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Abstract

Artificial Intelligence (AI) in Education has been said to have the potential for
building more personalised curricula, as well as democratising education world-
wide and creating a Renaissance of new ways of teaching and learning. Millions
of students are already starting to benefit from the use of these technologies, but
millions more around the world are not. If this trend continues, the first delivery
of AI in Education could be greater educational inequality, along with a global
misallocation of educational resources motivated by the current technological de-
terminism narrative. In this paper, we focus on speculating and posing questions
around the future of AI in Education, with the aim of starting the pressing con-
versation that would set the right foundations for the new generation of education
that is permeated by technology. This paper starts by synthesising how AI might
change how we learn and teach, focusing specifically on the case of personalised
learning companions, and then move to discuss some socio-technical features that
will be crucial for avoiding the perils of these AI systems worldwide (and perhaps
ensuring their success). This paper also discusses the potential of using AI to-
gether with free, participatory and democratic resources, such as Wikipedia, Open
Educational Resources and open-source tools. We also emphasise the need for
collectively designing human-centered, transparent, interactive and collaborative
AI-based algorithms that empower and give complete agency to stakeholders, as
well as support new emerging pedagogies. Finally, we ask what would it take for
this educational revolution to provide egalitarian and empowering access to edu-
cation, beyond any political, cultural, language, geographical and learning ability
barriers.

1 Introduction

Quality education is essential for achieving a sustainable world, benefiting individuals and societies
alike. A strong educational system can broaden access to opportunities, improve health, bolster the
resilience of communities and institutions, drive long-term economic growth, reduce poverty and
spur innovation [34]. Education could also bring a fundamental shift in how we think, act, and
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relate to our responsibilities toward one another and the planet, helping to nurture a new generation
that supports the transition to a prosperous and sustainable future. In this sense, we believe we
are all stakeholders of education systems. Firstly because we are all learners, but also because of
the global benefits that an empowering and strong educational system could bring. Thus, we argue
that stakeholders of education go beyond learners and teachers, and include administrators, policy
makers, parents and other groups that play a role in this complex system as well as benefit from
it. While countries have significantly increased access to education, being in school is not the same
as learning [2]. Worldwide, hundreds of millions of children still reach adulthood without even the
most basic skills [47]. In this paper, we discuss the promise and the peril of Artificial Intelligence
(AI) in Education, emphasising the need for a critical socio-technical design accompanied by open
educational resources and tools.

AI is changing the skills needed in our global and innovation centred world and exemplifying novel
methods of teaching and learning [23]. AI in Education (AIEd) [23] covers, among others, intel-
ligent, personalised and conversational educative systems (e.g. systems which provide scoring, as-
sessment, feedback and hints or that match users for collaborative learning) with the aim to support
stakeholders and put them in control of the learning process and design. One of the most ambitious
use cases of AIEd, Intelligent Tutoring Systems (ITS), has shown experimentally to lead to similar
learning gains than face-to-face one-on-one instruction [50], while personalised learning, in general,
can improve learning gains of an average student in the order of two standard deviations [12].

Despite this immense theoretical potential of personalised technology-enhanced education and the
large amount of monetary investment in these learning technologies, such innovations have not
delivered much practical results yet [32]. Less ambitious AIEd technologies are, however, slowly
starting to play a role in providing support to teachers, students, and the learning process more
broadly [35, 27]. But without a doubt, not all are benefiting equally [24]. Historically, technological
change has been shown to increase between-country inequality2. Similarly, AIEd could bring risks
of exacerbating the wide education and opportunity gap, which at the same time will have other
negative consequences globally such as an imbalance of wealth/power concentration and human
capital flight.

This work asks and imagines how could this AI-based educational potential benefit everyone equally.
In our view, providing high quality education to almost eight billion people requires socio-technical
imaginaries (i.e. future-oriented visions of connected social and technological orders), specially of
ways to scale education, which is the focus of this work. For example, the recent boom of Open
Educational Resources [44] could mean that the democratisation of learning may be within reach,
but only if the objectives of AIEd are adequately aligned and collectively designed, with accessibility,
equity, openness and inclusion at their core. This paper starts summarising how AI could support
the task of learners and teachers at scale, reflecting on some of the social and technical challenges.
We then aim to identify some of the barriers to benefactor everyone with decades of advances in
AIEd, with the aim of starting the dialogue to ensure these tools narrow the educational inequity gap
rather than increasing it. We finally discuss some promising resources that could be used to leverage
this participatory education revolution. Ultimately, this paper aims to pose the question: Could a AI
tools help us to democratise education? What would it take for that to happen?

2 AI in Education (AIEd): The Promise and the Peril

The promise AIEd has been under active research for several decades now [13, 7] and has made
significant advances in different fronts, specially in areas such as intelligent tutoring (ITS) [53], edu-
cational recommendations [27], MOOC management [41, 20] and taxonomy/prerequisite detection
[52], among others. Recent work has also shown that AI could be used to accumulate learning re-
sources at scale [35], as well as enrich these to break language barriers by creating cross-lingual
translations/transcriptions [3], domain/language-agnostic topic annotations [4] and visual and inter-
active content summaries that support the learner [5, 38]. The ultimate ambition of AIEd would be
a lifelong learning companion , that understands the strengths and weaknesses of individual learners
to present materials and exercises to increase their learning gains, while providing prompt feedback
when needed. Being able to cooperatively operate across languages, cultures and special needs of
individuals would make this companion humane. Above all, this companion should interplay with
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political and operational constraints, respecting privacy, safety and prioritising the learner autonomy
and agency, moving away from prescriptive AI. Such technology should also allow teachers to use
their training and experience to fulfil less mundane tasks such as personal attention, advance peda-
gogy, pastoral care and other complex support tasks that preserve equity in the classroom. These sys-
tems can also enable teachers, educators and researchers to carry out valuable research and hypothe-
sis testing that will lead to a better understanding of pedagogy itself. While being an ambitious and
impactful destination (dreamed since 1972 [32]), achieving such a technology may be further down
the line than we think. We believe that by shifting the paradigm to augmenting teacher/stakeholder
capabilities, rather than replacing them, AIEd can bear more fruits in the short-term, while jour-
neying at the same time towards a sustainable large-scale lifelong educational practice enhanced by
AI.

The peril (and the challenges) We must keep in mind that increasing access to education remains
predominantly a political and social issue [24] and that disconnection between a technology and
the surroundings where it operates leads to consistent failures [43]. AI technologies could help
education in different ways, but they are unlikely to offer a solution on their own. Even more, if
AIEd technologies are not designed appropriately and collaboratively and deployed with the right
infrastructure and across nations, we believe that one of the greatest perils we could face is for these
to exacerbate educational inequality in the world (which could itself have many other consequences
on a global scale), as well as divert educational resources that could be put to more effective uses
and propagate dangerous biases of different nature at scale [2]. Access to these technologies is
also about power. After all, in a society that is thoroughly permeated by technology, those who
possess access to it, can influence processes and will have greater opportunities. Various recent
works have highlighted other challenges to circumvent before benefiting from the opportunities of
AIEd. For example, IDIA3 [17] identifies several technical challenges general to AI: availability
of quality data, accountability, transparency and addressing biases. The recent UNESCO4 [24] and
IRCAI5 [39] reports narrow down the challenges in AIEd to scalable content understanding and fact
checking, learner modelling, personalised learning, transparency and scrutiny. These reports also
expand on scalable evaluation, which is an essential part of verifying learning [53], and the need for
addressing lifelong learning [8].

Amid the promises of technology-enhanced education, the success stories seldom benefit developing
nations. To start with, there is a geographical, cultural and language imbalance in terms of open
education repositories around the world [30]. Even more, the majority of educational materials that
have been accumulated via AI are in popular European languages, due to the narrow selection of
translation models that are of current focus in the research community [35]. Even among available
translation models, the performance only marginally surpass "humanly-acceptable" level [37]. This
is far from the needed quality for learning purposes, where translation and transcription errors can
easily impair the learning experience. The scientific community is also focused on introducing
learner models, ITS solutions and knowledge taxonomies that are very specific to narrowly scoped
datasets and technologies, giving much less emphasis to low-resource settings [18, 52, 11]. Apart
from all these shortcomings of existing research, there is a whole realm of considerations such as
Internet connectivity, unequal access to digital devices as well as accessibility needs that need to
be accommodated when innovating responsibly in this space. For example, 80% of the world’s
population of people with disability live in developing countries. With lack of educational resources,
these communities struggle to gain the skills necessary to create a livelihood, contributing to the
known link between poverty and disability [22]. Assistive technology, with the help of domain
clinicians can help this community and AI can expedite this process [25] (e.g. Google Euphonia).

3 Proposed Pillars for AIEd

With the ambitious objective of building and maintaining a sustainable large-scale AIEd ecosys-
tem that facilitates equitable, high-quality lifelong learning opportunities for all, we identify several
essential needs and promising tools: (1) Open Education: A large growing collection of freely
available and accessible educational resources with appropriate diversity to suit a global learner pop-
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ulation. (2) A unifying taxonomy of knowledge: A language-agnostic representation of knowledge
that can be used to build AIEd tools (we propose Wikipedia). (3) Human-centred AI: A suite of fair,
interactive, collaborative and transparent AI algorithms that give full agency to the end-user.

Apart from these three pillars, we also emphasize the need for open-source to promote community
engagement and critical analysis documentation. We believe that both open education and open-
source are essential foundations for enabling civic engagement with technologies [48]. These could
empower and emancipate communities by not only allowing them to easily adopt such tools and
resources, but also enable them to change them to their own needs and participate in their design and
business models, improving independent experimentation and locally situated economies. We hope
that by designing together as a community these tools we can set the goals and fundamental basis
right, while at the same time by making them open-source we can give rise to resilient civic societies
that are largely independent of the global infrastructures and can tap into their own local resources
and knowledge [48]. Moreover, AI systems are fundamentally socio-technical [15], including the
social context in which they are developed, used and acted upon. The processes by which systems
are developed entail a long list of decisions by designers, developers and stakeholders, many of them
of societal, legal or ethical nature [15]. Thus, AIEd solutions should be accompanied with critical
documentation [19] that states the design rationale, as well as any limitations of the educational
datasets/tools/resources and the context in which they were developed.

3.1 Open Educational Resources (OER)

Identifying critical barriers surrounding access, quality and costs of information and knowledge
available over the Internet, the OER initiative was founded to improve global access to knowledge
[26]. OERs are open licensed educational materials distributed on the Internet with significantly
less restrictions than other educational materials, enabling others to retain, reuse, revise, remix and
redistribute content [44]. This innovation succeeds in scaling rapidly by providing a toolkit that
minimises the effort of creating teaching materials from scratch (e.g. through innovative licensing
schemes and aggressive growth models such as the content explosion model [36] and the open
educational practice [16]). The success of this innovation also stem from the community’s tendency
to constantly facilitate design hackathons [46, 45] that connect designers, educational practitioners,
developers and other stakeholders to sit in the same table to develop solutions. The true potential of
OERs is only starting to show tangibility, with OER collections accumulating more than 100,000s
materials, these having been curated [10, 6], translated to multiple languages using AI, as well
as transcribed and annotated [35]. With the use of support tools such as interactive translation
systems [28], the cross-lingual translation educational materials can be expedited making many
rich educational resources available to diverse communities in their native tongues. The feasibility
of enriching these materials and presenting them to users in an intelligent user interface has been
demonstrated recently [5]. Furthermore, accessible formats or templates for creating accessible
content for all learners, can be built in from the start. In our view, the OER initiative represents the
most promising cross-domain culturally-diverse collection of materials for democratising education.

3.2 Wikipedia as a Standardised Knowledge Base

The need for a unifying knowledge base and taxonomy has been one of the greatest challenges
faced by the AIEd community since its inception. This is, for example, essential for deploying
AIEd systems at large scale, as these solutions can not be handcrafted. Such systems will need to
understand the universal structure and direction of knowledge, identify automatically knowledge
prerequisites, topics covered and difficulty of educational materials, while at the same time filter
them by metrics of quality assurance, with (for example) the goal of matching the most appropriate
materials to learners. All of this needs to be achieved across multiple modalities of knowledge,
languages and cultures.

Wikipedia remains the world’s largest and most up-to-date Encyclopedia. It achieves this i) by using
technologies that support humans to contribute information and ii) by including crowdsourcing at
the heart of every aspect of Wikipedia. Wikipedia also leverages AI to help scale this human infor-
mation management operation, for example augmenting intelligence in article quality assessment
[49], defending contributors from abuse [51] and various other tasks [31]. We envision multiple op-
portunities in utilising Wikipedia to create educational tools that support equitable lifelong learning
opportunities for all. First, as a universal knowledge base, Wikipedia can become the common tax-
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onomy enabling inter-operability among different educational standards and materials that belong
to different nations and educational systems. As an example, many governments and organisations
have invested resources and expertise on developing curricula, taxonomies, teaching guidelines and
learning resources that uplift the quality of education in local contexts. However, this localisation
has posed grievous challenges in cross compatibility of knowledge [46], as it can not be reused
easily. Using novel entity linking approaches, there is opportunity now to ground curricula that
originate from different systems into a single taxonomy allowing the global population to discover
relevant educational materials that are enriched beyond their local environments. The utility of such
a global taxonomy has already been shown in social media [40], and educational recommenders [9].
Secondly, having a humanly-intuitive taxonomy in its foundation (as Wikipedia does) also allows
embedding expert supervision and scrutiny into the process [1, 33]. Finally, such grounding opens
up avenues to cross-disciplinary lifelong learning experiences (across time, language and geography)
as the global taxonomy is domain agnostic and convertible to local taxonomies. Wikipedia, as an
open platform, also comes with its weaknesses, such as exposure to social biases and challenges in
fact-checking. However, by acknowledging and identifying such weaknesses, we can work towards
mitigating them and engage with stakeholders to uplift the quality of this living taxonomy.

3.3 Human-Centred AI-based Educational Tools

When deploying AIEd, we need to consider the prevalent learnings from AI for social good and
developing nations research [42]. One core question we need to ask is if we are really accounting
for the technological, societal and cultural differences across nations. Are we ensuring that the
interests of low and middle income countries are represented in key debates and decisions? Are we
creating the necessary bridges between these nations and countries where the AI is currently being
developed? Currently, the majority of AI solutions we create revolve around ideal scenarios defined
by datasets that are created in controlled environments in the developed world. First of all, it is
crucial that we ensure that our test beds are not far from real life imperfect settings where these
solutions may operate in, and that we engage everyone involved in the design process.

Because of this, we believe that AI-based educational tools should embrace design patterns within
the umbrella of human-centred machine learning. Specifically, in this framework we require both
humans and machines simultaneously in the loop. Usually, we would require humans to give feed-
back to the algorithms to learn. This could be a mix of explicit and implicit feedback, so models can
improve over time [8]. Most specifically, allowing for hybrid human-machine interaction and col-
laboration is of crucial importance in such an educative system, to give the stakeholder full control
and access to manipulate their own personalised learning tools and put the tools at their complete
service. For us, this means that the user needs to be able to design up to some extent their own
tools, as well as interact, query and change the model’s perception of them, and explicitly indicate
timely preferences, needs, and goals, which can guide the tools. This is, AIEd needs to move from
prescriptive algorithms to collaboration with the human. Part of these requirements not only apply
to AI but more generally to the design of the human-computer interaction. We believe that rather
than predefined curricula or behaviour change, we need to offer dynamic paths for users to choose.
Enabling the user to make informed decisions and allowing a mutually productive dialogue between
the human and the machine should be the primary goal of AIEd. This is in contrast to the prevalent
use of recommender systems, whereby suggestions are presented in one direction from the system
to the user. Transparency and privacy should also be key to such systems, allowing stakeholders
to understand the potential and limitations of these algorithms and to decide on what data should
the algorithms store and use for reasoning. We hope that trust from the user can be achieved by
demonstrating transparency and integrity in all regards, and by steering clear of any business mod-
els that might compromise the trust relationship with users [1]. The machine needs to take a full
supporting role, with users ultimately deciding when and how to use the tools. This could mean that
humanly-interpretable latent variable models should be preferred over their black-box counterparts
[8].

We believe that a pivotal role of AIEd (and an ambitious challenge) will be to move towards innova-
tive emerging pedagogies, such as formative analytics (where learners are provided with information
for self-regulated learning), teach back (providing learners an opportunity to teach their learnings)
and learning with robots (where repetitive tasks such as assessment and hint giving are automated
to free up teachers for cognitively demanding tasks) [21]. With the right adaptation of AI-based
education, these novel pedagogies could unleash great potential at a global scale. Other futuristic
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pedagogies, such as place-based learning [29] and citizen enquiry [14], which revolve around en-
gaging learners in participating in an active problem-solving environment, could also foster great
potential benefits.

4 Discussion

AI will impact education greatly. However, virtually no research has been undertaken, no guidelines
have been agreed, no policies have been developed, and no regulations have been enacted to address
the use of AI in education [24]. It is time that we decide collectively what technology-enhanced
education should mean, with the end goal of increasing access to high quality education for all. At
the moment, the field is devoting much attention to personalised intelligent tutors. However, such
ambitious use cases, essentially proposing to replace teachers, are far from delivering any impactful
and real-world results. We argue that massively investing resources in such technology poses the risk
of misallocating necessary resources to enhance the current lack of access to high-quality education
around the globe. We argue that the community should focus instead on other low-hanging fruits,
such as tools that support the role of teachers, while at the same time build a strong basis (in socio-
technical terms) that could, in the future, support personalised intelligent tutors research.

Perhaps if correctly designed and deployed, AI tools could deliver in the long run on their potential
of: i) providing at scale empowering access to education beyond any political, cultural, language,
geographical and learning ability barriers; ii) helping us create fulfilling, equitable and inclusive
lifelong learning schools of the future; and iii) leveraging the so-called Reinassance of new ways
of teaching and learning. However, like with any other technologies, the greatest challenge is how
to design them to be a driver of equity and inclusion and not a source of greater inequality of
opportunity.

There are enormous technical, social, political and pedagogical challenges ahead for the field of
AIEd. These are issues related to data and algorithms, on pedagogical choices, on inclusion and
the ‘digital divide’, on children’s right to privacy, liberty and unhindered development, and on eq-
uity in terms of gender, disability, social and economic status, ethnic and cultural background, and
geographic location [24]. Our aim was to discuss a subset of these, with the hope of starting this
dialogue and collectively design a global education revolution that will help us solve educational
inequity. We propose a socio-technical solution to meet part of these challenges. This is, i) working
together on developing and leveraging the power of language and culturally diverse open educa-
tional resources, which can be reused and consumed around the globe; ii) building standardised
taxonomies and ontologies of knowledge, one of the greatest technical current challenges for AIEd;
iii) investing in open-source technology to enable civic engagement with the design of these tech-
nologies and thus support their sustainable use in local communities; iv) prioritising research in
transparent, scrutinisable, interactive and collaborative AI algorithms; and v) engagement in critical
thinking and policy making, where we question the social norms and politics embedded in AIEd
systems and direct technological change towards meeting societal needs and reducing inequalities.

Before committing to a future where AI pervades learning, educationalists and technologists need
to guide society and governments to understand the potential social and ethical implications of this
technology [15]. Engaging in speculation when designing technology is of the most crucial impor-
tance. We provide now a non-exhaustive list of question examples we believe the field of AIEd
should be asking: Regarding technical terms, we could ask: What is the nature of knowledge, and
how can it be represented and captured with AI? How could an AI system automatically gather, un-
derstand and filter educational resources suitable for each learner needs? How can AI help bridge
the education gap for learners with disabilities? How can AI-based tools prioritise transparency,
keeping the human in the loop to support users to self-reflect on their learning path and give them
agency? What learning metrics, if any, should guide these learning tools and algorithms? How can
personalisation algorithms support our diversity as individuals and communities? Regarding the so-
cial aspect, we could ask: How could we scrutinise any biases as well as social prejudices embedded
in these techniques? How can we collectively identify and document the limitations in the educa-
tional datasets/tools/resources? How can we support our communities to engage with the design
of educational tools that concern us all? How can we all learn to identify faulty educational tool
designs that plague the most vulnerable and collectively correct these? How could we successfully
and safely iteratively prototype and evaluate these tools in the wild? Regarding pedagogy, examples
could be: How can we promote design thinking in educative settings, where we allow the "what’s
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wrong?" drive our pursuit of "what if"? Could, ultimately, these AIEd systems engage communities
to transform individuals, communities and the environment? How can such a system encourage crit-
ical and emerging pedagogies? Ultimately, the question we, as a research collective in AIEd, need
to ask (and work towards) is: What would it take for AI to help us democratise quality education for
all? Our claim is that AI on its own can not offer a solution, and we should, at the same time that we
develop technology-enhanced educational tools, address the political and social issues behind the
unequal access to high-quality education.
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