
Improved Regret Bounds for Tracking Experts with
Memory

James Robinson Mark Herbster
Department of Computer Science

University College London
London

United Kingdom
{j.robinson | m.herbster}@cs.ucl.ac.uk

Abstract

We address the problem of sequential prediction with expert advice in a non-
stationary environment with long-term memory guarantees in the sense of Bousquet
and Warmuth [4]. We give a linear-time algorithm that improves on the best known
regret bounds [27]. This algorithm incorporates a relative entropy projection
step. This projection is advantageous over previous weight-sharing approaches
in that weight updates may come with implicit costs as in for example portfolio
optimization. We give an algorithm to compute this projection step in linear time,
which may be of independent interest.

1 Introduction

We consider the classic problem of online prediction with expert advice [35] in a non-stationary
environment. In this model nature sequentially generates outcomes which the learner attempts to
predict. Before making each prediction, the learner listens to a set of n experts who each make their
own predictions. The learner bases its prediction on the advice of the experts. After the prediction is
made and the true outcome is revealed by nature, the accuracies of the learner’s prediction and the
expert predictions are measured by a loss function. The learner receives information on all expert
losses on each trial. We make no distributional assumptions about the outcomes generated, indeed
nature may be assumed to be adversarial. The goal of the learner is to predict well relative to a
predetermined comparison class of predictors, in this case the set of experts themselves. Unlike the
standard regret model, where the learner’s performance is compared to the single best predictor in
hindsight, our aim is for the learner to predict well relative to a sequence of comparison predictors.
That is, “switches” occur in the data sequence and different experts are assumed to predict well at
different times.

In this work our focus is on the case when this sequence consists of a few unique predictors relative
to the number of switches. Thus most switches return to a previously “good” expert, and a learner
that can exploit this fact by “remembering” the past can adapt more quickly than a learner who has
no memory and must re-learn the experts after every switch. The problem of switching with memory
in online learning is part of a much broader and fundamental problem in machine learning: how a
system can adapt to new information yet retain knowledge of the past. This is an area of research in
many fields, including for example, catastrophic forgetting in artificial neural networks [11, 36].

Contributions. In this paper we present an O(n)-time per trial projection-based algorithm for
which we prove the best known regret bound for tracking experts with memory. Our projection-based
algorithm is intimately related to a more traditional “weight-sharing” algorithm, which we show
is a new method for Mixing Past Posteriors (MPP) [4]. We show that surprisingly this method

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

corresponds to the algorithm with the previous best known regret bound for this problem [27]. We
also give an efficient O(n)-time algorithm for computing exact relative entropy projection onto a
simplex with non-uniform (lower) box constraints. Finally, we provide a guarantee which favors
projection-based updates over weight-sharing updates when updating weights may incur costs.

The paper is organized as follows. We first introduce the model and discuss related work, giving a
detailed overview of the previous results on which we improve. In Section 3 we give our main results, a
regret bound which holds for two algorithms, and an algorithm to compute relative entropy projection
with non-uniform lower box constraints in linear time. In Section 4 we derive a new “geometric-decay”
method for MPP, and show the correspondence to the current best known algorithm [27]. We give a
few concluding remarks in Section 5. All proofs are contained in the appendices.

1.1 Preliminaries

We first introduce notation. Let ∆n := {u ∈ [0, 1]n : ‖u‖1 = 1} be the (n − 1)-dimensional
probability simplex. Let ∆α

n := {u ∈ [0, α]n : ‖u‖1 = α} be a scaled simplex. Let 1 denote
the vector (1, . . . , 1) and 0 denote the vector (0, . . . , 0). Let ei denote the ith standard basis vec-
tor. We define D(u,w) :=

∑n
i=1 ui log ui

wi
to be the relative entropy between u and w. We

denote component-wise multiplication as u � w := (u1w1, . . . , unwn). For p ∈ [0, 1] we de-
fine H(p) := −p ln p− (1− p) ln (1− p) to be the binary entropy of p, using the convention that
0 ln 0 = 0. We define ri S to be the relative interior of the set S. For any positive integer n we define
[n] := {1, . . . , n}. We overload notation such that [pred] is equal to 1 if the predicate pred is true
and 0 otherwise. For two vectors α and β we say α � β iff αi ≤ βi for all i = 1, . . . , n.

2 Background

In sequential prediction with expert advice nature generates elements from an outcome space,
Y while the predictions of the learner and the experts are elements from a prediction space, D
(e.g., we may have Y = {0, 1} and D = [0, 1]). Given a non-negative loss function ` : D × Y →
[0,∞), learning proceeds in trials. On each trial t = 1, . . . , T : 1) the learner receives the expert
predictions xt ∈ Dn, 2) the learner makes a prediction ŷt ∈ D, 3) nature reveals the true label
yt ∈ Y , and 4) the learner suffers loss `t := `(ŷt, yt) and expert i suffers loss `ti := `(xti, y

t) for
i = 1, . . . , n. Common to the algorithms we consider in this paper is a weight vector, wt ∈ ∆n,
where wti can be interpreted as the algorithm’s confidence in expert i on trial t. The learner
uses a prediction function pred : ∆n ×Dn → D to generate its prediction ŷt = pred(wt,xt) on
trial t. A classic example is to predict with the weighted average of the expert predictions, that
is, pred(wt,xt) = wt · xt, although for some loss functions improved bounds are obtained with
different prediction functions (see e.g., [47]). In this paper we assume (c, η)-realizability of ` and
pred [4, 18, 45]. That is, there exists constants c, η > 0 such that for all w ∈ ∆n, x ∈ Dn, and
y ∈ Y , `(pred(w,x), y) ≤ −c ln

∑n
i=1 wie

−η`(xi,y). This includes η-exp-concave losses when
pred(wt,xt) = wt · xt and c = 1

η . For simplicity we present regret bound guarantees that
assume (c, 1

c)-realizability, that is cη = 1. This includes the log loss with c = 1, and the square
loss with c = 1

2 when D = Y = [0, 1]. The absolute loss is not (c, η)-realizable. Generalizing
these bounds to the Hedge setting [13] is straightforward. For any comparison sequence of experts
i1:T = i1, . . . , iT ∈ [n] the regret of the learner with respect to this sequence is defined as

R(i1:T) :=

T∑
t=1

`t −
T∑
t=1

`tit .

We consider and derive algorithms which belong to the family of “exponential weights” (EW)
algorithms (see e.g., [25, 35, 47]). After receiving the expert losses the EW algorithm applies the
following incremental loss update to the expert weights,

ẇti =
wtie
−η`ti∑n

j=1 w
t
je
−η`tj

. (1)

Static setting. In the static setting the learner competes against a single expert (i.e., i1 = . . . =
iT). For the static setting the EW algorithm setswt+1 = ẇt for the next trial, and for (c, 1

c)-realizable
losses and prediction functions achieves a static regret bound ofR(i1:T) ≤ c lnn.

2

Switching. In the switching (without memory) setting the learner competes against a sequence of
experts i1, . . . , iT with k :=

∑T−1
t=1 [it 6= it+1] switches. The well-known Fixed-Share algorithm [23]

solves the switching problem with the update

wt+1 = (1− α)ẇt + α
1

n
, (2)

by forcing each expert to “share” a fraction of its weight uniformly with all experts.1 The update is
parameterized by a “switching” parameter, α ∈ [0, 1]. With an optimally-tuned α = k

T−1 the regret
with respect to the best sequence of experts with k switches is

R(i1:T) ≤ c
(

(k + 1) lnn+ (T − 1)H
(

k

T − 1

))
≤ c
(

(k + 1) lnn+ k ln
T − 1

k
+ k

)
. (3)

Switching with memory. Freund [12] gave an open problem to improve on the regret bound (3)
when the comparison sequence of experts is comprised of a small pool of size m := | ∪Tt=1 {it}| � k.
Using counting arguments Freund gave an exponential-time algorithm with the information-theoretic
ideal regret bound ofR(i1:T) ≤ c ln (

(
n
m

)(
T−1
k

)
m(m− 1)k), which is upper-bounded by

c

(
m lnn+ k ln

T − 1

k
+ (k −m+ 1) lnm+ k +m

)
. (4)

The first efficient algorithm solving Freund’s problem was presented in the seminal paper [4]. This
work introduced the notion of a mixing scheme, which is a distribution γt+1 with support {0, . . . , t}.
Given γt+1, the algorithm’s update on each trial is the mixture over all past weight vectors,

wt+1 =

t∑
q=0

γt+1
q ẇq , (5)

where ẇ0 := 1
n1, and γ1

0 := 1. Intuitively, by mixing all “past posteriors” (MPP) the weights of
previously well-performing experts can be prevented from vanishing and recover quickly. An efficient
mixing scheme requiring O(n)-time per trial is the “uniform” mixing scheme given by γt+1

t = 1−α
and γt+1

q = α
t for 0 ≤ q < t. A better regret bound was proved with a “decaying” mixing scheme,

given by

γt+1
q =

{
1− α q = t

α 1
(t−q)ρ

1
Zt

0 ≤ q < t ,
(6)

where Zt =
∑t−1
q=0

1
(t−q)ρ is a normalizing factor, and ρ ≥ 0. With a tuning of α = k

T−1 and ρ = 1

this mixing scheme achieves a regret bound of2

R(i1:T) ≤ c
(
m lnn+ 2k ln

T − 1

k
+ k ln (m− 1) + k + k ln ln (eT)

)
. (7)

It appeared that to achieve the best regret bounds, the mixing scheme needed to decay towards the past.
Unfortunately, computing (6) exactly requires the storage of all past weights, at a cost of O(nt)-time
and space per trial. Observe that these schemes set γt+1

t =1−α, where typically α is small, since
intuitively switches are assumed to happen infrequently. All updates using such schemes are of the
form

wt+1 = (1− α)ẇt + αvt , (8)
which we will call the generalized share update (see [7]). Fixed-Share is a special case when vt = 1

n
for all t. This generalized share update features heavily in this paper.

For a decade it remained an open problem to give the MPP update a Bayesian interpretation. This
was finally solved in [27] with the use of partition specialists. Here on each trial t, a specialist
(first introduced in [14]) is either awake and predicts in accordance with a prescribed base expert,

1Technically in the original Fixed-Share update each expert shares weight to all other experts, i.e.,
wt+1
i = (1− α)ẇti +

α
n−1

∑
j 6=i ẇ

t
j . The two updates achieve essentially the same regret bound and are

equivalent up to a scaling of α.
2(7) is a simplified upper bound of the bound given in [4, Corollary 9], using ln (1 + x) ≤ x.

3

or is asleep and abstains from predicting. For n base experts and finite time horizon T there are
n2T partition specialists. For Freund’s problem an assembly of m partition specialists can predict
exactly as the comparison sequence of experts. The Bayesian interpretation of the MPP update given
in [27, Theorem 2] was simple: to define a mixing scheme γt+1 was to induce a prior over this set
of partition specialists. The authors of [27] proposed a simple Markov chain prior over the set of
partition specialists, giving an efficient O(n)-time per trial algorithm with the regret bound

R(i1:T)≤c
[
m ln

n

m
+mH

(
1

m

)
+(T − 1)H

(
k

T − 1

)
+(m− 1)(T − 1)H

(
k

(m− 1)(T − 1)

)]
(9)

≤c
(
m lnn+2k ln

T − 1

k
+(k −m+ 1) lnm+2(k + 1)

)
, (10)

which is currently the best known regret bound for Freund’s problem. In this work we improve
on the bound (9) for tracking experts with memory (Theorem 2). We also show that in fact this
Markov prior on partition specialists corresponds to a geometrically-decaying mixing scheme for
MPP (Proposition 5). The regret bounds discussed in this paper all rely on optimally tuning one or
more parameters, which in practice are usually unknown, and this is true for our regret bound.

Adaptive online learning algorithms with memory have been shown to have better empirical per-
formance than those without memory [15], and to be effective in real-world applications such as
intrusion detection systems [39]. While considerable research has been done on switching with
memory in online learning (see e.g., [4, 7, 20, 21, 27, 49]), there remain several open problems.
Firstly, there remains a gap between the best known regret bound for an efficient algorithm and the
information-theoretic ideal bound (4). Present in both bounds (7) and (10) is the factor of 2 in the
second term, which does not appear in (4). In [27] this was interpreted as the cost of co-ordination
between specialists, essentially one “pays” twice per switch as one specialist falls asleep and another
awakens. In this paper we make progress towards closing this gap by avoiding such additional costs
the first time each expert is learned by the algorithm. That is, we pay to remember but not to learn.

Secondly, unless n is very large the current best known bound (9) beats Fixed-Share’s bound (3) only
when m � k, but suffers when m is even a moderate fraction of k. A natural question is can we
improve on Fixed-Share when we relax the assumption that m� k, and only a few members of a
sequence of experts need remembering (consider for instance, m > k/2)? In this paper we prove
a regret bound that is not only tighter than (9) for all m, but for sufficiently large n improves on
Fixed-Share for all m ≤ k. See Figure 1 where we show this behavior for several existing regret
bounds and our regret bound.

Our regret bound will hold for two algorithms; one utilizes a weight-sharing update in the sense of (8),
and the other utilizes a projection update. Why should we consider projections? Consider for example
a large model consisting of many weights, and to update these weights costs time and/or money.
Alternatively consider the application of regret-bounded adaptive algorithms in online portfolio
selection (see e.g., [32, 44]). Here each “expert” corresponds to a single stock and the weight vector
wt corresponds to a (normalized) portfolio. If `ti is the negative log return of stock i after day t,
then the loss function `t := − ln

∑n
i=1 w

t
ie
−`ti is the negative log return of the portfolio. This loss

is (1, 1)-realizable by definition (although there is no prediction function [1]), and the daily price
changes in the market naturally induce the “loss update” (1) by updating the portfolio weights. The
algorithm’s secondary update (projection or weight-sharing) requires the investor to then actively
buy/sell to re-balance the portfolio after each trading period, but doing so may incur transaction
costs proportional to the amount bought or sold (see e.g., [2, 32]). Online portfolio selection with
transaction costs is an active area of research [9, 30, 32, 33]. In Section 3.3 we motivate the use of
projections over weight-sharing in this context, proving that projections are strictly more “efficient”.

2.1 Related work

Switching (without memory) in online learning was first introduced in [35] (see also the earlier [34]
and independently in the context of universal coding in [43]), and extended with the Fixed-Share
algorithm [23]. An extensive literature has built on these works, including but not limited to [1, 4,
7, 8, 16, 17, 21, 22, 24, 27, 29, 38, 42, 49]. Relevant to this work are the results for switching with
memory [4, 7, 21, 27, 29, 49]. The first was the seminal work of [4]. The best known result is given
in [27], which we improve on. In [49] a reduction of switching with memory to switching without

4

2 10 20 30 40

6

8

10

12

(k + 1)

m

R
eg

re
tb

ou
nd

(×
10

2
c) MPP (decaying scheme)

MPP (uniform scheme)
Partition Specialists (Markov prior)
Fixed-Share
PoDS-θ / Share-θ

Figure 1: A comparison of the regret bounds discussed in this paper form∈ [2, k+1] with n=500000,
k=40, and T =4000. Fixed-Share’s bound is constant with respect to m. In this case previous
“memory” bounds (blue & yellow) are much worse than Fixed-Share for larger values of m while our
bound (red) improves on Fixed-Share for all m∈ [2, k].

memory is given, although with a slightly worse regret bound than [4]. Related to the experts model
is the bandits setting, which was addressed in the memory setting in [49].

In [7] a unified analysis of both Fixed-Share and MPP was given in the context of online convex
optimization. They observed the generalized share update (8) and slightly improved the bounds of [4].
Adaptive regret [1, 8, 19, 35] has been used to prove regret bounds for switching but unfortunately
does not generalize to the memory setting. This paper primarily builds on the work of [4] with a new
geometrically-decaying mixing scheme, and on [24] with a new relative entropy projection algorithm.
Related to the problem of prediction with expert advice is that of universal coding in information
theory (see e.g., [28, 37, 48] for a discussion). Similarly, related to the problem of tracking experts
with memory is the problem of universal coding for switching sources with repeating statistics (see
e.g., [40, 41, 43] and references therein).

3 Projection onto dynamic sets

In this section we give a relative entropy projection-based algorithm for tracking experts with memory.
Given a non-empty set C ⊆ ∆n and a point w ∈ ri ∆n we define

P(w; C) := arg min
u∈C

D(u,w)

to be the projection with respect to the relative entropy of w onto C [6]. Such projections were
first introduced for switching (without memory) in online learning in [24], in which after every trial
the weight vector ẇt is projected onto C = [αn , 1]n ∩ ∆n, that is, the simplex with uniform box
constraints. For prediction with expert advice this projection algorithm has the regret bound (3)
(see [7]). Indeed, we will refer towt+1 = P(ẇt; [αn , 1]n ∩∆n) as the “projection analogue” of (2).
For tracking experts with memory our algorithm will instead project onto a set C such that each
weight does not fall below a certain threshold that is learned for each expert.

Given β ∈ (0, 1)n such that ‖β‖1 ≤ 1, let

C(β) := {x ∈ ∆n : xi ≥ βi, i = 1, . . . , n}

be a subset of the simplex which is convex and non-empty. Givenw ∈ ri ∆n, intuitively P(w; C(β))
is the projection ofw onto the simplex with (non-uniform) lower box constraints β. Relative entropy
projection updates for tracking experts with memory were first suggested in [4, Section 5.2]. The
authors observed that for any MPP mixing scheme γt+1, the update (5) can be replaced with

wt+1 = P(ẇt; {w ∈ ∆n : w � γt+1
q ẇq, q = 0, . . . , t}) , (11)

and achieve the same regret bound. We build on this concept in this paper. Observe that for any
choice of γt+1 the set {w ∈ ∆n : w � γt+1

q ẇq, q = 0, . . . , t} corresponds to the set C(β) where

βi = max
0≤q≤t

γt+1
q ẇqi i = 1, . . . , n . (12)

5

In this work we give an algorithm to compute P(w; C(β)) exactly for any C(β) in O(n) time
(Algorithm 3). With this algorithm and the mapping (12), one immediately obtains the projection
analogue of MPP for any mixing scheme γt+1 at essentially no additional computational cost. We
point out however that for arbitrary mixing schemes computing β from (12) takes O(nt)-time on
trial t, improving only when some structure of the scheme can be exploited. We therefore propose
the following method for tracking experts with memory efficiently using projection onto dynamic sets
(“PoDS”).

Just as (8) generalizes the Fixed-Share update (2), we propose PoDS as the analogous generalization
of the update wt+1 =P(ẇt; C(α 1

n)) (the projection analogue of Fixed-Share). PoDS maintains a
vector βt ∈ ∆α

n, and on each trial updates the weights by settingwt+1 =P(ẇt; C(βt)). Intuitively
PoDS is the projection analogue of (8) with βt corresponding simply to αvt. In some cases βt=αvt

for all t (e.g., for Fixed-Share), but in general equality may not hold since βt and vt can be functions
of past weights, which may differ for weight-sharing and projection algorithms. Recall that (8)
describes all MPP mixing schemes that set γt+1

t =1−α. PoDS implicitly captures all such mixing
schemes. This simple formulation of PoDS allows us to define new updates, which will correspond
to new mixing schemes. In the following section we give a simple update for PoDS and prove the
best known regret bound. In Section 3.2 we discuss Algorithm 3 and the efficient computation of
P(w; C(β)).

3.1 A simple update rule for PoDS

We now suggest a simple update rule for βt in PoDS for tracking experts with memory. The regret
bound for this algorithm is given in Theorem 2. We first set β1 = α 1

n to be uniform, and with a
parameter 0 ≤ θ ≤ 1 update βt on subsequent trials by setting

βt+1 = (1− θ)βt + θαẇt . (13)

We refer to PoDS with this update as PoDS-θ. Intuitively the constraint vector βt is updated in (13)
by mixing in a small amount of the current weight vector, ẇt, scaled such that ‖βt+1‖1 = α. If
expert i predicted well in the past, then its constraint βti will be relatively large, preventing the weight
from vanishing even if that expert suffers large losses locally. Using Algorithm 3 in its projection
step, PoDS-θ has O(n) per-trial time complexity.

As discussed, the vector βt of PoDS is conceptually equivalent to the vector αvt of the general-
ized share update (8). If PoDS has a simple update rule such as (13) then it is straightforward
to recover the weight-sharing equivalent by simply “pretending” equality holds on all trials. We
now do this for PoDS-θ. Clearly we have v1 = 1

n , and if βt = αvt and βt+1 = αvt+1, then
vt+1 = 1

αβ
t+1 = 1

α (1−θ)βt + θẇt=(1−θ)vt + θẇt. This then leads to an efficient sharing algo-
rithm, which we call Share-θ. In Section 4 we show this algorithm is in fact a new MPP mixing
scheme, which surprisingly corresponds to the previous best known algorithm for this problem.
Both PoDS-θ and Share-θ use the same parameters (α and θ), differing only in the final update (see
Algorithms 1&2).

Our regret bound for PoDS-θ and Share-θ is given in Theorem 2, the proof of which will use the
following corollary.
Corollary 1. Let 0 < α < 1. Then for any u ∈ ∆n,w ∈ ri ∆n, and β ∈ ri ∆α

n , let p = P(w; C(β)).
Then,

D(u,w)−D(u,p) ≥ ln (1− α) . (14)

We now give the regret bound which holds for both algorithms.
Theorem 2. For any comparison sequence i1, . . . , iT containing k switches and consisting of m
unique experts from a set of size n, if α = k

T−1 and θ = k−m+1
(m−1)(T−2) , the regret of both PoDS-θ and

Share-θ with any prediction function and loss function which are (c, 1
c)-realizable is

R(i1:T) ≤ c
(
m lnn+(T − 1)H

(
k

T − 1

)
+ (m− 1)(T − 2)H

(
k −m+ 1

(m− 1)(T − 2)

))
. (15)

The regret bound (15) is at least c((m−1) ln T−1
k −(k−m+1) ln k

k−m+1) tighter than the currently
best known bound (9). Thus if m�k then the improvement is ≈ cm ln T

k , and as m→k+1 then

6

Algorithms 1&2 PoDS-θ / Share-θ

Input: n > 0, η = 1
c > 0, α ∈ [0, 1], θ ∈ [0, 1]

. PoDS-θ
1: init: w1← 1

n ; β1←α 1
n

. Share-θ
1: init: w1← 1

n ; v1← 1
n

. PoDS-θ & Share-θ
2: for t←1 to T do
3: receive xt ∈ Dn
4: predict ŷt = pred(wt,xt)
5: receive yt ∈ Y
6: for i←1 to n do
7: ẇti←

wtie
−η`ti∑n

j=1 w
t
je
−η`t

j

. PoDS-θ
8: wt+1←P(ẇt; C(βt)) (16)
9: βt+1←(1− θ)βt + θαẇt

. Share-θ
8: wt+1←(1− α)ẇt + αvt (17)
9: vt+1←(1− θ)vt + θẇt (18)

Algorithm 3 P(w; C(β)) in O(n) time
Input: w ∈ ri ∆n;β ∈ (0, 1)n s.t. ‖β‖1 ≤ 1
Output: w′ = P(w; C(β))

1: init: W← [n]; r←w� 1
β ; Sw←0; Sβ←0

2: whileW 6= ∅ do
3: φ←median({ri : i ∈ W})
4: L←{i ∈ W : ri < φ}
5: Lβ←

∑
i∈L βi; Lw←

∑
i∈L wi

6: M←{i ∈ W : ri = φ}
7: Mβ←

∑
i∈M βi; Mw←

∑
i∈M wi

8: H←{i ∈ W : ri > φ}
9: λ← 1−Sβ−Lβ

1−Sw−Lw
10: if φλ < 1 then
11: Sw←Sw + Lw +Mw

12: Sβ←Sβ + Lβ +Mβ

13: ifH = ∅ then
14: φ←min({ri : ri > φ, i ∈ [n]})
15: W←H
16: else
17: W←L
18: λ← 1−Sβ

1−Sw
19: ∀i : 1, . . . , n : w′i←

{
βi ri < φ

λwi ri ≥ φ

the improvement is ≈ ck ln T
k . Additionally note that if m= k+1 (i.e., every switch we track a

new expert) the optimal tuning of θ is zero, and PoDS-θ reduces to setting βt = α 1
n on every trial.

That is, we recover the projection analogue of Fixed-Share. This is also reflected in the regret bound
since (15) reduces to (3). Since xH(yx) ≤ y ln (xy) + y, the regret bound (15) is upper-bounded by

R(i1:T) ≤c
[
m lnn+k ln

T−1

k
+(k−m+1) ln

T−2

k−m+1
+(k−m+1) ln (m−1)+2k −m+ 1

]
.

Comparing this to (10), we see that instead of paying c ln T−1
k twice on every switch, we pay c ln T−1

k

once per switch and c ln T−2
k−m+1 for every switch we remember an old expert (k −m+ 1 times).

Unlike previous results for tracking experts with memory, PoDS-θ and its regret bound (15) smoothly
interpolate between the two switching settings. That is, it is capable of exploiting memory when
necessary and on the other hand does not suffer when memory is not necessary (see Figure 1).

3.2 Computing P(w; C(β))

Before we consider PoDS-θ and Share-θ further, we briefly discuss the computation of P(w; C(β)).
In [24] the authors showed that computing relative entropy projection onto the simplex with uniform
box constraints is non-trivial, but gave an algorithm to compute it in O(n) time. We give a general-
ization of their algorithm to compute P(w; C(β)) exactly for any non-empty set C(β) in O(n) time.
As far as we are aware our method to compute exact relative entropy projection onto the simplex with
non-uniform (lower) box constraints in linear time is the first, and may be of independent interest
(see e.g., [31]).

We first develop intuition by sketching out the form that P(w; C(β)) must take, and then describe
how Algorithm 3 computes this projection efficiently. This is stated formally in Theorem 3, the
proof of which is given in Appendix C. Firstly consider the case that w ∈ C(β), then trivially
P(w; C(β)) = w, due to the non-negativity ofD(u,w) and the fact thatD(u,w) = 0 iff u = w [6].
For the case thatw /∈ C(β), this implies that the set {i ∈ [n] : wi < βi} is non-empty. For each index
i in this set the projection of w onto C(β) must set the component wi to its corresponding constraint
value βi. The remaining components are then normalized, such that

∑n
i=1 wi = 1. However, doing

so may cause one (or more) of these components wj to drop below its constraint βj . In Appendix C

7

we prove that the projection algorithm must find the set of components Ψ of least cardinality to set to
their constraint values such that when the remaining components are normalized, no component lies
below its constraint, and that this can be done in linear time.

Consider the following inefficient approach to finding Ψ. Given w and C(β), let r = w � 1
β be

a “ratio vector”. First sort r in ascending order, and then sort w and β according to the ordering
of r. If r1 ≥ 1 then Ψ = ∅ and we are done (⇒ w ∈ C(β)). Otherwise for each a = 1, . . . , n: 1)

let the candidate set Ψ
′

= [a], 2) let w′ = w except for each i ∈ Ψ
′

set w′i = βi, 3) re-normalize
the remaining components of w′, and 4) let r′ = w′ � 1

β . The set Ψ is then the candidate set

Ψ
′

of least cardinality such that r′ � 1. This approach requires sorting r and therefore even an
efficient implementation takes O(n log n) time. Algorithm 3 finds Ψ without having to sort r. It
instead specifies Ψ uniquely with a threshold, φ, such that Ψ = {i : ri < φ}. Algorithm 3 finds φ
through repeatedly bisecting the setW = [n] by finding the median of the set {ri : i ∈ W} (which
can be done in O(|W|) time [3]), and efficiently testing this value as the candidate threshold on
each iteration. The smallest valid threshold then specifies the set Ψ. The following theorem states
the time complexity of the algorithm and the form of the projection, which is used in the proof of
Theorem 2 (the proof of Theorem 3 is in Appendix C, where we also give a more detailed description
of Algorithm 3).

Theorem 3. For any β ∈ (0, 1)n such that ‖β‖1 ≤ 1, and for any w ∈ ri ∆n, let p = P(w; C(β)),
where C(β) = {x ∈ ∆n : xi ≥ βi, i = 1, . . . , n}. Then p is such that for all i = 1, . . . , n,

pi = max

{
βi;

1−
∑
j∈Ψ βj

1−
∑
j∈Ψ wj

wi

}
, (19)

where Ψ := {i ∈ [n] : pi = βi}. Furthermore, Algorithm 3 computes p in O(n) time.

3.3 Projection vs. sharing in online learning

We now briefly consider the two types of updates discussed in this paper (projection and weight-
sharing) when updating weights may incur costs. Recall the motivating example introduced in
Section 2 was in online portfolio selection with transaction costs. It is straightforward to show that in
this model transaction costs are proportional to the 1-norm of the difference in the weight vectors
before and after re-balancing. In Theorem 4 we give a result which in this context guarantees the
“cost” of projecting is less than that of weight-sharing.

To compare the update of PoDS and the generalized share update (8), we must consider for a set
of weights ẇt, the point P(ẇt; C(βt)) and the point (1− α)ẇt + αvt. However these points
depend on βt and vt respectively, which may themselves be functions of previous weight vectors
ẇ1, . . . , ẇt−1, which as discussed are generally not the same for each of the two algorithms. To
compare the two updates equally we therefore assume that the current weights are the same (i.e., they
must both update the same weights ẇt), and additionally that βt = αvt. The following theorem
states that under mild conditions, PoDS is strictly less “expensive” than its weight-sharing counterpart.

Theorem 4. Let 0 < α < 1. Then for any v ∈ ri ∆n, let β = αv, and for any w ∈ ri ∆n such that
w 6= v, let w′ = (1− α)w + αv. Then,

‖P(w; C(β))−w‖1 < ‖w
′ −w‖1 .

Thus if one has to pay to update weights, projection is the economical choice.

4 A geometrically-decaying mixing scheme for MPP

In this section we look more closely at Share-θ. We show that it is in fact a new type of decaying
MPP mixing scheme which corresponds to the partition specialist algorithm with Markov prior.

Recall that the previous best known mixing scheme for MPP is the decaying scheme (6). Observe
that in (6) the decay (with the “distance” to the current trial t) follows a power-law, and that
computing (6) exactly takes O(nt) time per trial. We now derive an explicit MPP mixing scheme
from the updates (17) and (18) of Share-θ. Observe that if we define ẇ0 := 1

n , then an iterative

8

expansion of (18) on any trial t gives vt =
∑t−1
q=0 θ

[q 6=0](1− θ)t−q−1ẇq, from which (17) implies
wt+1 = (1− α)ẇt + αvt =

∑t
q=0 γ

t+1
q ẇq , where

γt+1
q =

1− α q = t

θ(1− θ)t−q−1α 1 ≤ q < t

(1− θ)t−1α q = 0 .

. (20)

Note that (20) is a valid mixing scheme since for all t,
∑t
q=0 γ

t+1
q = 1. The Share-θ update is

therefore a new kind of decaying mixing scheme. In this new scheme the decay is geometric, and can
therefore be computed efficiently, requiring only O(n) time and space per trial as we have shown.
Furthermore MPP with this scheme has the improved regret bound (15).

Another interesting difference between the decaying schemes (20) and (6) is that when θ is small
then (20) keeps γt+1

0 relatively large initially and slowly decays this value as t increases. Intuitively
by heavily weighting the initial uniform vector ẇ0 on each trial early on, the algorithm can “pick
up” the weights of new experts easily. Finally as in the case of PoDS-θ, if m = k + 1, then with the
optimal tuning of θ = 0, this update reduces to the Fixed-Share update (2).

Revisiting partition specialists. We now turn our attention to the previous best known result for
tracking experts with memory (the partition specialists algorithm with a Markov prior [27]).

For sleep/wake patterns (χ1 . . . χT) the Markov prior is a Markov chain on states {w, s}, defined
by the initial distribution π = (πw, πs) and transition probabilities Pij := P (χt+1 = j|χt = i) for
i, j ∈ {w, s}. The algorithm with these inputs efficiently collapses one weight per specialist down to
two weights per expert. These two weight vectors, which we denote at and st, represent the total
weight of all awake and sleeping specialists associated with each expert, respectively. Note that the
vectors at and st are not in ∆n, but rather the vector (at, st) ∈ ∆2n and the “awake vector” at gets
normalized upon prediction. The weights are initialized by setting a1 = πw

1
n , and s1 = πs

1
n . The

update3 of these weights after receiving the true label yt is given by

at+1
i = Pww

atie
−η`ti(

∑n
j=1 a

t
j)∑n

j=1 a
t
je
−η`tj

+ Psws
t
i, and st+1

i = Pws
atie
−η`ti(

∑n
j=1 a

t
j)∑n

j=1 a
t
je
−η`tj

+ Psss
t
i

for i = 1, . . . , n. Recall that the authors of [27] proved that an MPP mixing scheme implicitly induces
a prior over partition specialists. The following states that the Markov prior is induced by (20).
Proposition 5. Let 0 < α < 1, and 0 < θ < 1. Then the partition specialists algorithm with Markov
prior parameterized with Psw = θ, Pws = α, πw = θ

α+θ , and πs = α
α+θ is equivalent to Share-θ

parameterized with α and θ.

The proof (given in Appendix E) amounts to showing for all t that atπw = wt and st
πs

= vt. The
Markov prior on partition specialists therefore corresponds to a geometrically-decaying MPP mixing
scheme! Note however that we have proved a better regret bound for this algorithm in Theorem 2.

5 Discussion

We gave an efficient projection-based algorithm for tracking experts with memory for which we
proved the best known regret bound. We also gave an algorithm to compute relative entropy projection
onto the simplex with non-uniform (lower) box constraints exactly in O(n) time, which may be of
independent interest. We showed that the weight-sharing equivalent of our projection-based algorithm
is in fact a geometrically-decaying mixing scheme for Mixing Past Posteriors [4]. Furthermore we
showed that this mixing scheme corresponds exactly to the previous best known result (the partition
specialists algorithm with Markov prior [27]), and we therefore improved their bound. We proved a
guarantee favoring projection updates over weight-sharing when updating weights may incur costs,
such as in online portfolio selection with proportional transaction costs. We are currently applying
PoDS-θ to this problem, primarily extending the work of [44] in the sense of incorporating both the
assumption of “memory” and transaction costs.

3In [27] the algorithm is presented in terms of probabilities with the log loss. Here we give the update
generalized to (c, η)-realizable losses.

9

In this work we focused on proving good regret bounds, which naturally required optimally-tuned
parameters. A limitation of our work is that in practice the optimal parameters are unknown. This is
a common issue in online learning, and one may employ standard techniques to address this such as
the “doubling trick”, or by using a Bayesian mixture over parameters [46]. For a prominent recent
result in this area see [26].

Finally, the work of [27] gave a Bayesian interpretation to MPP, however this is lost when one uses the
projection update of PoDS. We ask: Is there also a Bayesian interpretation to these projection-based
updates?

Ethical considerations. While the scope of applicability of online learning algorithms is wide, this
research in regret-bounded online learning is foundational in nature and we therefore cannot foresee
the extent of any societal impacts (positive or negative) this research may have.

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their feedback, insights, and discus-
sion. The authors would also like to thank Dmitry Adamskiy for valuable discussions. This work
was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant
EP/N509577/1.

References
[1] D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk. A closer look at adaptive regret. The

Journal of Machine Learning Research, 17(1):706–726, 2016.

[2] A. Blum and A. Kalai. Universal portfolios with and without transaction costs. Machine
Learning, 35(3):193–205, 1999.

[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. J.
Comput. Syst. Sci., 7(4):448–461, 1973.

[4] O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past posteriors.
Journal of Machine Learning Research, 3(Nov):363–396, 2002.

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[6] L. M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR computational
mathematics and mathematical physics, 7(3):200–217, 1967.

[7] N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz. Mirror descent meets fixed share (and
feels no regret). In Conference on Neural Information Processing Systems, volume 2, pages
989–997, 2012.

[8] A. Daniely, A. Gonen, and S. Shalev-Shwartz. Strongly adaptive online learning. In Interna-
tional Conference on Machine Learning, pages 1405–1411. PMLR, 2015.

[9] P. Das, N. Johnson, and A. Banerjee. Online lazy updates for portfolio selection with transaction
costs. In AAAI. Citeseer, 2013.

[10] R. W. Floyd and R. L. Rivest. Expected time bounds for selection. Communications of the
ACM, 18(3):165–172, 1975.

[11] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

[12] Y. Freund. Private Communication, 2000. Also posted on http://www.learning-theory.
org/.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

10

http://www.learning-theory.org/
http://www.learning-theory.org/

[14] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and combining predictors that
specialize. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 334–343, 1997.

[15] R. B. Gramacy, M. K. Warmuth, S. Brandt, and I. Ari. Adaptive caching by refetching. Advances
in Neural Information Processing Systems, 15:1489–1496, 2002.

[16] A. György, T. Linder, and G. Lugosi. Tracking the best of many experts. In International
Conference on Computational Learning Theory, pages 204–216. Springer, 2005.

[17] A. Gyorgy, T. Linder, and G. Lugosi. Efficient tracking of large classes of experts. IEEE
Transactions on Information Theory, 58(11):6709–6725, 2012.

[18] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual sequences
under general loss functions. IEEE Transactions on Information Theory, 44(5):1906–1925,
1998.

[19] E. Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In
Proceedings of the 26th annual international conference on machine learning, pages 393–400,
2009.

[20] M. Herbster, S. Pasteris, and M. Pontil. Predicting a switching sequence of graph labelings. J.
Mach. Learn. Res., 16:2003–2022, 2015.

[21] M. Herbster, S. Pasteris, and L. Tse. Online multitask learning with long-term memory. In
Advances in Neural Information Processing Systems, volume 33, pages 17779–17791, 2020.

[22] M. Herbster and J. Robinson. Online prediction of switching graph labelings with cluster
specialists. In Advances in Neural Information Processing Systems, volume 32, 2019.

[23] M. Herbster and M. K. Warmuth. Tracking the best expert. Machine learning, 32(2):151–178,
1998.

[24] M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of Machine
Learning Research, 1(Sep):281–309, 2001.

[25] D. Hoeven, T. Erven, and W. Kotłowski. The many faces of exponential weights in online
learning. In Conference On Learning Theory, pages 2067–2092. PMLR, 2018.

[26] K.-S. Jun, F. Orabona, S. Wright, and R. Willett. Improved strongly adaptive online learning
using coin betting. In Artificial Intelligence and Statistics, pages 943–951. PMLR, 2017.

[27] W. M. Koolen, D. Adamskiy, and M. K. Warmuth. Putting bayes to sleep. In NIPS, pages
135–143, 2012.

[28] W. M. Koolen and S. de Rooij. Universal codes from switching strategies. IEEE Transactions
on Information Theory, 59(11):7168–7185, 2013.

[29] W. M. Koolen and T. van Erven. Freezing and sleeping: Tracking experts that learn by evolving
past posteriors. CoRR, abs/1008.4654, 2010.

[30] S. S. Kozat and A. C. Singer. Universal switching portfolios under transaction costs. In 2008
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5404–5407.
IEEE, 2008.

[31] W. Krichene, S. Krichene, and A. Bayen. Efficient bregman projections onto the simplex. In
2015 54th IEEE Conference on Decision and Control (CDC), pages 3291–3298. IEEE, 2015.

[32] B. Li and S. C. Hoi. Online portfolio selection: A survey. ACM Computing Surveys (CSUR),
46(3):1–36, 2014.

[33] B. Li, J. Wang, D. Huang, and S. C. Hoi. Transaction cost optimization for online portfolio
selection. Quantitative Finance, 18(8):1411–1424, 2018.

11

[34] N. Littlestone and M. Warmuth. The weighted majority algorithm. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, pages 256–261, 1989.

[35] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

[36] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[37] N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Information Theory,
44(6):2124–2147, 1998.

[38] J. Mourtada and O.-A. Maillard. Efficient tracking of a growing number of experts. In
International Conference on Algorithmic Learning Theory, pages 517–539. PMLR, 2017.

[39] H. T. Nguyen and K. Franke. Adaptive intrusion detection system via online machine learning.
In 2012 12th International Conference on Hybrid Intelligent Systems (HIS), pages 271–277.
IEEE, 2012.

[40] G. I. Shamir. On asymptotically optimal sequential lossless coding for memoryless switching
sources. In Proceedings IEEE International Symposium on Information Theory,, page 124.
IEEE, 2002.

[41] G. I. Shamir and D. J. Costello. Universal lossless coding for sources with repeating statistics.
IEEE transactions on information theory, 50(8):1620–1635, 2004.

[42] D. Sharma, M.-F. Balcan, and T. Dick. Learning piecewise lipschitz functions in changing
environments. In International Conference on Artificial Intelligence and Statistics, pages
3567–3577. PMLR, 2020.

[43] Y. M. Shtarkov. Switching discrete sources and its universal encoding. Probl. Inform. Transm.,
28(3):95–111, 1992.

[44] Y. Singer. Switching portfolios. International Journal of Neural Systems, 8(04):445–455, 1997.

[45] V. Vovk. A game of prediction with expert advice. Journal of Computer and System Sciences,
56(2):153–173, 1998.

[46] V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35(3):247–282,
1999.

[47] V. G. Vovk. Aggregating strategies. Proc. of Computational Learning Theory, 1990, 1990.

[48] Q. Xie and A. R. Barron. Asymptotic minimax regret for data compression, gambling, and
prediction. IEEE Transactions on Information Theory, 46(2):431–445, 2000.

[49] K. Zheng, H. Luo, I. Diakonikolas, and L. Wang. Equipping experts/bandits with long-term
memory. In Advances in Neural Information Processing Systems, volume 32, 2019.

12

A Proof of Corollary 1

Proof. Let Ψ := {i ∈ [n] : pi = βi}. Recall from Theorem 3 that the projected vector p takes the
form (19). Expanding the relative entropy terms of (14) then gives the following,

D(u,w)−D(u,p) =

n∑
i=1

ui ln

(
pi
wi

)

≥
n∑
i=1

ui ln

(

1−
∑
j∈Ψ βj

)
wi(

1−
∑
j∈Ψ wj

)
wi

= ln

(
1−

∑
j∈Ψ βj

1−
∑
j∈Ψ wj

)
≥ ln (1− α) ,

where the first inequality follows from the definition of pi in (19) and the fact that max{a, b} ≥ b.
The second inequality follows from the fact that

∑
j∈Ψ wj ≥ 0 and

∑
j∈Ψ βj ≤ α.

B Proof of Theorem 2

Proof. We first prove the bound for PoDS-θ, and then prove that Share-θ has the same bound. We use
the relative entropy D(ut,wt) as a measure of progress of the algorithm, where ut is a comparator
vector which we take to be a basis vector ei for some i ∈ [n] corresponding to the locally best expert
it in hindsight on trial t. Recall that the comparator sequence i1, . . . , iT is partitioned with k switches
into k + 1 segments, where a segment is defined as a sequence of trials where the comparator is
unchanged, i.e. ia = . . . = ib for some a < b.

Recall that pred and ` are assumed to be (c, 1
c)-realizable. That is, for any wt ∈ ∆n, xt ∈ Dn, and

yt ∈ Y , there exists η > 0 such that

`(pred(w,x), y) ≤ −c ln

n∑
i=1

wie
−η`(xi,y) (21)

holds with cη = 1.

We first establish that
`t − `tit ≤ c

(
D(ut,wt)−D(ut, ẇt)

)
(22)

holds for all t. Expanding the relative entropy terms gives

D(ut,wt)−D(ut, ẇt) =

n∑
i=1

uti ln
ẇti
wti

=

n∑
i=1

uti ln
wtie
−η`ti

wti
∑n
j=1 w

t
je
−η`tj

= −η
n∑
i=1

uti`
t
i − ln

n∑
j=1

wtje
−η`tj

≥ −η`tit +
1

c
`t ,

where the inequality follows from (21). Multiplying both sides by c gives (22).

We now find lower bounds, δ, for D(ut, ẇt) −D(ut+1,wt+1) to give non-negative terms of the
form D(ut, ẇt)−D(ut+1,wt+1)− δ ≥ 0, which we will multiply by c and add to (22) to give a
telescoping sum of relative entropy terms. We consider three distinct cases for the different values of
ut over the T trials.

For the first case, we consider when there is no switch immediately after trial t (i.e., ut = ut+1). We
use Corollary 1 with u = ut,w = ẇt, and β = βt. It follows then by definition that p = wt+1 and
we obtain

D(ut, ẇt)−D(ut+1,wt+1) ≥ ln (1− α) , (23)

13

which gives a telescoping sum of relative entropy terms within in each segment, paying c ln(1/(1−α))
for every trial where ut = ut+1.

For the two remaining cases, we will consider the segment boundaries, that is, the case when there is
a switch and ut 6= ut+1. W.l.o.g let ut = ej and let ut+1 = ek for any j 6= k (that is we switch
from expert “j” to expert “k” after trial t). We then have the following

D(ut, ẇt)−D(ut+1,wt+1) =

n∑
i=1

uti ln
uti
ẇti
−

n∑
i=1

ut+1
i ln

ut+1
i

wt+1
i

= ln
1

ẇtj
+ lnwt+1

k , (24)

thus we collect a ln (1/ẇtj) term from the last trial of the segment of expert j and a ln (wt+1
k) term

from the first trial of the new segment of expert k. We now consider the remaining two cases: when
trial t+ 1 is the first time expert k predicts well, and when trial t+ 1 is a trial on which we “re-visit”
expert k.

For the first of these two cases, we consider the first time expert k starts to predict well. We then
use (16) and (13) to give

lnwt+1
k ≥ lnβtk ≥ ln ((1− θ)t−1β1

k) = ln
(

(1− θ)t−1α

n

)
. (25)

Substituting (25) into (24), we therefore pay −c ln ((1− θ)t−1 α
n) to switch to a new expert for the

first time on trial t+ 1.

Finally for the second of these two cases, we consider when expert k has predicted well before. Let
trial q < t denote the last trial of expert k’s most recent “segment”. We then have the following
(again using (16) and (13)),

lnwt+1
k ≥ lnβtk ≥ ln ((1− θ)t−q−1βq+1

k) ≥ ln ((1− θ)t−q−1αθẇqk) . (26)

By substituting (26) into (24) for each segment boundary, and summing over these boundaries, we
therefore pay −c ln ((1− θ)t−q−1αθ) in order to telescope the ln (ẇqk) term with the ln (1/ẇqk) term
from the end of expert k’s most recent segment ending on trial q.

Putting these together we thus pay c ln (1/(1− α)) for every trial on which we don’t switch (from
Corollary 1), we pay c ln (1/(1− θ)) for every expert in our pool that isn’t predicting well or involved
in a switch on every trial (i.e., m− 1 times, on non-switch trials, and m− 2 times on switch trials,
from (25) and (26)), and finally when we switch to an expert k before trial t+ 1 we pay c ln (n/α) if
it is the first time to track expert k (there are m− 1 such trials), and c ln (1/αθ) otherwise (there are
k −m+ 1 such trials).

Summing over all trials, and using D(u1,w1) ≤ lnn then gives

T∑
t=1

`t −
T∑
t=1

`tit ≤
T∑
t=1

c
(
D(ut,wt)−D(ut, ẇt) +D(ut, ẇt)−D(ut+1,wt+1)

)
≤ cD(u1,w1) + c(T − k − 1) ln

(
1

1− α

)
+ c(m− 1) ln

(n
α

)
+ c((m− 1)(T − 1)− k) ln

(
1

1− θ

)
+ c(k −m+ 1) ln

(
1

αθ

)
≤ cm lnn+ c(T − k − 1) ln

(
1

1− α

)
+ ck ln

(
1

α

)
+ c((m− 1)(T − 1)− k) ln

(
1

1− θ

)
+ c(k −m+ 1) ln

(
1

θ

)
. (27)

The optimal tuning of α and θ that minimizes (27) is given by α = k
T−1 and θ = k−m+1

(m−1)(T−2) .
Substituting these values into (27) gives a bound of

cm lnn+ c(T − 1)H
(

k

T − 1

)
+ c(m− 1)(T − 2)H

(
k −m+ 1

(m− 1)(T − 2)

)
,

which completes the proof for PoDS-θ.

14

We now prove that Share-θ has the same bound with an almost identical argument as the proof just
given for PoDS-θ. Firstly observe that (24) is independent of the algorithm update and therefore
holds for both algorithms. Additionally, observe that the proof for PoDS-θ relies on the inequali-
ties (22), (23), (25), and (26). We now prove that these inequalities hold for Share-θ, and thus the
two algorithms share the same bound.

Firstly we observe that inequality (22) holds since both algorithms use the same loss update, and we
assume that the prediction function and loss function are (c, 1

c)-realizable.

Secondly, it follows directly from the update (17) that (23) holds for Share-θ when ut = ut+1, since
wt+1 ≥ (1− α)ẇt and therefore

D(ut, ẇt)−D(ut+1,wt+1) =

n∑
i=1

uti ln
wt+1
i

ẇti
≥

n∑
i=1

uti ln
(1− α)ẇti

ẇti
= ln (1− α) .

The proof that (25) holds follows directly from the updates (17) and (18) and the fact v1 = 1
n . That

is, for the first time expert “k” appears on trial t+ 1,

lnwt+1
k ≥ ln (αvtk) ≥ ln ((1− θ)t−1αv1

k) = ln
(

(1− θ)t−1α

n

)
.

Similarly, the proof that (26) holds follows directly from the updates (17) and (18). That is, when we
return to expert “k” on trial t+ 1,

lnwt+1
k ≥ ln (αvtk) ≥ ln ((1− θ)t−q−1αvq+1

k) ≥ ln ((1− θ)t−q−1αθẇqk) .

Having shown that the inequalities (22), (23), (25), and (26) hold for Share-θ, the remainder of the
proof follows exactly as the proof for PoDS-θ.

C Proof of Theorem 3

A note on the proof: The proof of the theorem follows very closely to the proof of Theorem 7 in [24]
(including Claims 1, 2, and 3). There the problem is concerned with uniform constraints, whereas we
consider non-uniform constraints. In particular Claims 6 and 7 given below are generalizations of
Claims 2 and 3 of [24]. The proof of the second statement of Theorem 3 is almost identical to the
proof of Theorem 7 in [24]. We first give a sketch of the proof of the two statements of Theorem 3.

For the first statement, recall that Ψ := {i ∈ [n] : pi = βi} is the set of indexes of components which
must be set to their constraint values. To prove the first statement we will show that given w and
C(β), each component of the point P(w; C(β)) either takes the value of its lower box constraint, βi,
or is equal to wi multiplied by a factor λ, with

λ =
1−

∑
i∈Ψ βi

1−
∑
i∈Ψ wi

.

We then argue that each component pi = max {βi;λwi} for i = 1, . . . , n.

For the second statement, we first show that Ψ, which uniquely specifies P(w; C(β)), is the set of
minimum cardinality such that when all other components are re-normalized, no component lies
below its constraint value, and then show that Algorithm 3 finds this set in O(n) time.

Proof of the first statement of Theorem 3. Recall the first statement of the theorem: that P(w; C(β))
takes the form (19). Given w and the non-empty set C(β), the point P(w; C(β)) is the minimizer of
the following convex optimization problem

min
u

D(u,w)

s.t. βi − ui ≤ 0, i = 1, . . . , n

1 · u− 1 = 0 .

(28)

Since D(u,w) is convex in its first argument, and C(β) is a convex set, then (28) has a unique
minimizer, which we denote by p.

15

Constructing the Lagrangian of (28) with Lagrange multipliers ξ � 0, ν ∈ R,

L(u, ξ, ν) =

n∑
i=1

ui ln
ui
wi

+ ξ>(β − u) + ν(1 · u− 1) ,

and setting∇uL(u, ξ, ν) = 0 gives for i = 1, . . . , n,

∂L
∂ui

= ln
ui
wi

+ 1− ξi + ν = 0 .

This then gives for i = 1, . . . , n,
pi = wie

ξi−1−ν .

Since D(u,w) is convex in its first argument, and (28) has only linear constraints then strong duality
holds and we may exploit the complementary slackness Karush-Kuhn-Tucker necessary condition of
the optimal solution (see e.g., [5, Chapter 5]). That is, ξi(βi− pi) = 0 for all i = 1, . . . , n. Therefore
for any i such that pi > βi, the corresponding Lagrange multiplier is zero, and we have

pi = wie
−1−ν .

Recall Ψ = {i : pi = βi}, we then have

1 =

n∑
i=1

pi =
∑
i∈Ψ

pi +
∑

i∈[n]\Ψ

pi =
∑
i∈Ψ

βi +
∑

i∈[n]\Ψ

wie
−1−ν .

Re-arranging gives

e−1−ν =
1−

∑
i∈Ψ βi∑

i∈[n]\Ψ wi
=

1−
∑
i∈Ψ βi

1−
∑
i∈Ψ wi

.

Therefore for each index i ∈ [n], either i is in Ψ which implies pi = βi, or i /∈ Ψ and therefore
pi = λwi, where

λ =
1−

∑
j∈Ψ βj

1−
∑
j∈Ψ wj

.

We now establish that pi = max {βi;λwi} for all i = 1, . . . , n. Observe that if i ∈ Ψ, then
pi = wie

ξi−1−ν = βi, and since the Lagrange multiplier ξi ≥ 0 then pi ≥ wie−1−ν = λwi.

For i /∈ Ψ, then this implies pi = λwi > βi, since if pi = βi then i ∈ Ψ, and if pi < βi then we have
a contradiction since p is not a feasible solution to (28). We therefore conclude that p is such that for
all i = 1, . . . , n,

pi = max

{
βi;

1−
∑
j∈Ψ βj

1−
∑
j∈Ψ wj

wi

}
,

which completes the proof of the first statement of the Theorem.

The proof of the second statement of Theorem 3 will rely on the following two claims.
Claim 6. Given w and β, let r := w � 1

β . Without loss of generality, for i < j assume ri ≤ rj . Let

λ =
1−

∑
i∈Ψ βi

1−
∑
i∈Ψ wi

, then

p =
(
β1, . . . , β|Ψ|, λw|Ψ|+1, . . . , λwn

)
. (29)

Proof. In the proof of the first statement of Theorem 3 we established that p is a permutation of (29),
that is, either pi = βi or pi = λwi for i = 1, . . . , n. We also established that pi = max {βi;λwi}
for i = 1, . . . , n.

Suppose p is not in the form of (29). Then there exists a < b such that pa = λwa and pb = βb (that
is, b ∈ Ψ and a /∈ Ψ).

If pa = λwa then by the first statement of Theorem 3 we have λwa > βa. However since ra ≤ rb,
and λ > 0, this implies λwa

βa
≤ λwb

βb
. We then have 1 < λwa

βa
≤ λwb

βb
, which implies λwb > βb.

However we necessarily assumed that pb = βb. This violates the first statement of Theorem 3 that
pb = max {λwb, βb}, and thus contradicts our assumption that p is the minimizer of (28). Hence our
supposition that p is not in the form of (29) is false.

16

Claim 7. Let Ψ′ = {1, . . . , k}, and Ψ′′ = {1, . . . , k + 1}, and let λ′ =
1−

∑
i∈Ψ′ βi

1−
∑
i∈Ψ′ wi

, and

λ′′ =
1−

∑
i∈Ψ′′ βi

1−
∑
i∈Ψ′′ wi

. Then let

u′ =

 k︷ ︸︸ ︷
β1, . . . , β|Ψ′|, λ

′w|Ψ′|+1, . . . , λ
′wn

 ,

and

u′′ =

 k+1︷ ︸︸ ︷
β1, . . . , β|Ψ′′|, λ

′′w|Ψ′′|+1, . . . , λ
′′wn

 ,

then D(u′,w) ≤ D(u′′,w).

Proof. Consider the following convex optimization problem for some w ∈ ri ∆n,

min
u

D(u,w)

s.t. βi − ui = 0, i = 1, . . . , k

1 · u− 1 = 0 .

(30)

The point u′ is the unique minimizer of (30), while u′′ clearly also satisifies the constraints of (30)
and is therefore a feasible solution. This implies that D(u′,w) ≤ D(u′′,w).

Proof of the second statement of Theorem 3. Recall the second statement of the theorem: that Algo-
rithm 3 computes P(w; C(β)) in linear time. We prove this statement by first showing that the set
Ψ corresponding to this projection is the set of components of minimal cardinality to set to their
constraint values such that when the other components are normalized, no component lies below its
constraint value. We then prove that Algorithm 3 computes the projection by finding this set in linear
time.

In the proof of the first statement of the theorem we proved that p has the form (19). Thus p is
uniquely specified by the set Ψ = {i ∈ [n] : pi = βi} ⊆ {1, . . . , n}. There are therefore 2n possible
solutions. Claim 6 proves that the magnitude of the ratio of a component and its constraint is smaller
for a component to be set to its constraint value than a component to be normalized. That is, if i ∈ Ψ
and j /∈ Ψ, then wi

βi
≤ wj

βj
. This reduces the number of feasible solutions to n.

Given these n possible solutions, claim 7 shows that if Ψ′ ⊆ Ψ′′ with corresponding candidate
projection vectors u′ and u′′ respectively, then D(u′,w) ≤ D(u′′,w). Thus to compute the
projection, one must find the set Ψ of minimum cardinality whose corresponding candidate projection
vector is in C(β).

Observe that this “minimal” set Ψ is specified uniquely by a threshold, φ, such that Ψ = {i ∈ [n] :
ri < φ}, where ri = wi

βi
, for i = 1, . . . , n. Algorithm 3 finds Ψ by finding this threshold. The

algorithm initially computes the vector r = w � 1
β and when φ has been found, the algorithm sets

all components of wi where ri < φ to their thresholds βi, and normalizes the remaining components.

We now discuss how the algorithm finds φ in linear time. On each iteration a candidate threshold
is examined. These candidate thresholds are determined from an index set W , which is initially
set to {1, . . . , n}. On each iteration the threshold φ is chosen as the median of the ratios in the set
{ri : i ∈ W} (line 3). This can be done in O(|W|) time [3]. The approach used is a divide and
conquer method, however from a practical perspective this could also be replaced with a randomized
median-finding algorithm with average time complexity O(|W|) [10]. If |W| is even, then the
algorithm can choose between the |W|2 and the |W|+1

2 largest element arbitrarily. The setW is then
sorted into two sets, L andH, where L = {i ∈ W : ri < φ} andH = {i ∈ W : ri > φ}.
The normalizing constant λ is then computed (line 9). If λφ < 1, then by Claims 6 and 7 the true
threshold must be larger than the current candidate threshold φ, and must therefore correspond to
ri for an index i contained in H. Otherwise the true threshold must be either equal to the current
candidate threshold, or must correspond to ri for an index i contained in L.

17

Since φwas taken to be the median, then the algorithm iterates this procedure, settingW = L orW =
H as appropriate. Additionally, since φ was taken to be the median, then max {|L|; |H|} ≤ 1

2 |W|.
WhenW = ∅, then the algorithm has found φ, and the projection is computed.

There are a maximum of dlog n + 1e iterations of lines 2-17, with the ith iteration taking O(n2i)
time. The algorithm therefore takes O(n) time to find φ, and the time complexity of the algorithm is
therefore O(n).

D Proof of Theorem 4

Before proving Theorem 4, we introduce some additional notation. Let p := P(w; C(β)), and recall
the definition of w′ = (1− α)w + αv. We then define the following sets,

Pinc := {i ∈ [n] : pi > wi} , Pdec := {i ∈ [n] : pi ≤ wi} ,
Sinc := {i ∈ [n] : w′i > wi} , Sdec := {i ∈ [n] : w′i ≤ wi} .

The subscripts inc and dec correspond to the relative change in the weights before and after the
corresponding update - whether they increase or decrease, respectively.

We first require the following corollary, which follows naturally from Theorem 3.

Corollary 8. If i ∈ Pinc then pi = βi.

Proof. Recall that Theorem 3 states that p is such that for i = 1, . . . , n,

pi = max {βi;λwi} ,

where λ =
1−

∑
j∈Ψ βj

1−
∑
j∈Ψ wj

is a normalizing constant. We first establish that λ ≤ 1. Suppose λ > 1, then

this implies
∑
i∈Ψ wi >

∑
i∈Ψ βi. In this case there must exist i ∈ Ψ such that wi > βi. However

if λ > 1 then λwi > wi > βi, but since i ∈ Ψ then pi = βi, which must be greater than λwi by
Theorem 3. This leads to a contradiction and thus our supposition that λ > 1 is false.

The form of p implies that i ∈ Pinc iff wi < βi, since if wi ≥ βi then this implies that either
pi = βi ≤ wi or pi = λwi ≤ wi, and in both of these cases i must be in Pdec. It then follows that if
i ∈ Pinc then pi = βi since otherwise pi = λwi ≤ wi < βi which is a contradiction.

Recall that is it assumed thatw 6= v and thus the definition ofw′ implies that Sinc is non-empty. We
use this fact in the following two lemmas. The first states that if a weight wi were to increase after
the projection update, then it would always increase after the weight-sharing update.

Lemma 9. Pinc ⊆ Sinc.

Proof. For any i ∈ [n] we have

w′i − wi = (1− α)wi + αvi − wi = α (vi − wi) ,

and it follows that i ∈ Sinc iff wi < vi. Using Corollary 8 we conclude that if i ∈ Pinc, then
wi < pi = βi = αvi < vi and then i must also be in Sinc.

Lemma 10. ‖p−w‖1 = 2
∑
i∈Pinc(pi − wi), and ‖w′ −w‖1 = 2

∑
i∈Sinc(w

′
i − wi).

Proof. We prove the first equality by observing that

‖p−w‖1 =

n∑
i=1

|pi − wi| =
∑
i∈Pinc

(pi − wi) +
∑
i∈Pdec

(wi − pi) ,

and since the total weight does not change after an update (i.e.,
∑n
i=1 pi =

∑n
i=1 wi), necessarily we

have
∑
i∈Pinc(pi − wi) =

∑
i∈Pdec(wi − pi). Since

∑n
i=1 w

′
i =

∑n
i=1 wi, the same argument can

be used to prove the second claim.

18

Proof of Theorem 4. Using Corollary 8, and the definition of w′, we have for i ∈ Pinc,

w′i − wi = (1− α)wi + αvi − wi = α(vi − wi) = βi − αwi = pi − αwi > pi − wi , (31)

where the inequality arises from the fact that α < 1. Finally combining this inequality with Lemmas 9
and 10 gives

‖p−w‖1 = 2
∑
i∈Pinc

(pi − wi) (Lemma 10)

< 2
∑
i∈Pinc

(w′i − wi) (Equation 31)

≤ 2
∑
i∈Sinc

(w′i − wi) (Lemma 9)

= ‖w′ −w‖1 . (Lemma 10)

E Proof of Proposition 5

Proof. It suffices to show that
ati∑n
j=1 a

t
j

= wti , (32)

and
sti∑n
j=1 s

t
j

= vti (33)

for all t. Since the initial distribution, π, of the Markov chain prior is taken to be the stationary
distribution, the detailed balance equation, Pwsπw = Pswπs, holds for all trials.

It is therefore straightforward to show that
∑n
i=1 a

t
i = πw and

∑n
i=1 s

t
i = πs for all t. Letting

α = Pws, and θ = Psw, we proceed to prove that (32) and (33) hold simultaneously for all t by
induction. The case for t = 1 is trivial. Then by induction on t for t ≥ 1,

at+1
i

πw
= Pww

atie
−η`ti∑n

j=1 a
t
je
−η`tj

+
Psw
πw

sti

= Pww
atie
−η`ti∑n

j=1 a
t
je
−η`tj

+
Pws
πs

sti

= Pwwẇ
t
i + Pwsv

t
i (induction)

= (1− α)ẇti + αvti

= wt+1
i ,

and similarly

st+1
i

πs
=
Pwsπw
πs

atie
−η`ti∑n

j=1 a
t
je
−η`tj

+ Pss
sti
πs

= Psw
atie
−η`ti∑n

j=1 a
t
je
−η`tj

+ Pss
sti
πs

= Pswẇ
t
i + Pssv

t
i (induction)

= θẇti + (1− θ)vti
= vt+1

i .

We therefore conclude by the inductive argument that (32) and (33) hold for all t ≥ 1.

19

	Introduction
	Preliminaries

	Background
	Related work

	Projection onto dynamic sets
	A simple update rule for PoDS
	Computing P(w;C(B))
	Projection vs. sharing in online learning

	A geometrically-decaying mixing scheme for MPP
	Discussion
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 5

