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non-steady heat fluxesR1
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• Analytical solutions for the heating of solids with in-depth absorption of radiation were developed.

• The models were developed considering constant and several time dependent incident heat fluxes.

• Correlations were obtained to produce a simplified expressions for the ignition delay times for all cases

analyzed.

• The analytical predictions agree with reference models found in the literature.
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Abstract

Heat fluxes from fires are strongly time-dependent. Historically, the thermal ignition theory in its classical form

has neglected this time dependency until recent years, where theories have been developed to include time-

varying incident heat fluxes. This article proposes a simplifiedR1 general model formulation for the heating

of solid fuels exposed to four different heat flux behaviors, considering the penetration of radiation into the

medium. The incident heat flux cases developed where: Constant, Linear, Exponential and Polynomial,

which represent different situations related to structural and wildland fires. The analytical models consider

a spatially averaged medium temperature and exact and approximate solutions are presented, based on the

critical ignition temperature criterion, which are valid for solids of any optical thickness. The results were

validated by comparison with various models presented in the literature, where the model granted in this work

was capable to adjust to all of them, especially when high heat fluxes are involvedR1. Therefore, the proposed

model acquires a significant engineering utility since it provides a single model to be used as a general and

versatile tool to predict the ignition delay time in a manageable way for solid fuels exposed to different fire

conditions.

Keywords: Ignition delay time, Fire safety, Integral heat equation, Solid ignition, Translucent solids, In-depth

absorption of radiation

1. Introduction

The problem of the ignition of solid fuels subjected to radiant heat fluxes has received the attention of

the fire safety science community for at least 75 years because of its role in several fire initiation and fire

growth processes. The seminal work by Bamford, Crank and Malan [1] opened the way for the development

of theories which decoupled solid- and gas-phase processes, thereby promoting the development of analytical

solutions which can be treated to yield simple expressions for pencil and paper calculations amenable for the

practitioners. The overall problem of increasing the fire safety in the built environment, and the threat of nuclear

warfare prompted further work into this topic by different researchers in Britain and America [2, 3, 4, 5, 6, 7].

Lawson and Simms [2] were the first to theoretically consider the conductive heating of an inert solid exposed to
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Preprint submitted to Combustion and Flame September 29, 2021



Nomenclature

G Local incident radiation (W m−2)

I Radiative intensity (W m−2)

Ib Black body radiative intensity (W m−2)

T Temperature (K)

Πi Grouped polynomial coefficient (J m−2 si−1)

q̇′′ Heat flux (W m−2)

T Spatially averaged temperature (K)

ab Absorptivity of the material

b Exponential variation ratio (W m−2 s−1)

cp Specific heat of the material (J kg−1 K−1)

di Heat flux polynomial coefficient (W m−2 si−1)

hT Combined heat transfer coefficient in the medium

(W m−2 K−1)

hc Surface convective heat transfer coefficient

(W m−2 K−1)

k Thermal conductivity (W m−1 K−1)

r Slope of the ramping incident heat flux

(W m−2 s−1)

t Time (s)

z Coordinate (m)

Greek Symbols

α thermal diffusivity (m2 s−1)

δ Mean free path of radiation (m)

κ Absorption coefficient (m−1)

ρ Density of the material (kg m−3)

σ Stefan-Boltzmann constant (W m−2 K−4)

σk Surface to volume ratio (m−1)

τ Dimensionless time

θ Temperature difference (K)

θr Reference temperature (K)

ε emissivity of the material

Subscripts

0 initial

∞ ambient

crit critical

ig ignition

inc incident

net net

radiant heat fluxes through the heat diffusion equation. Their work assumed the following: i) infinite Damköhler

number, which allows to treat the gas phase as an extinction problem and not an ignition problem, making a

pilot necessary; ii) ignition occurs when the lean flammability limit is attained at the pilot location; iii) the

entire solid is inert during the heating stage. These assumptions can be merged into the general assumption

used in all the works which follow this approach that flaming ignition is attained when the solid reaches a critical

or ignition temperature, Tig. The solution to this classical heat conduction problem [8] yielded good agreement

with experimental results (particularly for intense incident heat fluxes q̇′′inc such that the ignition delay time,

tig ∼ 0), and paved the way for a physical interpretation of experimental data. This approach corresponds to

the thermal ignition theory based on the radiant heating of an inert material.

From the 1950s through the 1970s, two distinct experimental approaches are recognized in terms of the

thermal ignition problem. The first considers the use of radiant panels or flames to produce a continuous heat

insult over the surface of the sample and is applicable to the fire problem because the objective is not to develop

a ‘scenario’ approach that resembles a fire but to develop a canonical experiment that allows to explain the
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ignition problem and extract effective thermal properties [1, 2]. The second approach subjected samples to

pulses of radiation of much larger magnitude than in the former case, characteristic of atomic blasts [3, 6].

The historical development of fire science prompted members of the combustion community to focus on the

fire problem, aided by the development of new bench-scale experimental apparatuses in the late 1970s whose

operating principles and experimental goals were guided by the theoretical development of both the ignition and

flame spread problems [9]. Based on the thermal ignition theory, the suitable correlation of test results from the

new apparatuses permitted the analyst to obtain apparent material properties applicable to several fire safety

problems, like ignition temperatures, heat release rates, and thermophysical properties. A key feature of the

“modern” interpretation of the experimental data is the recognition of the linear relationship between t
−1/n
ig

vs. q̇′′inc (for tig → 0), where n depends on the thermal thickness of the sample (given by the Fourier number

of the solid fuel) and it takes the value of 1 for thermally thin samples and 2 for thermally thick fuels. This

correlation is readily obtainable from the solution of the heat transfer problems for the inert materials, and while

the Lawson and Simms developed the correlation (cf. Eq. 6 in [5]), its use to obtain apparent properties was

pioneered by the University of Oklahoma group in the early 1970s [10, Eq. IV-6]. Note that many researchers

cite the work of James Quintiere, Margaret Harkleroad and co-workers [9, 11] as being the first to establish

the correlation of ignition data in modern form, but to the best of the authors’ knowledge, the earliest work

to present these correlations was that by Mikkola and Wichman in 1989 [12, 13]. The following decades were

marked by the widespread use of the thermal ignition theory and correlations of t
−1/n
ig vs. q̇′′inc, which have now

become the standard form of analyzing ignition data by the fire community [14, 15, 16, 17, 18, 19, 20].

A common feature in all of the early works was the assumption that the radiation was treated only as a

boundary condition, thereby considering the solid fuel as optically opaque. While this assumption is adequate

for materials like wood, it may cease to be appropriate when dealing with PMMA and other materials which

have in-depth absorption of radiation [21, 22]. Simms recognized this issue early on [23], including the effect of

diathermancy or the divergence of the radiative heat flux term (∇q̇′′r ) in the energy equation, but later neglecting

it to obtain an analytical solution. This problem only began to be addressed in the 2010s [19, 24], although the

first analytical treatment of the radiative transfer equation (RTE) to obtain ∇q̇′′r in the context of the thermal

ignition theory was recently developed by our group [20, 25]. The authors used the novel treatments developed

by combustion researchers working in participating media (with applications in soot, spectroscopy, and laser

diagnostics). It is significant to note that the approximations of the RTE were developed more than 100 years

ago by the astrophysical and atmospheric science communities [26, 27, 28, 29].

Heat fluxes from fires are strongly time-dependent. However, the thermal ignition theory in its classical

form neglects this time dependency. Recently, the theory has been expanded by different groups to include

the temporal evolution of the incident heat flux, with different methodologies being proposed to treat this

problem by considering different expressions for the time-dependent flux, which include increasing, decreasing,

periodic or cyclical functions of time [18, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. What has not been done

by the community so far is to create a generalized closed-form analytical solution, formally treating the RTE

with radiation penetration into the solid and including the time dependence in the incident radiative flux.

The purpose of this study is to expand the previous work carried out by the authors on ignition theory and

propose a general analytical formulation for the ignition delay times of solids fuels exposed to different heat flux
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behaviors, from the constant case to more complex scenarios like exponential and polynomial functions of time,

considering the divergence of the thermal radiation, which represent different situations related to structural

and wildland fires. Additionally, a series of functional relationships of t
−1/n
ig vs. q̇′′inc(t) are presented in order

to systematically correlate experimental data, which can be easily applied to previous works [18, 34, 41].

2. Previous work

Although the first work to treat ignition under time-varying heat fluxes dates back to 1975 [42], in recent

years the community has given increased attention to this problem. While the research has been analytical

and numerical in nature, this section will only focus on the analytical work. All the analytical studies have

continued with the modern approach which appeared in the 1980s, i.e. i) obtaining an analytical solution for

the heat equation with the appropriate boundary conditions which describe the physical problem, yielding an

expression for the surface temperature, θ(0, t) = f (q̇′′inc(t)); ii) developing approximations for short and long

ignition delay times through first-order Taylor series expansions; iii) proposing correlations of experimental

data of the form tig = f (q̇′′inc(t), θig) to obtain effective material properties. In this section we will summarize

the previous work in terms of different functional forms of q̇′′inc(t), starting from the seminal work of Quintiere

et al., which considers a constant incident heat flux. Note that all of these models have been developed for the

thermally-thick case.

Table 1 shows the main categories of solutions for θ, based on different forms of the time-varying heat flux.

Historically, the first case to be treated was a linearly increasing incident heat flux [18, 30]. The group at Hefei,

China treated this problem in a more general manner, including linearly increasing and decreasing cases [41],

and finally exponential and polynomial heat fluxes [32, 34]. A significant contribution regarding the absorption

of radiation within the medium was carried out, by considering a translucent solid, but using an arbitrary

expression which is not a solution of the RTE [34].

3. Analytical model

In this section the model is developed from the energy balance equation introducing the assumptions

considered. Then the RTE in the participating medium is analytically solved to be properly incorporated in

the energy equation. Finally, analytical solutions are proposed for different functional forms of the time-variant

heat flux that fit the physical problem modeled in this study:

• Constant;

• Linear;

• Exponential;

• Polynomial.

3.1. Energy equation

The characterization of the heating phenomenon is schematized in Figure 1. The aim is to replicate the

typical bench-scale calorimeter apparatuses employed to test different type of materials [43]. In line with

the thermal ignition theory previously outlined, for the development of the mathematical model the following

assumptions are considered:
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Table 1: Summary of solutions for θ(ξ, t) for the different cases applied to the model. † Note that the polynomial flux with thermally

thick assumption was developed only for q̇′′inc = q̇′′0 + aβt
β , where β is 1 for linear heat flux variation or 2 for quadratic heat flux

variation, and does not include radiative nor convective heat losses in the surface of the medium.

Heat flux Solution for thermally thick material (θ(ξ, t), ξ = z/2
√
αt, δl = h/k) Reference

Constant

q̇′′inc = q̇′′0

q̇′′0
h

[
erfc (ξ)− e2δlξ

√
αt+αδ2l terfc

(
ξ + δl

√
αt
)]

[13]

Linear

q̇′′inc = q̇′′0 + rt

q̇′′0
h

[
erfc (ξ)− e2δlξ

√
αt+αδ2l terfc

(
ξ + δl

√
αt
)]

+

r

hαδ2l

{
e2δlξ

√
αt+αδ2l terfc

(
ξ + δl

√
αt
)
−
∑2
n=0(−2δl

√
αt)ninerfc (ξ)

} [41]

Exponential

q̇′′inc = q̇′′0 e
bt

q̇′′0
k

{
ebt

2

[ √
α

h
√
α/k +

√
b
e
−x

√
b
α erfc

(
x

2
√
αt
−
√
bt

)
+

√
α

h
√
α/k −

√
b
e
x
√
b
α · erfc

(
x

2
√
αt

+
√
bt

)]
−

hTαk

h2α− bk2
e
hx
k

+
h2T αt

k2 erfc

(
x

2
√
αt
−
hT
√
bt

k

)} [34]

Polynomial†

q̇′′inc = q̇′′0 + aβt
β

2
√
t q̇′′0√
kρcp

ierfc(ξ)− aββ!√
kρcp

(4t)
2β+1

2 i2β+1erfc(ξ) [32]

i) The heat transfer within the solid by conduction and radiationR1 is one-dimensional in the z-direction.

ii) The solution approach is based on the in-depth spatially-averaged temperature of the medium T , over the

mean free path of radiation δ based on the integral method [44].

iii) The medium remains inert during the overall heating process until the ignition is attained [18, 25, 31, 45].

This assumption is supported by the observation that fuel pyrolysis is a high-activation energy process

which is commonly modeled by an Arrhenius law, and therefore the fuel decomposition shows a negligible

reaction rate until the surface temperature approaches the ignition temperature.

iv) Ignition occurs when the average temperature of the medium reaches an average ignition temperature T ig,

which is estimated from experimental data [20].

v) The divergence of the radiative heat flux is modeled by the Schuster–Schwarzschild approximation [28], for

isotropic radiation and a nonscattering medium.

The general energy conservation equation for the participating medium is:

∂

∂t
(ρh) = −k∇2T −∇q̇′′R, (1)

where h =
∫ T
T∞

cpdT is the sensible enthalpy and ∇q̇′′R is divergence of the radiative heat flux per unit area. T
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Figure 1: Representation of the physical phenomena, for a one-dimensional inert solid exposed to a time-varying incident heat flux,

with convective and radiative losses on the surface.

is established as a spatially average temperature:

T =

∫
x2

x1

∫
y2

y1

∫
δ

0
Tdzdydx∫

x2

x1

∫
y2

y1

∫
δ

0
dzdydx

. (2)

Then, considering assumption i, the operator (1/δ)
∫ δ
0
dz is applied on both sides of Equation 1 leading to

spatially-averaged properties for the medium as follows:

(ρcp)
∂T

∂t
=

1

δ

[(
−k∂T

∂z

)
z=δ

−
(
−k∂T

∂z

)
z=0

]
− 1

δ

∫ δ

0

∇z q̇′′R, (3)

where ∇z q̇′′R is the divergence in z-direction of the q̇′′R vector of radiative heat flux per unit area (cf. Appendix

A.1 for an expanded procedure)R1. With this procedure, the energy equation becomes much more amenable

to analytical solutions, since the spatial dependence is lumped into a single, average temperature T (cf. Eq.

2), while still considering the contributions of conduction and radiation within the material.R1 In establishing

spatially averaged medium properties, radiative over conductive penetration thickness is used in accordance

with the application of radiative heat flux divergence (cf. Appendix B for validity).R1

3.2. Divergence of radiative heat flux

The divergence of the radiative term in Equation 3 is treated by the Schuster–Schwarzschild approximation

for two parallel plates [28] based on assumption v. The RTE is solved based on the following equations and
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boundary conditions (cf. Figure 1),

∂G

∂z
= − 4q̇′′R; (4)

∂q̇′′R
∂z

= 4πIb(T )−G; (5)

z = 0 : G+ 2q̇′′R = 4(q̇′′inc(t) + σT 4
∞); (6)

z = δ : G− 2q̇′′R = 4σT 4
∞, (7)

where ∂q̇′′R/∂z = ∇z q̇′′R and G = G(z) the local incident radiation in the z direction. The solution of this system

of equations, yields a more amenable expression for the divergence of the radiative heat flux (cf. Appendix A.2

for a detailed procedure):

∇z q̇′′R = 2σ
(
T 4 − T 4

∞
) (
e−2κ(δ−z) + e−2κz

)
− 2q̇′′inc(t) e

−2κz.

(8)

Operating both sides of Equation 8 with (1/δ)
∫ δ
0
dz under assumption i, the divergence of the radiative heat

flux can be expressed in terms of the space-averaged properties of Equation 3,

1

δ

∫ δ

0

∇z q̇′′Rdz = −ab
δ
q̇′′inc(t) +

2ab
δ
σ
(
T

4 − T 4
∞

)
, (9)

where ab =
(
1− e−2κδ

)
is the absorptivity of the medium.

3.3. Space-averaged model

In order to solve the energy balance of Equation 3, the following initial and boundary conditions are

established in terms of space-averaged variables:

t = 0 : T (0) = T∞; (10)

z = 0 : −k ∂T
∂z

∣∣∣∣
z=0

= −hc
(
T (t)− T∞

)
. (11)

An adiabatic boundary condition is considered on the lower surface (z = δ).

Note that only convective losses are considered over the top surface (z = 0) because the incident radiation

and the radiative losses are considered to be absorbed throughout the volume of the medium, and these effects

are thus included in Equation 6. Applying the mentioned conditions to the conductive terms ofR1 Equation 3

and using the divergence of the radiative heat flux presented in Equation 9, a general equation for average

temperature can be obtained:

(ρcp)
∂T

∂t
=

1

δ

(
−hc

(
T − T∞

))
+
ab
δ
q̇′′inc(t)−

2ab
δ
σ
(
T

4 − T 4
∞

)
.

(12)

Equation 12 has the form of a nonlinear first-order ordinary differential equation known as Chini’s equation

[46]. Its exact analytical solution is implicit, so it is obtained numerically. Subsequently, an approximate

solution will be presented as was developed in [47].
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3.4. Approximate model

The Taylor approximation is applied for the nonlinear term T
4

around the ambient temperature T∞, to

make Equation 12 a linear ODE. Then, grouping terms into coefficients b1 = ab/δ and b2 = (8abσT
3
∞ + hc)/δ

yields,

ρcp
∂T

∂t
= b1q̇

′′
inc(t)− b2

(
T − T∞

)
. (13)

Note that the energy equation in this form can be easily solved for any functional form of the incident heat

flux. The approach followed in this article develops the correlations for the experimental data (which lead to

obtaining effective properties) from these solutions.

3.5. Solutions for time-varying incident heat fluxes

The mathematical procedure proposed in this work is not limited to a constant or specific time-varying

incident heat flux. The problem can be solved for any function q̇′′inc(t), since it is only necessary to solve the

first-order differential equations from Eqs. 12 and 13 for the exact and approximated approaches respectively.

Therefore several cases will be developed as listed previously. It should be noted that different physical

configurations of the problem mean that the temporal function that represents the variation in the incident

radiative flux will need to take other forms accordingly, as seen in [42]. The solutions to Equation 13 were

obtained using Laplace transforms. A list of the approximated energy balances given by Equation 13 in the

Laplacian space for the different heat flux cases is presented in Appendix A.3.

3.5.1. Constant case (q̇′′inc(t) = q̇′′0 )

For a constant incident heat flux, the solution of Equation 13 becomes,

T (t) = T∞ +
ab q̇

′′
0

hT

(
1− e−

hT
δρcp

t
)
, (14)

where hT = (8abσT
3
∞ + hc) is a combined heat transfer coefficient in the medium. Note that a similar physical

problem was developed by Mindykowski et al. [25], for a constant heat flux on a porous fuel bed. In that work,

if the volume fraction of the solid fuel is set to unity, the medium has no porosity and the same solution is

obtained.

3.5.2. Linear case (q̇′′inc(t) = q̇′′0 + rt)

The linearly growing heat flux is the simplest time varying case. The initial heat flux is q̇′′0 and the imposed

ramp is r, obtaining:

T (t) = T∞ +
ab
hT

(
rt+

(
q̇′′0 −

δrρcp
hT

)(
1− e−

hT
δρcp

t
))

. (15)

3.5.3. Exponential case (q̇′′inc(t) = q̇′′0 e
bt)

The following solution is achieved, with b (s−1) as the exponential variation ratio.

T (t) = T∞ +
ab q̇

′′
0

(hT + bδρcp)

(
ebt − e−

hT
δρcp

t
)
. (16)

Note that if the b coefficient is b = 0 in the exponential case, the solution is equivalent to the constant case in

section 3.5.1.
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3.5.4. Polynomial case (q̇′′inc(t) = d1 + d2t+ d3t
2 + ...+ dN+1t

N )

For a polynomial of order N , the solution can be expressed as,

T (t) = T∞ +
ab
δρcp

(
−Π0 e

− hT
δρcp

t
+

N∑
i=0

Πi t
i

)
. (17)

In the previous expression, the terms Πi with i=0, 1, 2, ..., N are the grouped polynomial coefficients in the

form of definite summations, that can be extended to any order polynomial:

Πi =
di+1

a
+

N+1−i∑
n=2

(−1)n−1 di+n (n+ i− 1)!

an i!
, (18)

with a = hT /δρcp.

It is important to note that making d1=q̇′′0 , d2=r and d3=d4 ... =dN+1= 0, Equation 17 yields the solution

for a linear incident flux developed in section 3.5.2. This is significant because it shows the consistency of the

model for all derived cases.

3.6. Ignition delay time

A way to correlate experimental ignition data is necessary. To achieve this, a value for the ignition

temperature must be estimated. Due to the development of the model, the most convenient way to achieve this

objective is to use the critical heat flux criterion as treated by several authors [15, 16, 47, 48, 49]. However,

defining an ignition temperature permits the use of the t vs. q̇′′ correlations. The estimation of tig requires the

definition of an arbitrary ignition temperature, which is typically defined as a critical surface temperature. Given

that the heat equation has been defined for an average in-depth temperature, an average ignition temperature

will be defined. With the critical heat flux as the lowest constant heat flux where the temperature reaches T ig

after an infinitely long exposure, a solution method can be obtained numerically from Equation 12 setting the

LHS to zero. In a general way, if the pyrolysis temperature of the material is greater than 300°C, the radiative

losses represent ∼80% of the losses for a horizontal configuration [15], therefore it is possible to neglect the

convective losses in Equation 12, yielding

T ig =

(
q̇′′cri
2 σ

+ T 4
∞

) 1
4

. (19)

The correlations for the ignition delay time for each case studied are presented next. All the solutions are

summarized in Table 2.

3.6.1. Constant case

With the ignition temperature from Equation 19, the ignition delay time can be obtained directly from

Equation 14,
1

tig
=

hT
δρcp

1

ln(abq̇′′0 )− ln(abq̇′′0 − θighT )
. (20)

Another option is to follow the standard development for short ignition times [13], taking Equation 14 and

expanding the exponential term with a first order Taylor series around t = 0. This yields a solution for the

temperature difference θ(t) = T (t)− T∞,

θ(t) ≈ ab q̇
′′
0 t

δρcp
. (21)
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This solution is a linear function of t, and can thus be correlated following the standard form for thermally

thin materials [12]. Please refer to Table 2 for all these solutions. At ignition, θig = T ig − T∞, and the inverse

of the ignition time delay can be expressed as:

1

tig
=

ab q̇
′′
0

δρcp θig
. (22)

3.6.2. Linear case

In Equation 15, a second order Taylor series around t = 0 can be used on the exponential term to approximate

the temperature as follows:

θ(t) ≈ ab
2δρcp

(
q̇′′0 t+ q̇′′inc t−

hT
δρcp

q̇′′0 t
2

)
. (23)

A transient reference temperature θr(t) = (q̇′′0/δρcp) · t is defined in a similar approach as Reszka et al. [18].

This reference temperature is defined in terms of the initial heat flux imposed over the medium. Inserting θr(t)

and rearranging Equation 23,

θ(t) =
ab

2δρcp
(q̇′′0 + q̇′′net(t)) t (24)

in which the term q̇′′net(t) = q̇′′inc(t)− θr(t)hT can be interpreted as a net heat flux over the medium. Note again

the linear relationship with t. Then,

1

tig
=

ab

2δρcpθig
(q̇′′0 + q̇′′net(tig)) . (25)

3.6.3. Exponential case

As in the constant case, the ignition time can be obtained analytically from Equation 16 by assuming that

q̇′′0 e
bt = q̇′′inc(t), yielding,

1

tig
=

hT
δρcp

1

ln(abq̇′′0 )− ln(abq̇′′inc(tig)− θig(hT + bδρcp))
. (26)

This result approaches the solution of the constant case, in Equation 20 when b is zero. However, it cannot be

solved analytically, in order to do so, the second exponential term in Equation 16 must be neglected, since it is

a small value compared to the first term. The ignition time under this scenario, is,

1

tig
= b

1

ln(θig (hT + bδρcp))− ln(ab q̇′′0 )
. (27)

Again, another option, in a more standard way, is taking a second order Taylor series around t = 0 over the

second exponential term in Equation 16 to rewrite the averaged temperature as,

θ(t) =
ab

(hT + bδρcp)

(
q̇′′inc(t)− q̇′′0

+ θr(t) hT

(
1− hT

2δρcp
t

))
.

(28)

This equation has a similar form to Equation 24. The inverse of ignition delay time is,

1

tig
=

ab
2δρcp

·(
h2T θr(tig)

ab(q̇′′inc(tig)− q̇′′0 + hT θr(tig))− θig(hT + bδρcp)

)
.

(29)
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3.6.4. Polynomial cases

The form of the polynomial case solution makes it difficult to isolate the ignition delay time due to the

different powers of tig in the polynomial. Therefore, the relationship for the ignition delay time will only be

obtained for q̇′′inc = d1 + d3t
2. The spatially-averaged temperature over the medium is:

θ =
ab
δρcp

((
d1
a

+
2d3
a3

)(
1− e−at

)
− 2d3

a2
t+

d3
a
t2
)
. (30)

Applying a third order Taylor series expansion to the exponential term and simplifying, yields,

θ =
ab
δρcp

(
2d1 t

3
+
q̇′′inc(t) t

3

−d1 hT
2δρcp

t2 +
d1 h

2
T

2(δρcp)2
t3
)
.

(31)

Then, the following expression is obtained,

1

tig
=

ab

δρcp θig

(
2d1
3

+
q̇′′inc(tig)

3

−θr(tig) hT
2

+
(θr(tig) hT )2

6d1

)
.

(32)

It should be noted that even when the function q̇′′inc = d1 + d3t
2 is used to obtain an analytical result,

polynomials of other orders can also be used in Equation 17 to obtain an expression for the ignition time in a

semi-analytical way, by calculating the time at which the temperature reaches the value defined for ignition.

Note that in every case in the succession: constant, linear and polynomial (quadratic power of tig), the order

of the Taylor series approximation is increased by one. By using higher powers of tig, a greater precision in the

Taylor approximation is obtained, without making it impossible to obtain an expression for the ignition delay

time.

4. Results and discussion

4.1. Model testing

Using the expressions available in the literature and experimental data for PMMA, the solutions presented

above will be tested. The properties used for this purpose are summarized in Table 3.

The ignition temperature for PMMA was estimated using Equation 19, obtaining T ig = 639 K. To test

the validity of the negligible convective losses assumption, the ignition temperature was also calculated directly

from Equation 12, yielding a value of 611 K. These small differences justify the assumption made in section

3.6. Additionally, ignition temperatures are in line with what is generally reported for PMMA, in the range

between 602 K and 701 K [24, 34, 50], in spite of the fact that the value used in this work corresponds to a

space average.

Note that in Section 3.6 some of the expressions for the ignition delay time are implicit, so they cannot be

used directly to estimate the ignition time analytically. However, for each time-varying heat flux this can be

solved by taking simple assumptions that will be explained in detail below.
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Table 3: Material properties of PMMA and constants used in this model.

Parameter Values Ref.

Density, ρ (kg/m3) 1190 [24]

Specific heat, cp (J/(kgK)) 1680 [51]

Convective heat transfer coeff., hc (W/(m2K)) 10 [24]

Thermal conductivity, k (W/(m K)) 0.336 [51]

Critical heat flux, q̇′′cri (W/m2) 18000 [20]

Absorption coefficient, κ (1/m) 960.5 [24]

Initial and ambient temperature, T∞ (K) 300 -

4.1.1. Constant case

The predicted results for δ = 9.8 mm are presented in Figure 2. Firstly, the temperature evolution for

different incident heat fluxes is presented in Figure 2(a). The temperatures given by the exact solution (Chini’s

equation) of Equation 12, are also presented in that figure. The approximate analytical solutions are more

accurate at high incident heat fluxes, and on the contrary, the error increases when approaching to the critical

incident heat flux. This is caused by the linearization of the nonlinear term coming from the divergence of

the radiative flux from Equation 12 which assumes T is always close to the ambient temperature T∞, which

is actually valid for high incident heat fluxes, which implies that it is suitable for short ignition delay timesR1.

From Figure 2(a) the ignition delay time can be predicted, by noting the time when the material reaches the

ignition temperature. Two ignition delay times are obtained for every incident heat flux tested, one for each of

the calculated temperatures (i.e. 611 and 639 K).

The ignition delay time results from Equation 20 are presented in Figure 2(b) and Figure 2(c) for a wide

range of incident constant heat fluxes, where the exact and approximate solutions are compared to similar

approximate models presented in [13, 25, 52]. As expected, the approximated analytical solution (Eq. 20)

yields the closest results instead of the exact solution since the reference models are also approximate analytical

solutions. The inverse of the ignition delay time exhibits a linear behavior in all models. It can also be noted

that for high incident constant heat fluxes the difference between models is greatly reduced, being consistent

with the trend seen in the temperature results. Note that the critical heat flux for ignition shown in Fig. 2(b)

was obtained from [20].

In order to obtain a linear and simple relationship between the ignition time and the radiative heat flux,

an scaling procedure is applied. By normalizing the ignition delay time from Equation 22 and using critical

conditions to ignition, the following normalized variables and parameters are introduced:

Θ =
θ

θig
; τ =

δρcpθig
ab q̇′′cri

; ϕ(t) =
q̇′′inc
q̇′′cri

. (33)

The dimensionless solution can be written as Θ = ϕ · t/τ . When approaching the ignition point, it becomes

1 = ϕ · tig/τ , thus a linear relationship is formed between ϕ and τ/tig (Figure 2(d)). An equivalent relation was

used by Mindykowski [25] to correlate experimental data, extract material properties, and obtain a fast way to
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Figure 2: Results for the constant case: (a) Time evolution of average temperature, comparison between exact and approximated

analytical solutions. (b) Ignition delay time predictions for different models available in the literature and the approximate and

exact analytical solutions developed in this paper. (c) Inverse of ignition delay time vs. incident heat flux. (d) Normalized ignition

delay time vs. normalized incident heat flux. This scaling is used to retrieve material properties.

predict ignition delay times as follows:
τ

tig
=
q̇′′inc
q̇′′cri

. (34)

To validate the generality of the model presented, it was tested against reference models that were developed

for thermally thick solid fuels, which represent different approaches to solve the ignition problem, including the

classical ignition solution and integral methods [13, 14, 15, 43, 49], using the expressions for high incident heat

fluxes (i.e. t
1/n
ig = f(q̇′′inc)). All model parameters correspond to PMMA, and are those presented in Table 3.

To achieve this, the model presented in this article is solved considering a small radiation penetration thickness

(δ) at the surface of the medium, so that the spatially averaged temperature becomes equivalent to the surface

temperature in a thermally thick model and thus the temperatures predicted by all models are comparable.

The results of this comparison are presented in Figure 3. The penetration distance δ is calculated from an

estimation of the mean free path of radiation, cf. section 4.2 below. Both the exact solution of Chini’s equation

and the approximate solution (Eq. 20) using the calculated penetration distance are plotted. Both solutions
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yield predictions of the ignition delay time which are consistently lower than the rest of the solutions for all

the heat flux range. The source of these discrepancies is the fact that all the previous models do not consider

in-depth penetration of radiation.
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Figure 3: Ignition delay times for different incident constant heat fluxes tested, comparison between Reference models, approximate

analytical and exact analytical solutions, for the thermally thick case.

4.1.2. Linear case

The spatially-averaged temperature for a slab of fuel exposed to a linear incremental heat flux can be

predicted using Equation 15. This approximated analytical solution is compared and validated with the

numerical exact solution for Chini’s equation presented in Equation 12 when a linearly growing heat flux is

applied, shown in Figure 4(a).

As in the previous case, the ignition delay time is obtained by intersecting the two temperature predictions

with the ignition temperature obtained from Equation 19. Good agreement is found between both solutions

when high ramps are imposed, which translate to short ignition delay times. Differences become greater as the

exposure time increases, in lower ramps. This is caused by the two approximations made in Section 3.4 and

Section 3.6, the first being the linearization procedure of the nonlinear term in the divergence of the radiative

flux, which was done for high incident heat fluxes, and effectively assumes that T ∼ T∞. The second is the

Taylor series approximation performed around t = 0 to obtain the approximate solution (Equation 25), which

is valid for high heat fluxes.

Unlike the constant case, the number of analytical reference models for time-varying heat fluxes is lower

for the thermally thick case and even lower for the thermally thin case. Due to this, the comparison with the

thermally thick reference models is presented as the main result in Figure 4, while the thermally thin case for

δ = 9.8 mm is presented separately in Figure 5 since there are only numerical models with a limited range of

magnitudes for the linear increase ramp [33, 53]

The experimental data used in this case is that of Reszka et al. [18], who applied piloted ignition tests

with constant and linearly increasing heat fluxes on a thermally thick PMMA sample in a Fire Propagation

Apparatus (FPA) [54]. The sample consisted of 2 blocks of dimensions 100 x 100 x 4.9 mm glued one on top

of the other, following a horizontal configuration as shown in Figure 1. The slopes of the studied ramps varied
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Figure 4: Results for the linear case: (a) Evolution of in-depth average temperature, comparison between exact and approximated

analytical solutions. (b) Ignition delay times for different slopes of heat flux ramps tested, comparison between experimental,

approximate analytical and exact analytical solutions, for the thermally thick case. (c) Inverse of ignition delay times for different

slopes of heat flux ramps tested, comparison between experimental, approximate analytical and exact analytical solutions, for the

thermally thick case. (d) Linear relationship between the normalized ignition delay time and the normalized incident heat flux.

from r = 0.03 to 3.0 kW/m2s. Note that the simplest situation that can be considered in this case corresponds

to q̇′′0 = 0, e.g. representing a flame front approaching a target from a long distance which will initially impose

a negligible heat flux on the medium. Taking this value allows the ignition delay time to be obtained explicitly

from Equation 25.

Figure 4(b) presents the ignition delay times for a wide variety of ramps tested. Both the exact (Chini’s eq.)

and approximated solutions (Eq. 25) predict shorter ignition delay times than the experimental results. Note

that to compare the model in this work with the expressions available in the literature, the temperature of the

medium was averaged only within the radiation penetration region δ near the surface of the specimen, as was

described previously for the constant heat flux case (cf. section 4.2 for further details).

When the inverse of the ignition delay time is plotted in Figure 4(c) as a function of the ramp slope r from

Equation 25, it is clear that a linear behavior is not attained, the reason is the quadratic term of ignition delay
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time given by the form of the time varying incident heat flux. Then, by setting q̇′′0 = 0, Equation 23 becomes

θ =
ab

2δρcp
· q̇′′inc(t) · t. (35)

Then, by using the normalization of parameters of Equation 33, the resulting dimensionless solution of Eq.

35 becomes Θ = ϕ(t) · t/2τ . When approaching the ignition point, the expression becomes 1 = ϕ(tig) · tig/2τ ,

thus a linear relationship is formed between ϕ(tig) and 2τ/tig. This relation has been used in previous works

[20] to correlate experimental data and obtain a fast way to predict ignition delay times. Having this objective

in mind it is convenient to isolate the ignition time, yielding,

√
2τ

tig
=

√
r

q̇′′cri
. (36)

In Figure 4(d) this linear relation was tested with the experimental data showing overall good agreement on

every ramp imposed. Note that by isolating the ignition delay time the non-dimensional nature of the relation

is lost as both terms have a s−1/2 dimension.

The thermally thin case comparison is shown in Figure 5, where the reference numerical model and corresponding

experimental data is that of Zhang et al. [33] for a 6 mm PMMA solid fuel, with a range of ramp magnitudes

going from 0.05 to 0.15 kW/m2s. To compare the model to Zhang’s, the ignition temperature was increased to

695.53 K, and the parameters were matched to those used in his study. The exact version of the model for the

linear case manages to replicate the nature of the phenomenon and its tendency, however, it estimates slightly

higher ignition delay times when compared to this reference data. It is logical that the approximate model

loses precision since it was generated for times of low ignition delay, while data is presented for a range of low

radiative flux increases, generating high ignition times
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Figure 5: Ignition delay times for different slopes of heat flux ramps tested, comparison between experimental, approximate

analytical and exact analytical solutions, for the thermally thin case.

4.1.3. Exponential case

Figure 6(a) compares the exact and approximated analytical solutions of the spatially-averaged temperature

for a solid slab exposed to an incident exponential heat flux given by Equations 12 and 16 respectively, using

different values of the exponential coefficient b. As in the linear case, the model shows better agreement when the
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Figure 6: Results for the exponential case: (a) Evolution of in-depth average temperature, comparison between numerical and

approximated analytical solutions, given different exponential increments. (b) Ignition delay times for different exponential

increment ratios, comparison between Gong’s numerical solution and this paper approximate analytical and exact analytical

solutions. (c) Inverse of ignition delay times for different exponential increment ratios, comparison between Gong’s numerical

solution, approximate analytical and exact analytical solutions. (d) Linear relationship between the normalized ignition delay time

and the normalized incident heat flux.

exponent of the exponential term is larger, thus causing shorter ignition delay times, making the linearization

approximation more valid. The results of the exact and approximate analytical temperature profiles for the

exponential case present a better agreement than the previous cases, with the difference between the results just

being observed in the lowest values of the exponential variation coefficient. This is explained since the growth

rate of the heat flux in an exponential form is much larger than in the previous cases, and therefore ignition is

attained more quickly. The greatest discrepancies are observed at large times, therefore beyond ignition, and

beyond the scope of the model.

Figures 6(b) and 6(c) present a comparison of predictions of the ignition delay time based on temperatures

(exact solution and Eq. 16) with the model proposed by Gong, which includes surface absorption of radiation

[34]. The same procedure is followed to obtain an estimate of surface temperature as in the previous cases (cf.
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section 4.2), estimating an optimal value of the mean free path of radiation. The results are presented for a

wide range of b (s−1), and as explained before, better agreement with Gong’s model is found on higher values

of b, or for shorter ignition delay times, both for the exact and approximated analytical solution (Eq.R3 27)R3.

Note the linear relationship between the inverse of ignition delay time and b on both solutions.

It is easily noticed from Eq. 16 that in this case one should not impose a initial heat flux q̇′′0 = 0, as it would

eliminate the exponential terms completely. Instead, a small value can be imposed, then an equivalent form of

Equation 35 for the exponential solution is,

θ =
ab

(hT + bδρcp)

(
q̇′′inc(t)− q̇′′0 e

− hT
δρcp

t
)
. (37)

The second exponential term has a negative exponent, thus for small values of q̇′′0 that term is negligible.

Following the same normalizing procedure applied before, a change of variables can be done,

Θ =
θ

θig
; τ =

(hT + bδρcp) θig
ab q̇′′cri

; ϕ(t) =
q̇′′inc(t)

q̇′′cri
. (38)

Expressing Equation 37 in dimensionless form and approaching to the ignition temperature, a linear relationship

is found between tig and ln(q̇′′criτ/q̇
′′
0 )/b, which can be seen in Figure 6(d),

tig ≈
ln(q̇′′criτ/q̇

′′
0 )

b
. (39)

4.1.4. Polynomial case

The in-depth spatially-averaged temperature for fuel slab exposed to a second-order polynomial heat flux,

q̇′′inc(t) = d1+d3t
2, can be estimated using Equation 30. A comparison between exact and approximated solution

of the in-depth spatially-averaged temperature for different ramps is shown in Figure 7(a). The ignition delay

time can then be predicted from the intersection of the temperature predictions with the calculated ignition

temperature by using Equation 32. As in the linear case, the difference between the approximate and exact

solutions comes from the approximations made for T ∼ T∞ and t ∼ 0. For the polynomial incident heat flux,

as in the linear case, the scenario in which d1 = q̇′′0 = 0 is the most simple situation for the problem (effectively

becoming a power law), and allows to solve Equation 32 explicitly.

Note that as in the exponential case, the models proposed by Zhai and Lamorlette [31, 32] are compared with

the predictions of this work in Figure 7(b). The results presented in that figure predict the ignition delay time

of a PMMA slab exposed to a quadratic incident heat flux, thus the medium had to be treated as a thermally

thick fuel to carry out the comparison, following the previously explained technique of reducing the radiation

mean free path δ and calculating an average temperature close to the surface (Section 4.2). For a wide range of

quadratic ramping magnitudes d3 presented in Figure 7(b), better agreement is found for short ignition delay

times, and as in the linear case, it is found that the model tends to under predict the ignition delay times with

respect to the other models in the literature.

When the inverse of the ignition delay time is plotted in Figure 7(c) as a function of the quadratic ramp

slope from Equation 32, it is clear that a linear behavior is not attained. The reason for this is the cubic term

of ignition delay time given by the form of the time varying incident heat flux.

In this case, a scaling procedure can also be done. Taking Equation 31 and making d1 = 0 yields,

θ =
ab
δρcp

[
q̇′′inc(t) t

3

]
. (40)

19



0 25 50 75 100 125 150 175 200
Time (s)

400

600

800

1000

1200

1400

T (
t) 

(K
)

Exact d3 = 54.77 kW/m2s2

Approx d3 = 54.77 kW/m2s2

Exact d3 = 44.72 kW/m2s
Approx d3 = 44.72 kW/m2s2

Exact d3 = 31.62 kW/m2s2

Approx d3 = 31.62 kW/m2s2

Exact d3 = 22.36 kW/m2s2

Approx d3 = 22.36 kW/m2s2

Tig exact
Tig approx (Eq. 19)

(a)

0 10 20 30 40 50
Ramp magnitude (W/m2s2)

40

60

80

100

120

t ig
 (s

)

Zhai et al. [32]
Lamorlette et al [31]
Exact solution
Approximate solution (Inverse Eq.32)

(b)

0 10 20 30 40 50
Ramp magnitude (W/m2s2)

1.0

1.5

2.0

2.5

3.0

1/
t ig

 (s
1 )

×10 2

Zhai et al. [32]
Lamorlette et al [31]
Exact solution
Approximate solution (Eq.32)

(c)

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
3

d3/qcrit

0.06

0.08

0.10

0.12

0.14

3
3

/t i
g R2 = 1.000

Zhai et al. [32]
Best Fit (Eq. 41): n=-0.018, m=1.077

(d)

Figure 7: Results for polynomial case: (a) Evolution of average temperature, comparison between exact numerical and approximated

analytical solutions, given different quadratic flux ramps. (b) Ignition delay times for different slopes of quadratic heat flux ramps

tested, comparison between Zhai model, approximate analytical and exact analytical solutions. (c) Inverse of ignition delay times for

different slopes of quadratic heat flux ramps tested, comparison between Zhai model, approximate analytical and exact analytical

solutions. (d) Linear relationship between the normalized ignition delay time and the normalized incident heat flux.

Using the normalizing procedure of Equation 33, the same change of variables as in the constant and linear

case can be used here. Introducing the dimensionless variables and parameters in Equation 40 and approximating

to the ignition point, a linear relationship is formed between ϕ(tig) and 3τ/tig, and is shown in Figure 7(d).

Remembering that in this scenario q̇′′inc(t) = d3 t
2 and isolating tig then the following relationship is obtained:

3
√

3τ

tig
= 3

√
d3
q̇′′cri

. (41)

4.1.5. Generalized scaling of the results

In the dimensionless results, a trend is observed between the constant, linear and polynomial cases (square

power), since they all have the same non-dimensional parameters and roots of different orders that coincide
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with the order of q̇′′inc = d1 + dN+1t
N . This can be written in a general form:

(N+1)
√

(N + 1) τ

tig
= (N+1)

√
d(N+1)

q̇′′cri
. (42)

All the normalized expressions for tig found for every case are summarized in Table 4 so that the reader

can access them more quickly. With these expressions it is easy to predict an ignition delay time based on the

incident flux but also to obtain effective properties of the fuel material from experimental ignition data.

4.2. From semi-transparent to opaque materials

The model proposed in this article allows to calculate the heating of materials of any optical thickness, under

time-varying radiative incident heat flux conditions. Since all of the previous solutions for time-varying incident

heat fluxes consider opaque solids (i.e. media with no penetration of the incident radiation), the model must

be adapted to allow for an adequate comparison. For this, it is enough to reduce the radiation penetration

thickness of the medium δ. Although δ cannot be zero, since it is in the denominator in various fractions of

the models presented above, it can be small or tend to zero (δ → 0). In this way, a medium where radiation is

absorbed at the surface can be modeled, with the average temperature representing the surface temperature.

Figure 8 shows the ignition delay time for each time-varying heat flux case analyzed in this article, but also for

a wide range of radiation penetration thicknesses, from δ = 9.8−0.1 mm. The plots compare the solutions with

experimental data of the references cited in Section 4.1, in order to determine the optimal radiation penetration

thickness δ∗ to be used in the proposed models to compare their results with each reference model. To determine

δ∗ the relative error is calculated between the calculated ignition delay time for the highest heat flux and its

corresponding value from the models in the literature. The reason for choosing the highest heat fluxes lies in

the fact that all of the expressions were obtained for the limit t→ 0, and as noted in the previous section, the

results show that the best fits and predictions are achieved for high heat fluxes. For all the cases in Fig. 8, the

values of δ∗, lie within the range 1 – 3 mm, being close to zero as expected [55].

Taking into consideration all the optimal radiation thicknesses obtained for each reference model, one was

selected in each case (constant, linear, exponential and polynomial) in order to be able to generate the graphs

that were included in Section 4.1. For the constant case, the standard model [13] was selected and therefore,

the penetration thickness used in both the exact and approximate models was 1.42 mm (Figure 3). For the

linear case, the selected reference was the experimental data of Reszka [18], with δ∗ = 2.42 mm, reflected in

Figure 4(b) and Figure 4(c). In the exponential case, the radiation penetration thickness took the value of 1.33

mm following the result of the only available reference [34], cf. Figures 6(b) and 6(c). Finally, in the polynomial

Table 4: Summary of normalized expressions to predict tig for the different cases applied to the model.

Flux type
Constant

q̇′′inc = q̇′′0

Linear

q̇′′inc = q̇′′0 + rt

Exponential

q̇′′inc = q̇′′0 e
bt

Polynomial

q̇′′inc = d1 + d3t2

Normalized

expression

τ

tig
=
q̇′′inc
q̇′′cri

√
2τ

tig
=
√

r

q̇′′cri
tig =

ln(q̇′′criτ/q̇
′′
0 )

b

3
√

3τ

tig
= 3

√
d3

q̇′′cri
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Figure 8: Comparison between approximate analytical models of previous authors and the ones developed here, for all the cases

considered in this study.

incident heat flux variation, the Zhai model [32] was selected with δ∗ = 1.019 mm, as plotted in Figure 7(b)

and Figure 7(c).

Regarding the mean free path of radiation δ, it is important to mention that each functional form of the time-

dependent heat flux, affects the ignition delay time in different proportions. This magnitude decreases as the

polynomial degree increases for the constant, linear and quadratic cases, but in the exponential case presents a

low sensitivity to the penetration deep as seen in Figure 8(c). Therefore, if the temporal phenomenon is adjusted

to an increasing exponential function, the accuracy of the model will be increased, even when the estimate of δ

is not precise. It can be useful to obtain an approximation for the optimal radiation penetration thickness δ∗,

therefore, an additional expression and methodology are presented in Section 4.3, which allow to determine it

by using experimental data and the standard effective properties, fitting the model to a thermally thick case.

4.3. Effective properties

Calculation of the effective properties is also an indicator of the accuracy of the model, using the expressions

found in Section 4.1 for the constant (Equation 34), linear (Equation 36) and polynomial cases (Equation 41).
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The following relation can be established by solving for each respective power n in 1/tnig,

1

tnig
=

1

nτ
· dn
q̇′′cri

. (43)

A normalized linear relationship is obtained, where the slope m takes the form of 1/(nτ). Therefore, when

performing a linear fit to the experimental data and recalling that τ depends on the physical properties ρ and

cp, as in Equation 38, which are to be predicted in an effective way, the following relation can be found:

ρ cp =
ab q̇

′′
crit

n δ θig m
. (44)

A special method is developed to find the effective properties for the exponential case since τ depends on

the exponential coefficient b; applying the previous method would make the effective properties non constant.

Regrouping the terms, a linear function of b is obtained (of the form exp(b tig) = c+mb), from which the slope

m contains the term ρ cp, this is,

eb tig ≈ hT θig
q̇′′0ab

+
δρcpθig
q̇′′0ab

b; (45)

then from the slope m the effective properties can be determined as,

ρ cp =
m q̇′′0ab

δ θig
. (46)

The estimated effective properties obtained from the above relationships are shown in Table 5, comparing

them against the standard value of the effective properties [24, 51] The models from the references cited in this

work also permit retrieving effective properties. A comparison between the models available in the literature

with those developed in this work is presented in Figure 9, where the slope of the lines contains the properties.

Another aspect that can be deduced from the formulation of expressions to obtain effective properties is

the ability to propose an experimental approximation for the optimal radiation penetration thickness (δ∗). By

having a linear relationship of which only the slope is of interest, few experimental points are needed to obtain

the slope m and by subsequently applying the expressions from Equation 44 and Equation 46, using the standard

effective properties of the material, and with δ as the unknown variable, for the constant, linear and polynomial

cases this yields,

δ∗ =
ab q̇

′′
crit

nρcp θig m
; (47)

and for the exponential case,

δ∗ =
m q̇′′0ab

ρcp θig
. (48)

5. Conclusion

This paper presents a series of analytical results to deal with the heating of solid fuels subjected to different

forms of time-varying incident heat fluxes, including the penetration of radiation into the solid matrix, allowing

for the generalization of situations that were previously treated separately. The novelty of the model is that it

provides a general tool with a mathematically simple form, which facilitates its use for engineering purposes.

The model predictions show good agreement with the available experimental data and analytical models in the

literature, particularly for rapidly growing radiative heat fluxes, where short ignition times are achievedR1. From

the results obtained, it is possible to deduce that the linear relationship between t
−1/n
ig vs q̇′′inc recognized by the
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Figure 9: Inverse of ignition delay time powers for different incident heat fluxes, ramps or exponential coefficients testes, comparison

between experimental, approximate analytical and exact analytical solutions for all cases.

current interpretation of the experimental data for thermally thick materials, may not be valid when a temporal

dependence is included in the radiative heat flux imposed on the sample, as hinted in [42]. For linear increments,

the results scale with the relationship 1/t2ig vs r; for the polynomial case of order 2, a linear relationship between

1/tig3 vs d3 is observed. Finally, for an exponentially growing heat flux, a linear relationship is obtained for

Table 5: Comparison of effective properties and error obtained with the exact analytical model, approximated analytical model

and experimental results. The standard value of effective properties is ρcp = 1, 999.2 kJ/m3K. Obtained for optimal penetration

thickness δ∗

Cases

Effective properties kJ/m3K Constant Linear Exponential Polynomial

Exact solution 1,812.77 (9.3%) 2,072.79 (3.7%) 2,063.80 (3.2%) 2,125.89 (6.3%)

Approximate solution 1,987.49 (0.6%) 1,919.88 (4.0%) 2,126.38 (6.4%) 2,001.29 (0.1%)

Experimental - 1,776.71 (11.1%) - -
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1/tig vs b. For the exponential case, it is also distinguished that this behavior presents the highest precision

when comparing the approximate and exact solutions of the model, for both the temperature and the ignition

delay time predictions.

The results also show that for different time-dependent heat fluxes and different optical thicknesses the

accuracy of the analytical model is large for high radiative heat fluxes (shortlowR1 ignition times), but loses

accuracy at low radiative heat fluxes. This is because the approximations made are valid for fluxes which

rise rapidly in timehigh fluxesR1, hence the temperature deviations in subfigures (a) of Figure 2, 4, 6 and 7

increase with time, especially for the constant and linear cases when a small slope is imposed. Furthermore, the

divergence between the exact and approximate solutions for ignition delay time at low heat fluxes in subfigures

(b) and (c) in Figure 2, 4, 6 and 7 is also due to this approximation.

In the thermal ignition models, a fundamental parameter is the critical ignition temperature, and therefore,

the way in which it is obtained controls the accuracy of the model. For both the exact and approximate

analytical solutions, there is no single method to obtain it. In this work, we present an approximate solution

(Equation 19), in which the main assumption is that the convective losses of the problem are negligible, but

there are also other options to simplify this term such as a linearization by Taylor series to the temperature

term in Equation 12.

The mathematical procedure applied to treat the energy equation as a spatially averaged medium, allows to

manage the radiative term in the energy balance following all the assumptions mentioned in the first sections.

This enables the analyst to work with the different physical phenomena involved in the heating of condensed-

phase fuels in a modular way, facilitating the inclusion of other common physical effects relevant to ignition

processes such as fuel moisture content, fuel porosity, or different environmental conditions like wind speed over

the sample. As far as different functional forms of time-varying incident heat fluxes are concerned, the model is

capable to adjust to a wide range of models presented in the literature. Therefore, the proposed model acquires

a significant engineering utility since it provides a single model to be used as a general and versatile tool to

predict the ignition delay time in a manageable way for solid fuels of any optical thickness. While this paper

only presents solutions for incident heat fluxes which grow with time, it is also possible to adapt the model

in a simple way for decreasing heat fluxes by adjusting the sign in each case. This could have applications in

other fire safety problems, including the ignition behavior at later stages of compartment fires, self-extinction

phenomena, and the ignition of fuels in the trailing edge of wildland fire fronts.
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Appendix A. Derivation of the models

Appendix A.1. Energy equation

The general formulation of the energy equation is the following (cf. Equation 1):

∂

∂t
(ρh) = −k∇2T −∇q̇′′R.

Expanding it in the z-direction,

(ρcp)
∂T (x, y, z, t)

∂t
= −k ∂

∂z

(
∂T (x, y, z, t)

∂z

)
− ∂

∂z
q̇′′R(x, y, z). (A.1)

Defining a spatially average temperature as Equation 2:

T (t) =

∫
x2

x1

∫
y2

y1

∫
δ

0
T (x, y, z, t)dzdydx∫

x2

x1

∫
y2

y1

∫
δ

0
dzdydx

,

and considering assumption i) of heat transfer only in z-direction,

T (t) =
(x2 − x1)(y2 − y1)

∫
δ

0
T (z, t)dz

(x2 − x1)(y2 − y1)

∫
δ

0
dz

=
1

δ

∫ δ

0

T (z, t)dz. (A.2)

The energy equation is rewritten in terms of average properties by applying the operator (1/δ)
∫ δ
0
dz on both

sides, yielding,
1

δ

∫ δ

0

(ρcp)
∂T (z, t)

∂t
dz =

1

δ

∫ δ

0

−k ∂
∂z

(
∂T (z, t)

∂z

)
dz − 1

δ

∫ δ

0

∂

∂z
q̇′′R(z). (A.3)

By the definition of the spatially-averaged temperature of Equation 2 and integrating the Laplacian term,

Equation A.3 can be written as

(ρcp)
∂T (t)

∂t
dz =

1

δ

(
−k∂T (z, t)

∂z

) ∣∣∣∣z=δ
z=0

− 1

δ

∫ δ

0

∂

∂z
q̇′′R(z). (A.4)

Omitting the (z, t) dependence, Equation A.4 finally turns into Equation 3:

(ρcp)
∂T

∂t
=

1

δ

[(
−k∂T

∂z

)
z=δ

−
(
−k∂T

∂z

)
z=0

]
− 1

δ

∫ δ

0

∇z q̇′′R.

Equation 3 shows that the changes in the lumped internal energy of the solid fuel are caused by the heat

conducted into the medium and the radiative heating taking place in a top layer of material with a thickness

equal to the mean free path of radiation δ.

In order to solve the energy balance obtained in Equation 3, the following initial condition is defined in

terms of space-averaged variables:

t = 0 : T (0) = T∞, (A.5)

together with the following boundary conditions on the surface z = 0 and on the lower surface z = δ (adiabatic

conditions):

z = 0 : −k ∂T
∂z

∣∣∣∣
z=0

= −hc
(
T (t)− T∞

)
(A.6)

z = δ : −k ∂T
∂z

∣∣∣∣
z=δ

= 0 (A.7)
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Incorporating these conditions into Equation 3 and using the divergence of radiative model integrated between

0→ δ presented in Equation 9 (see Appendix A.2), yields

1

δ

∫ δ

0

∇z q̇′′Rdz = −ab
δ
q̇′′inc(t) +

2ab
δ
σ
(
T

4 − T 4
∞

)
.

Finally, the average temperature for different functional forms of the radiative heat flux can be calculated with

Equation 12:

(ρcp)
∂T

∂t
=

1

δ

(
−hc

(
T − T∞

))
+
ab
δ
q̇′′inc(t)−

2ab
δ
σ
(
T

4 − T 4
∞

)
.

Appendix A.2. Radiative model

The divergence of the radiative heat flux was modeled by the Schuster–Schwarzschild approximation based

on assumption v:

1

2

∂I+

∂z
+ I+ = (1− ω)Ib(T ) +

ω

2
(I− + I+); (A.8)

−1

2

∂I−

∂z
+ I− = (1− ω)Ib(T ) +

ω

2
(I− + I+), (A.9)

where ω is the single scattering albedo and I+, I− are the intensity of radiation in the upper and lower

hemispheres respectively. Then, with assumption v and the boundary conditions of the presented problem, the

conditions from Equation 4 to Equation 7 are established:

Differentiating Equation 5 with respect to z and combining with Equation 4, leads to

∂2q̇′′R
∂z2

= −∂G
∂z

= −4q̇′′R. (A.10)

This is a second-order differential equation whose general solution has the following form:

q̇′′R = C1e
2κz + C2e

−2κz. (A.11)

From the boundary conditions Equation 6 and Equation 7, with G = 4πIb−∂qRz/∂z the values of constants

C1 and C2 are found to be

C1 = σ
(
T 4 − T 4

∞
)
e−2κδ, (A.12)

C2 = −σ
(
T 4 − T 4

∞
)

+ q̇′′inc(t). (A.13)

Then, the particular solution for the divergence of the radiative heat flux is expressed as,

∇z q̇′′R = 2σ
(
T 4 − T 4

∞
) (
e−2κ(δ−z) + e−2κz

)
− 2q̇′′inc(t) e

−2κz. (A.14)

Appendix A.3. Approximated model

The approximate solutions to the energy balances given by Equation 13 are presented in the Laplace space

for the different heat flux cases, with b1 = ab/δ and b2 = (8abσT
3
∞ + hc)/δ. Note that the time t in Laplacian

space is represented by P .
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1) Constant case (q̇′′inc(t) = q̇′′0 )

ρcp(PT
∗ − T∞) = −b2T

∗
+
b2T∞ + b1q̇

′′
0

P
(A.15)

2) Linear case (q̇′′inc(t) = q̇′′0 + rt)

ρcp(PT
∗ − T∞) = −b2T

∗
+
b1 r

P 2
+
b2T∞ + b1q̇

′′
0

P
(A.16)

3) Exponential case (q̇′′inc(t) = q̇′′0 e
bt)

ρcp(PT
∗ − T∞) = −b2T

∗
+
b1 q̇

′′
0

P − b
+
b2T∞
P

(A.17)

4) Polynomial case (q̇′′inc(t) = d1 + d2t+ d3t
2 + ...+ dN+1t

N )

ρcp(PT
∗ − T∞) = −b2T

∗
+

(
b2T∞ + b1d1

P

)
+

N∑
i=1

(
i!b1di+1

P (i+1)

)
(A.18)

Solving for T
∗

and then applying the inverse Laplace transform, the solutions are returned to the original

variables. Solutions for T (t) are presented in Equations 14, 15, 16 and 17.
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Appendix B. Range of validity of the model

From the linearized energy balance (cf. Equation 13) the temperature evolution over exposure time can be

obtained for the multiple non-steady radiant heat fluxes

ρcp
∂T

∂t
= b1q̇

′′
inc(t)− b2

(
T − T∞

)
,

where q̇′′inc(t) is derived for specific conditions in Eqs. 14-17 (cf. section 3.5). The results are obtained for several

fixed radiative penetration thickness δR, which are compared with the time dependant conductive penetration

thickness δc according to the standard formulas

δR =
4

ω
; δc =

√
Dt,

where D is the diffusion coefficient and ω surface to volume ratio. For cases when physical thickness is shorter

than radiative penetration thickness, the value of this physical dimension is used. Figure B.10 shows the

evolution of the ratio between radiative and conductive penetration depths as the exposure time increases

(dashed lines) for different values of radiative penetration thicknesses (continuous lines). Each of these curves

represents the change in the ratio of penetration depths according to the dominant phenomenon for different

values of radiative penetration thickness δR and conductive penetration δc. This implies that when the ratio

δR/δc > 1, the penetration due to the radiative heating δR is the dominant phenomenon over conduction.

The plot also shows the ignition points generated by each evaluated condition of radiative flux and radiative

penetration thickness, for all the multiple non-steady radiative heat fluxes with two different initial magnitudes

(50 and 20 kW/m2). Thus, the ignition point is located at the intersections between the heat flux curves and

any of the penetration depth ratio curves. The plot shows that the assumption is valid for any functional

form of the incident heat flux. The assumption is valid particularly for rapidly growing heat fluxes (i.e. short

ignition times), while for less intense radiant heat fluxes the conductive penetration depth is of the same order

of magnitude as the radiation penetration depth, especially for δR . 5.0 mm.
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Figure B.10: The response of the ratio between radiative and conductive penetration depths as the exposure time increases for

different radiative penetration thicknesses.
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