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Abstract In this paper, we propose a novel adaptive deep
disturbance-disentangled learning (ADDL) method for ef-
fective facial expression recognition (FER). ADDL involves
a two-stage learning procedure. First, a disturbance fea-
ture extraction model (DFEM) is trained to identify mul-
tiple disturbing factors on a large-scale face database in-
volving disturbance label information. Second, an adaptive
disturbance-disentangled model (ADDM), which contains
a global shared subnetwork and two task-specific subnet-
works, is designed and learned to explicitly disentangle dis-
turbing factors from facial expression images. In particu-
lar, the expression subnetwork leverages a multi-level at-
tention mechanism to extract expression-specific features,
while the disturbance subnetwork embraces a new adaptive
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disturbance feature learning module to extract disturbance-
specific features based on adversarial transfer learning.
Moreover, a mutual information neural estimator is adopted
to minimize the correlation between expression-specific and
disturbance-specific features. Extensive experimental result-
s on both in-the-lab FER databases (including CK+, MMI,
and Oulu-CASIA) and in-the-wild FER databases (includ-
ing RAF-DB, SFEW, Aff-Wild2, and AffectNet) show that
our proposed method consistently outperforms several state-
of-the-art FER methods. This clearly demonstrates the great
potential of disturbance disentanglement for FER. Our code
is available at https://github.com/delian11/ADDL.

Keywords Facial expression recognition · Multi-task
learning · Adversarial transfer learning · Multi-level
attention

1 Introduction

Facial expression conveys nonverbal cues and plays a fun-
damental role in understanding emotions in human interac-
tion and communication. During the past few decades, facial
expression recognition (FER) has attracted increasing atten-
tion in computer vision due to its variety of applications in
entertainment, sociable robotics, data-driven animation, and
so on (Zhang et al., 2018a,b). Recently, with the consider-
able development of deep learning, FER has made substan-
tial progress (Chang et al., 2019; Chen et al., 2020; Dapogny
et al., 2018; Kollias et al., 2020a; Li and Deng, 2019; Li
et al., 2017; Meng et al., 2017; Yan et al., 2020; Yang et al.,
2018a; Zhang et al., 2018c).

Despite great progress, FER is still a challenging task.
On the one hand, facial expression images exhibit large
inter-class similarities and intra-class variances caused by
the existence of multiple disturbing factors. For example, in
each row of Fig. 1(a), the images of different expressions

https://github.com/delian11/ADDL
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“Angry” “Disgust” “Surprise”

(b) in-the-wild images(a) in-the-lab images

Fig. 1: Some facial expressions of (a) in-the-lab images (the
images are from the CK+ database (Lucey et al., 2010))
and (b) in-the-wild images (the images are from the SFEW
database (Dhall et al., 2011)).

are visually similar due to the same illumination and identi-
ty. Meanwhile, in the two rows of Fig. 1(b), the images of the
same expression show great differences because of changes
in gender, age, race, identity, illumination, and pose. Clear-
ly, these disturbing factors adversely affect the extraction
of expression-specific features. On the other hand, differ-
ent FER databases may involve different types of disturbing
factors. For instance, some in-the-lab FER databases only
include disturbances caused by variations in identity, age,
and gender but not pose, as shown in Fig. 1(a), while some
in-the-wild FER databases may suffer from severe identity,
illumination, and pose variations, as given in Fig. 1(b).

It is of great importance to properly disentangle disturb-
ing factors from facial expression images for FER. A variety
of deep learning-based FER methods (Hu et al., 2017; Liu
et al., 2018; Mollahosseini et al., 2016; Rifai et al., 2012;
Wang et al., 2020c) have been proposed to implicitly reduce
the disturbance for recognizing facial expressions. The train-
ing of these methods typically relies on a large amount of
labeled data to achieve satisfactory performance. However,
many FER databases contain only limited labeled training
data. As a result, it is not a trivial task to learn robust deep
models that can effectively alleviate the influence of various
disturbing factors in the case of limited training data.

To date, some disturbance-disentangled-based FER
methods (Chen et al., 2018; Meng et al., 2017; Yang et al.,
2018b; Zhang et al., 2018b, 2020b), which explicitly dis-
entangle disturbing factors, have been developed. Note that
many FER databases only provide labels of facial expres-
sion and identity (or pose) since manually labeling various
disturbing factors is time-consuming and labor-intensive. As
a consequence, these methods are only able to disentangle
one or two disturbing factors for FER, leading to subopti-
mal performance. Moreover, they may not work well when

the labels of disturbing factors are not available in the FER
databases.

Fortunately, some large-scale face databases provide a
large number of facial images together with the label infor-
mation for different disturbing factors. For example, Multi-
PIE (Gross et al., 2010) offers labels of identity, pose, and
illumination. RAF-DB (Li et al., 2017) gives labels of gen-
der, race, and age. Therefore, how to effectively exploit these
large-scale disturbance-labeled face databases to perform
transfer learning for classifying expressions in disturbance-
unlabeled FER databases is a significantly rewarding re-
search problem.

To address the above problems, we propose a novel
adaptive deep disturbance-disentangled learning (ADDL)
method for FER. ADDL adaptively disentangles multiple
disturbing factors from facial expression images and effec-
tively extracts expression-specific features, building its suc-
cess by borrowing the strengths from both multi-task learn-
ing and adversarial transfer learning.

The ADDL method involves a two-stage learning proce-
dure: 1) training a disturbance feature extraction model (D-
FEM) and 2) training an adaptive disturbance-disentangled
model (ADDM). Specifically, the DFEM is first trained to
identify multiple disturbing factors on the large-scale face
database. Second, based on the trained DFEM, the ADDM
is learned to remove the disturbance and extract discrimina-
tive features for expression recognition.

In summary, the main contributions of our work are as
follows:

– We propose a novel ADDL method that contains two
crucial components (i.e., the DFEM and ADDM) for
effective FER. In particular, the knowledge in the D-
FEM trained on the large-scale face database is effec-
tively transferred to the ADDM to classify expression-
s in the disturbance-unlabeled FER database. There-
fore, the ADDL method is capable of simultaneously
disentangling multiple disturbing factors and capturing
expression-related information.

– We elaborately design two task-specific subnetworks in
the ADDM. For the expression subnetwork, we employ
a multi-level attention mechanism to extract expression-
specific features. For the disturbance subnetwork, we
adopt adversarial transfer learning to learn disturbance-
specific features. The two subnetworks are jointly
trained to exploit both spatial-aware and semantic-aware
information.

– We extensively evaluate the proposed ADDL on both
in-the-lab and in-the-wild FER databases. Experimen-
tal results from these databases show that our proposed
method performs favorably against several state-of-the-
art FER methods.

This paper is a substantial extension of our previous con-
ference work in Ruan et al. (2020). The method in our pre-
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vious work has two main limitations. First, it cannot adap-
tively choose the disturbing factors when trained on an FER
database. Second, disturbance disentanglement is not ex-
plicitly performed. This paper alleviates these limitations
in two aspects: 1) an adaptive disturbance feature learning
module (ADFL) is designed to learn the importance weights
corresponding to different disturbing factors and then per-
form adversarial transfer learning; 2) a mutual information
neural estimator (MINE) is leveraged to minimize the corre-
lation between expression-specific and disturbance-specific
features.

To summarize, we have added the following new signif-
icant contributions:

– We design the ADFL to greatly facilitate the extrac-
tion of disturbance-specific features by considering d-
ifferent influences of disturbing factors in the FER train-
ing database. In this way, the characteristics of the FER
database can be taken into account to choose the disturb-
ing factors, and thus adaptive disturbance-specific fea-
tures are extracted.

– We adopt the MINE during the training of the AD-
DM. Thus, we are able to effectively enhance the ex-
plicit disentanglement between expression-specific and
disturbance-specific features for better FER.

– Based on the above two extensions, the proposed AD-
DL method consistently achieves better recognition ac-
curacy than our previous method on both in-the-lab and
in-the-wild FER databases.

The remainder of this paper is organized as follows. Sec-
t. 2 briefly reviews the related work. Sect. 3 introduces the
details of our proposed ADDL method. Sect. 4 provides ex-
perimental results on three popular in-the-lab FER databases
(CK+, MMI, and Oulu-CASIA) and four challenging in-the-
wild FER databases (RAF-DB, SFEW, AffWild-2, and Af-
fectNet). Finally, Sect. 5 presents the conclusion and future
work.

2 Related Work

In this section, we review state-of-the-art work of convolu-
tional neural network (CNN)-based FER methods in Sec-
t. 2.1, disturbance-disentangled-based FER methods in Sec-
t. 2.2, action unit recognition in Sect. 2.3, and attention
mechanisms in Sect. 2.4, which are closely related to our
proposed method.

2.1 CNN-Based FER Methods

Currently, CNN-based FER methods (Li and Deng, 2020)
have achieved promising performance due to the powerful

capability of CNNs to capture high-level semantic informa-
tion. For example, Yu and Zhang (2015) develop an ensem-
ble of CNNs, which shows impressive results in the EmotiW
challenge. Mollahosseini et al. (2016) introduce a network
consisting of two convolutional layers and four inception
layers (Szegedy et al., 2015) to predict facial expression-
s. Hu et al. (2017) propose a supervised scoring ensemble
(SSE) method, where supervision signals are used not only
for deep layers but also for intermediate and shallow layer-
s. Liu et al. (2018) design a multi-channel pose-aware CNN
(MPCNN) to aggregate multi-scale features, which are fed
into a pose-aware recognition network for pose estimation
and pose conditioned expression recognition.

These CNN-based methods implicitly alleviate the in-
fluence of disturbances involved in facial expression images.
Generally, they rely heavily on a large number of labeled da-
ta to learn effective feature representations. However, many
FER databases do not provide sufficient training data con-
taining diverse variations for different disturbing factors. As
a result, the trained CNN models may not be sufficiently ro-
bust to handle various disturbing factors.

2.2 Disturbance-Disentangled-Based FER Methods

Some methods have been proposed to explicitly perform dis-
turbance disentanglement for FER. For example, Meng et al.
(2017) introduce an identity-aware CNN (IACNN) method
to alleviate the variations caused by facial identity, where
an identity-sensitive contrastive loss is developed to learn
identity-related information. Wang et al. (2019) propose an
adversarial feature learning method to disentangle the dis-
turbance caused by pose and identity.

Recently, generative adversarial networks (GANs) have
been widely used in pose-robust FER (Wang et al., 2020d;
Zhang et al., 2018b) and identity-robust FER (Chen et al.,
2018; Yang et al., 2018b). Zhang et al. (2018b, 2020a,b) de-
velop a GAN-based pose-invariant method for facial image
synthesis and expression recognition by exploiting the rela-
tionship between different poses and expressions. Further-
more, the disturbance caused by facial identity is explicitly
reduced by adversarial learning. Yang et al. (2018b) propose
an identity-adaptive method to learn an identity subspace,
which can generate different expressions while preserving
identity-related information for each individual.

The above methods require the labels of disturbing fac-
tors in the FER training databases. Unfortunately, many FER
databases only provide labels of facial expressions and some
facial attributes (such as identity and pose) but lack the la-
bel information for other disturbing factors. Therefore, these
methods are only able to handle one or two disturbing fac-
tors. Moreover, they may fail on disturbance-unlabeled FER
databases.
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Facial expression images are often intertwined with mul-
tiple disturbing factors (such as identity, pose, age, gen-
der, and illumination). Hence, it is desirable to simultane-
ously alleviate the influence of these disturbing factors. In
this paper, we capitalize on the disturbance label informa-
tion available in the large-scale face database to perform ad-
versarial transfer learning for expression recognition on the
disturbance-unlabeled FER database. This not only success-
fully addresses the problems of the lack of disturbance la-
bels and limited training data in the FER database, but also
enables the proposed method to effectively disentangle dif-
ferent disturbing factors from facial expression images.

2.3 Action Unit Recognition

Ekman and Friesen (1976) develop the facial action coding
system (FACS), which encodes atomic nonoverlapping fa-
cial muscles called action units (AUs). Based on the FACS,
facial expressions can be viewed as combinations of certain
AUs.

Some methods have been proposed to learn task-specific
representations for AU recognition. For example, Zhang
et al. (2018d) design an adversarial training framework (AT-
F) that is trained by minimizing the AU loss and maximiz-
ing the identity loss. In this way, identity-invariant features
are extracted for AU detection. Li et al. (2019) propose a
twin-cycle autoencoder (TCAE) for AU detection in a self-
supervised manner. They factorize the movements into AU-
related and pose-related displacements based on a pair of
images. Therefore, facial action-related movements can be
disentangled from head motion-related movements, which
is beneficial for learning discriminative AU-related features.
Sankaran et al. (2020) implicitly capture the correlations be-
tween two modalities by using an encoder-decoder frame-
work to learn a unified representation for cross-modality AU
recognition.

The above methods perform disentanglement based on
multi-task learning CNN or an encoder-decoder structure.
Nevertheless, they take one or two disturbing factors into ac-
count and do not fully consider the explicit disentanglement
between the AU-related movements and disturbing factors.

2.4 Attention Mechanisms

In recent years, attention mechanism-based CNN method-
s have been developed in a variety of tasks, such as fine-
grained image recognition (Fu et al., 2017; Hu et al., 2018),
image captioning (Xu et al., 2015), person re-identification
(Wu et al., 2018), and human pose estimation (Chu et al.,
2017). Hu et al. (2018) propose a novel architecture unit
termed the squeeze-and-excitation (SE) block, which adap-
tively recalibrates channel-wise feature responses by mod-

eling interdependencies between channels. Chu et al. (2017)
design a multi-context attention mechanism-based network
for human pose estimation.

Psychological studies have revealed that salient facial re-
gions (such as the mouth, nose, and eyes) play a critical role
in FER (Pantic and Rothkrantz, 2000). Meanwhile, attention
mechanisms have shown great capability to select salien-
t features. Therefore, attention mechanisms are beneficial
to improve the FER performance. For instance, Xie et al.
(2019a) propose a deep attentive multi-path CNN (DAM-
CNN) method for FER, where a spatial attention mechanism
is adopted to obtain salient regions. Wang et al. (2020c) pro-
pose a region attention network (RAN) to locate salient fa-
cial regions for occlusion-invariant and pose-invariant FER.
In general, these methods leverage high-level semantic fea-
tures of CNNs for FER.

Both high-level and low-level features of CNNs are ad-
vantageous for performing FER. Low-level features cap-
ture the spatial-aware information of facial images, which
can be used to determine the boundaries of salient regions.
High-level features encode the semantic-aware information
of facial images, which is desirable to locate salient regions
(Zhao and Wu, 2019). In this paper, unlike previous meth-
ods, we employ a multi-level attention mechanism, which
aggregates the attentive features from different layers of the
network. This mechanism effectively exploits both spatial-
aware and semantic-aware information to extract discrimi-
native features for identifying facial expressions. Moreover,
we leverage a self-attention layer to learn the importance
weights corresponding to different disturbing factors, en-
abling the extraction of adaptive disturbance-specific fea-
tures. Therefore, we can accommodate the different influ-
ences of multiple disturbing factors in the FER database.

3 Proposed Method

In this section, we introduce our proposed ADDL method in
detail. First, an overview of the ADDL method is given in
Sect. 3.1. Then, the key components (the DFEM and AD-
DM) of ADDL are described in Sects. 3.2 and 3.3, respec-
tively. Finally, some discussions about ADDL are presented
in Sect. 3.4.

3.1 Overview

The training phase of the ADDL method involves a two-
stage learning procedure: 1) training a DFEM to predict var-
ious disturbing factors, and 2) training an ADDM, which
adapts to the characteristics of each FER database, to ex-
tract expression-specific features by explicitly disentangling
multiple disturbing factors from facial expression images.
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Fig. 2: The network architecture of our proposed ADDL method. The training phase of ADDL involves a two-stage learning
procedure. (a) Training a DFEM consisting of shared layers and task-specific layers. The DFEM predicts various disturb-
ing factors. (b) Training an ADDM consisting of a global shared subnetwork (Sg), an expression subnetwork (Se), and a
disturbance subnetwork (Sd). The ADDM extracts expression-specific features by explicitly disentangling the disturbance.

The network architecture of our proposed ADDL method is
illustrated in Fig. 2.

Specifically, in the first stage, a DFEM is trained to
simultaneously identify various disturbing factors on the
disturbance-labeled face database. In this manner, the D-
FEM effectively captures the prior disturbance information.
In the second stage, based on the trained DFEM, an AD-
DM, consisting of a global shared subnetwork and two task-
specific subnetworks (i.e., an expression subnetwork and a
disturbance subnetwork), is learned to classify expressions
on the disturbance-unlabeled FER database.

In the ADDM, the expression subnetwork leverages a
multi-level attention mechanism to comprehensively extract
expression-specific features. Meanwhile, by taking advan-
tage of adversarial transfer learning, the disturbance subnet-

work capitalizes on the features extracted from the trained
DFEM to effectively learn adaptive disturbance-specific fea-
tures.

During the testing phase, given a facial image, only the
global shared subnetwork and expression subnetwork from
the trained ADDM are used to extract features and predict
facial expressions.

3.2 Disturbance Feature Extraction Model (DFEM)

The DFEM is designed to extract discriminative features
that capture the information for identifying multiple disturb-
ing factors by taking advantage of multi-task learning on the
disturbance-labeled face database. As shown in Fig. 2(a), the
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network architecture of the DFEM consists of shared layers
and task-specific layers.

Specifically, facial images are first fed into several
shared layers consisting of a cascade of linear and nonlinear
transformations to obtain high-level features. In this paper,
we adopt ResNet-18 (He et al., 2016), which is widely used
in previous works (Wang et al., 2020b), as shared layers.
Then, the task-specific layers use a multi-branch architec-
ture to extract features, where each branch containing two
cascaded fully-connected (FC) layers classifies a disturbing
factor. Note that the features obtained from the first FC layer
of each branch encode the information for predicting a dis-
turbing factor, while those from the second FC layer are the
predicted outputs.

Given a disturbance-labeled face database, its train-
ing set Tl with R images is represented as Tl =

{xli,yi}Ri=1, where xli denotes the i-th training image and
yi = [y1i , · · · , yMi ]T is an M -dimensional vector represent-
ing the labels of disturbing factors corresponding to xli. M
denotes the number of disturbing factors. The optimization
problem of the DFEM is formulated as

argmin
wc,{wj}Mj=1

R∑
i=1

M∑
j=1

LjCE(y
j
i ,Fj(x

l
i,wc,wj)), (1)

where the network parameter wc controls feature sharing a-
mong all the disturbing factors and the network parameter
wj controls the update of features for the j-th disturbing
factor; Fj(·, ·, ·) represents the prediction function for the
j-th disturbing factor, given the input xli and the network
parameters wc and wj ; y

j
i denotes the label of the j -th dis-

turbing factor corresponding to xli; and LjCE(·, ·) represents
the cross-entropy (CE) loss between the ground-truth label
yji and the result estimated by Fj . Mathematically, the CE
loss is defined as

LjCE = −
Kj∑
k=1

1[k=yji ]
log(Fj(xli,wc,wj)), (2)

where log(·) represents the logarithm function;Kj indicates
the class number of the j-th disturbing factor; and 1[k=yji ]
outputs 1 when k = yji and 0 otherwise.

3.3 Adaptive Disturbance-Disentangled Model (ADDM)

Based on the DFEM trained on the large-scale face database,
the ADDM is learned to model the expression-related
information and disturbance-related information on the
disturbance-unlabeled FER database. As shown in Fig. 2(b),
the network architecture of the ADDM consists of a global
shared subnetwork, an expression subnetwork, and a distur-
bance subnetwork.

In the following, we introduce the key components of
the ADDM.

3.3.1 Global Shared Subnetwork

The global shared subnetwork (denoted Sg) is designed to
extract the global shared features of input images. In this
paper, we employ ResNet-18 (He et al., 2016) as Sg , where
the final FC layer is removed.

3.3.2 Task-Specific Subnetworks

ADDM contains two task-specific subnetworks, i.e., an ex-
pression subnetwork (denoted Se) and a disturbance sub-
network (denoted Sd). Two subnetworks are jointly trained
based on Sg .
Expression Subnetwork. Se is designed to learn
expression-specific features by applying attention blocks to
Sg . Se consists of a set of attention blocks (see Sect. 3.3.3),
which are followed by an average pooling layer and two FC
layers. Here, the attention block generates a soft attention
mask, which indicates the importance of each position in
the feature map from Sg .

Considering that the features from different levels of
the network in Se are complementary, a multi-level atten-
tion mechanism is employed to fully exploit these features.
Specifically, we first utilize several max pooling layers to
ensure the same sizes of feature maps from different atten-
tion blocks (except for the last two blocks) since the sizes
of feature maps vary from layer to layer. Then, these resized
feature maps are concatenated as

aout = [âe1; · · · ; âeL−2; aeL−1; aeL], (3)

where aej indicates the feature map from the j-th attention
block in Se; âej represents the output feature map of the max
pooling layer corresponding to aej ; L denotes the number of
attention blocks; and aout is the final combined feature map.
Note that, as shown in Fig. 2, the max pooling layer is not
applied to aeL−1 and aeL to ensure the same sizes of feature
maps for concatenation. In this way, both low-level spatial
features and high-level semantic features are aggregated to
extract expression-specific features.

Given a disturbance-unlabeled FER database, its train-
ing set Tu with N images is represented as Tu =

{xui , yi}Ni=1, where xui denotes the i-th training image and
yi indicates the expression label corresponding to xui . Se
optimizes the following problem:

argmin
wg,we

N∑
i=1

LCE(yi,Fe(xui ,wg,we)), (4)

where wg and we denote the network parameters in Sg and
Se, respectively; Fe denotes the prediction function; and
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LCE indicates the CE loss between the ground-truth expres-
sion label yi and the predicted result by Fe, which is ex-
pressed as

LCE = −
K∑
k=1

1[k=yi] log(Fe(x
u
i ,wg,we)), (5)

where K is the number of expression categories.
Disturbance Subnetwork. Sd is designed to learn
disturbance-specific features. To achieve this, a straightfor-
ward way is to generate pseudo-labels of disturbing factors
in the FER database by applying the trained DFEM and then
train Sd with these pseudo-labels. However, these pseudo-
labels unavoidably involve a large number of noisy labels
due to the discrepancy between the source domain (the face
database used to train the DFEM) and the target domain (the
FER database used to train Sd). As a result, these noisy la-
bels seriously affect the extraction of disturbance-specific
features, thereby reducing the final FER performance.

In this paper, we take advantage of adversarial transfer
learning to effectively improve the performance of the mod-
el in the unlabeled target domain, given the labeled source
domain. Mathematically, we constrain the distributions of
the output feature maps from Sd to be as close as those from
the trained DFEM. Such a manner can alleviate the domain
discrepancy and avoids labeling disturbing factors in the tar-
get domain.

The network architecture of Sd is given in Fig. 2(b). It
is comprised of a set of attention blocks, which are followed
by an average pooling layer, an FC layer, and an adaptive
disturbance feature learning module (ADFL), where the FC
layer extracts disturbance-specific features and the ADFL
performs adversarial transfer learning between disturbance-
specific features and weighted disturbing factor features.

The network architecture of the ADFL is shown in
Fig. 3. The ADFL consists of a self-attention (SA) layer (in-
cluding an FC layer and a sigmoid layer), a feature fusion
layer, and a discriminator.

We suppose that the extracted disturbance-specific fea-
ture is denoted fd, given a facial image from the disturbance-
unlabeled FER database. First, the SA layer outputs the

importance weights (represented as [α1, · · · , αM ]T) corre-
sponding toM disturbing factors. These importance weight-
s reflect the different influences of disturbing factors in the
FER training database. Meanwhile, we also obtain a set of
disturbing factor features extracted from the first FC lay-
ers of task-specific layers in the trained DFEM, denoted
Tp = {fpj }Mj=1. Here, fpj represents the j-th disturbing fac-
tor feature.

Then, the feature fusion layer combines these disturbing
factor features according to their corresponding importance
weights, which can be expressed as

fm =

M∑
j=1

αjf
p
j , (6)

where fm represents the weighted disturbing factor feature.
Finally, a discriminator D (consisting of four FC layers

and a leaky ReLU function) is introduced to play an adver-
sarial game with a feature extractor F . Here, the feature ex-
tractor F refers to the layers used to extract fd in Sd. F tries
to minimize the divergence of the feature distributions be-
tween fd and fm, while D aims to distinguish fd from fm.
The objective of adversarial training is formulated as

min
D

max
F
LAD(F,D), (7)

where the adversarial loss LAD is defined as

LAD = −E[log(D(fm))]−E[log(1−D(fd))]. (8)

To facilitate knowledge transfer from the trained DFEM
to Sd, it is natural that the distributions of both the final out-
put features and the intermediate attention maps from Sd
are close to those from the trained DFEM. Therefore, we al-
so apply attention transfer (Zhang et al., 2018a), which has
been proven to be effective in bridging the gap between the
source domain and the target domain, by transferring atten-
tion knowledge. The attention transfer loss is expressed as

LAT =

L∑
j=1

||
qdj
||qdj ||2

−
qpj
||qpj ||2

||2, (9)

where qdj and qpj are the j-th attention maps from Sd and
the trained DFEM in the vectorized forms, respectively.

As mentioned previously, each FER database involves
certain types of disturbing factors. In the ADFL, the SA lay-
er estimates the importance weights corresponding to dif-
ferent disturbing factors based on fd, while the feature fu-
sion layer outputs fm based on these importance weights.
Therefore, fm incorporates the prior disturbance informa-
tion that considers the characteristics of the FER database.
For instance, the prior pose information does not greatly
contribute to the extraction of fm for the in-the-lab FER
database (since the importance weight corresponding to
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Fig. 4: The network architecture of the attention block.

pose is low in this case), while it is encoded in fm for the
in-the-wild FER database. By performing adversarial trans-
fer learning, the distributions of fm and fd are as similar as
possible. Hence, we are able to effectively extract adaptive
disturbance-specific features, which approximate a linear
combination of disturbing factor features from the trained
DFEM, by exploiting the knowledge of the FER database.

In the SA layer, the importance weight reflects the influ-
ence of a disturbing factor. To explain this, we take a simple
example for illustration. Assume that we have an FER train-
ing database only involving identity variations and that α1

corresponds to the importance weight of the identity. In oth-
er words, all the images in this FER database are captured
with the same gender, age, race, illumination, and pose.
Thus, the first disturbing factor features (i.e., fp1 correspond-
ing to identity) of different images in the FER database sig-
nificantly vary, while the others (i.e., {fp2 , · · · , f

p
M}) show

small variations. By minimizing the differences between fd

and fm, α1 and αj (j ∈ {2, · · · ,M})) are assigned large
and small values, respectively. Accordingly, the joint loss
function (see Eq. (14)) can be gradually optimized. Oth-
erwise, (i.e., α1 is small while αj (j ∈ {2, · · · ,M})) is
large), the weighted disturbing factor features (see Eq. (6))
are similar for all the images. In such a case, the disturbance
subnetwork fails to extract effective information, and thus
disturbance disentanglement cannot be properly performed.
Therefore, the value of α1 reflects the influence of identity.

Note that the multi-level attention mechanism is not used
in Sd. This is because the salient regions for identifying mul-
tiple disturbing factors are different. For example, illumi-
nation estimation mainly relies on the global facial region,
while pose classification focuses on local regions around
salient facial landmarks. In other words, it is not appropriate
to directly concatenate low-level spatial features and high-
level semantic features to extract disturbance-specific fea-
tures in Sd.

3.3.3 Attention Block

Inspired by Liu et al. (2019), we develop an attention block
for both Sd and Se. The network architecture of the attention
block is given in Fig. 4.

The first attention block in Se or Sd takes the feature
u1 from the first convolution block in Sg as the input. For

the subsequent attention block at the j-th layer, the element-
wise weighted addition between the global feature uj from
Sg and the task-specific feature atj−1 (t ∈ {e, d}) from the
previous layer in St (t ∈ {e, d}) is taken as the input, as
shown in Fig. 4. Then, the attention mask mt

j (t ∈ {e, d})
generated from the j-th layer in St (t ∈ {e, d}) is expressed
as

mt
j =

{
g(uj), j = 1,

g(δ1uj + δ2atj−1), j ≥ 2,
(10)

where δ1 and δ2 are the learnable parameters that, respec-
tively, determine the importance of the global feature uj and
the task-specific feature atj−1; g(·) denotes the aggregation
of a batch normalization (BN) layer, a parametric ReLU
(PReLU) layer, a 1 × 1 convolutional layer, another batch
normalization layer, and a sigmoid layer that constrains the
output within the range of (0, 1).

The output feature map atj of the j-th attention block for
St (t ∈ {e, d}) is given as

atj = h(mt
j � uj), (11)

where � denotes the element-wise multiplication; h(·) de-
notes a convolutional layer with a 3× 3 kernel that matches
the channels between the attention mask from the (j− 1)-th
layer in St (t ∈ {e, d}) and the global shared feature in the
j-th layer in Sg , followed by a BN layer, a PReLU layer, and
a max pooling layer to match the sizes of the feature maps
between the above two features.

It is worth noting that our attention block outputs a 3D
attention mask, where each attention map in the mask cap-
tures salient regions for a feature channel in Sg . This is dif-
ferent from the traditional attention block (Xie et al., 2019a),
which applies the same 2D mask to each feature channel.
Therefore, the attention block used in our paper takes into
account the differences between feature maps and thus can
generate more accurate attention weights.

3.3.4 Mutual Information Neural Estimator (MINE)

To perform explicit disentanglement between the
disturbance-specific feature fd and the expression-specific
feature fe, the correlation between the two features should
be minimized. Generally, the Kullback-Leibler (K-L)
divergence DKL(PFd ||PF e) can be used to minimize the
discrepancy between two feature distributions. Here, F d

and F e denote the random variables of fd and fe, respec-
tively. PFd and PF e represent the marginal probability
distributions of F d and F e, respectively. However, we can-
not guarantee that the features with dissimilar distributions
are uncorrelated.

Inspired by Belghazi et al. (2018), we leverage mutu-
al information to measure the correlation between fd and
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fe (note that if two variables are independent of each other,
their mutual information is zero). Specifically, we employ
a mutual information neural estimator (MINE) (Belghaz-
i et al., 2018) to estimate the mutual information between
fd and fe, leading to explicit disentanglement. Based on
the K-L divergence and the Donsker-Varadhan representa-
tion (Donsker and Varadhan, 1983), the mutual information
can be estimated by the MINE as

I(F d;F e) = DKL(PFdF e ||PFd ⊗ PF e)

≥ EP
FdFe

[Tθ(f
d, fe)]− log(EP

Fd
⊗PFe [e

Tθ(f
d,fe)]),

(12)

where ⊗ is the product function; PFdF e represents the joint
probability distribution of (F d, F e); and Tθ is a neural net-
work with parameters θ (the detailed architecture of Tθ is
described in Table 1(a)).

Given n mini-batch samples {fdi , fei }ni=1 from the joint
distribution and n samples {f̃ei }ni=1 from the marginal distri-
bution of F e (which can be estimated by shuffling the sam-
ples from the joint distribution along the batch axis), the mu-
tual information loss LMI is approximated as

LMI = I(F d;F e)

≈ 1

n

n∑
i=1

Tθ(f
d
i , f

e
i )− log(

1

n

n∑
i=1

eTθ(f
d
i ,f̃

e
i )).

(13)

The correlation between fd and fe is minimized by opti-
mizing the mutual information loss LMI . Therefore, we are
able to disentangle the disturbance in an explicit way.

3.3.5 Joint Loss Function

The joint loss function of the ADDM is defined as

L = LCE + λ1LAD + λ2LAT + λ3LMI , (14)

where λ1, λ2, and λ3 denote the balanced parameters of the
adversarial loss, the attention transfer loss, and the mutual
information loss, respectively.

By minimizing the joint loss function, the ADDM is
able to extract discriminative expression-specific features
for FER.

3.4 Discussions

A number of CNN-based FER methods (Mollahosseini
et al., 2016; Yu and Zhang, 2015) suffer from the prob-
lem that the final expression features contain the distur-
bance because of limited training data. Some disturbance-
disentangled-based FER methods (Meng et al., 2017; Zhang
et al., 2018b) may not accurately recognize expressions in
the disturbance-unlabeled FER database.

Different from traditional FER methods, the ADDL
method successfully leverages the available disturbance la-
bel information from the large-scale face database to perfor-
m adversarial transfer learning on the disturbance-unlabeled
FER database. In particular, by designing a disturbance sub-
network and minimizing the mutual information, the distur-
bance can be effectively and explicitly disentangled from
the features used for expression recognition. Such a manner
significantly improves the discriminability of expression-
specific features. Therefore, the problems due to limited
training data and the lack of disturbance labels can be great-
ly alleviated. Moreover, the ADFL is developed to facilitate
the extraction of disturbance-specific features by fully ex-
ploiting the different influences of disturbing factors in the
FER database.

4 Experiments

In this section, extensive experiments are conducted to show
the superiority of our proposed method. First, we introduce
several public FER databases and the implementation detail-
s in Sects. 4.1 and 4.2, respectively. Then, we conduct ab-
lation studies to evaluate each component of our proposed
method in Sect. 4.3. Next, we compare our method with
several state-of-the-art FER methods in Sect. 4.4. Finally,
we present the computational complexity of our method and
apply our method to valence and arousal estimation in Sect-
s. 4.5 and 4.6, respectively.

4.1 Databases

To validate the effectiveness of the proposed method, we e-
valuate the performance on three in-the-lab FER databases
(CK+ (Lucey et al., 2010), MMI (Valstar and Pantic, 2010),
and Oulu-CASIA (Zhao et al., 2011)) and four in-the-wild
databases (RAF-DB (Li et al., 2017), SFEW (Dhall et al.,
2011), Aff-Wild2 (Kollias and Zafeiriou, 2018), and Affect-
Net (Mollahosseini et al., 2017)).
CK+: The Extended Cohn-Kanade (CK+) database is a
commonly used laboratory-controlled database for evaluat-
ing the FER performance. It contains 327 video sequences
annotated with expression labels, including six basic expres-
sions (i.e., angry, happy, surprise, sad, disgust, and fear)
and one nonbasic expression (i.e., contempt). Each sequence
shows a shift from a neutral expression to a peak expression.
We choose the last three expressional frames from each se-
quence to construct the training set and the test set, which
contain 981 images in total.
MMI: The MMI database is composed of 30 subjects, for
which 205 image sequences captured in the frontal view are
labeled with six basic facial expressions. Similar to the CK+
database, we select the three peak expressional frames in
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Table 1: The detailed architecture of the MINE and each subnetwork in the ADDM.

(a) The architecture of the MINE

MINE Output dimensionality

Concatenate1 256

FC(64), Leaky ReLU 64

FC(1), Leaky ReLU 1

(b) The architecture of the global shared subnetwork in the ADDM

The global shared subnetwork Sg Output dimensionality

Conv(64, 7, 2), BN, ReLU, Max pool(3,2) 64× 56× 56

Basic block(64), Basic block(64) 64× 56× 56

Basic block(128), Basic block(128) 128× 28× 28

Basic block(256), Basic block(256) 256× 14× 14

Basic block(512), Basic block(512) 512× 7× 7

(c) The architecture of the expression subnetwork in the ADDM

The expression subnetwork Se Output dimensionality

Attention block(64) 64× 56× 56

Max pool(10,7) 64× 7× 7

Attention block(128) 128× 28× 28

Max pool(8,3) 128× 7× 7

Attention block(256) 256× 14× 14

Max pool(2,2) 256× 7× 7

Attention block(512) 512× 7× 7

Attention block(512) 512× 7× 7

Concatenate2 1472× 7× 7

Avg pool(3) 1472× 2× 2

Flatten 5888

Dropout, FC(128), PReLU 128

Dropout, FC(K), PReLU K

(d) The architecture of the disturbance subnetwork in the ADDM

The disturbance subnetwork Sd Output dimensionality

Attention block(64) 64× 56× 56

Attention block(128) 128× 28× 28

Attention block(256) 256× 14× 14

Attention block(512) 512× 7× 7

Attention block(512) 512× 7× 7

Avg pool(6) 512× 1× 1

Flatten 512

Dropout, FC(128), PReLU 128

FC(6), Sigmoid 6

Conv(n, m, s) denotes the convolutional layer with the number of output feature maps n, the kernel size m×m and the stride s; Basic block(n) and
Attention block(n), respectively, denote the basic block and the attention block with the number of output feature maps n; Max pool(m,s) denotes
the max pooling layer with m×m filters and s strides; Concatenate1 denotes the concatenation of fd and fe in the MINE; Concatenate2 denotes
the concatenation of all the outputs of attention blocks in Se; Avg pool(m) denotes the average pooling layer with m×m filters; FC(n) refers to the
fully-connected layer with the output features of n dimensions; The value of K refers to the number of classes; BN denotes a batch normalization
layer; PReLU denotes a parametric ReLU layer.

each sequence to compose the training set and the test set
(consisting of 615 images in total).

Oulu-CASIA: The Oulu-CASIA database contains videos
of 80 subjects. Each subject contains six basic expression-
s, where each expression corresponds to a video sequence.
The videos are collected with two imaging systems (i.e.,
near-infrared and visible light) under three different illumi-
nation conditions. As done in Yang et al. (2018a), the last
three frames in each sequence captured with visible light
and strong illumination are used in our experiments, result-
ing in a total of 1,440 images.

RAF-DB: The Real-world Affective Face database (RAF-
DB) is a real-world database that contains 15,331 images
labeled with six basic facial expressions and a neutral ex-
pression, where 12,271 and 3,068 images are used for train-
ing and testing, respectively. In addition to the expression
labels, the images in RAF-DB are also labeled with the fa-
cial attributes of age, gender, and race.

SFEW: The SFEW database is created by selecting the
static frames from the AFEW database, which covers un-
constrained facial expressions, varied head poses, large age
range, varied focus, different resolutions of faces, and real-
world illumination. It provides 958 images for training and
436 images for testing. Each image is labeled with one of
six basic expressions or the neutral expression.

Aff-Wild2: The Aff-Wild2 database is extended from the
Aff-Wild database (Kollias et al., 2019), which consists of
558 YouTube videos with 2,786,201 frames. The videos in-
volve large variations in age, race, pose, illumination, and
so on. In this paper, we use the preprocessed version provid-
ed by Zhang et al. (2020c) in the ABAW 2020 competition
(Kollias et al., 2020b), which contains 904,825 images for
training and 322,080 validation images for testing. All the
images are annotated with seven expression categories, as in
RAF-DB and SFEW.
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AffectNet: The AffectNet database is a large-scale database
of facial emotions in the wild. It contains 450,000 facial im-
ages from the Internet with both categorical (including seven
expressions) and valence-arousal annotations. For FER, we
select 283,901 images for training and 3,500 validation im-
ages for testing, as done in Farzaneh and Qi (2021); Wang
et al. (2019); Zeng et al. (2018). For valence and arousal es-
timation, we use all the images with valence-arousal anno-
tations, resulting in 320,739 images for training and 4,500
images for testing.

For in-the-lab databases, we employ the popular ten-
fold cross-validation protocol for evaluation, as done in D-
ing et al. (2017); Meng et al. (2017); Yang et al. (2018a);
Zhao et al. (2016). For in-the-wild databases, we follow the
default evaluation protocols provided by the databases.

4.2 Implementation Details

In this paper, we use ResNet-18 pretrained on the MS-
Celeb-1M database as the backbone (Wang et al., 2020b).
The dimensionalities of {fpj }Mj=1, fd, and fe are 128. Table 1
illustrates the detailed architecture of the MINE and each
subnetwork in the ADDM, where the output dimensionality
of each layer is also given.

For all the databases, the face in each image is detected
and cropped according to the eye positions. Then, the facial
image is resized to the size of 256 × 256. During training,
the facial images are randomly cropped to the size of 224×
224, and the cropped images are further processed by using a
horizontal flip. For the Aff-Wild2 and AffectNet databases,
the oversampling strategy is the same as the one in Wang
et al. (2020b).

Since five blocks are used in ResNet-18, L is set to five
in Eq. (3) and Eq. (9). The values of λ1, λ2, and λ3 in
Eq. (14) are empirically set to 1.0, 0.10, and 0.0010, re-
spectively. We train the networks using the Adam algorith-
m (Kingma and Ba, 2014) with a learning rate of 0.0001,
β1 = 0.500, and β2 = 0.999. The learning rate is further
divided by 10 after 10, 18, 25, and 32 epochs. All our mod-
els are trained on a single NVIDIA GTX 1080Ti GPU using
PyTorch for 40 epochs, with a batch size of 16 for RAF-DB
and AffectNet and 8 for the other FER databases (except
for Aff-Wild2). For Aff-Wild2, our model is trained on t-
wo NVIDIA GTX 1080Ti GPUs for 40 epochs with a batch
size of 64. For computational complexity, we evaluate the
inference time and speed of our method by using a single
NVIDIA GTX 1080Ti GPU.

The DFEM is trained on both the Multi-PIE face
database (Gross et al., 2010) and the RAF-DB database,
which provide the labels of multiple disturbing factors. Note
that large-scale facial attribute databases (such as CelebA
(Liu et al., 2015)) are not used for training. This is because

they do not have labels of illumination and pose (which are
not facial attributes). Moreover, CelebA only contains bina-
ry facial attributes (with and without), and thus, it cannot
comprehensively describe the variations of each attribute. In
contrast, Multi-PIE has labels of identity (337 individuals),
pose (15 viewpoints), and illumination (19 lighting condi-
tions), while RAF-DB gives those of gender (3 classes), age
(5 ranges), and race (3 classes). Therefore, Multi-PIE and
RAF-DB are more suitable to train the DFEM. During the
training of the DFEM, missing labels of some disturbing fac-
tors are ignored during back-propagation.

For the Aff-Wild2 database, we use the weighted aver-
age of accuracy (33%) and F1 score (67%) as the evalua-
tion metric, as done in the ABAW 2020 competition (Kol-
lias et al., 2020b). For the other databases, we adopt the test
accuracy as the evaluation metric.

4.3 Ablation Studies

To show the superiority of the proposed method, we perfor-
m extensive ablation studies to evaluate the influence of d-
ifferent components on the performance. In this subsection,
we use one in-the-lab database (MMI) and one in-the-wild
database (RAF-DB) for evaluation.

Specifically, we evaluate the performance of three base-
line methods, six DDL variants, and four ADDL variants.
DDL refers to our original method (Ruan et al., 2020) that
does not involve the ADFL and the MINE, while the ADDL
method is developed in this paper.

These methods are described as follows: (1) The base-
line method (denoted Baseline) that uses only Sg followed
by two FC layers to predict the expression of the input
image. (2) The baseline method with attention blocks (de-
noted Baseline at) that simultaneously uses Sg and Se, but
does not use the multi-level attention mechanism in Se. (3)
The baseline method with attention blocks (denoted Base-
line mat) that simultaneously uses Sg and Se, and employs
the multi-level attention mechanism in Se. (4) The method
(denoted DDL g) that simultaneously uses Sg , Se, and Sd,
where Sd is trained based on the gender features extract-
ed by the DFEM. (5) The method (denoted DDL ga) that is
similar to DDL g, but where Sd is trained based on both
the gender and age features extracted by the DFEM. (6)
The method (denoted DDL gar) that is similar to DDL g,
but where Sd is trained based on the gender, age, and race
features extracted by the DFEM. (7) The method (denot-
ed DDL gar&id) that is similar to DDL g, but where Sd
is trained based on the gender, age, race, and identity fea-
tures extracted by the DFEM. (8) The method (denoted D-
DL gar&id&il) that is similar to DDL g, but where Sd is
trained based on the gender, age, race, identity, and illu-
mination features extracted by the DFEM. (9) The method
(denoted DDL gar&id&il&p) that is similar to DDL g, but
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Table 2: Details of the three baseline methods, six DDL variants, and four ADDL variants.

Methods Sg
Se Sd ADFL MI DFEM
w/o multi gen age race id ill pose

Baseline X – – – – – – – – – – X

Baseline at X X – – – – – – – – – X

Baseline mat X – X – – – – – – – – X

DDL g X – X X – – – – – – – X

DDL ga X – X X X – – – – – – X

DDL gar X – X X X X – – – – – X

DDL gar&id X – X X X X X – – – – X

DDL gar&id&il X – X X X X X X – – – X

DDL gar&id&il&p X – X X X X X X X – – X

ADDL ADFL X – X X X X X X X X – X

ADDL MI X – X X X X X X X – X X

ADDL MI-DFEM X – X – – – – – – – X –

ADDL X – X X X X X X X X X X

“w/o” and “multi” represent training without and with the multi-level attention mechanism, respectively; “gen”, “id” and “ill” represent
gender, identity, and illumination, respectively; and “MI” represents explicit disentanglement using mutual information.

where Sd is trained based on the gender, age, race, identi-
ty, illumination, and pose features extracted by the DFEM.
(10) The ADDL method (denoted ADDL ADFL) that on-
ly uses the ADFL. (11) The ADDL method (denoted AD-
DL MI) that employs only the MINE to perform explic-
it disentanglement between fd and fe, where fd is learned
using the DFEM as for the DDL gar&id&il&p. (12) The
ADDL method (denoted ADDL MI-DFEM) that employs
the MINE but without using the DFEM. (13) The ADDL
method that simultaneously uses the ADFL and the MINE.

The details of these methods are summarized in Table
2. For a fair comparison, the pretrained ResNet-18 is em-
ployed for all the methods. Table 3 reports the recognition
accuracy obtained by these methods on the MMI and RAF-
DB databases.

4.3.1 Posed vs. Naturalistic Facial Expressions

Generally, in-the-lab FER databases contain posed facial ex-
pressions, while in-the-wild databases are comprised of nat-
uralistic facial expressions. Posed expressions usually have
slow and jerky onsets, where facial actions typically do not
show peaks simultaneously (Motley and Camden, 1988). In
contrast, naturalistic expressions tend to exhibit fast and s-
mooth onsets, where distinct facial movements reach peaks
in a short duration. According to Table 3, compared with the
baseline, the accuracy gains obtained by the ADDL method
are 6.97% and 2.41% on the MMI and RAF-DB databas-
es, respectively. This shows the importance of disentangling
disturbance for both the posed and naturalistic FER, which

enables the extraction of effective expression-specific fea-
tures. Note that the recognition accuracy obtained by our
method on MMI is lower than that on RAF-DB. This can be
ascribed to the limited training set (note that there are 615
images in MMI), thereby increasing the difficulty of learn-
ing a robust FER model.

4.3.2 Influence of the Attention Block and Multi-Level
Attention Mechanism

As illustrated in Table 3, Baseline at achieves better recog-
nition performance than the Baseline method on both MMI
and RAF-DB. Specifically, compared with Baseline, Base-
line at achieves 2.06% and 0.52% gains in terms of recogni-
tion accuracy on the MMI and RAF-DB databases, respec-
tively. The above results show the effectiveness of the atten-
tion block.

Baseline mat obtains higher recognition accuracy than
Baseline at. Specifically, in comparison with Baseline at,
Baseline mat gets 0.25% improvements in terms of recog-
nition accuracy on MMI. For RAF-DB, its accuracy is fur-
ther improved by 0.16%. This verifies the effectiveness of
the multi-level attention mechanism.

To further show the importance of the multi-level atten-
tion mechanism, we add the generated feature maps in Se to
the input facial images and visualize them in Fig. 5. Specif-
ically, the combined feature maps (see Eq. (3)) before the
FC layer are first added along the channel dimension, which
generates an attentive feature map with a size of 7×7. Then,
this feature map is resized to the same size as the input im-
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Table 3: The recognition accuracy (%) obtained by the three
baseline methods, six DDL variants, and four ADDL vari-
ants on the MMI and RAF-DB databases. The best results
are boldfaced.

Methods MMI RAF-DB

Baseline 79.16 86.93

Baseline at 81.22 87.45

Baseline mat 81.47 87.61

DDL g 82.88 87.97

DDL ga 83.29 88.01

DDL gar 83.70 88.07

DDL gar&id 83.74 88.10

DDL gar&id&il 84.25 88.14

DDL gar&id&il&p 83.56 88.17

ADDL ADFL 85.40 89.08

ADDL MI 85.56 88.82

ADDL MI-DFEM 83.13 88.01

ADDL 86.13 89.34

age. Finally, we add the resized attentive feature map to the
input image and obtain the final result.

As given in Fig. 5, the warm-toned parts of an image
correspond to the regions with large values in the attentive
feature map, while the cold-toned parts correspond to the
regions with small values in the attentive feature map. We
can observe that the attentive feature map is able to focus
on the salient facial regions (especially the regions around
the eyes and mouth) that are critical for FER. In particular,
for the images in RAF-DB, the corresponding attentive fea-
ture maps tend to focus on larger facial patches than those in
MMI. This is because the images in RAF-DB involve large
pose variations and low quality. A larger facial patch is ben-
eficial to extract more discriminative features for FER on the
in-the-wild database.

4.3.3 Influence of the Different Disturbing Factors

As shown in Table 3, all the DDL variants consistently per-
form better than Baseline mat, which demonstrates the im-
portance of the disturbance subnetwork Sd. For the RAF-DB
database, the recognition accuracy obtained by DDL tends
to be higher when more disturbing factors are considered.
DDL achieves the best performance when all the disturbing
factors are employed for disturbance-specific feature learn-
ing in Sd. This is because the images in RAF-DB contain se-
vere variations caused by multiple disturbing factors. Disen-
tangling these disturbing factors from facial expression im-
ages benefits the extraction of effective expression-specific
features. However, for the MMI database, DDL obtains the
best accuracy when all the disturbing factors except for the

“Angry” “Surprise” “Disgust” “Fear” “Happy” “Sad”

 

 

(a) MMI

(b) RAF-DB

Fig. 5: Visualization of attentive feature maps on the (a) M-
MI and (b) RAF-DB databases.

pose are considered. This is because the images in MMI
do not involve pose variations (the images are all frontal).
Therefore, it is critical to properly choose the disturbing fac-
tors by taking into account the characteristics of the FER
database.

4.3.4 Influence of the ADFL and MINE

From Table 3, we can make the following observations.
First, the ADDL ADFL method achieves better recognition
performance than all the DDL variants. Compared with the
DDL gar&id&il&p method, which does not consider the d-
ifferent influences of disturbing factors (i.e., the importance
weights corresponding to all the disturbing factors are the
same), the ADDL ADFL method obtains 1.84% and 0.91%

improvements in terms of recognition accuracy on MMI and
RAF-DB, respectively. This indicates that adopting the SA
layer is effective in learning the importance weights, which
can be further beneficial to the extraction of disturbance-
specific features in Sd.

Second, to demonstrate the importance of explicit dis-
entanglement, we jointly train the MINE and the ADDM in
the ADDL MI method. The ADDL MI method also obtains
higher accuracy than all the DDL variants. Therefore, mini-
mizing the mutual information is advantageous to explicitly
disentangle disturbance-specific features from expression-
specific features and has a positive influence on the final
performance.

Third, the ADDL method achieves the best accuracy on
both in-the-lab and in-the-wild databases when both the AD-
FL and MINE are jointly adopted. Specifically, the proposed
ADDL method outperforms the DDL gar&id&il&p method
by 2.57% and 1.17% on MMI and RAF-DB, respectively.
In summary, the developed ADFL and MINE are effective
to improve the FER performance.

To illustrate that the importance weights from the AFDL
can reflect the different influences of disturbing factors in the
FER training database, we visualize the importance weight-
s learned by the ADDL method in the training sets of M-



14 Delian Ruan1, * et al.

identity pose illumination gender race age
Disturbing Factor

0.46

0.48

0.50

0.52

0.54

Im
po

rta
nc

e 
W

ei
gh

t

identity pose illumination gender age
Disturbing Factor

0.475

0.480

0.485

0.490

0.495

0.500

0.505

Im
po

rta
nc

e 
W

ei
gh

t

(a) MMI (b) RAF-DB

race

Fig. 6: Visualization of the importance weights (corresponding to various disturbing factors) learned by the proposed ADDL
in the training sets of the (a) MMI and (b) RAF-DB databases.

Table 4: The NMI values obtained by different methods. For
NMI values, the higher is better. The best results are bold-
faced.

Methods MMI RAF-DB

Baseline 0.610 0.655

Baseline at 0.628 0.671

Baseline mat 0.662 0.671

DDL g 0.671 0.676

DDL ga 0.675 0.678

DDL gar 0.676 0.680

DDL gar&id 0.682 0.682

DDL gar&id&il 0.688 0.682

DDL gar&id&il&p 0.670 0.685

ADDL ADFL 0.693 0.699

ADDL MI 0.700 0.694

ADDL MI-DFEM 0.672 0.679

ADDL 0.711 0.709

MI and RAF-DB, as shown in Fig. 6. In Fig. 6(a), the im-
portance weight corresponding to the pose is smaller than
those corresponding to the other disturbing factors in MMI.
This is because the images from MMI do not contain severe
pose variations. In Fig. 6(b), the weights corresponding to
gender, race, age, and pose are similar and higher than the
weight corresponding to identity in RAF-DB. This indicates
that RAF-DB suffers from more disturbing factors than M-
MI. Therefore, the above results validate that the proposed
AFDL can adaptively estimate the importance weights cor-
responding to different disturbing factors according to the
characteristics of the FER database.

To demonstrate that our proposed method is able to ex-
tract discriminative features for expression recognition, we
further use t-SNE (Maaten and Hinton, 2008) to visualize
the features in the 2D space. Fig. 7 shows the feature visual-
ization obtained by the Baseline, Baseline mat, and ADDL
methods on the MMI and RAF-DB databases.

From Fig. 7, we can see that the proposed ADDL
method can effectively reduce intra-class variances and
inter-class similarities compared with Baseline and Base-
line mat. Baseline mat achieves better inter-class separation
and intra-class compactness than Baseline, which verifies
the superiority of the multi-level attention mechanism and
attention blocks. As shown in the second row of Fig. 7, due
to the great challenges of the RAF-DB database, the fea-
tures from different classes severely overlap for the Base-
line method. In contrast, for the proposed ADDL method,
the features from the same class are more closely clustered,
while the inter-class distances are enlarged (especially for
surprise, sad, neutral, and disgust expressions). Therefore,
our method is capable of effectively disentangling the dis-
turbance, even when some challenging variations occur in
facial expression images.

Finally, we adopt the Normalized Mutual Information
(NMI) value to quantitatively measure the quality of clas-
sification results obtained by different methods, as shown
in Table 4. We can observe that the ADDL method gives the
highest NMI value among all the competing methods. More-
over, both ADDL ADFL and ADDL MI obtain higher NMI
values than the three baselines and six DDL variants. This
further demonstrates the effectiveness of ADFL and MINE
for reducing intra-class differences and inter-class similari-
ties.
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Fig. 7: Feature visualization using t-SNE. The features are extracted by using two baseline methods and the proposed ADDL
method. The first row shows the feature visualization on the MMI database, and the second row shows the feature visualiza-
tion on the RAF-DB database. (a) Feature visualization on the model trained by Baseline. (b) Feature visualization on the
model trained by Baseline mat. (c) Feature visualization on the model trained by the ADDL method.

Table 5: Ablation studies for the influence of the differen-
t DFEM models. The best recognition accuracies (%) are
boldfaced.

Databases MMI RAF-DB

Multi-PIE 85.00 88.89

RAF-DB 85.71 88.69

Multi-PIE & RAF-DB 86.13 89.34

4.3.5 Influence of the DFEM

We evaluate the influence of the DFEM on the final perfor-
mance. We compare the ADDL MI-DFEM with the ADDL
and ADDL ADFL methods.

As shown in Table 3, we can see that the recognition
accuracy obtained by the ADDL MI-DFEM method signif-
icantly drops on both in-the-lab and in-the-wild databases
compared with that of the ADDL method. When the DFEM
is not adopted, ADDL is only optimized by the CE loss
and mutual information loss. In this way, the disturbance-
specific features are learned in an unsupervised way with-
out using any prior knowledge about disturbing factors.
Thus, the disturbance subnetwork cannot effectively capture
disturbance-related information, degrading the disentangle-
ment performance of ADDL.

Table 6: Ablation studies for the influence of backbones pre-
trained on different databases. The best recognition accura-
cies (%) are boldfaced.

Pretrained Databases MMI RAF-DB

– – 70.76 85.30

X ImageNet 84.03 87.58

X AffectNet 85.30 88.46

X MS-Celeb-1M 86.13 89.34

Compared with the ADDL MI-DFEM, the AD-
DL ADFL method also has better performance since it is
able to extract more discriminative disturbance-specific
features by leveraging prior information based on the
trained DFEM. Therefore, the DFEM plays a critical role in
the disturbance disentanglement to improve the accuracy of
the ADDL method.

4.3.6 Influence of the Different DFEM models

We evaluate the performance of our method with the dif-
ferent DFEM models trained based on three face databases
(Multi-PIE, RAF-DB, and Multi-PIE & RAF-DB), as shown
in Table 5.

We can see that when the DFEM is trained based on
Multi-PIE (including the labels of identity, illumination, and
pose), ADDL only achieves 85.00% and 88.89% on M-
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Table 7: Ablation studies for the influence of the balanced parameters λ1, λ2, and λ3 on the MMI and RAF-DB databases.
The best recognition accuracies (%) are boldfaced.

(a) Influence of λ1

λ1 MMI RAF-DB

0.0 83.39 88.27

0.5 84.72 88.92

1.0 86.13 89.34
1.5 85.50 88.62

2.0 83.45 88.30

(b) Influence of λ2

λ2 MMI RAF-DB

0.00 83.28 88.04

0.05 85.45 88.85

0.10 86.13 89.34
0.15 85.08 89.11

0.20 84.74 88.98

(c) Influence of λ3

λ3 MMI RAF-DB

0.0000 85.40 89.08

0.0001 85.77 89.05

0.0010 86.13 89.34
0.0100 85.67 89.08

0.1000 84.91 88.82

MI and RAF-DB, respectively. When the DFEM is trained
based on RAF-DB (including the labels of gender, race, and
age), ADDL obtains 85.71% and 88.69% on MMI and RAF-
DB, respectively. However, when both RAF-DB and Multi-
PIE are used to train the DFEM, the performance of the AD-
DL method is greatly improved. This further shows the im-
portance of considering different types of disturbing factors
for disturbance disentanglement.

4.3.7 Influence of Backbones Pretrained on the Different
Databases

We investigate the influence of backbones pretrained on
the different databases (including ImageNet, AffectNet, and
MS-Celeb-1M) on the final performance, as shown in Table
6. The performance obtained by our method without pre-
training the backbone is also evaluated.

Our method with the pretrained backbone achieves much
better FER performance than that without pretraining the
backbone. Moreover, our method with the backbone pre-
trained on MS-Celeb-1M gives better performance than
those pretrained on other large-scale databases. This is
because MS-Celeb-1M (including 10M images) contains
many more facial images than AffectNet (including 283K
images), which facilitates the backbone network to extract
more effective global features for FER. Although there are a
great number of images in ImageNet, most samples are nat-
ural images rather than facial images. Therefore, our method
with the backbone pretrained on ImageNet gives the worst
performance among the three pretrained backbones.

4.3.8 Influence of Balanced Parameters

We study the influence of three balanced parameters (i.e.,
λ1, λ2, and λ3) in the joint loss (Eq. (14)), as shown in Table
7.

Specifically, we first fix λ2 = 0.10 and λ3 = 0.0010,
and set the values of λ1 from 0.0 to 2.0. The results are
shown in Table 7(a). When λ1 = 0.0, adversarial training
is not adopted, and thus, the disturbance-specific features

cannot be effectively learned, leading to a performance de-
crease. When λ1 = 1.0, the proposed method obtains the
highest accuracy. Then, we fix λ1 = 1.0 and λ3 = 0.0010,
and set the values of λ2 from 0.00 to 0.20. The results are
shown in Table 7(b). The proposed method achieves the top
performance when λ2 = 0.10. Note that when λ2 = 0.00

(attention transfer is not used in this case), the proposed
method achieves worse accuracy than that without using
adversarial training on both MMI and RAF-DB. Hence, it
is important to bridge the gap between the DFEM and the
disturbance subnetwork at the lower layers. Finally, Table
7(c) illustrates the results obtained by our method by fixing
λ1 = 1.0 and λ2 = 0.10 and varying the values of λ3 from
0.0000 to 0.1000. We can observe that the proposed method
obtains the best accuracy when λ3 = 0.0010. In this paper,
we use λ1 = 1.0, λ2 = 0.10, and λ3 = 0.0010 for all the
experiments.

4.4 Comparisons with State-of-the-Art FER Methods

In this subsection, we compare our proposed method with
several state-of-the-art FER methods.

For in-the-lab databases, we compare the proposed AD-
DL with fourteen representative FER methods, including
LBP-TOP (Zhao and Pietikainen, 2007), PPDN (Zhao et al.,
2016), FN2EN (Ding et al., 2017), IACNN (Meng et al.,
2017), DLP-CNN (Li and Deng, 2018), DTAGN (Jung
et al., 2015), DeRL (Yang et al., 2018a), IPA2LT (Zeng
et al., 2018), DAM-CNN (Xie et al., 2019a), PHRNN-
MSCNN (Zhang et al., 2017), L2-sparseness (Xie et al.,
2019b), FMPN (Chen et al., 2019), TDGAN (Xie et al.,
2020), and our previous DDL (Ruan et al., 2020). For in-
the-wild databases, we also compare our proposed ADDL
with several representative FER methods, including gAC-
NN (Li et al., 2018), IPA2LT (Zeng et al., 2018), SPDNet
(Acharya et al., 2018), IPFR (Wang et al., 2019), RAN
(Wang et al., 2020c), SCN (Wang et al., 2020b), FMPN
(Chen et al., 2019), CPG (Hung et al., 2019b), PAENet
(Hung et al., 2019a), PSR (Vo et al., 2020), DACL (Farzane-
h and Qi, 2021), EfficientNet-B0 (Savchenko, 2021), CNN
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Table 8: Comparisons of al-
l the competing methods on
in-the-lab databases (CK+,
MMI, and Oulu-CASIA).
The best results are bold-
faced. ‡ and † denote that
seven and six expression
categories, respectively, are
used in CK+; * indicates that
the method is trained based
on the image sequences.

Methods
Accuracy (%)

CK+ MMI Oulu-CASIA

LBP-TOP (Zhao and Pietikainen, 2007) 88.99‡ 59.51 68.13

DTAGN* (Jung et al., 2015) 97.25‡ 70.20 81.46

PPDN (Zhao et al., 2016) 97.30† – 72.40

IACNN (Meng et al., 2017) 95.37‡ 71.55 –

PHRNN-MSCNN* (Zhang et al., 2017) 98.50‡ 81.18 86.25

FN2EN (Ding et al., 2017) 98.60† – 87.71

DLP-CNN (Li and Deng, 2018) 95.78† 78.46 -

DeRL (Yang et al., 2018a) 97.37‡ 73.23 88.00

IPA2LT (Zeng et al., 2018) 92.45‡ 65.61 61.49

DAM-CNN (Xie et al., 2019a) 95.88† – –

L2-sparseness (Xie et al., 2019b) 97.59‡ 78.54 82.92

FMPN (Chen et al., 2019) 98.06 82.74 –

TDGAN (Xie et al., 2020) 97.53±2.03‡ – –

DDL (Ruan et al., 2020) 99.16‡ 83.67 88.26

ADDL (proposed) 99.64‡ 86.13 89.44

(Anas et al., 2020), NISL (Deng et al., 2020), LLAM (Wang
et al., 2020a), ICT-VIPL (Zhang et al., 2020c), DMAC-
S (Gera and Balasubramanian, 2020), ResNet101+BLSTM
(Liu et al., 2020), ResNet101+BLSTM+CBAM (Liu et al.,
2020), SIU (Dresvyanskiy et al., 2020), and TNT (Kuhnke
et al., 2020).

Table 8 gives the performance comparisons between the
proposed method and several state-of-the-art FER method-
s on in-the-lab databases (CK+, MMI, and Oulu-CASIA).
Tables 9, 10, and 11 give the performance comparisons on t-
wo in-the-wild databases (RAF-DB and SFEW), Aff-Wild2,
and AffectNet, respectively. The accuracy obtained by each
competing method is taken directly from the corresponding
paper.

4.4.1 Results on In-the-Lab Databases

As shown in Table 8, almost all the methods obtain high
recognition accuracy in the CK+ database and relatively low
classification rates in the MMI database among the three in-
the-lab databases. This is because the images from CK+ are
of high quality and the intensities of different expressions
are strong, while those from MMI are affected by the glasses
and the expression intensities are weak.

Among all the competing methods, the top four meth-
ods are our proposed ADDL, DDL, FN2EN, and PHRNN-
MSCNN. The proposed ADDL method outperforms D-
DL in all the in-the-lab databases due to the effectiveness
of ADFL and MINE, where the ADFL extracts adaptive
disturbance-specific features and the MINE performs explic-
it disentanglement between expression-specific features and
disturbance-specific features. Note that the disturbing fac-
tors are not explicitly disentangled in DDL, leading to infe-

Table 9: Performance comparisons between our method and
several state-of-the-art FER methods on the RAF-DB and
SFEW databases. The best results are boldfaced. ** denotes
that the RAF-DB and AffectNet are jointly used for training.

Methods
Accuracy (%)

RAF-DB SFEW

IACNN (Meng et al., 2017) – 50.98

DLP-CNN (Li et al., 2017) 84.13 51.05

gACNN (Li et al., 2018) 85.07 –

IPA2LT (Zeng et al., 2018) 86.77 58.29

SPDNet (Acharya et al., 2018) 87.00 58.14

IPFR (Wang et al., 2019) – 57.40

DAM-CNN (Xie et al., 2019a) – 42.30

RAN (Wang et al., 2020c) 86.90 56.40

SCN** (Wang et al., 2020b) 88.14 –

DDL (Ruan et al., 2020) 87.71 59.86

PSR (Vo et al., 2020) 88.98 –

DACL (Farzaneh and Qi, 2021) 87.78 –

ADDL (proposed) 89.34 62.16

rior expression-specific features. ADDL also achieves bet-
ter accuracy than FN2EN on both CK+ and Oulu-CASIA.
Note that our test set in CK+ is more challenging (since it
contains the images corresponding to the contempt expres-
sion apart from the six basic expressions), while FE2EN on-
ly considers the six basic expressions. PHRNN-MSCNN is
comprised of a recurrent neural network (RNN) and a CNN,
where both the facial image and facial landmarks are used
as the input. In contrast, our proposed ADDL achieves bet-
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Table 10: Perfor-
mance compar-
isons between our
method and sever-
al state-of-the-art
FER methods on
the Aff-Wild2
validation set. The
best results are
boldfaced.

Methods Input F1 score (%) Accuracy (%) Overall (%)

CNN (Anas et al., 2020) Image 29.16 50.77 36.29

NISL (Deng et al., 2020) Image - - 42.43

LLAM (Wang et al., 2020a) Image 38.00 49.00 42.00

ICT-VIPL (Zhang et al., 2020c) Video&Audio 33.30 64.00 43.40

DMACS (Gera and Balasubramanian, 2020) Image 37.00 64.90 46.50

ResNet101+BLSTM (Liu et al., 2020) Video 28.10 64.70 40.20

ResNet101+BLSTM+CBAM (Liu et al., 2020) Video 33.30 64.00 43.40

SIU (Dresvyanskiy et al., 2020) Video&Audio - - 56.56
TNT (Kuhnke et al., 2020) Video&Audio - - 54.60

ADDL (proposed) Image 42.23 64.73 49.66

Table 11: Performance comparisons between our method
and several FER state-of-the-art methods on the AffectNet
database. The best results are boldfaced.

Methods Accuracy (%)

IPA2LT (Zeng et al., 2018) 57.31

gACNN (Li et al., 2018) 58.78

IPFR (Wang et al., 2019) 57.40

FMPN (Chen et al., 2019) 61.52

CPG (Hung et al., 2019b) 63.57

PAENet (Hung et al., 2019a) 65.29

PSR (Vo et al., 2020) 63.77

DACL (Farzaneh and Qi, 2021) 65.20

EfficientNet-B0 (Savchenko, 2021) 65.74

ADDL (proposed) 66.20

ter performance by using a single image as the input. In par-
ticular, although MMI contains more challenging variations
than the other two in-the-lab databases, ADDL outperforms
PHRNN-MSCNN by a large margin (4.95% improvements)
on MMI. This can be ascribed to the effectiveness of our
proposed adaptive deep disturbance-disentangled learning.
4.4.2 Results on In-the-Wild Databases

As shown in Table 9, we compare the proposed method
with twelve state-of-the-art FER methods on the RAF-DB
and SFEW databases. Among all the methods, the pro-
posed ADDL, SCN, DACL, DDL, and SPDNet obtain high-
er recognition accuracy than the other competing methods
on RAF-DB, while the proposed ADDL, DDL, IPA2LT, and
SPDNet are the top four methods on SFEW. SCN addresses
the uncertainty problem in FER and achieves state-of-the-art
performance. IPA2LT deals with the problem of inconsisten-
t annotations in the FER databases. SPDNet introduces the
covariance pooling into FER. PSR develops a scaling block
to handle facial images at different resolutions. DACL lever-
ages an attention mechanism based on a sparse center loss

to enhance the discriminative capability of features. Howev-
er, the above methods do not explicitly take the disturbing
factors into consideration, which may lead to inferior per-
formance in the case of limited training samples.

On the one hand, IACNN and IPFR are disturbance-
disentangled-based methods, but they can cope with on-
ly one or two disturbing factors. Different from the above
methods, ADDL is able to explicitly disentangle multiple
disturbing factors by leveraging adversarial transfer learn-
ing, even though disturbing factors are not labeled in the
FER database. On the other hand, gACNN and RAN ad-
dress the occlusion problem by combining local learning
and global learning. However, these two methods only uti-
lize high-level features to perform FER. Unlike these meth-
ods, ADDL exploits both high-level features and low-level
features in the expression subnetwork, thereby achieving ex-
cellent performance. Finally, compared with DDL, ADDL
achieves higher accuracy on RAF-DB and SFEW. It is worth
pointing out that DDL cannot adaptively choose the disturb-
ing factors when trained on an FER database. However, AD-
DL effectively alleviates this problem by designing the AD-
FL.

From Table 10, our proposed ADDL method performs
the best among all the image-based and video-based meth-
ods, with an overall score of 49.66%. SIU and TNT outper-
form our method, because they exploit the additional tempo-
ral and audio information for FER. Among all the competing
methods, NISL proposes a multi-task model to learn from
incomplete labels. LLAM and DMACS resort to attention
blocks to extract global and local attention-aware features
from facial images. ICT-VIPL, SIU, and TNT simultaneous-
ly extract visual features from videos and acoustic features
from audio tracks to construct discriminative expression fea-
tures. ResNet101+BLSTM uses ResNet-101 and BLSTM to
extract semantic features and temporal features, respective-
ly. However, the above methods do not fully consider the
multiple disturbing factors in facial expression images. In
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summary, the above results show the effectiveness of our
method in the large-scale FER database.

From Table 11, the proposed ADDL outperforms the
other competing methods on AffectNet. FMPN designs an
additional branch to learn local features from facial mus-
cle moving regions. Then, the local features are combined
with holistic features for classifying expressions. CPG and
PAENet introduce compact and unforgetting models to pro-
gressively learn new tasks. EfficientNet-B0 is trained in a
multi-task learning manner, where facial attribute prediction
is performed to improve the representation ability of the fea-
tures (i.e., edges and corners) at the lower CNN layers. How-
ever, the above methods along with IPA2LT and gACNN do
not perform disturbance disentanglement, leading to inferior
FER performance.

4.5 Computational Complexity

In this subsection, we briefly analyze the computational
complexity of the ADDL method. We also evaluate SCN
and the Baseline mat method for a comparison. Note that the
results obtained by other competing methods are not given
since their source codes are not publicly available. We use
the number of parameters (Params) and Floating Point op-
erations (FLOPs) to evaluate the memory consumption and
computational complexity of the model, respectively. More-
over, we adopt the inference time and speed to measure la-
tency. We take the RAF-DB database for performance eval-
uation.

Table 12 reports the number of parameters and FLOPs
obtained by SCN, Baseline mat, and ADDL. Both ADDL
and Baseline mat have more parameters and higher FLOP-
s than SCN. This is because the ADDM, which is based
on multiple attention blocks, is trained during the two-stage
learning procedure.

The inference time and speed obtained by SCN, Base-
line mat, and ADDL are given in Table 13. We can ob-
serve that the proposed ADDL obtains an inference time of
5.21 ms, which is similar to Baseline mat due to the same
inference phases. The inference speed of ADDL is lower
than that of SCN. Because multiple attention blocks are em-
ployed in ADDL to extract discriminative features. This im-
proves the FER accuracy but slows down the inference speed
of the model. Although the computational complexity of the
training phase of our proposed ADDL method is high, it can
still obtain real-time inference speed and be applicable to
real-world scenarios.

4.6 Valence and Arousal Estimation

In this subsection, we evaluate the performance of our
method for the task of valence and arousal (VA) estima-
tion on the AffectNet database. Similar to previous methods

Table 12: The number of parameters and FLOPs obtained by
different methods on the RAF-DB database.

Methods
Training

Modules Params FLOPs

SCN ResNet-18 11.2M 1.82G

Baseline mat Sg+Se 16.2M 2.82G

DFEM 11.4M 1.82G

ADDL MINE 16.5K 16.4K

ADDM (Sg+Se+Sd) 20.6M 3.82G

Table 13: The inference time and speed obtained by differ-
ent methods on the RAF-DB database. The inference time
and speed are measured in milliseconds (ms) and frames per
second (FPS), respectively.

Methods
Testing

Inference time (ms) Speed (FPS)

SCN 3.72 268.88

Baseline mat 5.17 193.52

ADDL 5.21 192.12

(Jang et al., 2019; Kollias et al., 2018; Mollahosseini et al.,
2017), we view the VA estimation as a regression task.

To perform the VA estimation, an FC layer is added af-
ter the expression classification layer (i.e., the last layer) in
Se to regress the valence and arousal values. Then, we fine-
tune the classification and regression layers based on a well-
trained ADDM that obtains the best validation accuracy for
a 7-way FER. The learning rate is set to 0.001 for the last
two layers and 0.0001 for the other layers in the ADDM. In
this paper, we adopt two commonly used metrics, i.e., root
mean square error (RMSE) and concordance correlation co-
efficient (CCC) (Mollahosseini et al., 2017), to evaluate the
performance. Thus, we add the RMSE and CCC losses into
Eq. (14) for joint training. The comparison results are re-
ported in Table 14.

As shown in Table 14, the factorized high-order CNN
method achieves the best performance on the four evalua-
tion metrics except for the RMSE of valence. The proposed
ADDL obtains the best result on the RMSE of valence and
the second place on the other three evaluation metrics. Fac-
torized high-order CNN (Kossaifi et al., 2020b) employs a
higher-order factorized convolution network, where a single
tensor regression layer (Kossaifi et al., 2020a) is dedicated
to performing regression of the VA values. In contrast, the
proposed ADDL is based on a classification model with an
additional regression layer, which may limit the regression
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Table 14: The results of valence and arousal estimation on
the AffectNet database. The best results are boldfaced.

Methods
Valence Arousal

CCC RMSE CCC RMSE

AlexNet (Mollahosseini et al.,
2017)

0.60 0.37 0.34 0.41

Face-SSD (Jang et al., 2019) 0.57 0.44 0.47 0.39

VGG-Face+2M imgs (Kollias
et al., 2018)

0.62 0.37 0.54 0.39

Factorized higher-order CNN
(Kossaifi et al., 2020b)

0.71 0.35 0.63 0.32

ADDL (proposed) 0.66 0.34 0.59 0.33

performance. The VGG-Face+2M imgs method synthesizes
facial images to improve the performance for the VA esti-
mation. Face-SSD jointly performs face detection and face
analysis. However, these methods have worse performance
than ours. These results show the feasibility of our method
for the VA estimation.

5 Conclusion and Future Work

In this paper, we propose a novel ADDL method for FER.
ADDL is able to disentangle multiple disturbing factors si-
multaneously and adaptively (even when the labels of dis-
turbing factors are not available in the FER database) and
effectively extract expression-related information. The train-
ing of ADDL contains two stages. First, a DFEM is trained
to identify multiple disturbing factors in a multi-task learn-
ing manner. Then, based on the trained DFEM, an ADDM
is learned to classify facial expressions by considering the
characteristics of the FER database. In the ADDM, an AD-
FL is developed to estimate the importance weights corre-
sponding to different disturbing factors and perform adver-
sarial transfer learning. Furthermore, an MINE is employed
to enable the explicit disentanglement between expression-
specific features and disturbance-specific features. Exten-
sive experiments on both in-the-lab and in-the-wild FER
databases have demonstrated the superior performance of
ADDL over several state-of-the-art FER methods.

It is widely assumed that facial expressions can in-
fer the emotional state of humans. However, Barrett et al.
(2019) show that the way humans express their emotions
may significantly vary across different cultures and situa-
tions. Moreover, they also reveal that similar configurations
of facial movements may belong to different emotion cat-
egories. Naturally, human perception of emotions does not
rely on one type of information. Instead, it is triggered by
a variety of cues from different sources. By investigating
such cues, many recent efforts (Lv et al., 2021) have been

proposed toward multi-modality (such as facial expressions,
body gestures, and voice to physiological signals) emotion
recognition by leveraging the strengths of each modality. In
the future, we plan to extend our method to multi-modality
emotion recognition.
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