflow in 

the broader context of the relevant systematic review. The most successful semi-

automation, according to my results, uses high levels of automation but limits this 

use to well-defined and discrete tasks.  
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The first example of this in my results is the Screen4Me workflow 

experienced by the Cochrane Information Specialists. Initially, as highlighted by the 

innovator participants, the underlying algorithms of this workflow were more 

transparent and subject to human intervention – approximately a level 2 automation. 

However, Screen4Me no longer displays the ML-applied scores, and now undertakes 

bulk actions with the permission of the user – approximately a level 5 automation. 

This level 5 approach is relatively successful among its target users (CISs) but 

supports a very well-defined task in the screening stage of a review. In addition, 

individuals earlier on the adoption curve appeared to implement automation, namely 

the RCT classifier, in a more automated way, accepting its decisions in bulk and 

tending not to cross-check results. This was also observed in correlation with trust in 

the classifier; individuals using the classifier in a way that was higher on the LOA 

spectrum tended to also trust in the classifier more.  

 The results of Chapter 7 provide further examples of higher automation 

providing more benefits. As noted in the discussion of that chapter, Microsoft 

Academic Graph (MAG), the binary ML classifier, and priority screening mode are 

all level 10 automations. Their benefits were undeniable in the results of the cost-

effectiveness analysis: these highly automated and targeted tools dominated the 

comparator. MAG identified more eligible studies than the baseline MEDLINE-

Embase search strategies and did so at a lower resource cost. In combination with the 

binary ML classifier and with active learning, the automated workflow continued to 

improve upon effectiveness while decreasing costs. Automation was more effective 

than the non-automated workflow, and in this case, the automation of interest was 

level 10 on the Sheridan and Verplank classification scale.  

 Though broadly my results support the recommendations described in the 

previous paragraphs, it should be noted that the results of the RobotReviewer 

randomised trial presented in Chapter 6 neither support nor refute this proposition. 

As described elsewhere in this thesis, RobotReviewer’s level of automation is 

dependent on user action: it can be either a level 4 or a level 5 under its current 

design (i.e., it requires some user input), but from a technical capabilities perspective 

there is no hindrance to its application at higher levels of automation. With the 

context of the other results found in my research, the question should be raised in 
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future research as to whether RobotReviewer would be better implemented at these 

higher levels.  

To summarise this final part of the new roadmap, when implementing 

automation, the evidence presented in this thesis suggests automation is most 

effective when a relatively higher level of automation is targeted at a well-defined, 

discrete task. This is a significant departure from previous literature, and 

consequently a significant contribution of the findings of this PhD. 

Implications for research and practice 

Chapter 3 discussed several reasons for the use of my chosen analytical 

frameworks. These reasons were: in order to better describe and communicate my 

findings, to locate them within a wider field of academic research, to test the 

effectiveness of my approach, and most importantly to maximise the ability of my 

findings to translate across multiple contexts. By using connections between my 

chosen frameworks to construct the adoption and implementation roadmap described 

in this chapter, I have accomplished each of these goals. The frameworks structured 

discussion of my results, connected them to existing literature, and created an 

evidence-driven guide that can be picked up by future researchers and stakeholders. I 

have therefore shown the effectiveness of this approach and encourage its use in 

future research in this area.  

Several of the projects presented in this thesis, in addition to testing the 

analytical approach, used novel study designs. The cost-effectiveness analysis 

presented in Chapter 7 was based on a single prior publication [7], and now provides 

a further example, which also follows standard reporting guidelines, of how to 

conduct these analyses when examining automation in systematic reviews or 

evidence maps. Cost-effectiveness is an important metric in relation to the relative 

advantage of an innovation, and it is hoped that by disseminating these methods and 

results that more will be conducted in the future. The findings of this study are 

further strengthened by examining a real-world application of the tools examined; 

finding cost-effective dominance in constructed and controlled settings would have 

lacked the impact and generalisability of these findings. However, future research 

would also do well to use my research as the basis for improvement to cost-
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effectiveness analyses. Self-reported outcomes could be improved with other 

methods of measurement, as discussed in Chapter 7, and empirical data could be 

used to improve the analytical assumptions incorporated into future cost-

effectiveness analyses. 

The randomised trial of RobotReviewer in combination with human effort 

presents several methodological innovations. It used a novel methodology which 

allowed for single blinding of the outcome assessor (the consensus reviewer) while 

maintaining the standard workflow of two individual, blinded reviewers. In addition, 

it was one of the first effectiveness (as opposed to efficacy) studies for automation of 

quality appraisal, and also one of the first to look at semi-automation using 

RobotReviewer rather than a direct comparison of automation and human results. 

Like the cost-effectiveness results described above, using this approach offers 

significant advantages for generalisability and impact of the results as compared with 

an efficacy study. This approach was not without its challenges, and future 

researchers can and should draw lessons from this trial. The results of this trial found 

that providing reviewers with suggestions from RobotReviewer did not negatively 

impact the quality of their finalised Risk of Bias assessments. Given that this was a 

previous concern [8], this is a significant finding. 

In contributing to the evidence base for automation in health evidence 

synthesis, my research also raised new questions which should be addressed with 

future research. The evidence-based roadmap presented in the preceding sections is 

largely informed by observational and correlational data. While these support my 

interpretations, causation cannot be concluded from the majority of my findings. 

Causation studies should be pursued to determine if the hypotheses drawn from these 

results withstand additional scrutiny. 

As could be inferred from the evidence-based roadmap detailed in the 

previous sections, the findings of my research should suggest to automation tool 

developers that they should begin their research and development with two primary 

questions: first, they should establish the cultural compatibility of their tool with the 

standards of evidence-based medicine professionals. It is clear from my findings that 

without such compatibility, and other demonstrations of relative advantage, 

interoperability, or (lack of) complexity are likely to be insufficient to encourage 



199 

 

user adoption. Second, they should seek to determine where on the adoption curve 

the field currently resides in relation to the specific piece of the evidence pipeline 

they are aiming to automate. Strategies to encourage adoption are shown in my 

results to shift over the course of an innovation’s diffusion; what works well at one 

stage and for one adopter category might not be the best strategy at another stage and 

for another adopter category. 

As noted in the previous section, more highly automated processes appeared 

to be more successful than less automated processes, as defined on the Sheridan and 

Verplank levels of automation framework. These results are potentially context-

specific, however, and merit further investigation in other settings.  

Finally, results from this thesis also provide insight for practice in relation to 

the specific tools analysed in Chapter 6 and Chapter 7. The randomised trial of 

RobotReviewer, the first of its kind, demonstrated the non-inferiority of integrating 

RobotReviewer suggestions to Risk of Bias assessments. It therefore supports the 

adoption of this tool in practice because it demonstrates a lack of risk to the resulting 

systematic review’s quality. The cost-effectiveness analysis looked at the use of 

Microsoft Academic Graph (MAG), as well as a machine learning classifier to 

determine eligibility, and an active learning algorithm to prioritise screening; it 

found the workflows using MAG in combination with ML tools dominated the 

comparator of manual searches of Medline and Embase. Perhaps as significantly, it 

found that MAG identified more eligible studies for the living Covid-19 evidence 

map. This not only supports the adoption of MAG, but also aligns with the cultural 

expectations that were found throughout the first half of this thesis. That is, use of 

MAG not only has a demonstrated relative advantage, but it aligns with the 

compatibility theme (i.e., cultural situational trust) expectations found in this PhD 

which intensely prioritise recall. These results therefore support wider adoption of 

MAG, or similar tools, and are encouraging of the shift away from publisher-reliant 

databases towards single-source, automated databases. 
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Conclusions 

My PhD aimed to explore the adoption and the effectiveness of automation 

technologies in health evidence synthesis. I sought to determine why individuals, 

teams, or organisations choose to adopt automation technologies, and what happens 

if they do adopt automation. To achieve this aim, I applied a novel combination of 

several analytical frameworks: Rogers’ Diffusion of Innovations [1], Hoff and 

Bashir’s human-automation trust [3], and Sheridan and Verplank’s levels of 

automation [5, 6]. These frameworks were used to collect qualitative information 

which then informed an evidence-based roadmap of the necessary conditions for the 

acceptance and uptake of automation in health evidence synthesis. Next, I used 

quantitative methods to evaluate the effectiveness of automation in two specific 

contexts and found automation in both cases to either maintain the same quality as 

human effort, or to improve upon it. With these findings, my approach was 

successful and has contributed to the academic literature an evidence-based and 

structured guide to encouraging the adoption and supporting the use of automation in 

health evidence synthesis. 

This thesis has shown that values-based professional expectations are the first 

prerequisite in initiating the diffusion of automation among health evidence 

professionals. Once automation is able to demonstrate this alignment, innovators can 

be targeted by focusing on hands-on technical transparency and capabilities. With 

innovators on board, situational trust contributes to middle-curve adoption by way of 

organisational endorsement and support. Complexity, or lack thereof, in automation 

tools becomes increasingly important over time, and is therefore of significant 

importance to late-curve adopters. Finally, when implemented, higher levels of 

automation are more successful, but work best when targeted at a well-defined and 

discrete task. 

On the theme of effectiveness, my results endorse the adoption of automation 

for specific tasks as they do not negatively impact health evidence quality. With this 

structured guide to the promotion of automation, as well as novel examples of its 

effectiveness, it is hoped that this PhD will support the field’s ability to develop, 

evaluate and implement automation in health evidence synthesis. 
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Appendix A. COREQ checklist 

COREQ (COnsolidated criteria for REporting Qualitative research) checklist 

Topic 
Item 
No. 

Guide Questions / Description 
Reported on 

Page No. 

Domain 1: Research team and reflexivity 

Personal characteristics 

Interviewer / facilitator 1 Which author/s conducted the interview or focus group? 78 

Credentials 2 What were the researcher’s credentials? E.g. PhD, MD  78 

Occupation 3 What was their occupation at the time of the study? 78 

Gender 4 Was the researcher male or female? 18 

Experience and training 5 What experience or training did the researcher have? 78, 19-20 

Relationship with participants 

Relationship established 6 
Was a relationship established prior to study 
commencement? 

78 

Participant knowledge of the 

interviewer 
7 

What did the participants know about the researcher? 

e.g. personal goals, reasons for doing the research 
78 

Interviewer characteristics 8 
What characteristics were reported about the inter 
viewer/facilitator? e.g. Bias, assumptions, reasons and 
interests in the research topic 

19-20 

Domain 2: Study design 

Theoretical framework 

Methodological orientation 
and Theory 

9 

What methodological orientation was stated to 
underpin the study? e.g. grounded theory, discourse 

analysis, ethnography, phenomenology, content 
analysis 

79-81 

Participant selection 

Sampling 10 
How were participants selected? e.g. purposive, 
convenience, consecutive, snowball 

78 

Method of approach 11 
How were participants approached? e.g. face-to-face, 
telephone, mail, email 

78 

Sample size 12 How many participants were in the study? 81 

Non-participation 13 
How many people refused to participate or dropped 
out? Reasons? 

81 

Setting 

Setting of data collection 14 
Where was the data collected? e.g. home, clinic, 

workplace 
78 

Presence of non-participants 15 
Was anyone else present besides the participants and 

researchers? 
78 

Description of sample 16 
What are the important characteristics of the sample? 
e.g. demographic data, date 

81 

Data collection 

Interview guide 17 
Were questions, prompts, guides provided by the 
authors? Was it pilot tested? 

78 

Repeat interviews 18 Were repeat interviews carried out? If yes, how many? 81 

Audio / visual recording 19 
Did the research use audio or visual recording to collect 
the data? 

78 

Field notes 20 
Were field notes made during and/or after the interview 

or focus group? 
n/a 
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Duration 21 What was the duration of the inter views or focus group? 81 

Data saturation 22 Was data saturation discussed? n/a 

Transcripts returned 23 
Were transcripts returned to participants for comment 
and/or correction? 

79 

Domain 3: analysis and findings 

Data analysis 

Number of data coders 24 How many data coders coded the data? 79 

Description of the coding tree 25 Did authors provide a description of the coding tree? 79-81 

Derivation of themes 26 
Were themes identified in advance or derived from the 

data? 
79-81 

Software 27 
What software, if applicable, was used to manage the 
data? 

79 

Participant checking 28 Did participants provide feedback on the findings? n/a 

Reporting 

Quotations presented 29 

Were participant quotations presented to illustrate the 

themes/findings? 

Was each quotation identified? e.g. participant number 

82-91 

Data and findings consistent 30 
Was there consistency between the data presented and 

the findings? 
82-91 

Clarity of major themes 31 Were major themes clearly presented in the findings? 82-91 

Clarity of minor themes 32 
Is there a description of diverse cases or discussion of 
minor themes? 

82-91 

 

Developed from: Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research 

(COREQ): a 32-item checklist for interviews and focus groups. International Journal for Quality in Health 
Care. 2007. Volume 19, Number 6: pp. 349 – 357 
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Appendix B. Interview instrument 

Screening: Can you describe your experience and role in guideline development? 

- Must be involved in the decision-making process of whether a piece of 

evidence is accepted into the guideline or not. If participant is determined 

early in the interview to not fit this criterion, interview will be wrapped up. 

1. What do you view as the goal of guideline development? 

2. What do you view as the end goal of evidence synthesis (including 

systematic reviews)? 

3. What method do you or does your organisation use to collect evidence?  

4. Are there any limitations on the type of evidence you will accept? 

5. What do you think are the best methods for production of evidence? 

6. What is your opinion of machine learning in relation to evidence synthesis? 

7. What is your opinion of crowdsourcing in relation to evidence synthesis? 

8. What do you feel the opinion of the guideline developer community as a 

whole is, in relation to machine learning and crowd? 

9. Would you be more likely or less likely to accept the conclusions of a 

systematic review which had used automation in its protocol?  

10. What factors might influence this decision? 

11. In your ideal world, what would the future look like in terms of use of 

automation for evidence synthesis? What sorts of capabilities would these 

technologies have, and what would they not have?
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Appendix C. CROSS checklist 

Checklist for Reporting of Survey Studies 
 

Section/topic  Item Item description 
Reported 
on page # 

Title and abstract  

Title and abstract 1a State the word “survey” along with a commonly used term in title or 
abstract to introduce the study’s design. 

108, 111 

1b Provide an informative summary in the abstract, covering background, 
objectives, methods, findings/results, interpretation/discussion, and 
conclusions. 

108 

Introduction  

Background 2 Provide a background about the rationale of study, what has been 
previously done, and why this survey is needed. 

109-111 

Purpose/aim 3 Identify specific purposes, aims, goals, or objectives of the study. 112 

Methods  

Study design 4 Specify the study design in the methods section with a commonly used 
term (e.g., cross-sectional or longitudinal). 

113 

 5a Describe the questionnaire (e.g., number of sections, number of 
questions, number and names of instruments used). 

113 

Data collection methods 5b Describe all questionnaire instruments that were used in the survey to 
measure particular concepts. Report target population, reported 

validity and reliability information, scoring/classification procedure, 
and reference links (if any). 

112-114 

5c Provide information on pretesting of the questionnaire, if performed (in 
the article or in an online supplement). Report the method of pretesting, 

number of times questionnaire was pre-tested, number and 
demographics of participants used for pretesting, and the level of 

similarity of demographics between pre-testing participants and sample 
population. 

114 

5d Questionnaire if possible, should be fully provided (in the article, or as 
appendices or as an online supplement).  

208 

Sample characteristics 

 

6a Describe the study population (i.e., background, locations, eligibility 
criteria for participant inclusion in survey, exclusion criteria). 

108, 114 

6b Describe the sampling techniques used (e.g., single stage or multistage 
sampling, simple random sampling, stratified sampling, cluster 
sampling, convenience sampling). Specify the locations of sample 
participants whenever clustered sampling was applied. 

114 

6c Provide information on sample size, along with details of sample size 
calculation. 

114 

6d Describe how representative the sample is of the study population (or 

target population if possible), particularly for population-based surveys. 

114, 116 

Survey  

administration 

7a Provide information on modes of questionnaire administration, 
including the type and number of contacts, the location where the 
survey was conducted (e.g., outpatient room or by use of online tools, 
such as SurveyMonkey).  

113, 116 

7b Provide information of survey’s time frame, such as periods of 
recruitment, exposure, and follow-up days. 

115 
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7c Provide information on the entry process: 

–>For non-web-based surveys, provide approaches to minimize human 

error in data entry. 

–>For web-based surveys, provide approaches to prevent “multiple 

participation” of participants. 

113 

Study preparation 8 Describe any preparation process before conducting the survey (e.g., 
interviewers’ training process, advertising the survey). 

 

Ethical considerations 

 

9a Provide information on ethical approval for the survey if obtained, 
including informed consent, institutional review board [IRB] approval, 
Helsinki declaration, and good clinical practice [GCP] declaration (as 
appropriate). 

117 

9b Provide information about survey anonymity and confidentiality and 
describe what mechanisms were used to protect unauthorized access. 

114 

Statistical 

analysis 

10a Describe statistical methods and analytical approach. Report the 
statistical software that was used for data analysis. 

n/a 

10b Report any modification of variables used in the analysis, along with 
reference (if available). 

n/a 

10c Report details about how missing data was handled. Include rate of 
missing items, missing data mechanism (i.e., missing completely at 
random [MCAR], missing at random [MAR] or missing not at random 

[MNAR]) and methods used to deal with missing data (e.g., multiple 
imputation). 

113 

10d State how non-response error was addressed. 113 

10e For longitudinal surveys, state how loss to follow-up was addressed. n/a 

10f Indicate whether any methods such as weighting of items or propensity 
scores have been used to adjust for non-representativeness of the 
sample. 

n/a 

10g Describe any sensitivity analysis conducted. n/a 

Results  

Respondent characteristics 

 

11a Report numbers of individuals at each stage of the study.  
Consider using a flow diagram, if possible. 

117 

11b Provide reasons for non-participation at each stage, if possible. n/a 

11c Report response rate, present the definition of response rate or the 
formula used to calculate response rate. 

117 

11d Provide information to define how unique visitors are determined. 

Report number of unique visitors along with relevant proportions (e.g., 
view proportion, participation proportion, completion proportion). 

113 

Descriptive 

results 

12 Provide characteristics of study participants, as well as information on 

potential confounders and assessed outcomes. 

118 

Main findings 13a Give unadjusted estimates and, if applicable, confounder-adjusted 

estimates along with 95% confidence intervals and p-values. 

n/a 

13b For multivariable analysis, provide information on the model building 
process, model fit statistics, and model assumptions (as appropriate).  

n/a 

13c Provide details about any sensitivity analysis performed. If there are 
considerable amount of missing data, report sensitivity analyses 
comparing the results of complete cases with that of the imputed 
dataset (if possible). 

 

 

n/a 
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Discussion  

Limitations 14 Discuss the limitations of the study, considering sources of potential 
biases and imprecisions, such as non-representativeness of sample, 
study design, important uncontrolled confounders. 

129 

Interpretations 15 Give a cautious overall interpretation of results, based on potential 
biases and imprecisions and suggest areas for future research. 

124-127 

Generalisability 16 Discuss the external validity of the results. 129 

Other sections  

Role of funding source 17 State whether any funding organization has had any roles in the 

survey’s design, implementation, and analysis. 

n/a 

Conflict of interest 18 Declare any potential conflict of interest. n/a 

Acknowledgements 19 Provide names of organisations/persons that are acknowledged along 
with their contribution to the research. 

114 
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Appendix D. Survey instrument 

 

 

Note: this survey was originally conducted online via Google Forms; this print-out version is for 

reference purposes only 
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Appendix E. CONSORT checklists 

CONSORT 2010 extension 

Checklist of information to include when reporting a cluster randomised trial 
 

Section/Topic Item 
No 

Standard Checklist item Extension for cluster designs Page No. 

Title and abstract   
1a Identification as a 

randomised trial in the title 

Identification as a cluster 

randomised trial in the title 

132 

1b Structured summary of trial 
design, methods, results, and 

conclusions (for specific 
guidance see CONSORT for 
abstracts) 

See table 2 n/a 

Introduction  

Background and 
objectives 

2a Scientific background and 
explanation of rationale 

Rationale for using a cluster 
design 

133-137 

2b Specific objectives or 

hypotheses 

Whether objectives pertain to 

the cluster level, the 

individual participant level or 
both 

138-139 

Methods  

Trial design 3a Description of trial design 

(such as parallel, factorial) 
including allocation ratio 

Definition of cluster and 

description of how the design 
features apply to the clusters 

138 

3b Important changes to 
methods after trial 

commencement (such as 
eligibility criteria), with 
reasons 

 
140 

Participants 4a Eligibility criteria for 

participants 

Eligibility criteria for clusters  139 

4b Settings and locations where 

the data were collected 

 
141 

Interventions 5 The interventions for each 

group with sufficient details 
to allow replication, 

including how and when they 
were actually administered 

Whether interventions pertain 

to the cluster level, the 
individual participant level or 

both 

138, 141-

142 

Outcomes 6a Completely defined pre-
specified primary and 
secondary outcome 
measures, including how and 

when they were assessed 

Whether outcome measures 
pertain to the  cluster level, 
the individual participant 
level or both 

143 

6b Any changes to trial 
outcomes after the trial 
commenced, with reasons 

 
n/a 

Sample size 7a How sample size was 
determined 

Method of calculation, 
number of clusters(s) (and 
whether equal or unequal 
cluster sizes are assumed), 

cluster size, a coefficient of 

intracluster correlation (ICC or 

k), and an indication of its 
uncertainty 

144 
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7b When applicable, explanation 
of any interim analyses and 

stopping guidelines 

 
n/a 

Randomisation:  

 Sequence 
generation 

8a Method used to generate the 
random allocation sequence 

 
141 

8b Type of randomisation; 
details of any restriction 
(such as blocking and block 
size) 

Details of stratification or 
matching if used 

141 

 Allocation 
concealment 

mechanism 

9 Mechanism used to 
implement the random 

allocation sequence (such as 
sequentially numbered 

containers), describing any 
steps taken to conceal the 
sequence until interventions 
were assigned 

Specification that allocation 
was based on clusters rather 

than individuals and whether 
allocation concealment (if 

any) was at the cluster level, 
the individual participant 
level or both 

142 

 Implementation  10 Who generated the random 

allocation sequence, who 
enrolled participants, and 
who assigned participants to 

interventions 

Replace by 10a, 10b and 10c 141 

 
10a 

 
Who generated the random 
allocation sequence, who 
enrolled clusters, and who 

assigned clusters to 

interventions 

141 

 
10b 

 
Mechanism by which 
individual participants were 

included in clusters for the 
purposes of the trial (such as 
complete enumeration, 
random sampling) 

n/a; 
clusters 

contained 
two 
individual 
reviewers 

and one 
consensus 
reviewer in 
accordance 

with the 
eligibility 
criteria   

10c 
 

From whom consent was 

sought (representatives of the 

cluster, or individual cluster 
members, or both), and 
whether consent was sought 

before or after randomisation 

140 

    
 

Blinding 11a If done, who was blinded 

after assignment to 

interventions (for example, 
participants, care providers, 
those assessing outcomes) 
and how 

 
142 

11b If relevant, description of the 
similarity of interventions 

 
142 

Statistical 

methods 

12a Statistical methods used to 

compare groups for primary 

and secondary outcomes 

How clustering was taken into 

account 

146 
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12b Methods for additional 
analyses, such as subgroup 

analyses and adjusted 
analyses 

 
n/a 

Results  

Participant flow 

(a diagram is 
strongly 
recommended) 

13a For each group, the numbers 

of participants who were 
randomly assigned, received 
intended treatment, and 
were analysed for the 

primary outcome 

For each group, the numbers 

of clusters that were 
randomly assigned, received 
intended treatment, and were 
analysed for the primary 

outcome 

148 

13b For each group, losses and 

exclusions after 
randomisation, together with 

reasons 

For each group, losses and 

exclusions for both clusters 
and individual cluster 

members 

148 

Recruitment 14a Dates defining the periods of 
recruitment and follow-up 

 
147 

14b Why the trial ended or was 

stopped 

 
 

Baseline data 15 A table showing baseline 
demographic and clinical 
characteristics for each group 

Baseline characteristics for 
the individual and cluster 
levels as applicable for each 

group 

147; topic 
areas of 
reviews are 

included 

Numbers 
analysed 

16 For each group, number of 
participants (denominator) 
included in each analysis and 

whether the analysis was by 

original assigned groups 

For each group, number of 
clusters included in each 
analysis 

148 

Outcomes and 
estimation 

17a For each primary and 
secondary outcome, results 

for each group, and the 
estimated effect size and its 
precision (such as 95% 
confidence interval) 

Results at the individual or 
cluster level as applicable and 

a coefficient of intracluster 
correlation (ICC or k) for each 
primary outcome 

149, 151 

17b For binary outcomes, 
presentation of both 
absolute and relative effect 
sizes is recommended 

 
150 

Ancillary 
analyses 

18 Results of any other analyses 
performed, including 
subgroup analyses and 

adjusted analyses, 

distinguishing pre-specified 

from exploratory 

 
n/a 

Harms 19 All important harms or 
unintended effects in each 

group (for specific guidance 
see CONSORT for harms) 

 
147 

Discussion  

Limitations 20 Trial limitations, addressing 

sources of potential bias, 
imprecision, and, if relevant, 
multiplicity of analyses 

 
154 

Generalisability 21 Generalisability (external 

validity, applicability) of the 
trial findings 

Generalisability to clusters 

and/or individual participants 
(as relevant) 

152 
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Interpretation 22 Interpretation consistent 
with results, balancing 

benefits and harms, and 
considering other relevant 

evidence 

 
151-156 

Other information 
 

 

Registration 23 Registration number and 
name of trial registry 

 
147 

Protocol 24 Where the full trial protocol 
can be accessed, if available 

 
227 

Funding 25 Sources of funding and other 
support (such as supply of 

drugs), role of funders 

 
147 

CONSORT 2006 extension 

Checklist for Non-inferiority and Equivalence Trials 
 

PAPER SECTION 

And topic 
Item Descriptor 

Reported 

on 
Page No. 

TITLE & ABSTRACT 1 

How participants were allocated to interventions (e.g., 

"random allocation", "randomised", or "randomly 
assigned"), 
Specifying that the trial is a non-inferiority or equivalence  

trial. 

141 

INTRODUCTION 
Background 

2 
Scientific background and explanation of rationale, 
Including the rationale for using a non-inferiority or 
equivalence design. 

133-137 

METHODS 
Participants 

3 

Eligibility criteria for participants  (detailing whether 
participants in the non-inferiority or equivalence trial are 
similar to those in any trial(s) that established efficacy of the 
reference treatment) and the settings and locations where 

the data were collected. 

139, 141 

Interventions 4 

Precise details of the interventions intended for each group 
detailing whether the reference treatment in the non-
inferiority or equivalence trial is identical (or very  similar) to 

that in any trial(s) that established efficacy,  and how and 

when they were actually administered. 

142 

Objectives 5 
Specific objectives and hypotheses, including the hypothesis 
concerning non-inferiority or equivalence. 

138 

Outcomes 6 

Clearly defined primary and secondary outcome measures 
detailing whether the outcomes in the non-inferiority or 
equivalence trial are identical (or very similar) to those in any 
trial(s) that established efficacy of the reference treatment 

and, when applicable, any methods used to enhance the 
quality of measurements (e.g., multiple observations, 
training of assessors). 

143 

Sample size 7 

How sample size was determined detailing whether it was 

calculated using a non-inferiority or equivalence criterion and 
specifying the margin of equivalence with the rationale for its 
choice. When applicable, explanation of any interim analyses 
and stopping rules (and whether related to a non-inferiority 

or equivalence hypothesis). 

144 

Randomisation -- 
Sequence 

generation 

8 
Method used to generate the random allocation sequence, 
including details of any restrictions (e.g., blocking, 

stratification) 

141 
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Randomisation -- 
Allocation 

concealment 
9 

Method used to implement the random allocation sequence 
(e.g., numbered containers or central telephone), clarifying 

whether the sequence was concealed until interventions 
were assigned. 

141 

Randomisation -- 
Implementation 

10 
Who generated the allocation sequence, who enrolled 
participants, and who assigned participants to their groups. 

141 

Blinding (masking) 11 

Whether or not participants, those administering the 
interventions, and those assessing the outcomes were 
blinded to group assignment. If done, how the success of 
blinding was evaluated. 

142 

Statistical methods 12 

Statistical methods used to compare groups for primary 
outcome(s), specifying whether a one or two-sided confidence 

interval approach was used. Methods for additional analyses, 
such as subgroup analyses and adjusted analyses. 

144 

RESULTS 

Participant flow 
 

13 

Flow of participants through each stage (a diagram is 
strongly recommended). Specifically, for each group report 
the numbers of participants randomly assigned, receiving 
intended treatment, completing the study protocol, and 

analysed for the primary outcome. Describe protocol 

deviations from study as planned, together with reasons. 

148 

Recruitment 14 Dates defining the periods of recruitment and follow-up. 147 

Baseline data 15 
Baseline demographic and clinical characteristics of each 

group. 
n/a 

Numbers analysed 16 

Number of participants (denominator) in each group 
included in each analysis and whether the analysis was 
“intention-to-treat” and/or alternative analyses were 

conducted. State the results in absolute numbers when 

feasible (e.g., 10/20, not 50%). 

148 

Outcomes and 
estimation 

17 

For each primary and secondary outcome, a summary of 
results for each group, and the estimated effect size and its 

precision (e.g., 95% confidence interval). For the outcome(s) 
for which non-inferiority or equivalence is hypothesized, a 
figure showing confidence intervals and margins of 
equivalence may be useful. 

147 

Ancillary analyses 18 

Address multiplicity by reporting any other analyses 
performed, including subgroup analyses and adjusted 
analyses, indicating those pre-specified and those 
exploratory. 

n/a 

Adverse events 19 
All important adverse events or side effects in each 
intervention group. 

n/a 

DISCUSSION 
Interpretation 

20 

Interpretation of the results, taking into account the non-
inferiority or equivalence hypothesis and any other study 

hypotheses, sources of potential bias or imprecision and the 
dangers associated with multiplicity of analyses and 
outcomes. 

151-156 

Generalisability 21 Generalisability (external validity) of the trial findings. 152 

Overall evidence 22 
General interpretation of the results in the context of current 
evidence. 

151-156 
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Appendix F. CHEERS checklist 

Consolidated Health Economics Evaluation Reporting Standards (CHEERS) 
 

Section/item Item 

number 

Recommendation Reported on 

page number 
Title and abstract 

Title 1 Identify the study as an economic evaluation or use 
more specific terms such as “cost-effectiveness 

analysis”, and describe the interventions compared. 

159 

Abstract 2 Provide a structured summary of objectives, 

perspective, setting, methods (including study design 
and inputs), results (including base case and 

uncertainty analyses), and conclusions. 

n/a 

Introduction 

Background and 
objectives 

3 Provide an explicit statement of the broader context for 
the study. 

160 

Present the study question and its relevance for health 
policy or practice decisions. 

163 

Methods 

Target population and 

subgroups 

4 Describe characteristics of the base case population 

and subgroups analysed, including why they were 
chosen. 

164 

Setting and location 5 State relevant aspects of the system(s) in which the 
decision(s) need(s) to be made. 

164 

Study perspective 6 Describe the perspective of the study and relate this to 

the costs being evaluated. 

168 

Comparators 7 Describe the interventions or strategies being 
compared and state why they were chosen. 

164-167 

Time horizon 8 State the time horizon(s) over which costs and 
consequences are being evaluated and say why 
appropriate. 

168 

Discount rate 9 Report the choice of discount rate(s) used for costs and 

outcomes and say why appropriate. 

168 

Choice of health 
outcomes 

10 Describe what outcomes were used as the measure(s) 
of benefit in the evaluation and their relevance for the 
type of analysis performed. 

168 

Measurement of 
effectiveness 

11a Single study-based estimates: Describe fully the design 
features of the single effectiveness study and why the 
single study was a sufficient source of clinical 
effectiveness data. 

168 

11b Synthesis-based estimates: Describe fully the methods 
used for identification of included studies and synthesis 
of clinical effectiveness data. 

Not applicable 

Measurement and 

valuation of preference-
based outcomes 

12 If applicable, describe the population and methods 

used to elicit preferences for outcomes. 

168 

Estimating resources 

and costs 

13a Single study-based economic evaluation: Describe 

approaches used to estimate resource use associated 

with the alternative interventions. Describe primary or 
secondary research methods for valuing each resource 
item in terms of its unit cost. Describe any adjustments 
made to approximate to opportunity costs. 

Not applicable 
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Section/item Item 
number 

Recommendation Reported on 
page number 

13b Model-based economic evaluation: Describe approaches 
and data sources used to estimate resource use 

associated with model health states. Describe primary 
or secondary research methods for valuing each 

resource item in terms of its unit cost. Describe any 
adjustments made to approximate to opportunity 
costs. 

168 

Currency, price date, 

and conversion 

14 Report the dates of the estimated resource quantities 

and unit costs. Describe methods for adjusting 
estimated unit costs to the year of reported costs if 

necessary. Describe methods for converting costs into a 
common currency base and the exchange rate. 

168 

Choice of model 15 Describe and give reasons for the specific type of 
decision-analytical model used. Providing a figure to 
show model structure is strongly recommended. 

168 

Assumptions 16 Describe all structural or other assumptions 

underpinning the decision-analytical model. 

168 

Analytical methods 17 Describe all analytical methods supporting the 
evaluation. This could include methods for dealing with 
skewed, missing, or censored data; extrapolation 

methods; methods for pooling data; approaches to 
validate or make adjustments (such as half cycle 
corrections) to a model; and methods for handling 
population heterogeneity and uncertainty. 

168-170 

Results 

Study parameters 18 Report the values, ranges, references, and, if used, 
probability distributions for all parameters. Report 
reasons or sources for distributions used to represent 

uncertainty where appropriate. Providing a table to 
show the input values is strongly recommended. 

171 

Incremental costs and 
outcomes 

19 For each intervention, report mean values for the main 
categories of estimated costs and outcomes of interest, 

as well as mean differences between the comparator 
groups. If applicable, report incremental cost-
effectiveness ratios. 

172-174 

Characterising 

uncertainty 

20a Single study-based economic evaluation: Describe the 

effects of sampling uncertainty for the estimated 
incremental cost and incremental effectiveness 
parameters, together with the impact of 
methodological assumptions (such as discount rate, 

study perspective). 

Not applicable 

20b Model-based economic evaluation: Describe the effects 
on the results of uncertainty for all input parameters, 
and uncertainty related to the structure of the model 

and assumptions. 

174 

Characterising 
heterogeneity 

21 If applicable, report differences in costs, outcomes, or 
cost-effectiveness that can be explained by variations 

between subgroups of patients with different baseline 

characteristics or other observed variability in effects 
that are not reducible by more information. 

Not applicable 

Discussion 

Study findings, 

limitations, 
generalisability, and 
current knowledge 

22 Summarise key study findings and describe how they 

support the conclusions reached. Discuss limitations 
and the generalisability of the findings and how the 
findings fit with current knowledge. 

 

 
 

176-183 
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Section/item Item 
number 

Recommendation Reported on 
page number 

Other 

Source of funding 23 Describe how the study was funded and the role of the 

funder in the identification, design, conduct, and 
reporting of the analysis. Describe other non-monetary 

sources of support. 

163  

Conflicts of interest 24 Describe any potential for conflict of interest of study 
contributors in accordance with journal policy. In the 
absence of a journal policy, we recommend authors 

comply with International Committee of Medical 
Journal Editors recommendations. 

Not applicable 
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Appendix G. Data availability statements 

All files listed below are available via Open Science Framework and are available under the terms of the 
Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication). 
 

Chapter 6. Validity 

File name Description DOI 

RobotReviewer 
Covidence Protocol.docx 

Trial protocol as 
registered with Monash 

doi.org/10.17605/OSF.IO/H8AN9 

Accuracy data.xlsx 
Anonymised trial data for 
overall accuracy and for 

domain-specific accuracy 

doi.org/10.17605/OSF.IO/H8AN9 

Time data.xlsx 
Anonymised trial data for 
time spent on RoB 
assessments 

doi.org/10.17605/OSF.IO/H8AN9 

 

  

https://creativecommons.org/publicdomain/zero/1.0/
https://www.doi.org/10.17605/OSF.IO/H8AN9
https://www.doi.org/10.17605/OSF.IO/H8AN9
https://www.doi.org/10.17605/OSF.IO/H8AN9
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Chapter 7. Economic evaluation 

File name Description DOI 

Search 
strategies.docx 

Links to MEDLINE and Embase 
search strategies; custom 
search strategy 

doi.org/10.17605/OSF.IO/24W53 

Time log 
workbook.xlsx 

Workbook provided to screen-

coders to collect time-on-task 

information 

doi.org/10.17605/OSF.IO/24W53 

Time on task 

data.csv 

De-identified time-on-task data 

collected from the screen-
coders 

doi.org/10.17605/OSF.IO/24W53 

Base case analysis 
data.csv 

All values used in cost-
effectiveness calculations 

doi.org/10.17605/OSF.IO/24W53 

Sensitivity analysis 
– Precision.csv 

All values used in calculations 
assessing the impact of 
precision on the cost-

effectiveness analysis 

doi.org/10.17605/OSF.IO/24W53 

Sensitivity analysis 
– Time on task.csv 

All values used in the 
calculations assessing the 
impact of time-on-task on the 
cost-effectiveness analysis 

doi.org/10.17605/OSF.IO/24W53 

 

 

 

 

https://www.doi.org/10.17605/OSF.IO/24W53
https://www.doi.org/10.17605/OSF.IO/24W53
https://www.doi.org/10.17605/OSF.IO/24W53
https://www.doi.org/10.17605/OSF.IO/24W53
https://www.doi.org/10.17605/OSF.IO/24W53
https://www.doi.org/10.17605/OSF.IO/24W53
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