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HIGHLIGHTS 

l An eco-driving control strategy is proposed for vehicles approaching a signalized intersection. 

l The discharge of the vehicle queue is modeled and predicted. 

l The proposed strategy is based on a computationally efficient iterative dynamic programming algorithm. 

l Monte-Carlo simulation using real-world traffic data is performed for in-depth energy efficiency analysis. 

l Energy-saving potential enabled by the proposed strategy is investigated for both internal combustion engine and electric vehicles. 

Abstract: This paper takes into consideration of vehicle queues at the intersection and proposes an energy-efficient driving strategy to improve vehicle energy 

efficiency and overall traffic throughput in an urban traffic environment. The proposed strategy is applicable for both electric vehicle and internal combustion 

engine vehicle, and the control framework is formed by three sections, a vehicle queue discharge predictor, a spatial-domain optimal control strategy for energy 

consumption minimization, and a speed tracker with consideration of collision avoidance constraints. The former is based on the intelligent driver model, which 

predicts an accurate vehicle queue discharge time. Then the iterative dynamic programming is utilized to find the optimal solutions with fast computational speed. 

Finally, the optimal speed profile is followed by a Proportion-Integration controller while keeping a safe inter-vehicular distance. A Monte-Carlo simulation is 

designed to evaluate the energy efficiency of the proposed strategy in the stochastic traffic environment. Compared to the regular eco-approach and departure and 

constant speed strategies that lack awareness of the queue, significant energy saving can be achieved of the proposed strategy. In addition, three typical cases are 

selected to study the energy efficiency when the proposed strategy is applied to internal combustion engine and electric vehicles, respectively. The results show 

the energy efficiency of electric vehicles is less sensitive to the queuing effect at the intersection because of regenerative braking and the overall higher efficiency 

of the electric motor in contrast to the internal combustion engine, especially in stop-and-go scenarios.  

Keywords: eco-driving control, connected vehicle, speed optimization, traffic prediction, iterative dynamic programming 

1. Introduction 

Traffic lights are developed for safe traffic management [1]; 
however, inefficient operation of the traffic signal could 
aggravate traffic congestion [2], and therefore increases vehicle 
fuel consumption and emissions [3, 4]. A variety of methods 
have been proposed from two fundamental perspectives to 
improve traffic throughput and vehicle energy efficiency at a 
signalized intersection. The first one is to optimize traffic light 

signal phase and timing (SPaT) for prioritization of vehicles 
approaching the intersection, such as the traffic light priority 
control for emergency vehicles [5], buses [6], and trucks [7]; 
the cooperative optimization of traffic signal and vehicle, for 
efficient driving control of a single vehicle [8] or a platoon [9]. 

On top of that, vehicle dynamics can be controlled to reduce 
the overall energy consumption required to complete the 
mission. Available methods include powertrain control [10], 
regenerative braking control [11], and eco-driving control [12]. 
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Among them, the eco-driving control that targets an energy-
efficient speed profile is recognized as one of the most effective 
methods [13, 14] to improve vehicle energy efficiency and 
traffic throughput [15, 16], and therefore have great potential 
for commercialization in the near future [17]. 

The eco-driving control at a signalized intersection is also 
called eco-approach and departure (EAD) control [18]. Recent 
advancements of vehicular connectivity technologies enable 
vehicles to access the SPaT information in real-time so that 
predictive eco-driving strategies were developed for enhanced 
energy efficiency and traffic throughput at a signalized 
intersection [19]. Katsaros et al. [20] developed a speed 
advisory system to minimize fuel consumption and stop delays 
subject to the given SPaT information. The goal of this 
algorithm is to reduce idling time at a red signal. Mahler et al. 
[21] introduced a stochastic signal phase prediction model that 
is integrated into the velocity optimization scheme to maximize 
the chance of going through an intersection at a green light. Han 
et al. [22] proposed a platoon-based trajectory optimization 
method, to reduce fuel consumption of multiple vehicles 
passing through a signalized intersection. Another study 
presented by Lin et al. [23] solved the energy-efficient speed in 
presence of multiple signalized intersections by an energy-
aware driving strategy. More recently, Mousa et al. [24] 
presented a deep reinforcement learning agent for solving the 
EAD problem in the vicinity of signalized intersections for 
minimization of fuel consumption, which does not require prior 
knowledge of vehicle and traffic environment.  

Most studies mentioned above assume the vehicle driving 
under free-flow traffic. In real world traffic conditions, the 
vehicle speed may be restricted by the preceding vehicle or the 
queue waiting at an intersection [25]. In such conditions, 
regular EAD strategies may fail to deliver energy-efficient 
driving profiles or may even lead to a rear-end collision due to 
the unexpected traffic ahead. To enhance the eco-driving 
strategy in real traffic situations, Xie et al. [26] used radar to 
detect the movement of the preceding vehicle and developed an 
eco-driving strategy for intersection crossing. Zeng et al. [27] 
investigated speed optimization subject to a given route with 
multiple signalized intersections. However, the speed profiles 
of the lead vehicles are known as a priori, which is impractical. 
He et al. [28] optimized the vehicle trajectory considering the 

queue at a signalized intersection relying on ideal Vehicle-to-
Vehicle and Vehicle-to-Infrastructure (V2I) technologies. In 
the real world, the vehicle may encounter mixed driving 
scenarios. To this end, Guo et al. [29] presented a hybrid 
reinforcement learning based eco-driving algorithm 
considering both the speed and the lane changing operations, 
for simultaneous fuel economy and travel time optimization by 
using historical driving data. Wang et al. [30] proposed a 
hierarchical eco-driving strategy for adapting mixed driving 
scenarios. This strategy relies on the information of traffic light 
SPaT obtained by the V2I communication and the preceding 
vehicle detected by the millimeter wave radar. However, such 
full connectivity capabilities cannot be realized overnight [31]. 
This has motivated research on EAD strategies with partial and 
possibly disrupted vehicular connectivity. Shao et al. [32] 
proposed a predictive EAD strategy, where the movement of 
the preceding traffic is predicted by using Unscented Kalman 
Filter in conjunction with a simple traffic flow model. Sun et 
al. [33] designed a data-driven eco-driving control approach by 
considering various uncertainties associated with traffic signal 
SPaT. Bakibillah et al. [34] developed a stochastic eco-driving 
strategy. The influences of both uncertain behaviors of 
preceding vehicles and duration of signal phases are indirectly 
modeled by the probabilistic crossing time for finding the 
energy-optimal speed. Another EAD is proposed by Yang et al. 
in [35], where the strategy ensures the arrival of the vehicle at 
the intersection stop line immediately after the last queued 
vehicle is discharged to ensure minimal waiting time at the 
intersection. 

Existing research work mainly focuses on the internal 
combustion engine vehicle (ICEV). The electrification of the 
automotive industry poses new research opportunities about 
eco-driving of an electric vehicle (EV) [36], since the EV and 
ICEV have different eco-driving strategies due to their different 
powertrain systems and energy consumption models [37, 38, 
39]. One of the major differences between the EV and ICEV is 
that an EV can recover kinetic energy by using regenerative 
braking, which usually leads to a different energy-optimal 
speed profile [40, 41]. In [42], Han et al. solved the eco-driving 
problems for both EV and ICEV by using analytic optimization 
methods to find the fundamental properties of the driving 
profile in both cases. However, the work was based on highly 
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simplified vehicle and energy consumption models that neglect 
aerodynamic drag and powertrain losses. The resulting solution 
could be considerably different from reality. Gao et al. [43] also 
investigated the eco-driving behavior for the EV and ICEV. 
Although the explicit powertrain models are included, the study 
was based on a non-optimal control strategy, which cannot 
reflect the optimal driving behavior.  

This paper proposes an energy-efficient driving strategy 
(EEDS) that is compatible with both EV and ICEV, followed 
by a thorough comparative investigation of their energy-saving 
potential with the control mechanism at a signalized 
intersection, where vehicle queues play a key role in eco-
driving control. The main contributions of this paper are 
threefold: 

1) The movement of the vehicle queue is predicted by 
using the intelligent driver model (IDM), which 
involves both vehicle dynamics and driver behavior.  

2) A new eco-driving strategy with the awareness of the 
preceding queuing vehicles is proposed to identify the 
optimal speed profile approaching a signalized 
intersection. The proposed strategy integrates the IDM-
based queue predictor and a speed optimizer based on 
the iterative dynamic programming (IDP), which can 
rapidly find the optimal solution. 

3) A Monte-Carlo simulation case study is investigated to 
verify the energy efficiency improvement in different 
driving conditions for both EV and ICEV. The results 
provide significant insight into the energy-saving 
potential over eco-driving and the effect of vehicle 
queue on the energy efficiency of both vehicle types. 

The remainder of this paper is organized as follows. Section 
2 provides the vehicle dynamics and energy consumption 
models, followed by the mathematical formulation of the eco-
driving control problem. The proposed EEDS strategy is 
presented in Section 3. In Section 4, stochastic simulations and 
numerical comparisons are conducted to show the effectiveness 
of the EEDS. Section 5 discusses the energy efficiency for EV 
and ICEV when applying the proposed EEDS strategy. Finally, 
concluding remarks are given in Section 6. 

2. Problem formulation 

This section formulates vehicle dynamics and the eco-
driving problem at a traffic intersection. 

2.1 Vehicle dynamics 
2.1.1 Longitudinal dynamics 

In this paper, the following vehicle longitudinal dynamics 
are considered [44] 

𝑚𝛿𝑣̇(𝑡) = 𝐹!(𝑡) − 𝐹"(𝑡) (1) 
where 𝑚 is the vehicle mass,	𝛿 is the vehicle rotational inertia 
coefficient, 𝑣(𝑡) is the vehicle speed, 𝐹!(𝑡) is the traction force, 
and 𝐹"(𝑡) is the resistance force. As the work focuses on daily 
driving, where vehicle accelerations are remarkably smaller 
than adherence limits, it is reasonable to assume that the wheels 
do not slip at their contact point with the ground but can rotate 
freely about their axes of rotation [45]. Thus, during driving, 
the traction force is determined by the powertrain torque 𝑇#(𝑡) 

𝐹!(𝑡) = 𝑇#(𝑡)𝑖$(𝑡)𝑖%𝜂&𝑟' (2) 
where 𝑖$(𝑡)	 is the transmission ratio, fixed for an EV and 

variable for an ICEV. 𝑖% is the final drive ratio, 𝑟' is the radius 
of vehicle tires, and 𝜂&  is the driveline efficiency. During 
braking, the negative vehicle force involves mechanical brakes 
for an ICEV and both regenerative and mechanical braking 
forces for an EV. Besides, 𝐹" is composed of aerodynamic drag, 
rolling resistance, and gravity force, as shown in Eq. (3), 

𝐹"(𝑡) = 𝑚𝑔𝑓 𝑐𝑜𝑠 𝜃 +𝑚𝑔 𝑠𝑖𝑛 𝜃 + 0.5𝐶(𝐴𝜌𝑣(𝑡)) (3) 
where 𝑔  is the acceleration of gravity, 𝑓  is the rolling 
resistance coefficient, 𝐶(  is the aerodynamic drag coefficient, 
𝐴 is the frontal area, 𝜌 is the air density, and 𝜃 is the road slope. 

2.1.2 Energy consumption model 
This part introduces the energy consumption models of both 

EV and ICEV. For an EV that is powered by a centralized 
electric motor (EM), a quasi-static model [46] is built up to 
calculate the battery power by Eq. (4) 

𝑃*(𝑡) = 𝑃+(𝑡)𝜂+
,-./012!(&)5𝜂*

,-./012!(&)5 (4) 

where 𝑃*(𝑡)  is battery power, positive for discharging and 
negative for charging. 𝑃+(𝑡) is the EM power. Similar to the 
battery power, we use the convention that when it works as a 
motor, power as well as the load torque are positive, and the 
power is assumed negative when it works as a generator. sign() 
is a signum function. 𝜂* is battery efficiency, which is assumed 
to be constant in this paper. 𝜂+ is the EM efficiency, which is 
determined by its speed and torque as shown in Fig. 1. 
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For ICEV, the powertrain is composed of an internal 
combustion engine (ICE) that drives the wheels via a 
continuously variable transmission (CVT), which is proved to 
be more efficient when driving in an urban area due to its ability 
to continuously change its gear ratio [47]. As with the EM, the 
ICE is also modeled by the steady-state modeling approach 
[48]. As such, the engine fuel consumption rate 𝑚6̇  is a 
function of the engine speed 𝜔7(𝑡) and engine torque 𝑇#(𝑡), 
expressed as 

𝑚6̇ (𝑡) = 𝛹 E𝜔7(𝑡), 𝑇#(𝑡)G 𝑃7(𝑡) (5) 

where 𝑃7(𝑡) is the ICE output power, 𝛹() represents the brake-
specific fuel consumption (BSFC) map, as shown in Fig. 2, and 
the idling speed for the ICE is 600 rpm. The ICEV also includes 
an engine start-stop system (SSS) that enables the ICE to be 
switched off to reduce idling losses. In this paper, it is assumed 
that the SSS control consistently switches off the engine 
(𝜔7 =0 rpm and 𝑚6̇ = 0) when the vehicle stops (𝑣 = 0). 
 

 
Fig. 1. The efficiency map and peak torque of the EM. 
 

 

Fig. 2. The BSFC map and peak torque of the ICE.  

2.2 Optimal control problem 
Fig. 3 shows the schematic of the problem addressed in this 

paper. As it can be seen, vehicles are limited to single-lane 
driving so that lane-changing and overtaking are not allowed 
for the ego vehicle. Moreover, when the ego vehicle enters the 
communication/control zone, the traffic light is red and all the 
preceding vehicles approaching the intersection are stationary 
(i.e., the queue for the traffic light is at a complete standstill). 
The traffic signal transition time from red to green is denoted 
by 𝑇8 . It is also assumed that all vehicles can traverse the 
intersection within a green interval that lasts 𝑇$" seconds. 

The ego vehicle is equipped with a V2I device (Dedicated 
Short-Range Communication or LTE-V) and therefore traffic 
information at the intersection is enabled by communicating 
with the Road Side Unit (RSU) at the traffic light. The length 
of the communication/control zone is 𝐷, which is determined 

by the communication range of the RSU. The target of eco-
driving in this work is to minimize the energy consumption and 
travel time of the ego vehicle required to cross the stop line 
subject to collision avoidance constraints.  

Now, we can formulate the problem as an optimal control 
problem (OCP) [25], that follows:  

minimize
𝒖

				𝐽M𝑢(𝑡), 𝑥(𝑡)P = Q 𝐸M𝑢(𝑡), 𝑥(𝑡)P𝑑𝑡
&"

%	
 (6) 

s.t. 
𝑥̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) (7a) 

𝜙(𝑥, 𝑢, 𝑡) ≤ 0 (7b) 

𝛽 E𝑥(0), 𝑥M𝑡#PG = 0 (7c) 

where	𝐸M𝑢(𝑡), 𝑥(𝑡)P represents the electric power for the EV 
and the fuel consumption rate for the ICEV,	𝑡# is the moment 

when the ego vehicle crosses the stop line at the intersection, 
which is influenced by the vehicle queue discharge time and 
SPaT. 𝑢(𝑡) is the control input. For the EV case, 𝑢(𝑡) = 𝐹!(𝑡) 
with 𝐹!(𝑡) the driving force act on the wheels. For the ICEV 
case, 𝑢(𝑡) = [𝐹!(𝑡) 𝑖$(𝑡)];  with the additional state 𝑖$  for 
the gear ratio of the CVT.	𝑥(𝑡) = [𝑑(𝑡) 𝑣(𝑡)]; is the vehicle 
state vector, formed by vehicle travel distance 	𝑑(𝑡)  and 
speed	𝑣(𝑡).  

Furthermore, the differential constraint Eq. (7a) collects Eq. 
(1) and  

𝑑̇(𝑡) = 𝑣(𝑡) (8) 

with the boundary conditions 𝑑(0) = 0, 𝑣(0) = 𝑣8, 𝑑M𝑡#P =
𝐷, 𝑣M𝑡#P = 𝑣<78 that are taken into account by Eq. (7c). Note 
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that 𝑣8 is predefined initial speed, whereas 𝑣<78 is determined 
by the stop line crossing speed of the last vehicle in the queue. 
Eq. (7b) represents the state and input constraints for the 
problem. First, to avoid rear-end collision, the ego vehicle 
needs to keep a safe inter-vehicular distance 𝑑8=67 with the lead 

vehicle that is the last one in the queue 

[𝐷 − 𝑑(𝑡)] − 𝑑>(𝑡) ≥ 𝑑8=67(𝑡) (9) 

where 𝑑>(𝑡) is the distance from the rear end of the last vehicle 

in the queue to the stop line. To improve traffic throughput and 
to prevent the vehicle from violating the road speed limit, the 
vehicle minimum and maximum speeds are limited by Eq. (10) 

𝑣+?@ ≤ 𝑣(𝑡) ≤ 𝑣+=A (10) 

The vehicle traction force follows Eq. (11), which limits the 
maximum acceleration and deceleration of the vehicle to ensure 
driving comfort. 

𝐹!+?@ ≤ 𝐹!(𝑡) ≤ 𝐹!+=A (11) 

where 𝐹!+?@ < 0 is the maximum braking force and 𝐹!+=A ≥
0 is the maximum propulsion force. Finally, for the ICEV case, 
the CVT gear ratio is constrained by Eq. (12) 

𝑖$,+?@ ≤ 𝑖$(𝑡) ≤ 𝑖$,+=A (12) 

It is worth noting that 𝑣<78 , 𝑑> , and 𝑡#  of the OCP are 

unknown and are influenced by the discharge of the queuing 
vehicles. In the next section, we propose a synthetic eco-
driving control strategy to address the OCP Eqs. (6) and (7) in 
presence of those unknowns. 

3. Energy-efficient driving strategy 

The control strategy that addresses the OCP (Eqs. (6) and 
(7)) formulated in Section 2 is introduced in this Section. The 
framework of EEDS is depicted in Fig. 3. It is formed by three 
major schemes: the vehicle queue discharge predictor, the

 

Fig. 3. The schematic of vehicles traveling towards a signalized intersection and the control framework of the proposed EEDS. 
 
 

energy-efficient speed planner, and the speed tracker for safety 
purposes. The former predicts the queue discharge time and 
speed of the last vehicle, and then the information is used by 
an IDP-based speed optimizer to find the most energy-efficient 
speed profile for the ego vehicle. However, the optimal 
velocity trajectory found by IDP cannot guarantee a safe 
separation distance between the ego and the vehicle in front 
due to the unavoidable prediction error. To this end, a collision 
avoidance strategy is deployed in conjunction with a 
Proportion-integration (PI) controller to follow the IDP 
solution in a safe manner.  

3.1 Vehicle queue discharge prediction 
In this study, it is assumed that the ego vehicle accesses the 

SPaT information and the number of vehicles 𝑛! in the queue 
from the RSU. The 𝑛!  is acquired by using widely used in-
ground loop detectors [49]. Let us index vehicles in the queue 
from 1 to 𝑛! starting from the vehicle closest to the stop line. 
The distance from the rear end of the 𝑗th vehicle to the stop 
line is defined as 𝑑C(0)	and calculated by Eq. (13) 

𝑑C(0) =\M𝐿C +𝐻CP
C

D

 (13) 
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where 𝐿C  is the body length of the jth vehicle, 𝐻C  is the 
standstill spacing between the 𝑗th vehicle and it preceding one, 
and 𝐻D represents the space between the first vehicle and the 
stop line. Thus, the queue length 	𝑑>(0) is equal to the distance 
of the 𝑛!th vehicle to the stop line, that is	𝑑>(0) = 𝑑@#(0). 

Let 𝑣C and 𝑎C are the velocity and acceleration of jth vehicle 
in the queue, respectively, the movement of queuing vehicles 
can be predicted by 

`
𝑣C(𝑡) = 0																𝑡 < 𝑇C
𝑣Ė(𝑡) = 𝑎C(𝑡)									𝑡 ≥ 𝑇C

 (14) 

where 𝑇C is the time instant when the jth vehicle starts moving 
when the traffic light changes to the green signal. Considering 
𝜅C  the reaction time of the driver of the jth vehicle. It is 
immediate to obtain 𝑇C = 𝑇8 +∑ 𝜅C

C
D .  

To predict the acceleration of each vehicle, we employ the 
IDM, which is a well-accepted model for single-lane traffic 
flow [50]. From the IDM, the acceleration of the jth vehicle 
follows 

𝑎C(𝑡) = 𝑎+=A c1 − e
𝑣C(𝑡)
𝑣∗ f

G

− e
𝑠∗(𝑡)
𝑠C(𝑡)

f
)

g (15) 

with 

𝑠∗(𝑡) = 𝑠% +max j0, 𝑇H,C𝑣C(𝑡) +
𝑣C(𝑡) E𝑣C(𝑡) − 𝑣C,D(𝑡)G

2l𝑎+?@𝑎+=A
m 

where 𝑎+?@ < 0 and 𝑎+=A ≥ 0 are respectively the maximum 
deceleration and acceleration of each vehicle for comfort 
purposes. 𝑣∗  is the desired velocity, which equals the 
predefined maximum allowed speed. 𝑠C(𝑡)  is the spacing 
between jth vehicle and the vehicle immediately ahead. 𝑠∗(𝑡) 
is the desired gap between two consecutive vehicles, 𝑠% is the 
acceptable minimum following distance, 𝜛 is the acceleration 
exponent, and 𝑇H,C  is the safety time headway of the jth vehicle.  

With the velocity prediction of queuing vehicles, the 
instantaneous queue length 𝑑>(𝑡) can be estimated by  

𝑑>(𝑡) = 𝑑>(0) −Q𝑣@#(𝑡)𝑑𝑡 (16) 

and the discharging time of queue, 𝑇> is defined as 

𝑑>M𝑇>P = 0 (17) 

For clarity, the implementation algorithm for the vehicle 
queue discharge prediction is given in Algorithm 1. 

3.2 Iterative dynamic programming 
3.2.1 Fundamentals of dynamic programming 

Algorithm 1 Implementation algorithm for the vehicle queue discharge 
prediction 

Input: 𝑛! , 𝐿", 𝐻", 𝜅", and 𝑇# 
Output: 𝑇$ and 𝑣%&# 
1. Initial by setting 𝑡 = 0, 𝑗 = 1, and sampling time ∆𝑡$ = 0.01s 
2. 𝑑$(0) ← ∑ 2𝐿" + 𝐻"4

"'(!
"')  

3. while 𝑑(!(𝑡) ≤ 𝑑$(0) 
4. for 𝑗 ← 1: 1: 𝑛! 
5.         if 𝑡 = 0 
6.               𝑣"(𝑡) ← 0 
7.               𝑑"(𝑡) ← 𝑑"(0) 
8.         else 
9.               if 𝑡 ≤ 𝑇# + ∑ 𝜅"

"
)  

10.                   𝑣"(𝑡) ← 0 
11.                   𝑑"(𝑡) ← 𝑑"(0) 
12.             else 
13.                   𝑣"(𝑡) ← 𝑣"2𝑡 − ∆𝑡$4 + ∆𝑡$𝑎"(𝑡) 
14.                   𝑑"(𝑡) ← 𝑑"2𝑡 − ∆𝑡$4 − 0.5∆𝑡$ ;𝑣"2𝑡 − ∆𝑡$4 + 𝑣"(𝑡)< 
15.             end if 
16.       end if 
17. end for 
18. 𝑡 ← 𝑡 + ∆𝑡$ 
19. end while 
20. Set 𝑇$ ← 𝑡, 𝑣%&# ← 𝑣(!(𝑡) 

This section introduces the IDP-based speed planner. In 
contrast to the DP, the IDP can significantly reduce the 
computation burden by adaptively refining the search space at 
each iteration. 

Since the traveled distance of the ego vehicle to pass through 
the stop line is fixed at 𝐷  (that is determined by the 
communication range of the RSU) whereas the travel time is 
uncertain, it is reasonable to reformulate the time-domain OCP 
(see Eqs. (6) and (7)) into the space-domain, as expressed in 
Eq. (18), with 𝑁 the total number of distance steps. Consider 
∆𝑑  the sampling interval of the distance, it holds that 𝑁 =
𝐷/∆𝑑 + 1. 

minimize
𝒖

	𝐽M𝑢(𝑘), 𝑥(𝑘)P =\𝐸M𝑢(𝑘), 𝑥(𝑘)P
I

JKD

𝑡(𝑘) (18) 

+𝛼D(𝑣(𝑁) − 𝑣<78)) + 𝛼)M𝑡(𝑁) − 𝑇>P
)
 

s.t. 
𝑢+?@ ≤ 𝑢(𝑘) ≤ 𝑢+=A 
𝑣+?@ ≤ 𝑣(𝑘) ≤ 𝑣+=A 

𝑇> ≤ 𝑡(𝑁) = 𝑡# ≤ 𝑇8 + 𝑇$" 
𝑣(𝑘 + 1) = l𝑣)(𝑘) + 2𝑎(𝑘)∆𝑑 

𝑎(𝑘) =
𝐹!(𝑘) − 𝐹"(𝑘)

𝑚𝛿
 

where 𝑥(𝑘) is the state vector, i.e., 𝑥(𝑘) = [𝑣(𝑘), 𝑡(𝑘)], and 

𝑢(𝑘) is the control variable, i.e., 𝑢(𝑘) = 𝐹!(𝑘) for the EV and 
𝑢(𝑘) = t𝐹!(𝑘), 𝑖$(𝑘)u for the ICEV.	𝑡(𝑘) is the required time 
to travel from (𝑘 − 1)th distance step to the next and it can be 
approximated by Eq. (19) 
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𝑡(𝑘) =
∆𝑑

0.5(𝑣(𝑘) + 𝑣(𝑘 − 1)) (19) 

For ease of computation, the terminal distance and velocity 
conditions in Eq. (7) are converted to soft constraints in Eq. 
(18) as the latter two terms, which can drive the states to the 
desired terminals. It is noteworthy that the terminal time is 
limited (third constraint in Eq. (18)) so that the ego vehicle  
can pass through the stop line before the traffic signal switches 
back to red. In addition, 𝛼D  and 𝛼)  are weighing factors for 

two terminal costs.  
The OCP in Eq. (18) can be solved recursively by following 

the Bellman Principle [51] and the steps for the basic DP are 
shown in Fig. 4.  
3.2.2 Iterative dynamic programming algorithm 

Although DP can derive the global optimal solution, the 
high computational cost limits its applicability. For this reason, 
in this study we use the IDP, which deploys the DP iteratively 
with rescaled state and control constraints and grids to 
moderate computational burden [52]. The relationship 
between the IDP and DP is shown in Fig. 4. As it can be seen, 
coarse grids are employed in the first instance, and the density 
of the grid points and the feasibility region of state and control 
change gradually to recursively achieve the problem solving.  

The rescaling mechanism of the grids is illustrated in Fig.5.  
The IDP is initialized with coarse grids (𝛥𝑥D and 𝛥𝑢D for the 
initial state and control) and the initial search region that is 
defined by the state and control constraints. Without loss of 
generality, let us assume that it yields the optimal control rule 
𝑢L#&,D  and state profile 𝑥L#&,D . Then, the bounds of control 
inputs and states at the (i+1)th iteration (𝑥+?@,?MD, 𝑥+=A,?MD) 
and (𝑢+?@,?MD, 𝑢+=A,?MD) are redefined based on the solution 

found in the previous iteration, 

𝑥+=A,?MD = minM𝑥L#&N,? + 𝜏𝛥𝑥? , 𝑥+=AP 
𝑥+?@,?MD = maxM𝑥L#&O,? − 𝜏𝛥𝑥? , 𝑥+?@P 

(20) 

𝑢+=A,?MD = minM𝑢L#&N,? + 𝜎𝛥𝑢? , 𝑢+=AP 
𝑢+?@,?MD = maxM𝑢L#&O,? − 𝜎𝛥𝑢? , 𝑢+?@P 

(21) 

where 𝑥L#&N,? , 𝑥L#&O,? , 𝑢L#&N,?  and 𝑢L#&O,?  are the maximum 
and minimum values of state and control variables at the ith 
iteration, respectively. 	𝜏 ≤ 1	 and 𝜎 ≤ 1  are the scaling 
coefficients for constraints of state and control variables. 𝛥𝑥? 
and 𝛥𝑢?  are the grid sizes for the ith iteration, which are 

defined by reduction factors 𝛾 < 1 and 𝜆 < 1. 

𝛥𝑥?MD = 𝛾𝛥𝑥? (22) 

𝛥𝑢?MD = 𝜆𝛥𝑢? (23) 

Consider the maximum allowed iterations  𝐼+=A. The IDP 
algorithm terminates when the conditions are satisfied. 

𝐸L#&,? ≤ 𝜗𝐸L#&,?,D or 𝑖 > 𝐼+=A (24) 

where 𝜗  is the user-defined parameter for the compromise 
between accuracy and convergence speed. In other words, the 
IDP keeps rescaling and solving the resulting OCP unless the 
solution converges or it the maximum number of iterations is 
reached. It should be noted that the parameters 𝜏, 𝜎, 𝛾, 𝜆, and 
ϑ could affect the calculation speed and optimization accuracy.  

 

 

Fig. 4. The flowchart of the IDP algorithm. Here the blue modules represent 

the DP algorithm, and the red modules represent the iterative strategy. 

 

 
Fig. 5. The grid rescaling diagram of the IDP algorithm. 
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3.3 Collision avoidance velocity tracking strategy  
In this study, a PI-based speed tracker is designed for speed 

tracking with consideration of the collision avoidance strategy. 
In the PI controller, the speed error is used as the input, and the 
acceleration is defined as the output to achieve precise tracking 
of the target speed. Let 𝑣<	be the optimal velocity trajectory of 
IDP. Following 𝑣< derived from the IDP may result in rear-
end collision due to the inevitable prediction error. Thus, a 
collision avoidance strategy [53] is adopted to ensure a safe 
following distance between the ego vehicle and the last vehicle 
in the queue. The strategy is described by  
𝑣(𝑘 + 1) = (25) 

~
𝑣<(𝑘) if	𝐻!(𝑘) > 𝑑P(𝑘)

𝑣(𝑘) + 𝑎+?@Δ𝑡 if	𝑑8(𝑘) < 𝐻!(𝑘) ≤ 𝑑P(𝑘)
𝑣(𝑘) + 𝑎QΔ𝑡 if	𝐻!(𝑘) ≤ 𝑑8(𝑘)

 

with 

𝑑!(𝑘) = 𝐻0 + '𝑣(𝑘) − 𝑣"*∗ (𝑘)*Δ𝑡+
𝑣$(𝑘) − 𝑣"*

∗$(𝑘)
2|𝑎%&"|

 

𝑑'(𝑘) = 𝐻0 + '𝑣(𝑘) − 𝑣"*∗ (𝑘)*Δ𝑡+
𝑣$(𝑘) − 𝑣"*

∗$(𝑘)
2.𝑎𝜑.

 

where 𝑑!  is the minimum distance for driving comfort, 𝑑8  is 
the minimum distance for driving safety, 𝐻% is a “static gap” 
and determines the minimum gap when the vehicle stops. Δ𝑡 is 
the sampling time in the simulation. 𝑎Q < 0 is the deceleration 
limited by road adhesion, 𝑣@#

∗ is the actual velocity of the last 

vehicle in the queue, 𝐻! is the bumper-to-bumper inter-vehicle 
distance of the ego vehicle and the 𝑛!th vehicle in the queue. 
It should be noted that the safety distance is generally shorter 
than the detectable distance of the vehicle radar, thus the rear-
end collision avoidance control is enabled when the preceding 
vehicle is detected. 

4. Simulation results and discussion 

To evaluate the performance of the proposed EEDS strategy, 
this section conducts a series of simulations in MATLAB and 
SUMO environments. The PC for simulation has an Intel Core 
i7-8700 @ 3.20GHz processor and 16G RAM.  

4.1 Simulation setup 

All simulation examples are carried by considering an EV 

and an ICEV, respectively, and the results obtained in both 

scenarios are compared. The vehicle model characteristics 

(e.g., mass, air drag coefficients, front area) are taken from the 

C-Class hatchback 2012 vehicle in CarSim (version 20959, 

2016.1). For the EV, the battery, electric motor, and final drive 

are chosen according to the existing equipment in our 

laboratory. For the ICEV, the engine, transmission, and final 

drive are sized from the experimental data in ADVISOR such 

that the EV and ICEV have similar driving performances, e.g., 

maximum acceleration and maximum speed. The ego vehicle 

parameters in both scenarios are summarized in Table 1. The 

traffic system is modeled in SUMO, and the queue is formed 

by using SUMO’s car-following model. We simulate the 

traffic environment by using real-world traffic, i.e., the 

intersection of Shuanglong Avenue and Yanhu Road, Nanjing, 

China. Table 2 shows the associated traffic parameters used in 

the case study [54, 55].  
 
Table 1 
Main parameters of EV and ICEV in simulation. 

Component Parameter Value 

Vehicle 

Mass 𝑚 1421 kg 

Front area 𝐴 2.22 m2 

Aerodynamic drag coefficient 𝐶+ 0.3 

Air density 𝜌 1.206 kg·m-3 

Rotational inertia coefficient 𝛿 1.022 

Rolling resistance coefficient 𝑓 0.015 

Wheel radius 𝑟, 0.325 m 

Acceleration of gravity 𝑔 9.8 m·s-2 

EV 

EM 
Maximum power 103.9 kW/-98.1 kW 

Maximum torque 312.5 Nm/-306.3 Nm 

Li-ion  
battery 

Capability 52 kWh 

Voltage 360 V 

Efficiency 𝜂- 0.9 

Powertrain  

Transmission ratio 𝑖. 1 

Final drive ratio 𝑖/ 5.12 

Driveline efficiency 𝜂0 0.9 

ICEV 

ICE 

Volume 1.8 L 

Maximum Power 101.7 kW 

Maximum Torque 143.1 Nm 

Powertrain  

Transmission ratio 𝑖. 0.4~3.4 

Final drive ratio	𝑖/ 3.3 

Driveline efficiency 𝜂0 0.9 

4.2 Benchmark strategies 
The proposed EEDS is compared with two existing 

strategies: constant speed (CS) [56] and regular EAD (READ) 
[57] for benchmarking purposes. 
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When the CS strategy is in use, the ego vehicle approaches 
the intersection with constant cruising speed. For fair 
comparisons, two versions of CS strategy are defined: CS 
(READ) and CS (EEDS), which follow the average speed of 
READ and EEDS, respectively. On the other hand, the READ 
strategy uses the a priori knowledge of SPaT information to 
determine the optimal speed profile [57]. Similar to the EEDS, 
the speed profiles that are derived from CS and READ may not 
be valid (lead to a rear-end collision) due to the lack of 
consideration of the queuing vehicles. Therefore, we adopt the 
same speed tracking controller introduced in Section 3.3 to 
generate safe counterparts of the CS and original READ 
solutions. To show the impact of the queuing vehicles on the 
optimal eco-driving behavior, we define the original solution 
of READ (without considering queue) as READ (original). 
While the safety-guaranteed solution is defined as READ.  
 
Table 2 
Main parameters of the traffic system in simulation. 

Parameter Value 

Communication range 𝐷 360 m 

Initial speed 𝑣# 54 km/h 

Green signal interval 𝑇.1 45 s 

Signal cycle length 𝑇2 85 s 

Minimum speed 𝑣34( 20 km/h 

Maximum speed 𝑣356 60 km/h 

Vehicles in queue 𝑛! [1, 20] 

Transition time 𝑇# [1 s, 40 s] 

Standstill spacing 𝐻" [1 m, 3 m] 

Vehicle body length 𝐿" [3.5 m, 5.5 m] 

Maximum acceleration 𝑎356 [2 m·s-2, 4 m·s-2] 

Maximum deceleration 𝑎34( [-2 m·s-2, -4 m·s-2] 

4.3 Energy efficiency improvement in different driving 
conditions 

To evaluate the performance of the proposed EEDS in a 
stochastic traffic environment, a Monte-Carlo simulation is 
conducted. The investigation involves 1,000 individual 
simulation trials for both EV and ICEV with constant 𝐷, 𝑣8, 𝑇P, 
𝑣+?@ , and 𝑣+=A . Traffic parameters 𝑇8 ,𝑛!  and the individual 
vehicle parameters 𝐻C, 𝐿C, 𝑎+?@, and 𝑎+=A are all randomized 

in the simulation for a thorough investigation. All the 
parameters are given in Table 2.  

The parameters of the proposed IDP are determined first by 
the systematical analysis. The initial grid size of velocity	is 10 

km/h, the grid interval of time is 5 s, the grid size of vehicle 
force is 200 N, and the transmission ratio grid size is 0.5. The 
scaling coefficients are τ = 0.4, σ = 0.3, γ = 0.02, and λ = 0.1. 
The allowance coefficient ϑ is set as 0.95, that is, the iteration 
terminates when the step improvement of IDP is less than 5%. 
The maximum number of iterations 𝐼+=A  is 10. The fast 
computational ability of IDP is reported in the Supplementary 
Material. 

Fig. 6 shows the box figures for energy consumption 
reduction of EEDS compared to READ, where the x-axis 
represents the number of vehicles in the queue. It should be 
noted that different strategies may result in different final 
driving speed when a vehicle approaches the stop line. Thus, 
to make a fair comparison, the total energy consumption of 
each strategy includes the consumed energy and the 
differences between initial and terminal kinematic energy.  

As shown in Fig. 6, the EEDS achieves significant energy 
efficiency improvement compared to READ for both EV 
(16.04 % on average) and ICEV (24.25 % on average). The 
results indicate that the energy consumption reduction is 
mainly influenced by 𝑇8 and 𝑛!. More specifically, when a few 
vehicles waiting at the intersection, both READ and EEDS can 
drive the ego vehicle to pass through the stop line without stops. 
As 𝑛! grows the ego vehicle with READ was blocked by the 
queue due to the lack of queue discharge prediction. If 𝑛! 
further increases, the velocity of the ego vehicle is highly 
influenced by the lengthy queue, and the benefit of using 
EEDS decreases. In some cases when both 𝑛!  and 𝑇8  are 
sufficiently large, the ego vehicle has to stop regardless of the 
EEDS strategy being used.  

When the 𝑛! is fixed, the energy consumption reduction is 
dispersedly distributed concerning 𝑇8. This is because 1) a fast 
transition from red to the green signal not block the traffic at 
the intersection even the problem is initialized with a long 
queue, thus energy efficiency of EEDS with little or no 
improvement compared with READ; 2) the vehicle with 
READ was blocked by the preceding vehicles as the 𝑇8 
increases, and consequently, the energy consumption increases. 

Based on the results of the Monte-Carlo simulation, all 
traffic situations can be divided into three cases depending on 
the impact of the queuing vehicles on the ego vehicle 
(specified by 𝑛!  and 𝑇8 ), 1) free-driving (no impact), 2) 
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saturated speed (moderate impact), and 3) with inevitable stops 
(significant impact). Next, further simulation was carried out 
to show the distance and speed trajectories of each control 
strategy in the three cases so that the energy efficiency 
improvement of the EEDS can be further shown. In Figs. 7-10, 
the traveled distance and speed profiles of the EEDS are 
benchmarked against CS and READ under the three cases, and 
the resulting energy consumption is reported in Tables 3 and 4.  
4.3.1 Case A (free-driving) 

This sub-section considers a case with 𝑛!  = 3, 𝑇8  = 7 s. 
Since only a few vehicles are involved in the queue and the red 
signal waiting time 𝑇8 is short, this scenario is less challenging 
compared to the remaining two.  

As it can be seen in Figs. 7-10 (a), the vehicle queue is 
discharged in 14.8 s after the traffic signal turns to a green 
indication. Thus, the ego vehicle with all three strategies could 
pass through the intersection without stopping for the vehicle 
queue. As a consequence, the solution of READ (original) also 
can be followed precisely. In addition, both READ and EEDS 
strategies yield the same solution. Compared to the CS strategy, 
the READ and EEDS can reduce the energy consumption by 
10.84 % and 13.16 % in the EV and ICEV cases, respectively. 

 

(a) EV. 

 

(b) ICEV. 
Fig. 6. Energy consumption reduction of EEDS as compared to READ in the 

Monte-Carlo simulation. 

 
 

     

(a) Case A.                                                                                                         (a) Case A. 

     

(b) Case B.                                                                                                          (b) Case B. 

     

(c) Case C.                                                                                                          (c) Case C. 

Fig. 7. Distance profiles of EEDS, REDS, and CS strategies for EV.                         Fig. 8. Velocity profiles of EEDS, REDS, and CS strategies for EV. 
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Table 3 
Energy consumption of EEDS, REDS, and CS strategies for EV.  

 
Case A Case B Case C 

Battery 
energy 

Kinetic energy 
changes Improvement Battery 

energy 
Kinetic energy 

changes Improvement Battery 
energy 

Kinetic energy 
changes Improvement 

CS (READ) 156.71 kJ 0 kJ N/A 251.07 kJ -13.69 kJ N/A 221.26 kJ -0.51 kJ N/A 

CS (EEDS) 156.71 kJ 0 kJ N/A 233.41 kJ 43.39 kJ N/A 234.25 kJ 26.69 kJ N/A 

READ 
(original) 112.80 kJ -26.92 kJ 10.84 % 

 (vs. CS(READ)) 21.02 kJ -93.05 kJ 56.92 %  
(vs. CS (READ)) 17.66 kJ -118.45 kJ 38.63 %  

(vs. CS(READ)) 

READ  112.80 kJ -26.92 kJ 10.84 % 
 (vs. CS(READ)) 148.61 kJ -76.30 kJ 15.05 % 

 (vs. CS(READ)) 106.77 kJ -104.03 kJ 4.95 %  
(vs. CS(READ)) 

EEDS  112.80 kJ -26.92 kJ 

10.84 %  
(vs. CS(EEDS)) 

0 %  
(vs. READ) 

88.65 kJ -93.05 kJ 

4.38 %  
(vs. CS(EEDS)) 

19.21 %  
(vs. READ) 

103.19 kJ -103.90 kJ 

0.23 %  
(vs. CS(EEDS)) 

1.76 % 
 (vs. READ) 

 
Table 4 
Fuel consumption of EEDS, REDS, and CS strategies for ICEV. 

 
Case A Case B Case C 

Fuel 
(Energy) 

Kinetic energy 
changes Improvement Fuel  

(Energy) 
Kinetic energy 

changes Improvement Fuel  
(Energy) 

Kinetic energy 
changes Improvement 

CS (READ) 9.91 ml 
(330.00 kJ) 0 kJ N/A 21.44 ml 

(713.95 kJ) 29.55 kJ N/A 16.92 ml 
(563.44 kJ) 18.29 kJ N/A 

CS (EEDS) 9.91 ml 
(330.00 kJ) 0 kJ N/A 15.47 ml 

(515.15 kJ) 48.15 kJ N/A 16.93 ml 
(563.77 kJ) 3.74 kJ N/A 

READ 
(original) 

7.74 ml 
(257.74 kJ) -28.84 kJ 13.16 %  

(vs. CS(READ)) 
7.96 ml 

(265.07 kJ) -88.81 kJ 48.29 % 
 (vs. CS(READ)) 

8.05 ml 
(268.07 kJ) -114.12 kJ 29.89 %  

(vs. CS(READ)) 

READ  7.74 ml 
(257.74 kJ) -28.84 kJ 13.16 %  

(vs. CS(READ)) 
16.21 ml 

(539.79 kJ) -74.82 kJ 10.20 %  
(vs. CS(READ)) 

19.85 ml 
(661.01 kJ) -101.79 kJ -39.92 %  

(vs. CS(READ)) 

EEDS  7.74 ml 
(257.74 kJ) -28.84 kJ 

13.16 %  
(vs. CS(EEDS)) 

0 % 
(vs. READ) 

9.16 ml 
(305.03 kJ) -95.27 kJ 

6.11 %  
(vs. CS(EEDS)) 

34.87 %  
(vs. READ) 

12.45 ml 
(414.59 kJ) -101.66 kJ 

16.79 %  
(vs. CS(EEDS)) 

32.32 %  
(vs. READ) 

     

(a) Case A.                                                                                                         (a) Case A. 

     

(b) Case B.                                                                                                          (b) Case B. 

     

(c) Case C.                                                                                                          (c) Case C. 
Fig. 9. Distance profiles of EEDS, REDS, and CS strategies for ICEV.                    Fig. 10. Velocity profiles of EEDS, REDS, and CS strategies for ICEV.
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4.3.2 Case B (saturated speed) 
In this case, we let 𝑛! = 8, 𝑇8 = 30 s. Due to the increase 

of both parameters, the ego vehicle has to stop if the original 
solutions of READ are followed.  

As observed in Tables 3 and 4, compared to the CS 
strategy, the EEDS and READ achieve dramatic energy 
consumption reduction for both EV and ICEV. However, 
since the READ (original) does not consider the vehicle 
queue, the ego vehicle will be affected by the movement of 
the vehicle queue if the ego vehicle is following the speed 
profile of the original solutions of READ (see Figs. 8(b) and 
10(b)). That is the presence of vehicle queue at intersection 
results in the partial following of the optimized speed profile 
of the READ (original), and more energy is consumed.  

Since the EEDS considers the effects of vehicle queue, its 
energy efficiency is the best among all strategies for both 
EV and ICEV scenarios. By comparing the EV with ICEV, 
more energy-saving can be made when the ego vehicle is an 
ICEV by using the proposed EEDS. This is because the EM 
is more efficient than ICE in stop-and-go scenario, and the 
EV could recover braking energy. 
4.3.3 Cas C (with inevitable stops)  

By further increasing the two parameters to 𝑛! = 15, 𝑇8 = 
39s, stops are inevitable no matter following the speed 
profiles derived from CS, READ, or EEDS due to the long 
vehicle queue and traffic signal transition time.  

As shown in Figs. 7(c) and 9(c), the longer red signal 
interval and queuing vehicles make the ego vehicle stop at 
the intersection for all strategies. However, the ego vehicle 
can still benefit from the EEDS by 0.23 % (EV) and 16.79 % 
(ICEV) as compared to the CS strategy. In addition, for EV 
and ICEV as shown in Figs. 8(c) and 10(c), only about 60 % 
speed profile of READ (original) is followed due to the 
longer vehicle queue for both EV and ICEV. Thus, the fuel 
consumption of READ is even higher than the CS, i.e., 
increased by 39.92 % as shown in Table 4. 

Overall, simulation results indicate the significant 
influence of the vehicle queue on vehicle energy efficiency 
at the signalized intersection. With EEDS, both EV and the 
ICEV speed trajectories include three driving modes. 
Nevertheless, the EV follows a mode sequence 

decelerating/gliding down, constant speed cruising, and 
accelerating, whereas the ICEV follows decelerating/gliding 
down, repeat pulse and glide (P&G) operation, and 
accelerating. The P&G operation is often advised as an eco-
driving mechanism of ICEV [25, 42, 57]. This is because 
periodically operating the ICE at a high load and then 
shutting it down, for a constant average vehicle speed, yields 
a lower fuel consumption than keeping a constant cruising 
speed. In addition, the energy consumption of both vehicles 
is completely different and varies with the traffic 
environment (see Tables 3 and 4). The detailed efficiency 
analysis of the proposed EEDS for EV and ICEV will be 
discussed in Section 5. 

5. Efficiency analysis of the proposed EEDS for EV and 
ICEV 

In Section 4, three typical intersection traffic cases are 
studied. This section investigates the energy losses of 
components of both EV and ICEV in order to show the 
energy-saving potential of the proposed EEDS and the effect 
of vehicle queue on energy efficiency improvement. Fig. 11 
shows the energy flow of the EV and ICEV. The total energy 
required from the energy source (i.e., battery energy 𝐸*=& 
for the EV and fuel energy 𝐸6T7U  for the ICEV) mainly 

originates from the following five elements: kinetic energy 
changes ∆𝐸J7, friction braking loss 𝐸𝑙6*, rolling resistance 

loss 𝐸𝑙"" , air drag loss 𝐸𝑙=<  and powertrain losses. The 
powertrain losses consist of EM, battery, and final drive 
losses in the EV, and ICE, transmission, and final drive for 
the ICEV. To sum up, the energy balance of EV and ICEV 
are  

𝐸*=& − ∆𝐸J7 = 𝐸𝑙6* + 𝐸𝑙+L& + 𝐸𝑙*=& + 𝐸𝑙<U + 𝐸𝑙""
+ 𝐸𝑙=< 

(26) 

𝐸6T7U − ∆𝐸J7 = 𝐸𝑙6* + 𝐸𝑙7@$ + 𝐸𝑙<U + 𝐸𝑙"" + 𝐸𝑙=< (27) 

where 𝐸𝑙*=&  is the battery internal energy loss, 𝐸𝑙<U  is the 
driveline losses, including final drive loss for the EV, and 
transmission loss and final drive loss for the ICEV. 𝐸𝑙+L& 
and 𝐸𝑙7@$ are the energy losses caused by the EM and the 

ICE, respectively. 
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(a) EV 

 

(b) ICEV. 
Fig. 11. The energy flow of EV and ICEV. 

5.1 Energy-saving potential of proposed EEDS for EV and 
ICEV 

Since the vehicle queue has dissipated while the ego 
vehicle arrives at the stop line in Case A, this case is used to 
represent a free flow driving scenario, and therefore it 
demonstrates how the proposed EEDS improve vehicle 
energy efficiency for EV and ICEV. 

Fig. 12 shows all energy losses for both powertrain cases, 
and Fig. 13 displays the operating points of the EM and the 
ICE. As shown in Fig. 12, energy-efficient driving control 
does not reduce the energy loss of rolling resistance. This is 
mainly because they are determined by rolling coefficient, 
vehicle mass, and travel distance, which remain unchanged. 
When the vehicle speed determined by the CS (EEDS) is the 
average speed of EEDS, thus the 𝐸𝑙=< has barely changed of 

EEDS compared with CS strategy. However, the EEDS 
could reduce the energy losses caused by the powertrain of 
both EV and ICEV dramatically compared to the CS 
strategy with the same travel time. As shown in Figs. 8(a) 
and 10(a), the vehicle with EEDS reaches the intersection 
smoothly. Thus, the associated energy losses are reduced. 

Differences between the optimal driving modes of the EV 
and ICEV are the consequence of their different working 
features [25]. As shown in Fig. 13, the working points of CS 
strategy are fixed and located in the moderate-efficiency 
area. However, the EEDS tried to move the operating points 
of the EM and ICEV to a higher efficiency area by 

 

(a) EV  

 

(b) ICEV 
Fig. 12. Energy losses of CS and EEDS strategies in Case A. 
 
optimizing the vehicle speeds. Specifically, the average 
efficiency of EM for CS and EEDS are 75.13 % and 84.32 %, 
respectively; the average fuel consumption rate of ICE for 
CS and EEDS are 0.36 ml/s and 0.25 ml/s, respectively. That 
is, EEDS improves vehicle energy efficiency by 10.84 % 
and 13.16 % for EV and ICEV, respectively. 

In addition, the largest energy consumption components 
for the EV and ICEV are different. The majority of energy 
losses are caused by the ICE for the ICEV, while the EV’s 
dominant energy loss component is rolling resistance in this 
case because the EV powertrain components can be 
operated more efficiently and the air drag loss is small due 
to the overall slow driving speed at an intersection.  

Therefore, eco-driving could decrease energy losses via 
appropriate speed control. In urban traffic, ICEV can benefit 
more from the EEDS as compared to the EV since the 
electric powertrain has an overall higher efficiency, and the 
regenerative braking can recuperate the otherwise dissipated 
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(a) EM 

 

 (b) ICE 
Fig. 13. Operating points of EM and ICE in Case A. 
 
braking energy. The effects of vehicle queues on energy 
consumption will be discussed in the next section. 

5.2 Effect of vehicle queue on energy efficiency improvement 
for EV and ICEV 

In Case B, the queue waiting at the intersection blocks the 
movement of the ego vehicle if ignoring its effect. Thus, 

Case B is used to demonstrate the effect of the preceding 
vehicle queue on energy-efficient driving for the ego EV and 
ICEV. The components of energy losses for the READ 
(original), READ, and EEDS are depicted in Fig. 14. Fig. 15 
shows the and EM and ICE operating points for both EV and 
ICEV. 

As shown in Tables 3 and 4, and Fig. 14, the READ, 
which does not consider queue, achieves poorer energy 
efficiency than EEDS. The increased energy losses of 
READ including 𝐸𝑙6*  and powertrain losses. It can be 

concluded from Figs. 14 and 15:  

 

(a) EV 
 

 

(b) ICEV 
Fig. 14. Energy losses of READ and EEDS strategies in Case B.  

 

1) compared with the READ (original), the powertrain 
losses of READ increase significantly because ignoring the 
effect of queue results in lower operating efficiency of EM 
and ICE (see Fig. 15). The average efficiency of EM for 
READ (original) and READ are 83.17 % and 71.05 %, 
respectively; the average fuel consumption rate of ICE for 
READ (original) and READ are 0.19 ml/s and 0.34 ml/s, 
respectively. In addition, for both EV and ICEV, the  
powertrain losses of EEDS are higher than the READ due to 
the consideration of queuing vehicles. However, the EEDS 
achieves better energy efficiency than READ in actuality.  

2) the 𝐸𝑙=< for EEDS is lower than READ. Because the 

EEDS considers the vehicle queue predictively, it 
decelerates the vehicle to a lower speed since the very 
beginning and maintains a lower speed for most parts of the 
mission as shown in Figs. 8(b) and 10(b).  

3) both READ and EEDS incur more friction braking loss 
as compared to READ (original) due to the unexpected 
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(a) EM 

 

(b) ICE  
Fig. 15. Operating points of EM and ICE in Case B.  
 
deceleration is required to deal with the vehicle queue. In 
contrast to the READ, EEDS applies further braking power 
at the beginning (see Figs. 8(b) and 10(b)), which permits 
more energy-saving from the ICE, motor, and air drag losses. 
It should be noted that the braking energy cannot be fully 
recovered due to the engagement of the mechanical brake 
when considerable deceleration is required. 

4) the most energy-consuming components in Case B are 
similar to Case A for both vehicles. For EEDS, there is 49.47% 
of energy loss is caused by the ICE for ICEV, while the most 
energy-consuming components in this case are similar to 
Case A for both EV and ICEV. For EEDS, there is 49.47% 
of energy loss caused by the ICE for ICEV, while only 17.63% 
of energy loss is from EM operation for EV. Thus, in urban 
traffic, the ICEVs tend to be more sensitive to stop-and-go 
operations caused by vehicle queues due to the 
characteristics of the ICE. 

6. Conclusion 

In this paper, an energy-efficient driving strategy is 
developed to minimize the energy consumption for a vehicle 
approaching a signalized intersection with the consideration 
of vehicle queue. The proposed strategy is comprised of a 
vehicle queue discharge predictor, an optimal speed planner, 
and a speed tracker. The predictor estimates the discharge 
time and length of the queue by using the intelligent driver 
model, while the optimal speed trajectory of the ego vehicle 
is found by the iterative dynamic programming, which can 
substantially reduce the computational burden of the regular 
dynamic programming algorithm. Finally, the optimal speed 
profile is followed by the Proportion-Integration controller 
with a specialized collision avoidance strategy. 

The numerical validation of the proposed strategy 
involves a Monte-Carlo simulation with randomized traffic 
parameters so as to show the advantages of the proposed 
strategy against constant speed and regular eco-approach 
and departure strategies under different traffic environments. 
The results show that significant energy efficiency 
improvement can be achieved by using the proposed 
strategy as compared to the conventional eco-driving 
strategies for both electric vehicles and internal combustion 
engine vehicles, and the benefit is more significant when the 
ego vehicle is an internal combustion engine vehicle. 
Further results show that the majority of energy-saving by 
following the speed trajectory of the proposed strategy is 
from the powertrain. In the context of an internal 
combustion engine vehicle, the most energy-consuming 
component is the internal combustion engine whereas for an 
electric vehicle energy is mainly consumed by the rolling 
resistance in urban areas due to its overall higher powertrain 
efficiency. As a consequence, the internal combustion 
engine vehicle is more sensitive to stop-and-go operations 
caused by vehicle queue and thereby can benefit more from 
the eco-driving control.  

Future research efforts will be devoted to developing the 
experimental platform for the field test of the proposed 
methodology to show its energy-saving potential in reality. 
In this context, the computational time is a major concern, 
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which will be further investigated and more efficient 
optimization formulation methods will be sought if 
necessary to reinforce the computational efficiency of 
proposed strategy. 

Acknowledgments 

This work was supported by National Natural Science 
Funds for Distinguished Young Scholar under Grants 
52025121, National Nature Science Foundation of China 
under Grants 52172383, 51975118, and 51805081, UCL-
ZJU Seed Funds under Grants 2020-21. 

Reference 

[1] Kham N and New C. Implementation of modern traffic light control 

system. International journal of scientific and research publications 

2014; 4(6): 1-6. 

[2] Cao Z, Jiang S, Zhang J, and Guo H. A unified framework for vehicle 

rerouting and traffic light control to reduce traffic congestion. IEEE 

transactions on intelligent transportation systems 2016; 8(7): 1958-

1973 

[3] Zhang J, Tang T, Yan Y, Qu X. Eco-driving control for connected 

and automated electric vehicles at signalized intersections with 

wireless charging. Applied Energy 2021; 282: 1-8. 

[4] Qu X, Yu Y, Zhou M, Lin C, Wang X. Jointly dampening traffic 

oscillations and improving energy consumption with electric, 

connected and automated vehicles: a reinforcement learning based 

approach. Applied Energy 2020; 257: 1-11 

[5] Qin X and Khan A. Control strategies of traffic signal timing 

transition for emergency vehicle preemption. Transportation 

research part C: emerging technologies 2012; 25, 1-17. 

[6] Koehler L and Kraus J. Simultaneous control of traffic lights and bus 

departure for priority operation. Transportation Research Part C: 

Emerging Technologies 2010; 18(3), 288-298. 

[7] Zhao Y and Ioannou P. A traffic light signal control system with 

truck priority. IFAC-PapersOnLine 2016; 49(3), 377-382. 

[8] Ma W, Wan L, Yu C, Li Z, Zheng J. Multi-objective optimization of 

traffic signals based on vehicle trajectory data at isolated 

intersections. Transportation Research Part C: Emerging 

Technologies 2020; 120: 1-27. 

[9] Liu H, Lu X, Shladover S. Traffic signal control by leveraging 

cooperative adaptive cruise control (CACC) vehicle platooning 

capabilities. Transportation Research Part C: Emerging 

Technologies 2019; 104: 390-407. 

[10] Zhuang W, Li S, Zhang X, Kum D, Song Z, Yin G, et al. A survey 

of powertrain configuration studies on hybrid electric vehicles. 

Applied Energy 2020; 262, 114553. 

[11] He H, Wang C, Jia H, Cui X. An intelligent braking system 

composed single-pedal and multi-objective optimization neural 

network braking control strategies for electric vehicle. Applied 

Energy 2020; 259: 1-14. 

[12] Stoicescu A. On fuel–optimal velocity control of a motor vehicle. 

International Journal of Vehicle Design 1995; 16(2-3), 229-256. 

[13] Xu Y, Li H, Liu H, Rodgers M, Guensler R. Eco-driving for transit: 

an effective strategy to conserve fuel and emissions. Applied Energy 

2017; 194: 784-797. 

[14] Vahidi A, Sciarretta A. Energy saving potentials of connected and 

automated vehicles. Transportation Research Part C: Emerging 

Technologies 2018; 95: 822-843. 

[15] Barkenbus J. Eco-driving: an overlooked climate change initiative. 

Energy policy 2010; 38(2): 762-769. 

[16] Asadi B and Vahidi A. Predictive cruise control: utilizing upcoming 

traffic signal information for improving fuel economy and reducing 

trip time IEEE Transactions on Control Systems Technology 2010; 

19(3): 707–714 

[17] NEXTCAR – Next generation energy technologies for connected 

and automated on-road vehicles. Tech. rep., U.S. Department of 

Energy. 

[18] Li S, Xu S, Huang X, Cheng B, Peng H, Eco-departure of connected 

vehicles with V2X communication at signalized intersections. IEEE 

Transactions on Vehicular Technology 2015; 64(12): 5439-5449. 

[19] Taiebat M, Stolper S, Xu M. Forecasting the impact of connected 

and automated vehicles on energy use: a microeconomic study of 

induced travel and energy rebound. Applied Energy 2019; 247: 297-

308. 

[20] Katsaros K, Kernchen R, Dianat M, Rieck D, Zinoviou C. 

Application of vehicular communications for improving the 

efficiency of traffic in urban areas. Wireless Communications and 

Mobile Computing 2011; 11: 1657-1667. 

[21] Mahler G, Vahidi A. An optimal velocity-planning scheme for 

vehicle energy efficiency through probabilistic prediction of traffic 



 17 

signal timing. IEEE Transactions on Intelligent Transportation 

Systems 2014; 15(6): 2516-2523.  

[22] Han X, Ma R, Zhang H. Energy-aware trajectory optimization of 

CAV platoons through a signalized intersection. Transportation 

Research Part C: Emerging Technologies 2020; 118, 102652.  

[23] Lin Q, Li S, Xu S, Du X, Yang D, Li K. Eco-driving operation of 

connected vehicle with V2I communication among multiple 

signalized intersections. IEEE Intelligent Transportation Systems 

Magazine 2020; 1-13. doi: 10.1109/MITS.2020.3014113. 

[24] Mousa S, Ishak S, Mousa R, Codjoe J, Elhenawy M. Deep 

reinforcement learning agent with varying actions strategy for 

solving the eco-approach and departure problem at signalized 

intersections. Transportation research record 2020; 2674(8), 119-

131. 

[25] Antonio S, Vahidi A. Energy-efficient driving of road vehicles. 

Springer International Publishing 2020. 

[26] Xie L, Luo Y, Zhang D, Chen R, Li K. Intelligent energy-saving 

control strategy for electric vehicle based on preceding vehicle 

movement. Mechanical Systems and Signal Processing 2019; 130: 

484-501. 

[27] Zeng X, Wang J. Globally energy-optimal speed planning for road 

vehicles on a given route. Transportation Research Part C: Emerging 

Technologies 2018; 93: 148-160. 

[28] He X, Liu X, Liu H. Optimal vehicle speed trajectory on a signalized 

arterial with consideration of queue. Transportation Research Part C: 

Emerging Technologies 2015; 61: 106-120. 

[29] Guo Q, Angah O, Liu Z, Ban X. Hybrid deep reinforcement learning 

based eco-driving for low-level connected and automated vehicles 

along signalized corridors. Transportation Research Part C: 

Emerging Technologies 2021; 124, 102980. 

[30] Wang S and Lin X. Eco-driving control of connected and automated 

hybrid vehicles in mixed driving scenarios. Applied Energy 2020; 

271, 115233. 

[31] Alessandrini A, Campagna A, Delle S, Filippi F. Automated vehicles 

and the rethinking of mobility and cities. Transportation Research 

Procedia 2015; 5: 145-160. 

[32] Shao Y, Sun Z. Eco-approach with traffic prediction and 

experimental validation for connected and autonomous vehicles. 

IEEE Transactions on Intelligent Transportation Systems 2020; 1-11. 

doi: 10.1109/TITS.2020.2972198. 

[33] Sun C, Guanetti J, Borrelli F, Moura S. Optimal eco-driving control 

of connected and autonomous vehicles through signalized 

intersections. IEEE Internet of Things Journal 2020; 7(5): 3759-3773. 

[34] Bakibillah A, Kamal M, Tan C, Hayakawa T, Imura I. Event-driven 

stochastic eco-driving strategy at signalized intersections from self-

driving data. IEEE Transactions on Vehicular Technology 2019; 

68(9): 8557-8569. 

[35] Yang H, Rakha H, Ala M. Eco-cooperative adaptive cruise control 

at signalized intersections considering queue effects. IEEE 

Transactions on Intelligent Transportation Systems 2016; 18 (6): 

1575-1585. 

[36] Yong J, Ramachandaramurthy V, Tan K, Mithulananthan N. A 

review on the state-of-the-art technologies of electric vehicle, its 

impacts and prospects. Renewable and Sustainable Energy Reviews 

2015; 49: 365-385. 

[37] Pedrosa D, Monteiro V, Goncalves H, Martins J, Afonso J. A case 

study on the conversion of an internal combustion engine vehicle 

into an electric vehicle. 2014 IEEE Vehicle Power and Propulsion 

Conference (VPPC). 2014: 1-5. 

[38] Howey D, Martinez-Botas R, Cussons, Lytton L. Comparative 

measurements of the energy consumption of 51 electric, hybrid and 

internal combustion engine vehicles. Transportation Research Part 

D: Transport and Environment 2011; 16(6): 459-464. 

[39] Sweeting W, Hutchinson A, Savage S. Factors affecting electric 

vehicle energy consumption. International Journal of Sustainable 

Engineering 2011; 4(3): 192-201. 

[40] Gao J, Chen H, Li Y, Chen J, Zhang Y, Dave K, et al. Fuel 

consumption and exhaust emissions of diesel vehicles in worldwide 

harmonized light vehicles test cycles and their sensitivities to eco-

driving factors. Energy Conversion and Management 2019; 196: 

605-613. 

[41] Desreveaux A, Bouscayrol A, Trigui R, Castex E, Klein J. Impact of 

the velocity profile on energy consumption of electric vehicles. IEEE 

Transactions on Vehicular Technology 2019; 68(12): 11420-11426. 

[42] Han J, Vahidi A, Sciarretta A. Fundamentals of energy efficient 

driving for combustion engine and electric vehicles: an optimal 

control perspective. Automatica 2019; 103: 558-572. 

[43] Gao Z, LaClair T, Ou S, Huff S, Wu G, Hao P, et al. Evaluation of 

electric vehicle component performance over eco-driving cycles. 

Energy 2019; 172: 823-839. 

[44] Rajamani R. Vehicle dynamics and control. Springer Science & 

Business Media 2011. 



 18 

[45] Biral F, Da Lio M, and Bertolazzi e. Combining safety margins and 

user preferences into a driving criterion for optimal control-based 

computation of reference maneuvers for an ADAS of the next 

generation. IEEE Intelligent Vehicles Symposium, Las Vegas, NV, 

USA, 2005: 36-41. 

[46] Larminie J and Lowry J. Electric vehicle technology explained. John 

Wiley & Sons 2012. 

[47] Srivastava N and Haque I. A review on belt and chain continuously 

variable transmissions (CVT): dynamics and control. Mechanism 

and Machine Theory 2009; 44(1):19-41. 

[48] Zhuang W, Zhang X, Li D, Wang L, Yin G. Mode shift map design 

and integrated energy management control of a multi-mode hybrid 

electric vehicle. Applied Energy 2017; 204: 476-488. 

[49] Polson N, Sokolov V. Deep learning for short-term traffic flow 

prediction. Transportation Research Part C: Emerging Technologies 

2017; 79: 1-17. 

[50] Treiber M, Hennecke A, Helbing D. Congested traffic states in 

empirical observations and microscopic simulations. Physical 

Review E 2000; 62(2): 1805-1824. 

[51] Bellman R. Dynamic programming. Science 1996; 153(3731): 34-

37. 

[52] Zhu C, Lu F, Zhang H, Sun J, Mi C. A real-time battery thermal 

management strategy for connected and automated hybrid electric 

vehicles (CAHEVs) based on iterative dynamic programming. IEEE 

Transactions on Vehicular Technology 2018; 67(9): 8077-8084. 

[53] Kesting A, Treiber M, Schönhof M, Helbing D. Extending adaptive 

cruise control to adaptive driving strategies. Transportation Research 

Record 2007; 2000(1): 16-24. 

[54] Shladover S, Su D, Lu X. Impacts of cooperative adaptive cruise 

control on freeway traffic flow. Transportation Research Record 

2012; 2324(1): 63-70. 

[55] Zhang W, Qu L, Xu S, Li B, Chen C, Yin G. Integrated energy-

oriented cruising control of electric vehicle on highway with varying 

slopes considering battery aging. Science China Technological 

Sciences 2019; 63(1): 155-165. 

[56] Li S, Peng H. Strategies to minimize the fuel consumption of 

passenger cars during car-following scenarios. Proceedings of the 

Institution of Mechanical Engineers, Part D: Journal of Automobile 

Engineering 2012; 226(3): 419-429. 

[57] Lin Q, Li S, Du X, Zhang X, Peng H, Luo Y, et al. Minimize the fuel 

consumption of connected vehicles between two red-signalized 

intersections in urban traffic. IEEE Transactions on Vehicular 

Technology 2018; 67(10): 9060-9072. 


