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A B S T R A C T 

Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To 

date, reco v ering conv ergence maps has been performed using a planar approximation of the celestial sphere. Ho we ver, with the 
increasing area of sky covered by dark energy experiments, such as Euclid, the Vera Rubin Observatory’s Le gac y Surv e y of 
Space and Time (LSST), and the Nancy Grace Roman Space Telescope , this assumption will no longer be valid. We reco v er 
convergence fields on the celestial sphere using an extension of the Kaiser–Squires estimator to the spherical setting. Through 

simulations, we study the error introduced by planar approximations. Moreo v er, we e xamine how best to reco v er conv ergence 
maps in the planar setting, considering a variety of different projections and defining the local rotations that are required when 

projecting spin fields such as cosmic shear. For the sky coverages typical of future surv e ys, errors introduced by projection effects 
can be of the order of tens of percent, exceeding 50 per cent in some cases. The stereographic projection, which is conformal and 

so preserves local angles, is the most ef fecti ve planar projection. In any case, these errors can be a v oided entirely by reco v ering 

convergence fields directly on the celestial sphere. We apply the spherical Kaiser–Squires mass-mapping method presented to 

the public Dark Energy Surv e y science verification data to recover convergence maps directly on the celestial sphere. 

Key words: methods: data analysis – cosmology: observations. 
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 I N T RO D U C T I O N  

eak gravitational lensing distorts the shape and size of images of
istant galaxies due to the gravitational influence of matter perturba-
ions along the line of sight (see e.g. Bartelmann & Schneider 2001 ;
chneider 2005 ; Munshi et al. 2008 ; Heavens 2009 ). The amplitude
f the distortion – a change in the ellipticity (third flattening or third
ccentricity) and apparent size of an object – contains information
n the integrated Newtonian potential and can be used to estimate
he integrated mass distribution. The lensing effect is dependent on
he total mass distribution and therefore, because massive structures
re dominated by dark matter, the mass distributions reco v ered by
eak lensing are colloquially referred to as mass-maps of the dark
atter of the Universe. The creation of such maps constitutes one

f the main empirical observations that underpins the dark matter
aradigm (Clowe et al. 2006 ). 
The most common approach to extract cosmological information

rom weak lensing surv e ys is to compute the two-point correlation
unction (e.g. Kilbinger 2015 ) or power spectrum (e.g. Alsing et al.
016 ) from observational data and compare to an expectation from
heory. Ho we ver, such analyses are sensitive only to the Gaussian
omponent of the underlying field. To capture the entire information
 E-mail: m.price.17@ucl.ac.uk 
 NASA Einstein Fellow 
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ontent of the shear field, higher order statistics (e.g. Munshi et al.
011 ) or phase information (e.g. Coles & Chiang 2000 ) must be
onsidered. Reco v ering mass-maps pro vides the basis for performing
 wide variety of complimentary higher order statistical analyses that
robe the non-Gaussian structure of the dark matter distribution. For
xample, properties of dark matter can then be studied using analyses
ased on peak and void statistics (e.g. Lin & Kilbinger 2015a , b ; Lin,
ilbinger & Pires 2016 ; Peel et al. 2016 ), Minkowski functions (e.g.
ratochvil et al. 2012 ; Munshi et al. 2012 ; Petri et al. 2013 ), or
avelets (cf. Hobson, Jones & Lasenby 1998 ; Aghanim et al. 2003 ;
ielva et al. 2004 , McEwen et al. 2005 ), to name just a few. 
Further to this, mass-mapping provides an efficient way to cross-

orrelate weak lensing data with other cosmological data (e.g. with
bservations of the cosmic microwave background; Liu & Hill 2015 ).
ore directly, dark matter maps are of interest for galaxy evolution

tudies: it is known from simulations that the dark matter structure
hould exhibit a filamentary or ‘cosmic web’ structure inference of
hich can then provide dark matter environmental information that

an then be used in galaxy evolution studies (Brouwer et al. 2016 ).
inally, mass-mapping is a continuation of cartography on to the
osmic scale – the making of such maps is therefore laudable in its
wn right. 

Reco v ering mass-maps requires solving an inverse problem to
eco v er the underlying mass distribution from the observable cosmic
hear. There are a number of approaches to estimating mass-maps
rom weak lensing data. The method most commonly used on
© 2021 The Author(s) 
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Figure 1. Approximate co v erage area of different weak lensing surv e ys illus- 
trated on the celestial sphere. In particular, the co v erage area corresponding 
to DES SV observations, DES full observ ations, and Euclid observ ations are 
shown. It is apparent that existing planar mass-mapping techniques will not 
be appropriate for the large co v erage areas of forthcoming surv e ys. We e xtend 
the KS technique for mass-mapping to the spherical setting in this article, in 
order to reco v er mass-maps on the celestial sphere. 
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arge scales is colloquially known as ‘Kaiser–Squires’ (KS) and 
s named after the paper in which the method was first described
Kaiser & Squires 1993 ). This approach is based on a direct Fourier
nversion of the equations relating the observed shear field to the 
onvergence field, which is a scaled version of the integrated mass
istribution. Although it is widely known that such an approach, 
ased on a direct F ourier inv ersion, is not robust to noise, the
ethod remains in widespread use today (in practice, the resultant 
ass-map is smoothed to mitigate noise). Indeed, the KS method 

as been used to reco v er mass-maps from data from by a number
f recent weak lensing surv e ys, including data from the Cosmic
volution Surv e y (COSMOS; Sco ville et al. 2007 ), the Canada–
rance–Hawaii Telescope Lensing Survey (CFHTLenS; Heymans 
t al. 2012 ), and the Dark Energy Surv e y (DES; Flaugher et al. 2015 )
cience Verification (SV) data (respectiv ely, Masse y et al. 2007 ;
an Waerbeke et al. 2013 ; Chang et al. 2015 ). Alternative mass-
apping techniques to reco v er the conv ergence field hav e also been

e veloped, ho we ver, these are not typically in widespread use and in
any cased are focused on the galaxy cluster scale. On the galaxy

luster scale, parametric models (e.g. Jullo et al. 2007 ) and non-
arametric methods (e.g. Massey et al. 2015 ; Lanusse et al. 2016 ;
rice et al. 2021 ) have been considered. Szepietowski et al. ( 2014 )
av e inv estigated the use of phase information from galaxy number
ounts to impro v e the reconstruction. 

While the methods discussed abo v e focus on reco v ering the two-
imensional convergence field, which represents the integrated mass 
istribution along the line of sight, it is also possible to reco v er
he full three-dimensional gravitational potential. Such an approach 
nvolves an additional inverse problem and thus an additional level of
omplexity. This has been considered by a number of works (Bacon 
 Taylor 2003 ; Massey et al. 2004 ; Taylor et al. 2004 ; Simon, Taylor
 Hartlap 2009 ; VanderPlas et al. 2011 ; Leonard, Dup ́e & Starck

012 ; Simon 2013 ; Leonard, Lanusse & Starck 2014 ) 
In general, mass-mapping techniques for weak lensing consider 

 small field-of-view of the celestial sphere, which is approximated 
y a tangent plane. The mass-mapping formalism is then developed 
n a planar setting, where a planar two-dimensional Fourier trans- 
orm is adopted. Such an assumption will not be appropriate for
orthcoming surv e ys, which will observ e significant fractions of the
elestial sphere, such as the Kilo Degree Survey (KiDS 

1 ; de Jong
t al. 2013 ), DES 

2 (Flaugher et al. 2015 ), Euclid 3 (Laureijs et al.
011 ), LSST 

4 (LSST Science Collaboration et al. 2009 ), and the
ancy Grace Roman Space Telescope 5 (Spergel et al. 2015 ). Fig. 1

llustrates the approximate sk y co v erage for DES SV data, DES
ull data, and Euclid observations, from which it is apparent that 
lanar approximations will become increasingly inaccurate as sky 
o v erage areas grow o v er time. Existing mass-mapping techniques
hat are based on planar approximations therefore cannot be directly 
pplied to forthcoming observations, without introducing significant 
rrors into subsequently inferred statistics (see e.g. Vallis, Wallis 
 Kitching 2018 , for an analysis of projection effects on peak

tatistics and minkowski functionals). This work aims to highlight 
he necessity of spherical methods, by demonstrating the inevitability 
f errors introduced by planar projections, and does not attempt to 
uantify the effect of such projection errors on global statistics. 
 http://kids.strw.leidenuniv.nl 
 http://www.darkenergysurvey.org 
 http://euclid-ec.org 
 ht tps://www.lsst .org 
 https://roman.gsfc.nasa.gov 
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In this article, we consider the KS approach for reco v ering mass-
aps defined on the full celestial sphere. While the harmonic space

xpressions in the spherical setting relating the observed shear field to
he convergence field, via the lensing potential, have been presented 
lready (e.g. Taylor 2001 ; Castro, Heavens & Kitching 2005 ; Pichon
t al. 2010 ), to the best of our kno wledge, nai v e F ourier inv ersion
n the celesital sphere (i.e. spherical KS) has not been considered
reviously. We compare the spherical KS formalism with the planar 
ase, considering se veral dif ferent spherical projections. 6 Spherical 
ass-mapping techniques have also been considered by Pichon 

t al. ( 2010 ), where a maximum a posteriori (MAP) estimator was
resented. In addition, the authors consider using a Wiener filter to
enoise the shear in advance of attempting to reco v er conv ergence
aps. Ho we ver, as far as we are aware, these techniques have not been

pplied to observational data. The spherical KS technique that we 
resent here is a first step towards more sophisticated spherical mass-
apping techniques that will be the focus of future work. In practice,

nly partial-fields defined on the celestial sphere are observed. The 
S estimator suffers due to leakage induced by the masking of the
bserv ed re gion (it is well-known that the decomposition of a spin
eld into scalar and pseudo-scalar components, and consequently 
ass-mapping, is not unique on a manifold with boundary; Bunn 
 An alternative to recovering mass-maps directly on the sphere is to tile the 
elestial sphere and perform mass-mapping on planar patches, as considered 
or the lensing of the cosmic microwave background by Plaszczynski et al. 
 2012 ). An extension of this work to galaxy lensing, when shear is observed, 
ould be of great interest. 

MNRAS 509, 4480–4497 (2022) 
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t al. 2003 ). Pure mode estimators on the celestial sphere can
e developed to remove this leakage (e.g. Leistedt et al. 2017 ).
urthermore, the impact of noise can be mitigated by the use of
egularization methods adapted to the spherical setting (e.g. Wallis,

iaux & McEwen 2016 ). 
The remainder of this article is structured as follows. In Section 2,

e briefly re vie w the mathematical background of spin fields on the
phere and weak gravitational lensing. Mass-mapping on the celestial
phere is presented in Section 3. In Section 4, we use simulations to
ompare the spherical case to a variety of planar settings for various
pherical projections. In Section 5, we present an application of the
pherical KS technique to DES SV data in order to reco v er spherical
ass-maps. Concluding remarks are made in Section 6. Throughout,
e adopt the cubehelix (Green 2011 ) colour scheme. 

 B  AC K G R  O U N D  

eak gravitational lensing gives rise to scalar and spin fields defined
n the celestial sphere. For example, the observed shear field induced
y weak gravitational lensing is a spin ±2 field. We therefore re vie w
calar and spin fields on the sphere and their harmonic representation,
efore re vie wing the mathematical details of rotation and the Dirac
elta function on the sphere, which we make use of subsequently
hen considering mass-mapping on the celestial sphere. Weak
ravitational lensing in the three-dimensional spherical setting is
hen re vie wed concisely. 

.1 Spin fields on the sphere 

quare integrable spin fields on the sphere s f , with integer spin s ∈
 , are defined by their behaviour under local rotations. By definition,
 spin field transforms as 

 

f ′ ( ω) = e −i sχ
s f ( ω) , (1) 

nder a local rotation by χ ∈ [0 , 2 π) , where the prime denotes
he rotated field (Newman & Penrose 1966 ; Goldberg et al. 1967 ;
amionko wski, Koso wsky & Stebbins 1997 ; Zaldarriaga & Seljak
997 ). 7 It is important to note that the rotation considered here is
ot a global rotation on the sphere but rather a rotation by χ in the
angent plane centred on the spherical coordinates ω = ( θ, ϕ) ∈ S 

2 ,
ith co-latitude θ ∈ [0 , π] and longitude ϕ ∈ [0 , 2 π) . The case s = 0

educes to the standard scalar setting. 
The canonical basis for scalar fields defined on the sphere are given

y the (scalar) spherical harmonics Y �m 

. Basis functions for spin fields
an be defined by applying spin lowering and raising operators to
he scalar spherical harmonics. Spin raising and lowering operators,
 and ð̄ respectively, increment and decrement the spin order of a
pin- s field by unity and are defined by 

 ≡ − sin s θ

(
∂ 

∂ θ
+ 

i 

sin θ

∂ 

∂ ϕ 

)
sin −s θ (2) 

nd 

¯
 ≡ − sin −s θ

(
∂ 

∂ θ
− i 

sin θ

∂ 

∂ ϕ 

)
sin s θ , (3) 
 The sign convention adopted for the argument of the complex exponential 
iffers to the original definition (Newman & Penrose 1966 ) but is identical 
o the convention used typically in astrophysics (Kamionkowski et al. 1997 ; 
aldarriaga & Seljak 1997 ). 

(

w  

K  

W

NRAS 509, 4480–4497 (2022) 
especti vely (Ne wman & Penrose 1966 ; Goldberg et al. 1967 ;
amionkowski et al. 1997 ; Zaldarriaga & Seljak 1997 ). When ap-
lied to spherical harmonics, the spin raising and lowering operators
ake the form 

 s Y �m 

( ω) = 

[ 
( � − s)( � + s + 1) 

] 1 / 2 
s+ 1 Y �m 

( ω) (4) 

nd 

¯
 s Y �m 

( ω) = −
[ 
( � + s)( � − s + 1) 

] 1 / 2 
s−1 Y �m 

( ω) , (5) 

espectively (see e.g. Zaldarriaga & Seljak 1997 ). The spin- s spher-
cal harmonics can, thus, be expressed in terms of the scalar (spin-
ero) harmonics through the spin, raising and lowering operators
y 

 

Y �m 

( ω) = 

[
( � − s)! 

( � + s)! 

]1 / 2 

ð 
s Y �m 

( ω) , (6) 

or 0 ≤ s ≤ � , and by 

 

Y �m 

( ω) = ( −1) s 
[

( � + s)! 

( � − s)! 

]1 / 2 

ð̄ 
−s Y �m 

( ω) , (7) 

or −� ≤ s ≤ 0, where Y �m 

denote the scalar (spin-zero) spherical
armonics. 
Due to the orthogonality and completeness of the spin spherical

armonics, a spin field on the sphere can be decomposed into its
armonic representation by 

 

f ( ω) = 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

s 
ˆ f �m s Y �m 

( ω) . (8) 

he harmonic coefficients of s f , denoted by s ˆ f , are given by the
sual projection on to the basis functions 

 

ˆ f �m 

= 〈 s f , sY �m 

〉 = 

∫ 
S 2 

d �( ω ) s f ( ω ) s Y 

∗
�m 

( ω ) , (9) 

here the rotation invariant measure on the sphere is given by
d �( ω) = sin θ d θ d ϕ, the inner product on the sphere is denoted by
 ·, ·〉 and ·∗ denotes complex conjugation. In practice, we consider
armonic coefficients up to a maximum degree � max , i.e. signals on
he sphere band-limited at � max with s f �m 

= 0, ∀ � ≥ � max , in which
ase, summations o v er � can be truncated at � max . For notational
revity, we sometimes do not explicitly show the limits of summation
here these can be inferred easily. 

.2 Rotation on the sphere 

e subsequently consider the rotation of fields on the sphere, defined
y application of the rotation operator R ρ , where the rotation is
arametrized by the Euler angles ρ = ( α, β, γ ) ∈ SO (3) . We adopt
he zyz Euler convention corresponding to the rotation of a physical
ody in a fixed coordinate system about the z, y, and z axes by γ ,
, and α, respectively. Often, we consider rotations with γ = 0 and
dopt the shorthand notation R ω = R ( ϕ,θ, 0) . 

The spin spherical harmonic functions are rotated by (e.g. McEwen
t al. 2015 ) 

 R ρ sY �m 

)( ω) = 

� ∑ 

n =−� 

D 

� 
nm 

( ρ) s Y �n ( ω) , (10) 

here D 

� 
nm 

are the Wigner D-functions (Varshalovich, Moskalev &
hersonskii 1989 ), which follows from the additive property of the
igner D-functions (Marinucci & Peccati 2011 ). 
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The Wigner D-functions may also be related to the spin spherical 
armonics by (Goldberg et al. 1967 ) 

 

−i sγ
s Y �m 

( β, γ ) = ( −1) s 
√ 

2 � + 1 

4 π
D 

� ∗
m, −s ( α, β, γ ) . (11) 

.3 Dirac delta on the sphere 

e subsequently make use of the Dirac delta function on the sphere
D , defined by 

 R ω ′ δ
D )( ω) = 

1 

sin θ
δ1D ( θ − θ ′ ) δ1D ( ϕ − ϕ 

′ ) (12) 

= 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

Y 

∗
�m 

( ω 

′ ) Y �m 

( ω) , (13) 

here δ1D ( ·) denotes the standard one-dimensional (Euclidean) Dirac 
elta. The spherical harmonic coefficients of the Dirac delta defined 
n the sphere are given by 

ˆ D 
�m 

= Y 

∗
�m 

( 0 ) = 

√ 

2 � + 1 

4 π
δm 0 . (14) 

.4 Weak gravitational lensing 

e now turn our attention to weak gravitational lensing, concisely 
e vie wing the related mathematical background, which is co v ered in
ore depth in se veral re vie w articles (e.g. Bartelmann & Schneider

001 ; Schneider 2005 ; Munshi et al. 2008 ; Heavens 2009 ). 
The weak gravitational lensing effect is typically expressed in 

erms of the lensing potential φ, which depends on the integrated 
eflection angle along the line of sight, sourced by the local 
ewtonian potential � 

( r, ω ) = 

2 

c 2 

∫ r 

0 
d r ′ 

f K 

( r − r ′ ) 
f K 

( r) f K 

( r ′ ) 
� ( r ′ , ω ) , (15) 

here c is the speed of light in a vacuum, r and r ′ are comoving
istances, and ω = ( θ, ϕ) denote spherical coordinates, as defined
reviously. The angular diameter distance factor reads 

 K 

( r) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

sin ( r) , if K = 1 

r, if K = 0 

sinh ( r) , if K = −1 

, (16) 

or cosmologies with positive ( K = 1), flat ( K = 0), and ne gativ e
 K = −1) global curvatures. This expression assumes the Born
pproximation. The gravitational potential is related to the density 
eld by Poisson’s equation 

 

2 � ( r , ω) = 

3 �M 

H 

2 
0 

2 a( r ) 
δ( r , ω) , (17) 

here �M 

is the current average matter density of the Universe as
 fraction of the critical density, H 0 is the current expansion rate of
he Universe, a( r) is the scale factor, and δ is the fractional matter
 v erdensity. Equations (15) and (17) relate the matter perturbations 
to the lensing potential φ. 
The lensing potential describes how light from a background 

ource (e.g. galaxy) at a position ( r, ω) is distorted by the lensing
ffect. This deflection, to first order, affects the images of galaxies in
w o w ays. First, images of background sources are magnified by the
onvergence κ , which is related to the lensing potential by 

 κ( r , ω) = 

1 
4 

(
ð ̄ð + ð̄ ð 

)
0 φ( r, ω) , (18) 
hrough the spin raising and lowering operators introduced in 
quations (2) and (3). The convergence is not measured directly in
eak lensing experiments because the intrinsic magnitude of galaxy 

izes is unknown. Here and subsequently, we denote the spin of each
eld explicit with a proceeding subscript, i.e. 0 φ = φ and 0 κ = κ

re both spin-zero (scalar) fields. Secondly, images of background 
ources are sheared by 2 γ , which is related to the lensing potential
y 

 γ ( r , ω) = 

1 
2 ðð 0 φ( r , ω) , (19) 

here we make it explicit that the shear is a spin-2 field. Upon
veraging the shapes of many galaxies, one would expect the intrinsic
hear to average to zero (i.e. there is no preferred orientation). Hence,
ne can measure shear by averaging the shapes of many galaxies.
n the remainder of this article, we do not consider ‘tomography’
the separation of a source galaxy sample into populations labelled 
y redshift or time) and so drop the radial dependence shown in the
bo v e equations (for notational brevity, henceforth, we typically do
ot show the angular dependence either). For further information, 
ee the discussions in Kitching et al. ( 2016 ) on spherical-radial and
pherical-Bessel representations of the shear field. 

In general, the potential 0 φ can be decomposed into its parity even
nd parity odd components, namely the E- and B-mode components, 
espectively 

 φ = 0 φE + i0 φB . (20) 

o we ver, the shear induced by gravitational lensing produces an E-
ode field only since density (scalar) perturbations cannot induce a 

arity odd B-mode component. In the absence of systematic effects, 
e have 0 φE = 0 φ and 0 φB = 0. The convergence can also be
ecomposed into a parity even E-mode component and a parity odd
-mode component 

 κ = 0 κE + i0 κB , (21) 

here the B-mode component is again zero in the absence of
ystematics effects. While the E-mode convergence field is of most 
nterest in the standard cosmological model, the B-mode convergence 
eld is important for testing for residual systematics. Moreo v er, B-
odes are also useful in studying exotic cosmological models that 

xhibit parity violation (e.g. Kaufman, Keating & Johnson 2016 ). 
heoretical models of intrinsic alignments of galaxies can create B- 
odes ( Crittenden et al. 2001 , 2002 ; Hirata & Seljak 2004 ), although

he measured level is uncertain (Kirk et al. 2015 ). 
The E-mode convergence field represents a scaled version of the 

ntegrated mass distribution and thus mapping the intervening matter 
istribution is often performed by estimating the convergence field. 
ince the shear is related to the convergence via the lensing potential

hrough equations (18) and (19), convergence maps can be reco v ered
rom the observable shear field, which amounts to solving an inverse
roblem. 

 MASS-MAPPING  O N  T H E  CELESTI AL  

PHERE  

n this section, we describe the process of estimating a convergence 
eld from an observed shear field in the spherical setting. Reco v ering
ass-maps by estimating the convergence field involves solving 
 spherical inverse problem, as discussed above. First, we define 
he forward problem in spherical harmonic space and explicitly 
efine the spherical generalization of the KS estimator for solving 
his inverse problem. Secondly, we present an equi v alent real space
epresentation of the spherical mass-mapping inverse problem, where 
MNRAS 509, 4480–4497 (2022) 
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t can be seen as a deconvolution problem with a spin kernel. Thirdly,
e consider the planar approximation of the full spherical setting,

eco v ering the standard planar KS estimator. Finally, we consider
terative refinements to convergence estimators that account for the
act that it is the reduced shear that is observed, rather than the
rue underlying shear. A variety of such spherical mass-mapping
echniques have recently been applied and contrasted on DES year 3
bservational catalogues (see e.g. Jeffrey et al. 2021 ). 

.1 Harmonic r epr esentation 

sing the harmonic representations of the spin raising and lowering
perators, it is straightforward to show that the harmonic represen-
ations of the convergence and cosmic shear of equations (18) and
19) read, respectively 

 ̂ κ�m 

= − 1 
2 � ( � + 1) 0 ̂  φ�m 

(22) 

nd 

 ̂  γ�m 

= 

1 

2 

√ 

( � + 2)! 

( � − 2)! 
0 ̂  φ�m 

, (23) 

here 0 ̂  φ�m 

and 0 ̂ κ�m 

are the scalar spherical harmonic coefficients of
he lensing potential and the converge field, respectively, and 2 ̂  γ�m 

are
he spin -2 spherical harmonic coefficients of the cosmic shear field,
.e. 0 ̂  φ�m 

= 〈 0 φ, Y �m 

〉 , 0 ̂ κ�m 

= 〈 0 κ, Y �m 

〉 , and 2 ̂  γ�m 

= 〈 2 γ , 2 Y �m 

〉 .
t follows that the spin-2 harmonic coefficients of the shear are related
o the scalar harmonic coefficients of the convergence by 

 ̂  γ�m 

= D � 0 ̂ κ�m 

, (24) 

here we define the kernel 

 � = 

−1 

� ( � + 1) 

√ 

( � + 2)! 

( � − 2)! 
. (25) 

Reco v ering the convergence field from the observable shear
eld therefore amounts to solving the inverse problem defined by
quation (24). The simplest method to invert this problem is to
onsider a direct inversion in harmonic space. In the planar setting,
uch an approach gives rise to the KS estimator (Kaiser & Squires
993 ). An analogous approach in the full-sky setting leads to the
pherical generalization of the KS estimator, defined by 

 ̂

 κSKS 
�m 

= D 

−1 
� 2 ̂  γ est 

�m 

, (26) 

here ˆ γ est 
�m 

denotes the estimate of the shear harmonic coefficients
omputed from observational data and 0 ̂  κSKS 

�m 

is the spherical Kaiser–
quires (SKS) estimator of the harmonic coefficients of the con-
ergence field. A spherical convergence map 0 κSKS ( ω) can then
e reco v ered by an inv erse scalar spherical harmonic transform,
ollowing equation (8), from which the E- and B-mode components
an be determined by considering the real and complex components,
ollowing equation (21). 

It is well-known that a direct Fourier inversion approach to solving
nverse problems, on which the KS estimator is based, is susceptible
o noise. On large scales, one typically draws a central limit
heory argument for noise Gaussianity, in which case a mutli v ariate
aussian noise model is adopted. In such settings, the KS approach is

traightforwardly given by the maximum likelihood estimator, which
mplicitly assumes a uninformative flat prior. This, combined with
he fact that the KS inversion kernel defined by equation (24) has a flat
requency response, indicates that noise present in the observational
ata set propagates unchecked into the convergence estimate. 
NRAS 509, 4480–4497 (2022) 
Typically one may wish to adopt more informative priors, within a
ayesian setting, to regularize this noise contribution (see e.g. Pichon
t al. 2010 ; Price et al. 2021 , where Gaussian and wavelet sparsity
riors are adopted respecti vely). Ho we ver, for the KS approach, the
eco v ered conv ergence field is, somewhat naively, smoothed with a
aussian kernel to mitigate the impact of noise. In this paper, we

dopt this post-processing Gaussian smoothing approach and leave
ore advanced alternatives to future research. 

.2 Real space r epr esentation 

t is insightful to express the forward problem connecting the
bservable cosmic shear and the convergence field in real space.
he differential form of this problem is readily apparent from
quations (18) and (19), from which it follows that 

 γ = 2 ðð 
(
ð ̄ð + ð̄ ð 

)−1 
0 κ . (27) 

n integral form can also be recovered, where the real space spin-2
hear field is related to the scalar convergence by a type of spherical
onvolution with a spin-2 kernel 2 K 

 γ ( ω) = 

∫ 
S 2 

d �( ω 

′ ) ( R ω ′ 2 K)( ω) 0 κ( ω 

′ ) , (28) 

here the rotation operator R ω ′ is defined in Section 2.2. From
omparison with equation (27), it is apparent that the kernel is given
y 

 K( ω) = 2 ðð 
(
ð ̄ð + ð̄ ð 

)−1 
δD ( ω) , (29) 

here δD ( ω) is the Dirac delta function on the sphere defined in
ection 2.3. Noting the spherical harmonic representation of the
irac delta function of equation (14) and the harmonic action of the

pin raising and lowering operators of equations (4) and (5), it is
traightforward to show that the harmonic coefficients of the kernel
ead 

 K �m 

= 

−1 

� ( � + 1) 

√ 

( � + 2)! 

( � − 2)! 

√ 

2 � + 1 

4 π
δm 0 . (30) 

n e xplicit e xpression for the kernel in real space can then be
eco v ered from its harmonic representation, yielding 

 K( ω) = 

∑ 

� 

−1 

� ( � + 1) 

2 � + 1 

4 π
P 

2 
� ( cos θ ) , (31) 

here P 

2 
� ( ·) is the associated Legendre function of order two. The

qui v alence of the harmonic and real space expressions of the forward
roblem of equations (24) and (28), respectively, can also be seen by
he explicit harmonic representation of equation (28), as shown in
ppendix A. 

.3 Planar approximation 

e now consider the planar approximation of the spherical mass-
apping estimator presented in Section 3.1, reco v ering the standard

lanar KS estimator (Kaiser & Squires 1993 ). First, we note the
lanar approximations of the spin raising and lowering operators
iven by 

 ≈ −(∂ x + i ∂ y 
)

(32) 

nd 

¯
 ≈ −(∂ x − i ∂ y 

)
, (33) 
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espectively (see e.g. Bunn et al. 2003 ). In the planar approximation,
he convergence and cosmic shear are then related to the lensing 
otential by 

 κ = 

1 
4 

(
ð ̄ð + ð̄ ð 

)
0 φ ≈ 1 

2 

(
∂ 2 x + ∂ 2 y 

)
0 φ (34) 

nd 

 γ = 

1 
2 ðð 0 φ ≈

[
1 
2 

(
∂ 2 x − i ∂ 2 y 

)+ i ∂ x ∂ y 

]
0 φ , (35) 

espectively. It is common to decompose the shear component into 
ts real and imaginary component by 

 γ = γ1 + i γ2 . (36) 

he planar Fourier representations of equations (34) and (35) are 
hen given by 

 ̂ κ( k x , k y ) = − 1 
2 

(
k 2 x + k 2 y 

)
0 ̂  φ( k x , k y ) (37) 

nd 

ˆ γ1 ( k x , k y ) = − 1 
2 

(
k 2 x − k 2 y 

)
0 ̂  φE ( k x , k y ) + k x k y 0 ̂  φB ( k x , k y ) , 

ˆ γ2 ( k x , k y ) = −k x k y 0 ̂  φE ( k x , k y ) − 1 
2 

(
k 2 x − k 2 y 

)
0 ̂  φB ( k x , k y ) , 

(38) 

espectiv ely, where ˆ · denotes the F ourier transform and k x and k y 
enote the Fourier coordinates, and we make use of the Fourier 
eri v ati ve property ̂ ∂ x f = i k x ˆ f . It follows that under the planar
pproximation, the shear can be related to the convergence in Fourier 
pace by 

 ̂  γ ( k x , k y ) = E k x ,k y 0 ̂ κ( k x , k y ) , (39) 

here 

 k x ,k y = 

k 2 x − k 2 y + i2 k x k y 
k 2 x + k 2 y 

. (40) 

Analogous to the spherical setting considered in Section 3.1, in 
he planar setting reco v ering the convergence field from the shear
mounts to solving the inverse problem defined by equation (39). 
gain, the simplest method to invert this problem is to perform a
irect inversion in harmonic space, which gives rise to the standard 
lanar KS estimator (Kaiser & Squires 1993 ) of 

 ̂

 κKS ( k x , k y ) = E −1 
k x ,k y 2 ̂  γ est ( k x , k y ) = E ∗k x ,k y 2 ̂  γ est ( k x , k y ) , (41) 

here we have taken advantage of the fact that E −1 
k x ,k y 

= E ∗k x ,k y since
 E k x ,k y | = 1. Recall that 2 ̂  γ est ( k x , k y ) is the estimate of the planar
ourier coefficients of the shear computed from observational data. 
xpanding the real and imaginary components, one reco v ers the 

amiliar KS estimators for the E- and B-mode component of the 
onv ergence giv en by 

 ̂

 κE , KS ( k x , k y ) = 

( k 2 x − k 2 y ) 2 ̂  γ est 
1 ( k x , k y ) + 2 k x k y 2 ̂  γ est 

2 ( k x , k y ) 

k 2 x + k 2 y 

(42) 

nd 

 ̂

 κB , KS ( k x , k y ) = 

−2 k x k y 2 ̂  γ est 
1 ( k x , k y ) + ( k 2 x − k 2 y ) 2 ̂  γ est 

2 ( k x , k y ) 

k 2 x + k 2 y 

, 

(43) 

espectiv ely. A planar conv ergence map 0 κKS ( ω) can then be recov-
red by an inverse Fourier transform. 

In the abo v e deri v ation, we have not considered the practicalities
f the projection of the fields considered, which are defined natively 
n the celestial sphere, on to a planar region. In practice, one must
hoose a specific projection, the choice of which can have a large
mpact on the quality of the convergence map recovered from the
bserved shear. We describe a variety of projections in Appendix B
nd discuss their properties. Care must be taken when projecting a
pin-2 field such as the cosmic shear as local rotations must be taken
nto account, as described in detail in Appendix B. 

.4 Reduced shear 

n deriving the estimators presented in Sections 3.1 and 3.3, we
ade the assumption that one could observe the pixelized shear field

irectly. Ho we ver, in practice, one can only measure the pixelized
educed shear 2 g, which is related to the true underlying shear by 

 

g = 

2 γ

1 − 0 κ
. (44) 

he problem of reco v ering the conv ergence field then becomes non-
inear. Ho we ver, this non-linear problem can be solved iteratively
Seitz & Schneider 1995 ; Mediavilla et al. 2016 , p.153), as discussed
elow. These techniques and similar are in common use in the
iterature (e.g. Jullo et al. 2014 ; Lanusse et al. 2016 ; Price et al.
021 ) 
The first step is to denoise the map of reduced shear. In this work,

e use a Gaussian smoothing. We make an initial estimate of the
hear by assuming it is simply the measured reduced shear. Then an
nitial estimate of the pixelized convergence field is made. The first
tep of the iterative algorithm is thus 

2 γ
(0) = 2 g , 

0 κ
(0) = M 

[
2 γ

(0) 
]

, 
(45) 

here M denotes the mass-mapping estimator used to reco v er the
onvergence from the shear (in this article, we consider either the
pherical or planar KS estimators described in Sections 3.1 and 3.3,
espectively) and the superscript denotes iteration number. We then 
se our estimate of the convergence to update the estimate of the
hear and repeat. The ( i + 1)-th iteration is thus 

2 γ
( i+ 1) = 2 g(1 − 0 κ

( i) ) , 

0 κ
( i+ 1) = M 

[
2 γ

( i+ 1) 
]

. 
(46) 

terations are continued until the absolute difference of the conver- 
ence between iterations is below some threshold value. In this work,
e choose 

max 
j 

∣∣
0 κ

( i) 
j − 0 κ

( i−1) 
j 

∣∣ < 10 −10 , (47) 

here j runs o v er all pix els. Typically, for a conv ergence field
ncluding ellipticity/shot noise, 4–5 iterations are required before 
onverging. 

.5 Implementation 

e have written the PYTHON package massmappy 8 to implement 
he algorithms presented. The package can perform standard mass- 

apping on the plane, with the option to perform iterations to account
or reduced shear. We also implement the SKS estimator described 
bo v e so that mass-mapping can be performed on the celestial sphere.
e support the use of two spherical pixelizations schemes. First, 
e support the use of HEALPix 9 (G ́orski et al. 2005 ), an equal

rea pixelization with an accompanying software package that can 
MNRAS 509, 4480–4497 (2022) 

http://www.massmappy.org
http://healpix.jpl.nasa.gov
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erform fast spherical harmonic transforms. We also support the
se of the standard equiangular sampling scheme implemented in
SHT 10 (McEwen & Wiaux 2011 ). This sampling scheme supports

ast spherical harmonic transforms that are theoretically exact and
chieve close to floating point precision in practice. The most recent
elease of SSHT includes fast routines to compute the projections of
he sphere on to the plane considered in this work. 

 E VALUATION  O N  SIMULATIONS  

n this section, we e v aluate the mass-mapping algorithms presented in
ection 3 on simulations. We study the error introduced by the planar
pproximation, for a variety of projections and for varying surv e y
o v erage area, when compared to the spherical setting. We also assess
he ability of the iterative algorithm described in Section 3.4 to deal
ith the reduced shear that is observed, rather than the underlying

rue shear. 

.1 Comparison of planar and spherical mass-mapping 

e study the impact of the flat-sky planar approximation in mass-
apping, compared to the spherical setting, and determine the typical

rrors induced for the sky coverages of upcoming surveys. We do this
s an idealized situation to focus the study on the effect of projecting
he sphere on to the plane. To do so, we need to understand how best
ne can estimate mass-maps on the plane for large co v erage areas. 
When creating convergence maps on the plane (i.e. mass-maps),

he exact projection used to map the celestial sphere to the plane can
ave a large impact on the quality of the reconstructed convergence
ap. In Appendix B, we describe a variety of spherical projections

hat can be considered, which we e v aluate on simulations here. One
mportant aspect when projecting a non-zero spin field, e.g. shear (or
alaxy ellipticities), is to ensure that the correct local rotations are
erformed, as described in Appendix B2. This is typically neglected
n existing mass-mapping works. 

We now describe the simulations that we use to assess the
ffect each projection has on the quality of the reconstruction of
onvergence maps. We simulate Gaussian convergence maps using
 convergence power spectrum generated by the software package
OSMOSIS 11 (Zuntz et al. 2015 ). The power spectrum was generated
ith a standard � CDM cosmology with galaxies in high redshift
in z � 1. We simulate the map up to a harmonic band-limit of
 max = 512 using the sampling of the sphere of SSHT (McEwen
 Wiaux 2011 ). We consider this spherical sampling scheme for

hese numerical experiments since the resulting spherical harmonic
ransforms are theoretically exact and the implementations in SSHT
chiev e accurac y close to machine precision (which is not the
ase for HEALPix ; see Leistedt et al. 2013 for concise accuracy
enchmarks). Any errors will therefore be due to projection effects
ather than inaccuracies in harmonic transforms. We smooth the
imulated convergence maps with the Gaussian kernel G � = e −� 2 σ 2 

,
ith σ = π/ 256, to mitigate pixelization issues. The shear field is

imulated by transforming the scalar convergence field to harmonic
pace and then applying equation (24), before transforming back to
eal space to reco v er a spin-2 shear field on the celestial sphere. In
hese simulations, we aim to understand the effect of the projections
o we do not consider the effects of reduced shear or noise. 
0 http://www.spinsht.org 
1 https:// bitbucket.org/ joezuntz/cosmosis/ wiki/Home 
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NRAS 509, 4480–4497 (2022) 
To e v aluate the accuracy of planar mass-mapping, we first project
he simulated shear field from the celestial sphere to the plane, using
 particular projection. We estimate the convergence field from the
lanar shear field using the planar KS estimator of equation (41).
e then compare this reco v ered planar convergence to a planar

rojection of the convergence simulated initially on the celestial
phere. A number of different projections are considered, as defined
n Appendix B. In general, we consider two classes of spherical
rojection: namely, equatorial and polar projections. 
In Fig. 2, we show example planar reconstructions and errors

or a variety of equatorial projections. These projections are highly
ccurate on the equator, with distortion due to the projection typically
ncreasing with distance from the equator. We consider, first, a
imple cylindrical projection, where the ( θ, ϕ) angles are taken
o be Cartesian coordinates ( x , y ). We also consider the Mercator
rojection, which is often used for geographical maps. The Mercator
rojection is a conformal projection, in that it preserves local angles.
he poles in this projection would be at infinity, so we limit the
rojection to 7 π/ 16 radians abo v e and below the equator. Finally,
ig. 2 shows results using the sinusoidal projection, a simple equal
rea projection used by the DES collaboration for the convergence
ap generated from DES SV data (Vikram et al. 2015 ). 
In Fig. 3 , we show example planar reconstructions and errors for

 variety of polar projections. These projections are highly accurate
round the pole defining the centre of the projection, with distortion
ncreasing as one mo v es a way from this point. F or these projections,
e project one hemisphere around a pole defined by the x-axis only;
ence, two projections (one for each hemisphere) are required to
o v er the entire sphere. 12 We consider the orthographic projection,
hich is a simple vertical projection, the stereographic projection,
hich is another conformal projection, and finally the Gnomonic
rojection, which has the special property that the local rotations
equired for the projection of spin fields are zero (if no coordinate
otation is performed). The edge of the hemisphere for the Gnomonic
rojection lies at infinity so we only project the sphere on to the
quare where the distance from the centre of the square and its edge
epresents an angle of π/ 4 radians. 

For all projections, we show in Figs 2 and 3 the projected shear,
he reco v ered E-mode conv ergence, and the error in the E- and B-

ode convergence. As expected, the convergence reconstruction is
est where the planar approximation is most accurate and worse as
ne mo v es a way from this re gion. We can also see by e ye that the
onformal projections (the Mercator and stereographic projections)
erform the best. This is due to fact that local angles are preserved by
he projection. What is also clear is that for many of the projections,
he B-mode convergence error can be large in certain regions even
n the absence of noise or systematic errors. 

We can use these simulations to examine the error in the recon-
tructed convergence field as a function of angular size. In Fig. 4 ,
e sho w ho w the accuracy of the reco v ered conv ergence field

hanges with patch size. We consider a similar simulation setup
s the low resolution experiments described above but now simulate
he convergence field up to a band limit � max = 4000, using the
ame power spectrum and smoothing kernel as before. We set a
igher band-limit to eliminate all pixelization effects (a lower band-
2 For the stereographic projection, a single projection can be applied to map 
he sphere to the plane. Ho we ver, the opposite pole is mapped to the point at 
nfinity. Moreo v er, the size of the planar regions grows considerably as the 
ull co v erage of the celestial sphere is approached. Consequently, for practical 
urposes, the two hemispheres are projected separately. 

http://www.spinsht.org
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Figure 2. Simulated reconstructions of the convergence field (mass-maps) on large regions of the celestial sphere when using equatorial projections, in order to 
assess the impact of different planar projections. The shear field is shown in the first and second columns (the first showing γ1 and the second showing γ2 ). The 
third column shows the reconstructed convergence field ( E-mode), while the forth and fifth columns show the error on the E-mode and B-mode convergence, 
respecti vely. Each ro w sho ws a dif ferent projection: the first ro w sho ws the simple cylindrical projection; the second sho ws the Mercator projection; and the 
final ro w sho ws the sinusoidal projection. The entire sphere is projected on to the plane, except for the Mercator projection where only 7 π/ 16 radians abo v e and 
below the equator are considered (as explained in the main text). 

Figure 3. Same as Fig. 2 for the polar projections. The first row shows the orthographic projection, the middle row shows the stereographic projection, and 
the third row shows the Gnomonic projection. For these projections, we only project one hemisphere on to the sphere, with the pole defined by the x-axis. The 
entire hemisphere is shown except for the Gnomonic projection where we project the sphere on to a square where distance from the centre of the square and the 
edge represents an angle of π/ 4 radians (as explained in the main text). Of course, planar approaches are typically restricted to a field of view of ∼ 20 ◦, these 
figures simply illustrate why this consensus is adhered to. 
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Figure 4. Relative rms error of recovered convergence fields (mass-maps) when using various planar projections in the standard planar KS estimator, as a 
function of angular distance from the centre of the projection. Note that all planar projections were significantly zero-padded (to four times their original 
dimension) to minimize any contribution to this error from mode mixing at boundaries. Further, we note that residual boundary effects inevitably exist, thus we 
clip the figure 20 ◦ from any boundary, thus restricting the figure to � domains o v er which it is expected the primary error contribution comes from projection 
effects. rms errors are averaged over 10 realizations. Approximate opening angles for the coverages of existing and upcoming surveys are overlaid. For future 
surv e ys, such as Euclid and LSST, projection errors can be of order tens of percent, exceeding 50 percent in some cases. The conformal projections (i.e. the 
Mercator and stereographic projections), which preserve local angles, are typically superior to the other projections. In any case, these errors can be a v oided 
entirely by reco v ering conv ergence fields directly on the celestial sphere. 
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imit was sufficient for the previous numerical experiments which
ere used for visualization purposes only). We o v ersample on the
lane too, again to eliminate all pixelization effects. For the polar
rojections, we use a square map of 2000 × 2000 pixels, capturing
he same hemisphere as before. For the equatorial projections,
e use maps of size (2 � max − 1) × � max pixels for the cylindrical
rojection, (2 � max − 1) × 5901 pixels for the Mercator projection,
nd (2 � max − 1) × � max pixels for the sinusoidal projection. The
umber of pixels is different of the Mercator projection as it stretches
he θ direction in projection. The equatorial projections, as before,
ave the entire sphere projected on to the plane except for the
ercator projection where we project to 7 π/ 16 radians abo v e and

elow the equator only as the poles are at infinity in this projection.
he exact planar sampling resolutions are not important as we are

ntentionally o v ersampling to eliminate pix elization effects. 
In a similar way to the other simulations we simulate the conver-

ence and shear on the sphere, project the shear on the plane, and
eco v er the convergence on the plane to compare this to the projected
imulated convergence. We then calculate the root-mean-square
rms) error of 1 

N 

∑ N 

i ( κKS − κ input ) 2 at different angular distances
rom the most accurate region of each projection, where N is the
umber of pixels in the region and κ input is the input convergence. The
xact angular distances considered for each projection are defined in
ppendix B. We calculate the error in annuli of constant angular
istances away from the centre, defined by the angular metric.
he error in the reco v ered conv ergence will be a result of not
nly the projection distortion but also a sub-dominant contribution
rom the leakage due to the boundary created by the projection.
he leakage due to boundary effects will be minimal for small
nd intermediate scales but will become more significant for the
argest scales considered – i.e. as the annuli approach the boundary
egion. Both projection and boundary effects are intrinsic to the
rojection when using KS inversion and are therefore included here.
o minimize the contribution of such boundary effects, we zero-
ad planar projections to four times their original dimensions, and
NRAS 509, 4480–4497 (2022) 
estrict any analysis to annuli separated by at least 20 ◦ from any
oundaries. 
Fig. 4 shows the rms error, av eraged o v er 10 realizations, at

ifferent angular distances for the various projections considered.
e normalize the rms error with the rms of the fluctuations in

hat region to give a relative error. Relative error for both the E-
nd B-modes fields are shown. Approximate opening angles for the
o v erages of e xisting and upcoming surv e ys are o v erlaid on Fig. 4 .
or future surveys, such as Euclid and LSST, projection errors can
e of the order of tens of percent, exceeding 50 percent in some
ases. The conformal projections (i.e. the Mercator and stereographic
rojections), which preserve local angles, are typically superior to
he other projections. In any case, these errors can be a v oided entirely
y reco v ering conv ergence fields directly on the celestial sphere. 

 APPLI CATI ON  TO  D E S  SV  DATA  

n this section, we apply the mass-mapping techniques presented in
ection 3 to the DES SV data, which are publicly available. 13 We use

he galaxy shapes estimated by the IM3SHAPE method that lie in the
ange 60 

◦
< RA < 95 

◦
and −70 

◦
< Dec . < −40 

◦
, where RA and

ec . are the right ascension and declination in degrees. We apply the
va1 flag = 0 selection to the DES SV catalogue in order to select
alaxies that have a shape that is measured and calibrated ready to be
sed for weak lensing studies. These cuts leave 793 743 galaxies, with
 density of 1.4 galaxies per square arcmin. We pixelize the data by
inning into pixels in various settings. We al w ays pixelize the galaxy
n the space that the convergence map is generated; for example,
hen a map is made on the sphere the galaxies are pixelated on

he sphere directly. In all cases, we apply the recommended weights
nd corrections to account for multiplicative and additive biases, as
escribed by Becker et al. ( 2016 ). 

art/stab3235_f4.eps
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Figure 5. Spherical convergence maps reco v ered by the SKS estimator applied to spherical maps of the reduced shear created using galaxies from DES SV 

data. The top two plots show stereographic projections of the convergence map recovered on the celestial sphere using the SSHT sampling, while the bottom 

two plots show Stereographic projections of the convergence maps reco v ered on the celestial sphere using HEALPix sampling. The left-hand column shows 
the reco v ered E-mode conv ergence, while the right-hand column shows the reco v ered B-mode conv ergence. To generate these maps from the DES observation 
catalogue, we first grid on to a HEALPix sampling scheme, then convert this to a SSHT sampling scheme through harmonic space, thus, both reconstructions 
are working with the same information which mitigates any discrepancies due to the initial catalogue projection. 
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We create two spherical maps of the reduced shear using the 
SHT and HEALPix sampling schemes, considering resolutions to 
est match the δθ = 5 arcmin pixels considered by Vikram et al.
 2015 ), which corresponds to setting an appropriate bandlimit � max 

or the SSHT sampling scheme and an appropriate N side resolution 
arameter for HEALPix . Explicitly, for SSHT , we find � max = 

/δθ = 2160. For HEALPix , we set N side such that the area of
 pixel is as close as possible to that of a 5-arcmin pixel, i.e.
 = 4 π/ 12 N 

2 
side ≈ ( δθ ) 2 , yielding N side = 512 (with the restriction

hat N side is a power of two). The resulting SSHT map has pixels
f size 5 arcmin at the equator, while the resulting HEALPix map
as pixels of size 7 arcmin. For the HEALPix sampled data, we
se a maximum multipole � max = 4 N side . The exact choice of � max 

s not critical as smoothing remo v es the power on small scales. We
mooth the reduced shear before reconstructing the mass-map with 
 Gaussian Kernel G � = e −� 2 σ 2 

, with σ such that the half width at
alf maxima is 20 arcmin, to best match that of Vikram et al. ( 2015 ).
It is academic to note that interpolation errors are ef fecti vely

na v oidable when mapping observations continuous in position on to
 finite grid. Furthermore, gridding on to different sampling schemes 
nherently introduces different interpolation error. One may wonder, 
uite reasonably, which sampling (or corrective measure) minimizes 
his interpolation error, ho we ver, this is beyond the scope of this
aper. To normalize for this effect within this analysis, we first grid on
o HEALPix map which we then convert into a SSHT sampled map
ith the aforementioned dimensions. In this way both maps begin 
ith the same information contaminated with the same interpolation 

rror. 
MNRAS 509, 4480–4497 (2022) 
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Figure 6. Planar convergence maps reco v ered by the planar KS estimator applied to planar maps of the reduced shear created using galaxies from the DES SV 

data. The top row of plots show the results where the sinusoidal projection is used, while the bottom row shows the results when the stereographic projection is 
used. These projections were chosen since the the sinusoidal projection is used by the DES collaboration (Vikram et al. 2015 ), while the stereographic projection 
was shown in Fig. 4 to minimize rms error. The left-hand column shows the reco v ered E-mode convergence, while the right-hand column shows the reco v ered 
B-mode convergence. 
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Further, one should note that the noise properties of interpolated
pherical maps depend fundamentally on the sampling scheme
dopted. When one considers HEALPix equal area sampling, each
ixel contains roughly the same number of observations, whereas
or SSHT equiangular sampling pix els hav e significant variation in
he number of observations (due to variability in pixel size). As
uch, the assumption of noise Gaussianity is more easily justified for
EALPix maps. 
Fig. 5 shows the E- and B-mode convergence maps reco v ered

rom the DES SV data using the spherical Kaiser–Squires (SKS)
stimators. We apply the iterative algorithm described in Section 3.4
o estimate the underlying shear from the observed reduced shear.
he reco v ered conv ergence maps show near perfect agreement with
ach other and reasonable agreement with the maps reco v ered by
NRAS 509, 4480–4497 (2022) 
he DES collaboration for a similar choice of galaxies (Vikram
t al. 2015 , fig. 2). It should be noted that the galaxies used here
re not the exact same galaxies used in estimating the convergence
aps reco v ered by Vikram et al. ( 2015 ) due to small differences

etween the pri v ate and public DES catalogues (C. Chang &
. Zuntz, pri v ate communication). Therefore, exact equi v alence is
ot excepted, ho we ver, through pri v ate communication, C. Chang
as pro vided conv ergence maps reco v ered by the DES map making
ipeline when using the public catalogue and in this case, there is
ood agreement between the two convergence maps. 
For comparison purposes, in Fig. 6 , we show the results when

e bin galaxies on to two planar maps. The top row shows the
esults when using a sinusoidal projection, as also used by the DES
ollaboration (Vikram et al. 2015 ). We rotate the projection such

art/stab3235_f6.eps
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Figure 7. Similar to Fig. 6 , where here we plot the difference between the convergence recovered on the plane by the planar KS estimator and the convergence 
reco v ered on the sphere by the SKS estimator. The purpose of this figure is to compare the planar and spherical results. For the spherical case, we consider the 
SSHT sampling only, i.e. differences are relative to Figs 5 (a) and (b). 
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hat the central line of the projection corresponds to RA = 70 
◦
, as

lso done by Vikram et al. ( 2015 ). No other rotation is applied to
ully centre the region of interest. In the second row, we show results
sing a stereographic projection that has been rotated by the Euler
ngles α = 159 

◦
, β = −37 

◦
, and γ = 90 

◦
, to fully centre the area

f interest to the South Pole about which the projection is then
erformed. We choose to also show results using the stereographic 
rojection as the results from Fig. 4 suggest that this is the best
rojection to use. In both cases, we use 5-arcmin pixels and apply a
0-arcmin smoothing as they do in Vikram et al. ( 2015 ). We apply the
equired local rotations as described in Appendix B (in Appendix B,
e also examine the effect of not applying such rotations). For these
lanar results, we also use the reduced shear algorithm described in 
ection 3.4. Fig. 7 shows the difference between the convergence 
eco v ered on the plane for these projections and the projected
onv ergence reco v ered on the sphere using the SSHT sampling
hown in Fig. 5 . As is common with the KS estimator, both the
lanar and the spherical mass-maps suffer from leakage between the 
- and B-mode due to both the effects of the boundary and, perhaps

rimarily, the significant complex noise contribution. 

 C O N C L U S I O N S  

e have described how one can recover convergence fields, or 
ass-maps, directly on the celestial sphere, adopting the spherical 

qui v alent of KS inversion. We demonstrate that the spherical
ormulation reduces to the usual flat-sky KS approach in the planar
pproximation. We study the accuracy of the planar approximation 
or mass-mapping and address the important question of whether 
ne needs to reco v er the convergence field on the sphere for
orthcoming surv e ys or whether reco v ery on the plane would be
ufficient. The comparison between the planar and spherical settings 
epends largely on the projection used. In Appendix B, we describe
 number of projections that are used in this work and show
MNRAS 509, 4480–4497 (2022) 
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ow to account for the local rotations required when projecting
pin fields, such as shear, on to the plane. In Fig. 4 , the relative
rror introduced by the planar approximation, for a variety of
rojections, is presented. Conformal projections, for which local
ngles are conserved, are found to be the most ef fecti ve. Ne vertheless,
rrors in the planar setting are typically tens of percent and can
xceed 50 percent in some cases. These projection errors can be
ntirely eliminated by reco v ering mass-maps directly on the celestial
phere by the SKS technique presented in this article. This analysis
f projection errors has broader implications for the analysis of
ignals o v er the sphere, e.g. cosmic microwav e background analysis
tc . 

We apply the SKS estimator to the publicly available DES SV data.
e present maps of the convergence field reco v ered on the celestial

phere using both the SSHT and HEALPix sampling schemes (see
ig. 5 ), accounting for the fact that one measures reduced shear,
ather than the true underlying shear, by applying the iterative
lgorithm discussed abo v e. We compare the results to those reco v ered
n the plane, using the sinusoidal projection adopted by the DES
ollaboration and also the stereographic projection since it was found
o be most ef fecti ve projection for mass-mapping, particularly for
arge scales (see Fig. 4 ). In this setting, we demonstrate reasonable
greement between the spherical and planar reconstructions. While
he co v erage area of DES SV data is not sufficiently large for
he planar approximation to induce significant errors (see Fig. 4 ),
eco v ering spherical mass-maps for DES SV data is nevertheless a
seful demonstration of the SKS estimator on real observational data.
In this article, we consider the most naive estimator of the

onvergence field on the celestial sphere, namely a direct spherical
armonic inversion of the equations relating the observed shear field
o the underlying convergence field, i.e. the generalization of the
S estimator from the plane to the sphere. In practice, the shear
eld is not observ ed o v er the entire celestial sphere, which induces

eakage in the reco v ered conv ergence field for the simple harmonic
stimator considered. In future work, we will apply the pure mode
avelet estimators developed by Leistedt et al. ( 2017 ) to remove

eakage when reco v ering spherical mass-maps. In addition, in future
ork, we also intend to develop methods to better mitigate the impact
f noise and to estimate the statistical uncertainties associated with
eco v ered mass-maps (see e.g. Price et al. 2020 ). In all of these
xtensions, ho we ver, it is clear that for future surveys like Euclid
nd LSST, it will be essential to reco v er mass-maps on the celestial
phere, to a v oid the significant errors than are otherwise induced by
lanar approximations. 
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PPENDIX  A :  EQUIVA LENCE  O F  DIFFERENT  

EPRESENTATIONS  O F  SPHERICAL  

ASS-MAPPING  INVERSE  PROBLEM  

he equi v alence of the harmonic and integral expressions, equa- 
ions (24) and (28), respectively, connecting the observable cosmic 
hear field to the convergence field can also be shown by considering
he harmonic representation of the integral expression. Consider the 
ntegral representation, decomposing the kernel and convergence 
eld into their harmonic expansions 

 γ ( ω) = 

∫ 
S 2 

d �( ω 

′ ) ( R ω ′ 2 K)( ω) 0 κ( ω 

′ ) (A1) 

= 

∫ 
S 2 

d �( ω 

′ ) 
∑ 

�m 

2 K �m 

(
R ω ′ 2 Y �m 

)
( ω) ∑ 

� ′ m 

′ 
0 ̂ κ� ′ m 

′ 0 Y � ′ m 

′ ( ω 

′ ) . (A2) 

he rotation of the spin spherical harmonic in the abo v e e xpression
s given by 

R ω ′ 2 Y � 0 

)
( ω) = 

∑ 

n 

D 

� 
n 0 ( ω 

′ ) 2 Y �n ( ω) (A3) 

= 

√ 

4 π

2 � + 1 

∑ 

n 

0 Y 

∗
�n ( ω 

′ ) 2 Y �n ( ω) , (A4) 

here it is necessary to only consider m = 0 due to the Kronecker
elta term δm 0 appearing in 2 K �m 

, as shown in equation (30), and
oting equations (10) and (11). Equation (A2) can then be written as 

 γ ( ω) = 

∑ 

�n 
−1 

� ( � + 1) 

√ 

( � + 2)! 
( � −2)! 0 ̂ κ�n 2 Y �n ( ω) , (A5) 

here we have noted the orthogonality of the spherical harmonics, 
.e. 〈 Y �m 

, Y � ′ m 

′ 〉 = δ� � ′ δm m 

′ . The resulting harmonic representation 
f equation (28) is, thus, identical to equation (24), as expected. 

PPENDI X  B:  P RO J E C T I O N S  

n this appendix, we outline the details of each projection considered.
e first define each projection and describe its properties. Each 

rojection has different beneficial properties, for example whether 
he projection is equal-area, has appropriate boundary conditions 
r conformal. Conformal projections conserve local angles and are 
ften used for geographical maps. We also describe the distance 
etric we use for each projection to define the opening angle of

he patch of sky seen by an experiment, i.e. the angle considered
n Fig. 4 . We then detail how to calculate the local rotation
ngles required when projecting spin fields, such as shear (without 
his rotation E- and B-modes will be misinterpreted) and finally 
llustrate the impact of neglecting this local rotation on DES SV
ata. 

1 Projection definitions 

e consider two general types of projection: equatorial and po- 
ar projections. Equatorial projections are defined relative to the 
quator, while polar projections are defined relative to a pole. The
recise definitions of the different equatorial and polar projections 
re given in the following subsections. The equatorial projections 
onsidered include: the sinusoidal projection, which is a simple 
qual area projection that was used by the DES collaboration; 
he Mercator projection that is a conformal projection, often used 
n geographical maps as it preserves local angles; and a simple
ylindrical projection. The polar projections considered include: 
he orthographic projection, which is a simple vertical projection 
rom the sphere to a tangent plane; the Gnomonic projection 
hat has the useful property that the local rotations are trivial to
alculate; and the stereographic projection that is another conformal 
rojection. 
MNRAS 509, 4480–4497 (2022) 
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Figure B1. Diagram to describe graphically the equatorial projections, 
including the sinusoidal, Mercator, and the simple cylindrical projections. 
These can all be seen as types of cylindrical projections since the sphere is 
projected onto a cylinder wrapped round the sphere. The u variable simply 
describes how far round the cylinder a point is and is therefore give by φ (up 
to some arbitrary shift), except in the sinusoidal case where the u variable 
is contracted away from the equator to ensure the projection is equal-area. 
The v variable can vary between projections and can be specified by various 
functions d( θ ). In the Mercator projection, this function is chosen to ensure the 
projection is conformal. In the sinusoidal and simple cylindrical projections, 
this function is simply d( θ ) = β = π/ 2 − θ . 
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Figure B2. Diagram to describe graphically the polar projections, including 
the orthographic, stereographic, and gnomic projections. In these projections, 
a point on the sphere is projected to the tangent plane at a pole (here chosen to 
be the South Pole). For projections around the North or South Pole, the angle 
φ is simply taken as the polar coordinate ϕ in the planar space. The radial 
coordinate � is a function of the angle between the point and the pole whose 
tangent plane is considered ( π− θ for the South Pole). The orthographic 
projection is a vertical projection, giving � = sin ( π− θ ) for the tangent plane 
at the South Pole. The gnomic projection casts a ray from the origin to the 
point on the sphere and through to the tangent plane, giving � = tan ( π− θ ) 
for the tangent plane at the South pole. Finally, the stereographic projection 
casts a ray from the opposite pole to the point on the sphere and through to 
the tangent plane, giving � = 2 tan [( π− θ ) / 2] for the tangent plane at the 
South Pole. In the diagram, the point P is projected to PO, PS, and PG by the 
orthographic, stereographic, and gnomic projections, respectively. 
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1.1 Equatorial projections 

ig. B1 shows graphically how the equatorial projections can be
iewed as a projection on to a cylinder wrapped round the sphere.
ach projection is defined by the relation between the spherical
oordinates ( θ, φ) and the planar coordinates ( u, v). 

The sinusoidal projection (used by the DES collaboration) is
efined by 

u = ( φ − π) sin ( θ ) , 

v = θ. 
(B1) 

his projection results in minimal distortion in the central region ( θ =
/ 2, φ = π). Mo ving a way from this point in any direction increases

he distortion but particularly in a diagonal direction (specifically
long the lines y = x or y = −x). We define the distance metric for
his projection by 

 = 

√ 

( θ − π/ 2) 2 + ( φ − π) 2 . (B2) 

he sinusoidal projection has the useful property of being equal-
rea. It is simpler to define than the Mollweide projection, also an
qual-area projection, which is commonly used for plotting in the
osmological community. 

The Mercator projection is commonly used for geographical maps
nd is defined by 

u = φ − π , 

v = ln [ tan ( π/ 2 − θ/ 2) ] . 
(B3) 

his projection has the useful property of being conformal, meaning
hat local angles on the sphere will not be distorted. The projection
ntroduces minimal distortion at the equator, while the projected
mage is stretched and distorted as one mo v es towards the pole. Since
he poles themselves are at infinity the projection cannot completely
o v er the full sky in practice. The projection is a cylindrical projection
NRAS 509, 4480–4497 (2022) 
nd therefore has the correct boundary conditions in the u direction.
he metric used to define the angular distance from the undistorted

egion is simply given by 

 = | θ − π/ 2 | . (B4) 

he final equatorial projection we consider is the simple cylindrical
rojection defined by 

u = φ − π , 

v = θ − π/ 2 . 
(B5) 

here are no particular properties to inspire us to propose this
rojection o v er the more sophisticated cylindrical projection of the
ercator projection. Its attractiveness is in its simplicity and the

bility to map the entire sphere on one plane. The distortions increase
way from the equator leading to the same distance metric as the
ercator projection, i.e. equation (B4). 

1.2 Polar projections 

ig. B2 shows a graphical representation of the polar projections,
here again the spherical coordinates ( θ, φ) are projected on to the
lanar coordinates ( u, v). It is most straightforward to define these
rojections using polar coordinates on the plane ( �, ϕ), which are
elated to the Cartesian coordinates by 

u = � cos ( ϕ) , 

v = � sin ( ϕ) . 
(B6) 

n each of the polar projections, we simply have that ϕ = φ. The
rojections differ in the way θ is mapped to �, where each projection
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as its own mapping function f , i.e. 

 = f ( θ ) . (B7) 

t is a common feature of these projections that the entire sphere
annot be projected to a single plane in practice (since in many cases
he opposite pole is mapped to the point at infinity). In that case,
e often project around the South Pole as well as the North Pole

nd consider � = f ( π − θ ). We define the distance metric for these
rojections to be 

 = θ . (B8) 

he orthographic projection is defined by 

 = sin ( θ ) . (B9) 

or this projection, a point on the sphere is mapped vertically from
he sphere to the tangent plane at the North Pole. As a result, the
hole sphere cannot be projected on to one plane in practice and one
ust project each hemisphere on to a different plane. 
We also consider the Gnomonic projection defined by casting a ray 

rom the centre of the sphere to the point considered and then through
o the tangent plane at the North Pole. The Gnomonic projection is
herefore defined by 

 = tan ( θ ) . (B10) 

or this projection, the whole sphere again cannot be projected on to
ne plane in practice since the equator is projected to infinity. One
ust again project the sphere into a number of regions, for example

onsidering each hemisphere separately. 
The final projection we consider is the stereographic projection. 

his is defined by casting a ray from the South Pole to the point
onsidered on the sphere and then through to the tangent plane at the
orth Pole. The resulting projection is defined by 

 = 2 tan ( θ/ 2) . (B11) 

e can project almost all of the sphere with this projection, except
ear the South Pole, as the South Pole is mapped to infinity. This
rojection is conformal, preserving local angles. 

2 Rotation angles 

pin fields on the sphere have local directions defined relative to 
he North pole, whereas on the plane the spin fields have their spin
efined relative to some universal direction (usually the ‘top’ of the 
lanar map). We define this direction on the plane by ̂  v , the unit vector
n the v direction. On projection, the spin field must be rotated from
ts original coordinate frame on the sphere to the new coordinate 
rame on the plane. Here, we describe how to calculate this local
otation angle. 

When we project from the sphere to the plane, it is common
o rotate our coordinate system before we project. This is done in
rder to centre the region of interest so that distortions due to the
rojection are minimized at this point. We therefore need to define 
 number of coordinate systems, including the original sphere, the 
otated sphere, and the plane. First, consider a field defined on the
riginal sphere with spherical coordinates ( θ ′ , φ′ ) and corresponding 
artesian coordinates ( x ′ , y ′ , z ′ ). Consider then the rotated field,
here the spherical coordinates of the rotated sphere are ( θ, φ),
ith corresponding Cartesian coordinates ( x , y , z). We define the

otation relating the primed frame to the unprimed frame by R ρ ,
ith corresponding 3D rotation matrix R . From the rotated sphere, the 
eld is then projected on to the plane defined by Cartesian coordinates 
 u, v) and polar coordinates ( �, ϕ). 
We need to find the angle between ˆ v and the projected direction
f the North pole of the original sphere. To do this, we consider an
nfinitesimal step North on the sphere and then find the infinitesimal
tep this makes on the plane ( d u, d v). The rotation angle ψ required
s then the angle between the ˆ v direction and the projected North
irection. 

2.1 Equatorial projections 

he first step is to construct a vector that is an infinitesimal step
orth in the original space. This vector is given by 

 x ′ = 

⎛ ⎝ 

0 
0 
1 

⎞ ⎠ d ε , (B12) 

here d ε is an infinitesimal element of the real line. When this
nfinitesimal element is projected on to the sphere at any point, it
l w ays points North (with the exception of the poles). Moving in
his direction, thus, yields a vector that is further North but is not
ormalized to lie on the unit sphere. The normalization of the vector
s unimportant as later on in this proof we require the direction
f this vector only and not its length. In the unprimed frame, this
nfinitesimal step is given by 

d x = R d x ′ , ⎛ ⎝ 

dx 
d y 
d z 

⎞ ⎠ = 

⎛ ⎝ 

R 1 , 3 

R 2 , 3 

R 3 , 3 

⎞ ⎠ d ε . 
(B13) 

ow we apply the chain rule twice to calculate the projected

nfinitesimal step in the plane ( d u, d v). First, we note the relation
etween ( x , y , z) and ( θ, φ) of 

θ = arctan 

( √ 

x 2 + y 2 

z 

) 

, 

φ = arctan 
(y 

x 

)
, 

(B14) 

here the normalization of the vector is unimportant, ensuring the 
efinition of d x ′ is acceptable. Applying the chain rule, we have 

d θ = cos ( θ )[ cos ( φ)d x + sin ( φ)d y − tan ( θ )d z] , 

d φ = csc ( θ )[ − sin ( φ)d x + cos ( φ)d y] , 
(B15) 

here a unit vector is assumed without loss of generality. We now
eneralize the equatorial projections as 

u = g( θ, φ) , 

v = h ( θ, φ) . 
(B16) 

e then apply the chain rule again to give 

 u = 

∂ g 

∂ θ
d θ + 

∂ g 

∂ φ
d φ , 

 v = 

∂ h 

∂ θ
d θ + 

∂ h 

∂ φ
d φ , (B17) 

rom which the rotation angle ψ can be calculated by 

 = − arctan 

(
d u 

d v 

)
. (B18) 

fter substituting all the terms from the abo v e e xpressions into
quation (B18), d ε cancels out and the limit d ε → 0 follows trivially.
MNRAS 509, 4480–4497 (2022) 
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2.2 Polar projections 

or polar projections, the calculation begins in the same way as for
quatorial projections, up until equation (B15). Then, we apply the
hain rule giving 

d � = 

d f 

d θ
d θ , 

d ϕ = d φ . 

(B19) 

pplying the chain rule again to the relation between ( u, v) and ( �, ϕ)
f equation (B6), we have 

d u = cos ( ϕ )d � − � sin ( ϕ )d ϕ , 

d v = sin ( ϕ )d � + � cos ( ϕ )d ϕ . 
(B20) 

e then compute the local rotation angle ψ in the same manner
s abo v e, i.e. by equation (B18). It is possible to show from this
result the special property of the Gnomonic projection: when there
NRAS 509, 4480–4497 (2022) 
s no rotation and f ( θ ) = tan ( θ ), as is the case for the Gnomonic
rojection, the rotation angle is zero everywhere. 

3 Application to DES SV data 

ere, we demonstrate the importance of applying this rotation in
ractice, using DES SV data. As far as we are aware, applying these
ocal rotations is not standard practice. We consider the sinusoidal
rojection also used by the DES collaboration. Ho we ver, here we do
ot apply the necessary rotations to the galaxy shapes (as we did in
he main body of the article). Figs B3 (a) and B3 (b) show the results
hen no rotation is applied and Figs B3 (c) and B3 (d) show the error

ntroduced by not applying the local rotations, i.e. the differences
ith the maps shown in Figs 6 (a) and (b). While the effect is not large

or DES SV data, it is not insignificant. Furthermore, if considering
lanar mass-mapping techniques for larger surv e y co v erages this
ffect becomes increasingly important. 
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Figure B3. Plot to show the importance of applying the local rotations to real data when performing projections. We project the DES SV data using the 
sinusoidal projection considered by the DES collaboration. Ho we ver, in this case, we do not apply the necessary rotations to the galaxy shapes. Panels (a) and 
(b) show the results when no rotation is applied, while panels (c) and (d) show the error introduced by not applying the local rotations, i.e. the differences with 
the maps shown in Figs 6 (a) and (b). 
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