
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Reconfigurable and Agile
Legged-Wheeled Robot Navigation in
Cluttered Environments with Movable
Obstacles
VIGNESH SUSHRUTHA RAGHAVAN1,2, DIMITRIOS KANOULAS3, DARWIN G. CALDWELL4,
and NIKOS G. TSAGARAKIS5. (Members, IEEE)
1Humanoids and Human-Centered Mechatronics (HHCM) Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
2Department of Information Engineering, University of Pisa, Italy (e-mail: v.raghavan@studenti.unipi.it )
3Department of Computer Science, University College London (UCL), Gower Street, WC1E 6BT, UK. (e-mail: d.kanoulas@ucl.ac.uk)
4Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy. (e-mail: Darwin.Caldwell@iit.it)
5Humanoids and Human-Centered Mechatronics (HHCM) Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy. (e-mail:
Nikos.Tsagarakis@iit.it)

Corresponding author: Vignesh Sushrutha Raghavan (e-mail: v.raghavan@studenti.unipi.it ).

This work was supported by the CENTAURO H2020 EU project under Grant 644839.

ABSTRACT Legged and wheeled locomotion are two standard methods used by robots to perform
navigation. Combining them to create a hybrid legged-wheeled locomotion results in increased speed,
agility, and reconfigurability for the robot, allowing it to traverse a multitude of environments. The
CENTAURO robot has these advantages, but they are accompanied by a higher-dimensional search space for
formulating autonomous economical motion plans, especially in cluttered environments. In this article, we
first review our previously presented legged-wheeled footprint reconfiguring global planner. We describe
the two incremental prototypes, where the primary goal of the algorithms is to reduce the search space
of possible footprints such that plans that expand the robot over the low-lying wide obstacles or narrow
into passages can be computed with speed and efficiency. The planner also considers the cost of avoiding
obstacles versus negotiating them by expanding over them. The second part of this article presents our new
work on local obstacle pushing, which further increases the number of tight scenarios the planner can solve.
The goal of the new local push-planner is to place any movable obstacle of unknown mass and inertial
properties, obstructing the previously planned trajectory from our global planner, to a location devoid of
obstruction. This is done while minimising the distance traveled by the robot, the distance the object is
pushed, and its rotation caused by the push. Together, the local and global planners form a major part of the
agile reconfigurable navigation suite for the legged-wheeled hybrid CENTAURO robot.

INDEX TERMS Hybrid legged-wheeled navigation; Legged-wheeled robotics; Navigation among movable
objects; Path planning; quadrupedal robot; Reconfigurable Navigation Planning

I. INTRODUCTION
Mobile robots often need the speed of wheeled rolling motion
and the agility of legged locomotion. Especially in envi-
ronments cluttered by obstacles as well as in unstructured
or uncertain environments, hybrid robots that comprise legs
and wheels have the advantage of dealing with most of the
challenges during navigation. Although, rapid sensing and
planning accurately paths, are required for stable, safe, and
efficient mobility in such environments.

In environments that lack free space for navigation, as

is the case in cluttered spaces, planning paths for rolling
robotic platforms is a very challenging task. Sometimes,
the motion is insufficient or infeasible due to collisions or
computationally heavy due to a large number of obstacles in
the surrounding environment. The shape and size of obstacles
are also major factors to be considered. This is the main
limitation of robotic platforms that have only fixed wheels
on the robot’s main body. The difficulty for wheeled robots
in navigating continuously increases considerably in such
tight spaces cluttered with obstacles of different sizes and

VOLUME 4, 2016 1



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. The CENTAURO robot, with its hybrid legged-wheeled mobility modules.

shapes. On the contrary, legged robots are gaining more
attention lately given their ability to use their high Degrees-
of-Freedom (DoF) legs to negotiate uneven terrains and
obstacles via locomotion. Unfortunately, planning such high-
DoF trajectories might be computationally expensive, while
constraints in the stability and safety of the robot need to
be considered at all times. In this work, we use a hybrid
quadruped robot (CENTAURO [1] in Fig. 1) that has wheels
at the end of each foot. In this way, the robot can roll, but at
the same time, it can alter its height and the configuration and
orientation of its legs (i.e., its footprint polygon) to walk in
narrow passages, over obstacles, or even push objects away
in order to create free space. The control of such hybrid
systems might be challenging, given that it might require
switching between rolling and stepping control, with heavy
path planning computations.

Path planning and navigation for wheeled robots have been
extensively studied in the past [2]. The majority of those
works were focused on 2D costmaps or occupancy grids, in
order to allow mobile robots to transit among obstacles [3].
These maps/grids were a result of fast and robust Simultane-
ous Localization and Mapping (SLAM) methods, that were
used to produce autonomous path planning for such robots.
Even though these methods are used efficiently enough for
a robot whose wheels form a fixed footprint polygon, there
is still a research gap for hybrid wheeled-legged robots
that can continuously modify their footprint polygon while
navigating an environment with real-time computations (we
review those in the next section). This is especially true,
given that heuristic graph-based methods, e.g., A*-based [4],
that produce the required paths by treating obstacles and
objects as non-traversable areas in the map. In this way,
interactions with obstacles (e.g., pushing) or transition via
other actions (e.g., stepping-over) are not considered. The
ideal scenario for a hybrid wheeled-legged robot is to roll
quickly among obstacles (either with fixed footprint polygon
or a reconfigurable by expanding for wide and narrowing for

narrow pathways), in order to reduce transit time, and only
use the legs for stepping when it needs to push or bypass an
obstacle via stepping.

This paper is split into two parts. Firstly, we describe our
previously introduced work on a novel global path planner
for hybrid wheeled-legged navigation [5], [6]. The goal of
the method is to reconfigure the footprint polygon of the
robot, by tweaking the leg configuration and the height of the
base from the ground, in order to navigate through obstacles
that cannot be avoided. Those obstacles might be of height
lower than the robot’s pelvis (such that the robot can pass
over them), wider than the robot’s current footprint polygon
(such that the robot can expand its feet to pass over them), or
form spaces shorter than the robot’s current footprint polygon
(such that the robot can narrow its feet to pass via them).
Allowing the robot to navigate like that in the environment
allows it to find the shortest paths to the destination, without
the need to take large detours around them. Our proposed
methods are based on the A* [4] and Theat* [7] path planners
and the robot’s capability to dynamically change its footprint
polygon. The introduced shortest path heuristics consider the
trade-off between reconfiguring the footprint polygon and
taking a detour around obstacles. In particular, two variations
of the algorithm are presented. In the first one, an A* based
planner using simple symmetric reconfigurable rectangle
footprints is introduced. This simple method allowed the hy-
brid wheeled-legged robot to navigate among wide and low-
height obstacles and in narrow spaces, using the rectangular
footprint polygon symmetry reconfiguration. In the second
one, we introduce a method to deal with spaces, where
keeping the symmetry of a rectangular footprint polygon is
not possible, e.g., when there is not much free space between
a narrow passage and a subsequent wide obstacle. Keeping
the symmetric solution would have resulted in a collision as
the robot would not have had sufficient space to reconfigure.
Thus, a version with improved computationally efficiency is
presented, where the front and back wheel pairs may follow

2 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

independent control, additionally also using the functionality
of the robot that allows for omnidirectional motion of its
legged-wheels. The result is that the robot is able to plan
paths in tight passages and be agile enough to navigate via
multiple obstacles.

In the second part of the paper, we introduce a new method
to further increase the number of tight scenarios the robot can
solve. A local push planner is designed to allow the robot to
move any small movable obstacle outside the path planned by
the global planners described above. The method uses line
equations and rectangular free-space partitions, object and
contact surface parameterization, as well as pixel coordinate
geometry. In this way, it can be determined where in a
rectangular free space partition devoid of any other obstacles,
can the movable object be placed, such that there is no
more obstruction. Thus after the push, the robot can either
go around or negotiate the movable object so as to rejoin
the original plan. The introduced local planner generates
a sequence of pushes that try to achieve three objectives,
namely 1) the robot travels the minimum distance to perform
the push and rejoin the disturbed pre-planned trajectory, 2)
the overall distance the object is pushed is minimum, and 3)
the rotation of the object is kept to a minimum. The planner
attempts to keep the rotation to a minimum given that it is not
using the mass or inertial properties. To create the push plan,
the algorithm uses the obstacle centroid, the locations of push
contact points from the centroid, and standard kinematics to
determine the pushes and the effects of the pushes.

The performance of our global planner is tested in simu-
lation and on the real CENTAURO robot for different obsta-
cle scenarios. Furthermore, various image-based simulations
and Gazebo1 simulations of the CENTAURO robot using
the newly proposed local push planner to clear obstructing
obstacles are demonstrated and discussed. The remainder
of the paper is organized as follows. First, in Sec. I-A, we
present related work on reconfigurable planning and navi-
gation among movable objects. In Sec. I-B, we introduce
the CENTAURO robot. In Sec. II, we present our obstacle
negotiating A*-based path planner algorithm and its next
iteration namely Trapezium Line Theta* planner. Following
this, the newly developed local planner prototype algorithm is
explained in detail in Sec. III. This is followed by simulation
and experimental results in Sec. IV and finally, in Sec. V we
conclude with a discussion and future directions.

A. RELATED WORK
Navigation planning is one of the most well-studied areas
in robotics. Shortest path planners, such as Dijkstra algo-
rithm [8], are nowadays outperformed by more advanced
ones, such as the A* [4], where optimal and efficient planning
is plausible. This class of planners discretize the space into
grids and use heuristics to calculate travelling cost distances
between grid points towards a goal. Improvements of A*
have been presented too, such as ThetaStar [7], which allows

1http://gazebosim.org/

continuous angle space exploration. Another class of meth-
ods compute costs backwards from the goal grid point. Such
methods are the ARA* [9], D* [10], and D*lite [11].

The Probabilistic Road Map (PRM) [12] is a popular
class of planning algorithms that are typically used for ma-
nipulators with many degrees of freedom, while Random
Rapidly Exploring Trees (RRT) [13] operate by incremen-
tally building a tree and connecting a randomly sampled
point to the closest point on the tree in case a collision-free
path exists. Many future studies like those in [14] and [15],
presented variations that improved upon the original RRT.
While PRM and RRT ensure completeness of the solution,
when the search space dimension is high, the number of
computations is also very high. Furthermore, additional post-
smoothing is needed to make the path found by RRT suit-
able for robot traversal. While A* finds the path quicker,
in higher dimensions, the graph construction and heuristic
cost calculation can be very complicated. For our current
problem of legged wheeled motion in a cluttered space but
flat ground, we would need a multi-dimensional search to
take into consideration the ability to change the base height
and footprint polygon configuration.

All the aforementioned planning methods have been used
extensively to generate navigation paths for robots that are
reconfigurable. For instance, in [16], [17] used reconfigura-
tion for tracked robots but only in order to avoid or climb
on objects. In [18], a tracked robot with an arm is used
with an A* planner to modify its center of mass (but not
the robot’s footprint polygon) in order to safely deal with
uneven terrains. More recently, in [19] a robot that changes
its shape is presented in order to clean ground surfaces. A
modified A* method produces plans in order to increase the
covered cleaning surface at each instance. Compared to our
work, and given the reconfiguration changes the footprint
polygon, this only considers obstacles avoidance, bypassing
them. Snake robots have been also used, given the natural
reconfigurability of their body. In [20], a wheeled snake
robot was used with an RRT* planner, to climb stairs and
move around objects or narrow passages by changing its
configuration. The used following-a-leader approach did not
allow for radical polygon shape changes with 12 s planning
times. Multi-modal PRM is used in [21] to plan simulated
paths for the ATHLETE and HRP2 robots. The ATHLETE is
a hybrid wheeled-legged robot, on which flat terrain and stair
negotiation was studied in simulation. Planning times were
around 90 s, but dealing with obstacles was not studied.

While research on path planning for footholds of hu-
manoid robots was studied heavily in the past [22], [23],
the development of hybrid robots with wheels and legs
increased the interest for real-time path planners that can
reconfigure footprint polygon. Closer to our work, in [24],
[25], driving and stepping motions for two, hybrid wheeled-
legged robots (CENTAURO and MOMARO), were studied.
Using ARA* [9], the robots were alternating between rolling
and stepping, without changing the width of the footprint
polygon, but rather using rolling-stepping actions in parallel

VOLUME 4, 2016 3



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to optimize traversability efficiency. Although, this work,
compared to ours, does not address the problem of changing
the footprint polygon in any direction to deal with wide
obstacles or narrow spaces. In [26], an interesting approach
of modelling the robot as a deformable bounding box was
presented. The robots (hexapod and quadruped) were able
to modify their height and width, using a CHOMP plan-
ner [27], to plan collision avoidance in narrow passages
and ceilings, as well as to plan going over obstacles. Their
newer work [28] improved upon this by using sampled poses,
pose optimization and trajectory smoothing in a hierarchical
manner, to give their legged robots like ANYMal the agility
to accommodate themselves through small gaps, and traverse
cluttered spaces like collapsed structures safely. The primary
difference beyond the obvious difference in the robots used
in the research and our work is that the above mentioned
two works focus on optimising for safe obstacle collision
avoidance to allow for agile and safe traversing. Whereas our
algorithms focus on the distance costs involved in avoiding
the obstacles versus negotiating the obstacles by changing
the robot footprint configuration. Furthermore, while the
algorithms in [26], [28] involve whole-body planning with
a much more complex search space, in our algorithms we
plan primarily for the lower body of the CENTAURO and
attempt to reduce the search space to make the algorithms
computationally moderate and efficient.

In this paper, we aim at novel methods that use the
reconfigurable legs capability of a hybrid wheeled-legged
robot, namely the quadruped CENTAURO. Our goal is to
minimize planning times, through flexible cost functions
(thus, not using PRM and RRT). For this reason, we use both
A* and Theta* planners for low-dimensional search space
path searching. In such a way, we are able to narrow or
extend the footprint polygon in order to deal with various
passages and obstacles in the environment. This is done by
utilizing costmaps, Octomap filtering [29], and simple 2D
obstacle segmentation, in order to find safe robot polygons.
The search space is then reduced either using rectangular
footprint polygon-based search in an A* framework [5] or
a more flexible trapezium-like footprint search in the more
versatile Theta* planner framework [6] to allow any-angle
motion as well as independent motions for the front and back
wheel pairs. We use Lidar point cloud data in order to create
costmaps and segmentations in the 2D projections of the
3D point clouds. We would like to note that these methods
have been previously used to plan paths over low-lying rough
surfaces, using the CENTAURO robot [30].

A key aspect of the second part of this paper is that it is
closely related to the popular Navigation Among Movable
Objects (NAMO) problem, introduced originally in [31],
[32]. The problem is NP-hard, even in its simple form,
thus, graph-based optimizations were introduced. After his
thesis [33], Stilman et al., focused on this problem through
a series of interesting papers, e.g. [34]–[36], that consider
unknown environments or locally optimal paths. The meth-
ods have been used on humanoid robots and wheeled ones,

up to an extent (either with known environments or via
open-loop controllers), as well as for robot arm manipula-
tion [37]. Recently they have been extended for socially-
aware navigation [38], [39], navigation using scene affor-
dances [40], or even sim2real navigation [41]. In our paper,
we are utilizing an object pushing action planner, based on
the NAMO algorithm, introduced in [35], [38], and perform
the pushes using the legs of the hybrid robot. We use similar
region partitioning and setting up of the push sequences.
Furthermore, we adapt it for our hybrid legged-wheeled robot
by clearly defining the types of pushes the robot can execute
and using these actions, each of which is a clearly defined
push type, as principal components of the push sequence. Our
algorithm is not as exploratory or optimal as those in [35],
[38], as we use conservative region partitioning, and simple
object parametrization and line geometry to merely move
the object from a pre-planned trajectory, or to a position it
can be avoided/negotiated. This makes the algorithm com-
putationally moderate and fast. It is to be noted unlike most
NAMO algorithms, we have no knowledge of the obstacle
mass and inertial properties. These planned push sequences
are integrated parallelly into the navigation suite consisting
of the global Trapezium Line Theta* planner that changes the
configuration of the footprint polygon, resulting in a unified
re-configurable path planner.

B. THE CENTAURO ROBOT
Given that the hybrid wheeled-legged robot CENTAURO,
will be used in this paper, we firstly introduce it. It is a
42 Degrees-of-Freedom (DoF) robot. Each leg has 7 motors
and actuated wheels. We assume after experimental justifi-
cation that the maximum footprint polygon width for which
the robot is stable is 1.1m, while the minimum is 0.44m.
Similarly, the maximum height of the robot’s main body is
1m from the ground. The robot includes a VLP-16 Velodyne
Lidar on its head, which also rotates, to provide dense point
cloud data at 40Hz. It also has three realsense D435 cameras,
two of which are attached close to the hind legs looking
towards the front legs and one looking down in the front
center of the robot on the pelvis. The robot and all its sensors
are calibrated, while an odometry-based system provides the
position of the robot in the world.

II. GLOBAL RECONFIGURABLE PATH PLANNER
In this section, we introduce the global path planner that
allows the hybrid robot to reconfigure its legs while rolling, to
facilitate navigation through challenging obstacles and pas-
sages. The incremental development of the re-configurable
local planner was done in two steps. The first prototype
named Obstacle Negotiating A* allowed for the robot to
always assume only rectangular footprints. The length and
breadths of the footprints were varied according to the nav-
igation plan to perform collision-free navigation. The robot
plans involved expanding over low-lying obstacles, narrow-
ing into tight spaces and total obstacle avoidance. The second
prototype named Trapezium Line Theta*, used trapezium-

4 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

like footprints to further improve the manoeuvrability of
the robot in tighter scenarios when compared to the first
prototype, thereby making the robot capable of traversing
more cluttered environments. For ease of presentation, the
two algorithms will be named Prototype 1 and Prototype 2.

In this section, we will outline step planner algorithms
developed for both prototypes. In both cases, the methods
used for mapping and creation of the navigation search map
were common. The prototype algorithms differed in the base
planner algorithm that was used and in the footprint search
method. While in the first prototype, a rectangular footprint
based search was combined with an A* planner [4], in the
second prototype a trapezium like footprint based search was
combined with a Theta* planner [7] to plan for valid robot
footprints.

A. SEGMENTED MAP CREATION
The creation of the map for performing planner search is
common for both the prototype algorithms. Using the Oc-
tomap [29] and move_bases2 software packages, pointclouds
from the VLP velodyne laser are processed into two 2D
image costmaps as follows. The first costmap consists of
all obstacle points, whereas the second costmap consists of
only points at a height higher than a threshold hobs. For most
of our experiments and simulations hobs is set to be 0.4m
to allow for comfortable safe clearance by the base of the
robot if it is to go above a low lying obstacle. The two 3D
costmaps are then converted to grayscale images – Ia and Ib.
In these two images, the white pixels represent obstacles and
the black pixels represent the free space. A third image Ic is
derived as Ic = Ia XOR Ib, which roughly consists of obstacle
points of height lower than hobs, which can be easily cleared
by the robot pelvis. A fourth image Id = Ia− Ic is obtained
followed by the final operation to obtain the segmented map
as I = 0.5×Ic+Id . Hence the segmented map classifies every
point on the map as free space (black), clearable obstacle
(grey) or non-clearable obstacle (white) using 3 colour codes
(see Fig. 2 for an example). This image is used as the main 2D
map for the introduced variable configuration path planning
development and its pixels form the planner’s query points.

B. SEARCH METHODOLOGY FOR PROTOTYPE 1
The search for possible paths is done pixel-wise in the created
2D segmented map. The robot is considered a single entity
and with a modifiable rectangular footprint with a constant
constraint on the sum of the length and width. The height of
the base of the robot above the ground is determined using
simple ratios of the width of the rectangle and maximum and
minimum widths of the rectangular footprint. Thereby, the
search is reduced to only valid collision free widths. An 8-
neighborhood search is done to determine motion from one
pixel to another in an attempt to determine the best path. In
this prototype, the robot is always aligned in the direction
of motion and since a simple A* based grid search was

2http://wiki.ros.org/navigation

FIGURE 2. Difference in the search methodology of the two prototypes. In
Prototype 1 the maximum of the entire robot polygon area around the query
point is searched to obtain a collision-free configuration. Whereas in prototype
two, two separate neighbourhoods in the vicinity of the front and back wheel
pairs are searched to obtain collision-free widths of the wheel pairs

used, the orientations assumed by the robot were limited. The
following factors are used to determine the cost:

• Deviation from the line joining the current position to
the goal.

• Variation in the rectangular footprint dimensions.
• Total distance being travelled.
• Change in orientation (straighter paths preferred).

Standard A* cost functions for calculating the cost of
moving from parent coordinates (xp,yp) to child coordinates
(xc,yc) are used, with the goal coordinates being (xg,yg).
This refers to the cost of occupying the coordinates and
the heuristic costs . For Prototype 1, they are determined as
follows:

g(xc,yc) = g(xp,yp)+Wt ×|δθo|+Wc×|δw|

h(xc,yc) =
√

(xg− xc)2 +(yg− yc)2 +Wg×
∣∣δθg

∣∣ (1)

where δθo is the normalised absolute orientation change
of the robot, δθg is the normalised orientation change away
from the straight line to the goal from the parent point, δw,
is the change in the width of the robot footprint needed to
perform obstacle negotiation if needed to obtain a collision-
free path, while W represent the respective weights which are
used to control the planner behaviour. In-depth descriptions
of the cost equations and the algorithm can be found in [5].

C. SEARCH METHODOLOGY FOR PROTOTYPE 2
Similar to Prototype 1, the second one is also using the 8-
neighborhood search, but instead of A*, Theta* is used as
the base planner. This allows for paths to be more flexible and
allows for any-orientation motion, unlike the first prototype
where the motion orientations were limited to multiples of π

4 .
Furthermore, the robot’s footprint splits into two rectangular
ones, each for the front wheel pair and the back wheel
pair. This is a difference that is depicted in Fig. 2. This
allows for plans that modify the front and back wheel pairs
independently giving rise to trapezium-like footprints when
necessary.

VOLUME 4, 2016 5



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Prototype 1 planner executing a plan consisting of expanding over
a low-lying obstacle and then narrowing into the corridor.

FIGURE 4. Prototype 2 planner allowing for any-angle motion alongside
independent front and back wheel pair operation.

In addition to the costs mentioned for Prototype 1, the
following are the added costs used for calculating low-cost
paths:
• Variation in individual wheel width pairs.
• Possibility to reach an intermediate search point without

changing orientation (omnidirectional motion without
orientation change for the whole robot is preferred).

The cost functions of Prototype 1 are used here too,
except |w| which is used to represent the absolute sum of
the change of the front and back wheel widths. Furthermore,
since Theta* planner is used, the parent and the child node
need not be immediate neighbours. The best parent node is
chosen using back-tracing, thereby allowing for all possible

FIGURE 5. Prototype 2 planner executing omni-directional motion and
independent front and back wheel pair motion with minimal cost, in a tight
constrained environment.

FIGURE 6. Sequence depicting the robot pushing a set of heavy bricks using
a single legged push.

orientations of motion from parent to child. A further check
is done to see if the motion from the parent to child node
can be done omnidirectionally. Detailed explanations of the
variations of the height calculations and the cost functions
compared to Prototype 1 can be found in [6].

The difference in the capabilities of the two prototype can
be seen in the Figs. 3, 4, and 5. Fig. 3 shows the robot
expanding over a low-lying obstacle and then narrowing into
the corridor. However if the distance between the end of
the low-lying obstacle and the start of the corridor had been
lesser than the maximum length of the robot in its narrowest
polygon, the planner would have been unable to find any
path. Furthermore, if the narrow corridor was angled at any
orientation other than multiples of π

4 , once again navigation
would have been impossible. As mentioned earlier, these
flaws were worked upon to improve the planner in Prototype
2. As can be seen in the simulation sequence in Fig. 4, the
robot expands its front and back wheel pairs independently
to negotiate the low lying obstacle while traversing a corridor
angled at ≈ 60deg. Furthermore, Fig. 5 shows the robot
performing obstacle negotiation in a very tight space thereby
negating the flaw mentioned earlier while also navigating
using omnidirectional motions.

III. LOCAL PUSHING PATH PLANNER
The sequence in Fig. 6 depicts the capability of the robot to
use one of its limbs to push a set of bricks. In this section, we
describe our new work which makes use of this capability.
In particular, we introduce a novel algorithm that plans a
sequence of object pushes, to clear obstructing obstacles.
The goal is to move an obstacle away from a pre-computed
trajectory (provided by the global planner, see Sec. II) or push
it to a location where it can be avoided or negotiated. The
obstacle’s mass and inertial properties might be unknown.
The planner aims to perform a minimal amount of pushing,
as well as travel the least distance to perform the pushes and
rejoin the original path plan. The distance travelled by the
wheels, the configuration changes, the overall translation of
the centroid of the object, and the rotation of the object while
performing the pushing sequence will be the necessary part
of the weighted additive costs to be minimised.

This local push planner will run at a higher frequency
than the above discussed global planner (Sec. II). The two
planners in the future will be combined to form the full agile
navigation system for the hybrid CENTAURO robot. The
global motion planner gives initial plans to traverse cluttered

6 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

spaces, ignoring pushable objects that can be viewed by the
sensory system (e.g., Velodyne) during the planning phase.
On the other side, the local planner will refine these plans
to push obstacles out of the plans that are computed by the
global planner. This is especially useful in a scenario where
global plans cannot be calculated due to an object blocking
the path to a goal and the object can neither be avoided nor
negotiated. In cases that an object is pushable, the global
planner might take that into account in order to make plans
that can be further refined by the local planner. This will be
done by pushing the object, such that the global path becomes
clear for the robot to pass through. An example of such a
scenario can be seen in Fig. 7, where the pushable object
(grey) is inside a small passage. The blue, red, and green
arrow lines represent the pre-planned front left wheel, robot
center, and front right wheel trajectories, respectively. The
lack of space on the side, as well as the width of the object
being greater than the maximum expansion width of the
robot, makes it impossible to plan a path inside the passage.
The new proposed algorithm and solution (i.e., pushing the
obstacle in order to clear the passage) can be seen in Sec. IV
(image and Gazebo simulations in Figs. 16 and 18). In
some scenarios, the solution provided by the new local push
planner algorithm may even aid in reducing the total distance
traversed by the robot as the robot could simply just push one
obstacle and have its path shortened.

The computation of the local plans for our henceforth
named Local Push Planner, in the presence of pushable
obstacles, involves the following steps that will be explained
in detail in the following subsections:
• Region partitioning of 2D environment into rectangular

areas, where collision-free pushing of a movable obsta-
cle can be performed (Sec. III-A).

• Parametrizing the movable obstacle to allow for re-
peated, easy, and efficient computations for determining
push sequence. (Sec. III-B).

• Planning the push of obstacles from within a region to a
suitable edge. (Sec. III-C)

• Planning the push in order to move the obstacle from
one region to another. (Sec. III-D)

• Determination either of sufficient clearance of the obsta-
cle from the path or the existence of sufficient space to
negotiate/avoid it. (Sec. III-E).

A. REGION PARTITIONING
The first step of the Local Push Planner, obtains a 2D image
map from the recognition algorithm. This map segments the
image into free spaces (black pixels), immovable obstacles
(white pixels), and movable obstacles (grey pixels), as can
be seen in Fig. 7. We consider as free space the ground
floor that the robot moves on, while movable and immovable
objects can be visually determined by any object recognition
algorithm, such as YOLO [42]. The recognition algorithm
itself is not the main subject of this paper and thus we omit
the details. Notice that we also do not study the problem of
having visually movable objects that are immovable (e.g., a

FIGURE 7. A sample segmented image map on the environment. The
arrowed lines are added to show the pre-planned trajectories from the global
planner.The blue line represents the front left wheel trajectory, the red
represents the robot center trajectory, while the green line represents front
right wheel trajectory.

FIGURE 8. Rectangle partitioning of the environment based on bounding
rectangles of the immovable obstacles.

box that is too heavy to be pushed) and we leave this as future
work.

We form bounding rectangles around the white patches to
determine conservative coordinate limits of the immovable
obstacles. Using these bounding rectangles we partition the
environment into a set of rectangles as can be seen in Fig. 8.
These individual rectangular partitions are then processed
and stored in a structure, where each element contains the
largest possible set of contiguous rectangles forming a larger
one, but devoid of any immovable obstacles. The first element
of the structure consists of the largest rectangular region
containing the robot in its initial position, with the subsequent
elements containing rectangular regions in a directional se-
quence similar to that of the expected pre-planned trajectory.
Therefore, during the algorithm processing, moving from one
element to the next will actually mean moving from one
rectangular region to the next possible, while moving in the
same direction as the pre-computed robot path trajectory.

An example of the partitioning and subsequent creation
of the directional structure of rectangular free spaces can be
seen in Fig. 9. As can be seen, the pre-planned trajectory runs
from the left to the right part of the image (blue for the front

VOLUME 4, 2016 7



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 9. Example of computation of connected free-space rectangle
regions. The various colours represent different regions or free space
partitions.

left wheel/foot, red for the robot center, and green for the
front right wheel/foot), hence connected rectangular regions
are also formed with similar directions. The algorithm will at-
tempt to find the appropriate rectangular free-space partition
to allow the placement of the object such that the robot can try
to go around it or otherwise negotiate it. In the case of Fig. 9,
the movable obstacle is present in the pink and the yellow
rectangles. Thus, the processing starts from the pink towards
the yellow region. This is followed by a combination of the
blue rectangle and part of the yellow shaded regions aligned
with the blue and green shaded rectangles. This ensures that
modified plans are as close as possible to the original one,
while also ensuring that unnecessary searches in unneeded
directions are not performed.

In each of these rectangular regions or connected parti-
tions, we first test if it is sufficiently large enough to accom-
modate the object. Then we check if there are any points in
the queried rectangular partition where the movable obstacle
can be placed such that the robot can navigate unhindered
to the original trajectory. This can be done either by the
robot footprint having enough space in the new location of
the object to avoid it or the object being low-lying and of
width less than the maximum width of the robot, thereby
allowing it to be negotiated. If no such point is found in
the queried partition then, the obstacle is pushed to the next
partition as computed by the directional structure containing
the sequence of rectangular partitions. This is detailed in the
following subsection.

B. OBSTACLE PARAMETRIZATION AND PUSH
PLANNING IN FREE SPACE PARTITION
While testing the ability of an object in a rectangular free-
space partition to be cleared by the wheel trajectory, we test
for clearance from three trajectory lines. These are the front
left wheel, front right wheel, and the robot center trajectory
lines. The clearance testing for a single trajectory line is
detailed as follows. Consider Fig. 10, where an object (in
yellow) needs to be pushed clear of the wheel trajectory (blue
line). The object hence needs to be pushed in a manner that

FIGURE 10. A scenario of of a movable object (yellow patch) at one edge of a
rectangular region (red rectangle). The wheel trajectory (blue arrowed-line)
collides with the movable obstacle.

FIGURE 11. Determination of push contact points and push directions at
respective contact points. The push directions represented by arrow lines are
perpendicular to the surface containing point of contact. The red dotted line is
the collision free path around the obstacle tracing the start points of the push
direction vectors.

its centroid is moved to some point inside the red-rectangular
free space region. In this case, the goal is to ensure none of
the object pixels collides with the wheel trajectory line.

We begin, by first determining the push contact surfaces,
using the edge pixels coordinates of the object. Since the
resolution of the image is 5cm per pixel and the length of
the face of the CENTAURO foot is 25cm (justification of the
selected values in the global planner work [6]), we search
all the edge pixels of the obstacle in the image in sets of 5
in order to find smooth surfaces. The angle between vectors
from the first to the third pixel and from the fifth to the third
pixel is used to determine if the surface is smooth or not.
This eliminates sharp corners for the safety of the robot. We
then determine the push direction to be always perpendicular
to the push surface. This is done to ensure maximum contact
with the surface for the duration of the push. As can be seen in
Fig. 11, we furthermore find a collision-free path connecting
all the start points of push actions. This collision-free path
around the obstacle is used to determine if the robot has
sufficient space to move around the obstacle and rejoin the
original pre-planned trajectory after pushing it to a suitable
location. If this is done, the robot can continue executing the
plan.

From this step, we use the complete set of push surfaces
and push direction vectors to completely represent the object.
The surface contact points are stored as vectors from the
centroid and the push directions as unit direction vectors.
Let us represent the n position vectors of the contact points
with respect to the centroid as −→cpi and the push directions

8 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

as
−→
dpi, where i = {1, ...,n}. Let the centroid coordinates be

represented as
−→
O = {Ox,Oy} and the start points for the push

be written as position vectors with respect to the centroid as
−→spi. We aim at finding an

−→
O , such that it satisfies either of the

following conditions:
• All coordinates calculated as

−→
O +−→spi are completely on

one side of the wheel trajectory line.
• All the coordinates

−→
O +−→spi are such that the robot

in its smallest square footprint can easily traverse the
curve traced by the dotted red line, as seen in the
sample Fig. 11, and still be sufficiently away from the
rectangular regions consisting of obstacle pixels.

• The object in the particular configuration and location
can be easily negotiated by simply changing the robot
footprint.

There are multiple possible push execution directions,
while the hybrid CENTAURO robot has the capability to
push an object using various strategies due to its high DoF
and agility. Hence, to limit the search space of possible push-
ing strategies, as well as efficiently determine the sequence
of pushes to be performed, we compute a push sequence,
such that its principle components are the push actions. Each
push action can be either of three types of pushes. The first
type of push is the single-legged in place, where the robot
merely moves one of the front limbs to move the object. The
second push type is a single-legged drive through, where only
one limb is in contact with the obstacle and the whole robot
moves to push it. The last push type is the two-wheeled drive
through, where the robot moves while both the front limbs are
in contact with the object being pushed. We accumulate a set
of push actions to create a push sequence. To determine the
set of pushing actions, we first determine the reachable set of
contacts point based on the angle of push and current robot
orientation and position. If the angle of the push vector with
respect to the direction of the eventual motion of the robot is
within 90 degrees, then it is deemed a useful push. This, in
turn, means that we discard any pushes that move the object
back, towards the robot center.

Once we have a set of reachable and usable robot push
contact points and push direction vectors, we create a final
set of all possible valid push actions as follows. First, all valid
push vectors are stored as single legged pushes that cause a
translation along the line joining the contact point and object
centroid, represented as a unit vector −→tpi . The corresponding
component of

−→
dpi perpendicular to the line joining the contact

point and centroid is calculated and represented by −→rpi. The
rotation caused by a single push

−→
dpi for translating the object

by two pixels or 10cm is calculated as follows:

θpi = 0.1×
|−→rpi|

|−→tpi|× |
−→
lpi|

(2)

The 0.1 value stands for the overall tangential velocity
magnitude for a motion of two pixels, which is set to 10cm/s
for our robot, and

−→
lpi = (lix, liy) represents the vector from the

push contact point to the centroid. Effectively, we calculate a

simple kinematic angular velocity and assume the motion is
performed in 1 s, leading to a rotation of θpi.

For two-wheeled pushes, we just select two push directions
that are within 15 degrees of each other and the two contact
points have a distance between the minimum and maximum
widths of the possible robot footprints which in our case is
either 9− 22 pixels or 45− 110cm. The above-mentioned
angle restriction allows for the robot to make and maintain
simultaneous double contact while pushing, thereby reducing
the uncertainty of the pushes. The single-wheel push calcula-
tions are used to find the effective translation and rotation. As
can be inferred, two-wheeled pushes with opposite rotations
will lead to a smaller amount of object rotation and more
stable pushes. Hence, this will be preferred for long range
movements of the object.

Once the set of single- and double-wheeled pushes are
assembled, costs are assigned to them and stored in another
structure to be used for determining the best sequence of
pushes. As can be observed from the very simple kinematic
calculations, the algorithm does not take the mass of the
object being pushed into account nor the inertial distribution.
While the pushing is being carried out, the robot limbs are
in position control mode, hence the force exerted on the
object being pushed keeps increasing until the specified push
motion is executed to completion. Without advanced learning
and recognition algorithms, we cannot entirely determine the
mass of the object from simple visual sensing and mapping
algorithms with inputs from sensors like the Velodyne or
the Realsense D435 look-down camera mounted on the hip
of the robot. Hence we use simple kinematic calculations
and position control to push the unknown object. This is
also the primary reason that necessitates a very conservative
rectangle-based partitioning, in order to determine the space
in which the object can be moved. In case the push execution
causes the object to not move as expected, unnecessary
collision with the other environment objects can be avoided.
Furthermore, the push sequence computation algorithm will
attempt to use pushes with lesser rotations, as this will reduce
the uncertainty in the motion of the object being pushed.

In the following subsection, we will explain the computa-
tions that are involved in order to determine required pushes
that take an object to a free rectangular-partitioned space.

C. DETERMINATION OF FEASIBLE GOAL POINTS

Considering again Fig. 7, the goal is to push the object
completely below the blue wheel trajectory line. First, we de-
termine the coordinates of the intersection between the region
rectangle and the wheeled trajectory. Then, we fit a line, with
the equation being ax+ by+ c = 0, between the two points.
The space below the line is represented as: ax+ by+ c > 0.
Let the rectangular region be represented by minimum and
maximum coordinates (xmin,ymin), (xmax,ymax). Then, we
find all queried coordinates−→q = (qx,qy) inside the rectangle,

VOLUME 4, 2016 9



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

such that they satisfy the following conditions:

xmin ≤ qx ≤ xmax

ymin ≤ qy ≤ ymax

a(qx + six)+b(qy + siy)> 0
(qx + six,qx + siy) /∈ XObs

(3)

Algorithm 1 Push Sequence Creation For Rectangular Parti-
tion Ri

Require: Robot left, center, and right trajectory line inequal-
ities Tl , Tc, & Tr

Require: Parametrized obstacles, initial obstacle centroid
coordinates Ox,Oy, contact point vectors, push directions
(tpi) and push rotations.

Require: Pre-determined cost weights C1,C2,C3,C4
for all Ti do

Find all qix,qiy, satisfying (3)
Sort all qix,qiy based on distance from current OX ,Oy
for All qix,qiy do

Greedy search of push actions based on tpis
Check collisions & robot escape from obstruction
Dr← Total distance travelled by robot center
Dw← Distance travelled by wheels
Do← Distance travelled by object centroid
Dt ← Rotation of the object
Cixy← Cost to move to qix,qiy
Cixy =C1×Dr +C2×Dw +C3×Do +C4×Dt

end for
end for
if solution coordinates qix,qiy found then

Choose push sequence and qix,qiy with min Cixy
else

Find min. rotation push to next partition
end if

If we are able to find points satisfying all the conditions in
(3), then we have a goal coordinate for the object’s centroid.
Thus, the object can be moved to a point in the free space
region, where there is no more obtrusion in the wheel trajec-
tories. Furthermore, the last condition ensures that none of
the surface contact points are in obstacle regions represented
by Xobs. This is a check that can be done very quickly using
just the bounding rectangle coordinates.

Starting from the first partition occupied by the object, the
aforementioned process is applied to find out all the possible
points that the centroid can be moved to in that particular
partition, so as to clear the trajectory line in query. Three
trajectory lines are considered namely the front left wheel
trajectory, the front right wheel trajectory, and the robot
center trajectory. If any of these trajectory lines intersect with
the object, then the above-described process is repeated as
many times as the trajectory intersections. We also check if
the object can be moved to either side of the trajectory lines
within the partition being examined.

Hence, for every one of the three trajectory lines intersect-
ing with the movable obstacle, we get a set of possible coor-
dinates where the obstacle can be moved to. This clears the
lines and leaves the obstacle within a free space rectangular
partition. Furthermore, the aforementioned steps are repeated
for different orientations of the obstacle. In case no solution
is found in the current orientation, the object is rotated by
5 degrees and similar steps are carried out. We limit the
rotation of the object to a maximum of 30 degrees, as it means
that the robot will have to completely turn itself in order
to rotate the object. Thereby, the robot will diverge from
the original plan by too much. In the case of mathematical
operations, as we represent the object by a simple set of
contact points with vectors to the centroid, a simple rotation
matrix multiplication with the vectors is all that is needed to
re-run the tests mentioned in (3).

In the case that all the conditions except the line inequality
are satisfied, then it means that the object needs to be moved
through the rectangular region to another neighbouring re-
gion. In this case, the object is moved in the direction of
the pre-planned trajectory to the next connected free space
rectangular partition. This takes place using a sequence of
motions that involves the least amount of rotations and least
distance travelled to reach the edge of the current rectangular
partition it is situated in.

The determination of the sequence of pushes to reach
either the goal coordinates in the partition or the edge of the
partition shall be detailed in the next subsection.

D. DETERMINATION OF PUSH SEQUENCE
The first point to be noted is that we are merely trying to
push the object in a rectangular region known to be free.
Hence, considerably greedy methods can be used to find the
sequence of actions from a given set of push actions.

We run an iterative local region loop to determine the push
sequence. We have two scenarios. The first is that inside
the given local region, it is impossible to clear the wheel
trajectories. In this case, the goal would be to move the
obstacle from one region to the next possible region, with
minimal possible rotation.

As mentioned earlier, we either have a set of coordinates
that the object can be moved to, such that the queried wheel
trajectory line is cleared or it can be pushed to the next
free space rectangular partition. We sort the coordinates in
ascending order of distance from the current centroid coor-
dinate. All the possible pushes are normalised, so that the
application of one such push, results in the same amount of
translation.

Loops are run through each of the possible goal coordi-
nates to determine the sequence of pushes that leads to the
centroid of the object at one of the goal coordinates. The
determination is performed as follows:
• First, a vector from the current centroid coordinate to

the goal coordinate is calculated.
• The push that has a translation vector closest to the

direction of the vector computed in the previous step is

10 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

chosen.
• The set of pushes with the least number of deviations,

rotations, and number of steps are chosen and stored,
using a simple greedy loop.

• In the case that the target is not reached in a nominal
number of steps, it is checked if the predicted coordinate
is in the set of goal coordinates. If so, then the push is
accepted, otherwise, the push sequence is computed for
the remaining goal coordinates.

• At each computation step of the sequence, every push
action is checked in order to determine if the robot can
move using the collision-free connected loop around
the object to the right push start points without collid-
ing or exiting the free space rectangular partition (the
connected loop was computed while parametrizing the
object). The free space partition boundary checks is
done using simple minimum and maximum coordinate
checks.

The above sets of steps are repeated for each trajectory
in line, passing through the queried rectangular free space
partition. All possible sequences of solutions are stored, costs
are assigned based on the distance of the push, the rotation
caused by the push and the distance moved by the robot to
cause the push. This ensures that pushes that involve lesser
rotations and changes in the push action sequence are chosen.
A brief description of the flow of computations of the new
local push planner for on single rectangular partition can be
seen in Algorithm 1.

E. EXECUTION OF THE PUSH SEQUENCE BY THE
ROBOT
As mentioned earlier, the robot has multiple ways of ex-
ecuting the push: 1) it can stand in place and perform a
single legged push, 2) it can drive through and perform a
single legged push, and finally 3) it can perform a drive
through double legged push. To further simplify the process
of choosing which method would be best, the following
decisions are taken:
• If the single leg push is chosen and it is on the right

side of the object with respect to the robot and the push
results in anti-clockwise rotation, we always push with
the front left so that the robot doesn’t rotate into the
polygon of the robot.

• Same is done for the opposite rotation and relative
position of the push with respect to the robot.

• Drive-through pushes with minimal rotations are pre-
ferred if this allows for the robot to not have the need
to change its configuration.

The above decisions are included in the cost as the distance
travelled by the robot to reach the push contact point and the
distance travelled by the wheels to execute the configuration
changes needed to perform the push.

F. TERMINATING CONDITIONS FOR THE PLANNER
As mentioned earlier, we check if we can push the object
completely to one side of the trajectory line or push it

sufficiently far from all obstacle regions. The second of the
above conditions can be easily verified by checking if all the
push start points are sufficiently distanced from the obstacle
rectangle lines. The sufficient distance is ensured, simply by
checking if the robot is in its minimal square configuration
(the footprint is a 50cm2 square). If the robot was at the
queried push start points, does not cross over into the obstacle
regions, it would mean that the robot can freely move around
the object and hence rejoin its original trajectory.

Another terminal condition is to see if the pushed object
at any part of the plan is in such an orientation that it can
be negotiated by changing the footprint configuration. Once
again this is a simple calculation of orienting the points in
the direction of the robot and merely finding the horizontal
extremities of the obstacle pixels to determine if the robot can
expand over it. This is a process similar to the computations
used in the global planner of Prototype 1, as explained in
Sec. II-B, but on a smaller scale to perform quick operations.

When either of these terminal conditions is met we stop
any push sequence calculations and pass on the new trajec-
tory to the trajectory execution interface.

IV. EXPERIMENTAL AND SIMULATION RESULTS
In this section, we first briefly discuss the experimental
results obtained on the real CENTAURO robot using the
plans from Prototype 1 and Prototype 2 of the global planner
algorithms, described in Sec. II. This is followed by the
simulation results of the new local planner presented in this
article, as described in Sec. III.

A. EXPERIMENTAL RESULTS OF PROTOTYPE 1 AND 2
Fig. 12 shows a simple execution of the global plan, where
the robot needs to narrow itself into a passage, created by the
tall concrete bricks, to reach its goal. It is to be noted, that the
footprint width signifies the distance between centers of the
wheels. The robot initially was in an expanded configuration,
with the width of the rectangular footprint being 100 cm,
whereas the safe width of the narrow passage was only 75 cm.
The computation time of the plan being executed in an Intel
Corei7-6700 PC with 24GB RAM was approximately 0.11 s.

Fig. 13 shows a longer and slightly more complicated plan
execution, where the robot has to firstly narrow into a passage
and then expand over the low-lying obstacle on which the
target goal coordinates were set. The width of the passage is
80 cm. The robot starts in the expanded configuration with
a footprint width of 100 cm, then narrows to 60 cm in the
narrow passage, and finally expands to a safe width of 76 cm
over the low-lying obstacle of width 50 cm. The computation
time of this plan was roughly 0.23 s.

It should be noted from Fig. 13 that the distance between
the narrow passage and the low-lying obstacle in the front,
is longer than the length of the robot in the narrow configu-
ration. Had that not been the case, no plan would have been
found. This flaw, as explained earlier, is solved in Prototype
2 as can be seen in Fig. 14, by having the robot operate
its front and back wheel pairs independently. The distance

VOLUME 4, 2016 11



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Sequence depicting the CENTAURO robot narrowing into the space in between the tall bricks to reach outside the narrow passage.

FIGURE 13. Sequence depicting the robot first narrowing in the corridor and then expanding over the low-lying wide object over which the target goal coordinate
was specified.

between the narrow passage and the low-lying obstacle is
much shorter than the case of Prototype 1, but as the front
and back wheel pair operations are independent, the robot has
sufficient agility to navigate the environment. Once again, the
width of the passage is 75 cm and the width of the low-lying
object is 50 cm. The distance from the end of the narrow
passage to the object is 80 cm, which is 30 cm less than the
length of the robot in the narrowest configuration, i.e. when
both wheel pairs are inside the passage. The robot first omni-
directionally aligns itself with the passage. Then, the front
wheel pair narrows from a width of 70 cm to 50 cm, followed
by the same operation being done by the back wheel pair.
Finally, while exiting the passage the front wheel pair alone
expands to a width of 80 cm. The time to compute these plans
once again executed on an Intel Corei7-6700 PC with 24GB
RAM was 0.0634 s on average.

B. SIMULATIONS OF THE LOCAL PUSH PLANNER

We first present simple image-based simulations, depicting
just the push sequences planned for two scenarios where the
path of the robot is blocked. The scenarios and the solutions,
as seen in Figs. 15 and 16, depict the utility of the Local Push
Planner in the specific scenario of an object obstructing the
entry into a corridor/passage.

In Fig. 15, the obstructing object is before the planned
entry into the passage, between the two white obstacles. The
robot just uses a single-drive through-push to completely

move the obstacle out of the path, allowing the robot enough
space to move into the corridor without the need to change
the configuration. The time taken to compute the push se-
quence was 29 ms on an Intel i7-6500U core, 16GB RAM
laptop.

The sequence in Fig. 16, depicts the solution to the sce-
nario in the previously presented Fig. 7, where the obstruct-
ing object is already inside the passage, through which the
robot has planned to pass through. In this scenario, the plan-
ner chooses to move the object with the double legged drive-
through push till it reaches a point where it detects it is in a
sufficiently large free space partition and the object can be
moved outside the path. Here the robot shrinks and performs
a single legged push to translate and rotate the object away
from the pre-planned front left legged trajectory. Thereby, it
allows the robot enough space to escape the obstruction after
performing the minimal required push. 33 ms was needed to
compute the push sequence for this scenario.

Now we present the results of the simulated CENTAURO
robot executing local push plans, through means of Gazebo
simulations. The first simulated sequence can be seen in
Fig. 17. In this situation, a long obstacle is obstructing the
entrance to the corridor. The global planner ignores the
obstructing object and plans the path through the corridor.
The local planner then sees that the obstructing object can
be moved to a place inside the same rectangular free-space
partition, like that of the initial coordinates of the object using

12 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 14. Sequence depicting the robot executing plans from Prototype 2. The robot omni-directionally aligns with the narrow passage, first narrows the front
wheel pair to enter the passage, then the back wheel pair to pass through the passage. Finally it expands the front wheel pair to negotiate to go-over the low lying
obstacle.

FIGURE 15. Image simulation sequence depicting push motions. The
grey/purple obstacle blocks the passage between the immovable white
obstacles. The purple pixels show the position of the pushed object over the
execution of the planned single wheeled push sequence. The orange
rectangle depicts the robot.

a simple single-leg push. In this case, the single-leg push
could be executed using simple drive through motion and
hence the object is cleared just enough to allow the robot to
safely enter into the passage. It can be seen that the planner
chose to keep pushing the obstacle until it is clear of the pre-
planned front left wheel trajectory of the robot. If instead,
it had chosen to only clear the robot center trajectory, the
robot would have had to change its footprint configuration to
the narrowest polygon to enter the passage. In this case, the
weighted cost of the overall distance travelled by the wheels
for the configuration change, outweighed the small extra
distance of pushing, as the robot would have had to move
in a configuration close to the minimal square configuration
(square footprint of side 50cm) to safely enter the passage

FIGURE 16. Image simulation sequence depicting a double legged drive
through push sequence execution followed by a single legged rotating push to
clear the robot of the initial planned path so as to allow the robot enough
space to rejoin the planned again by going around the object.

without colliding with the wall. Furthermore, the cost of the
push would have been low as it involved minimal rotation.

Fig. 18 depicts the Gazebo simulated CENTAURO robot,
performing the push sequence planned for the situation in
Fig. 7. It should be noted that even the drive-through push
is not entirely accurate, but the conservative nature of the
plan ensures the lack of collisions with the other obstacles.
Furthermore, since the object is wider than 1.1m, the robot
cannot negotiate it unless the object is rotated by more than
50 degrees. It is worthwhile to note that the robot could
have continued to push the object in drive-through mode for
longer, and then moved around its edges. But in this case, the
robot, by rotating the obstacle after pushing it through the
passage, performs pushing for a smaller distance in terms of

VOLUME 4, 2016 13



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 17. Simulation sequence depicting the robot clearing the obstructing obstacle using a single legged drive through push and then entering the corridor.

translations. Furthermore, since it changes configuration to
perform the push as well as move to one side of the object
(thereby already in the process of going around it), it travels
slightly less distance to rejoin the original plan, while also
minimising the distance the object is pushed.

The final simulation, as can be seen in Fig. 19, shows
a sequence of pushes where the robot executes a non-drive
through single legged push. In this situation, a two-wheeled
push would have resulted in more distance pushed for the
object. Moreover, the object would have been rotated more
than in the case where a single horizontal push would be
performed from the side. Since the object is already onto
one side of the exit of the passage and not in the center,
simply pushing it more to the side which it was on the exit of
the passage, meant less pushing distance, and less probable
rotation. Hence, the robot expands fully and moves to the
opposite side, so that the front right leg could move from its
widest position and then push towards the inward direction,
in turn pushing the object to the side. As can be seen, the
robot also moves horizontally after the front right leg reaches
its inner width limit. Then the robot returns, reconfigures
to the smallest and narrowest configuration, and then goes
around the object. As can be seen, the push is not exact, as
the object is rotated to a little extent, but that is fine due to
the conservative nature of our planner.

Through the experimental results of the Prototype 1 and 2
algorithms, we have managed to increase the number of clut-
tered environment scenarios the robot can solve and traverse
when compared to simple wheeled navigation. This is done
while still allowing us to take maximum advantage of the

fast wheeled-motion mode of the CENTAURO. Furthermore,
through our image-based and Gazebo simulations, it can be
seen that the robot can easily clear obstacles from the path.
This is especially true in the particular scenarios of blocked
entry to or exit from passages. The presented algorithm
though is not without its downsides. All our simulations
consisted of moving only a single obstacle, hence it is only
expected that the computation time will increase with the
increase in the obstacles to be pushed. Furthermore, complex
scenarios where the robot might need to perform very accu-
rate and precise pushes to avoid damaging the environment
may be beyond the capabilities of the current algorithm.
While the conservative and simplistic geometry approach
may limit us in more complex scenarios, the fact that we
are able to plan these pushes in very short times allows for
potential repeated planning and multi-object pushing in the
future versions of the algorithm. While multiple movable
obstacles in close proximity might hinder the search for
solutions, a simple algorithm that plans for the separation
of objects from one another might be beneficial. In such a
case, instead of pushing the obstacle to clear a trajectory
line, it would be needed to push one obstacle from another.
A similar framework that was presented in this work can
be used with appropriate modifications to clear one obstacle
from a region than a trajectory line. This can be followed by
subsequent planning, using the framework presented in this
work, to clear the obstacle from wheel trajectory lines, as
there is sufficient separation between the objects. The agility
of the robot and the usage of single legged operations would
be sufficient to perform such subtle pushes. Thereby this

14 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 18. Gazebo simulation sequence of the scenarios in Fig. 7. The robot performs a two-legged drive through push to move the obstacle in the small
passage before using a single wheeled push sequence to rotate the object, to give sufficient space to go around the obstacle and rejoin the original plan.

improves the ability of the robot to traverse heavily cluttered
spaces.

V. CONCLUSIONS AND FUTURE WORK
In this article, the development of a reconfigurable and agile
navigation planner suite for hybrid legged-wheeled robots
was outlined. First, the previously developed prototypes for
the global planner were described, comparisons between the
prototypes were made, and the results were reviewed and pre-
sented. The plan from the global planner Prototype 2 allowed
for very agile navigation in tight cluttered spaces giving the
robot the ability to solve and traverse more environments than
simple non-reconfigurable wheeled navigation planning, by
using the full capabilities of reconfiguration. At the same
time, the planning search space was designed to be low-
dimensional, allowing for high-speed computations. This,
in the future, would allow for repeated quick long-distance
global planning for the robot.

Following the previously developed global planner, a new
local planner, to clear movable objects obstructing the plans
from the global planner, was introduced. The planner used
line equations, rectangular partitions, object parametrization,
and simple collision checks to determine a sequence of push
actions that lead to minimum rotation, minimum pushed
distance, and minimal configuration changes of the robot in
order to achieve the push and, thus, escape the obstruction.
Image-based and Gazebo simulations, with the CENTAURO
robot, were performed to demonstrate the capability of the
new local planner. This new prototype runs in parallel with
the global planner in the final version of the navigation.

Through the new local planner, the robot is now capable
of traversing more complex environments by performing
a small sequence of pushes to clear the path and reach
target goals. This will be extremely useful when the robot
is commissioned to perform tasks in cluttered spaces. Fur-
thermore, there exists one more method of locomotion that
the CENTAURO can use to navigate cluttered spaces, which
is stepping over obstacles of appropriate height. The final
version of the suite will contain a step planner, which in
the presence of low-height obstacles, will determine safe
footsteps and determine if stepping is worth the safety cost
to perform, rather than avoiding or negotiating the obstacle.
Adding a computationally moderate stepping planner will
give the robot another option to navigate cluttered paths.
Together these three computationally moderate components,
namely, the global obstacle negotiating planner, local push
planner, and the immediate step planner could allow for
repeated, reliable and quick planning in cluttered spaces.

REFERENCES
[1] N. Kashiri et al., “CENTAURO: A Hybrid Locomotion and High Power

Resilient Manipulation Platform,” IEEE Robotics and Automation Letters
(RA-L), 2019.

[2] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge
University Press, 2006.

[3] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The
Office Marathon: Robust Navigation in an Indoor Office Environment,” in
IEEE Int. Conf. on Robotics and Automation, 2010.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[5] V. S. Raghavan, D. Kanoulas, A. Laurenzi, D. G. Caldwell, and N. G.
Tsagarakis, “Variable Configuration Planner for Legged-Rolling Obstacle

VOLUME 4, 2016 15



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 19. Simulation sequence depicting the robot moving through a corridor, clearing the obstructing object and moving forward. The robot first reaches the
obstructing movable obstacle. It then expands and moves to the side to allow the front right wheel to use its full range of horizontal motion inwards to perform the
push and then push the object from the side.

Negotiation Locomotion: Application on the CENTAURO Robot,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 4738–4745.

[6] V. S. Raghavan, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Agile Legged-Wheeled Reconfigurable Navigation Planner Applied on
the CENTAURO Robot,” in IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 1424–1430.

[7] A. Nash, K. Daniel, S. Koenig, and A. Felner, “Thetaˆ*: Any-angle path
planning on grids,” in AAAI, vol. 7, 2007, pp. 1177–1183.

[8] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[9] E. A. Hansen and R. Zhou, “Anytime Heuristic Search,” Journal of
Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[10] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known
Environments,” in IEEEE International Conference on Robotics and Au-
tomation (ICRA), 1994, pp. 3310–3317.

[11] S. Koenig and M. Likhachev, “Dˆ* Lite,” Aaai/iaai, vol. 15, 2002.
[12] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

Roadmaps for Path Planning in High-Dimensional Configuration Spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[13] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” 1998.

[14] J. J. Kuffner and S. M. LaValle, “RRT-connect: An Efficient Approach
to Single-Query Path Planning,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp. 995–1001.

[15] A. Atramentov and S. M. LaValle, “Efficient Nearest Neighbor Searching
for Motion Planning,” in IEEE International Conference on Robotics and
Automation(ICRA), vol. 1, 2002, pp. 632–637.

[16] M. Brunner, B. Brüggemann, and D. Schulz, “Motion Planning for Ac-
tively Reconfigurable Mobile Robots in Search and Rescue Scenarios,” in
IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2012, pp. 1–6.

[17] M. Menna, M. Gianni, F. Ferri, and F. Pirri, “Real-time Autonomous 3D
Navigation for Tracked Vehicles in Rescue Environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2014,
pp. 696–702.

[18] M. Norouzi, J. V. Miro, and G. Dissanayake, “Planning High-Visibility
Stable Paths for Reconfigurable Robots on Uneven Terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2012,
pp. 2844–2849.

[19] A. Le, V. Prabakaran, V. Sivanantham, and R. Mohan, “Modified A-Star
Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-
Reconfigurable Robot with Integrated Laser Sensor,” Sensors, vol. 18,
no. 8, p. 2585, 2018.

[20] L. Pfotzer, S. Klemm, A. Rönnau, J. M. Zöllner, and R. Dillmann, “Au-
tonomous Navigation for Reconfigurable Snake-like Robots in Challeng-
ing, Unknown Environments,” Robotics and Autonomous Systems, vol. 89,
pp. 123–135, 2017.

[21] K. Hauser and J.-C. Latombe, “Multi-Modal Motion Planning in Non-
Expansive Spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[22] D. Kanoulas, A. Stumpf, V. S. Raghavan, C. Zhou, A. Toumpa, O. Von
Stryk, D. G. Caldwell, and N. G. Tsagarakis, “Footstep Planning in Rough
Terrain for Bipedal Robots Using Curved Contact Patches,” in IEEE
International Conference on Robotics and Automation (ICRA), May 2018,
pp. 1–9.

[23] D. Kanoulas, C. Zhou, A. Nguyen, G. Kanoulas, D. G. Caldwell, and N. G.
Tsagarakis, “Vision-based foothold contact reasoning using curved surface
patches,” in 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids). IEEE, 2017, pp. 121–128.

[24] T. Klamt and S. Behnke, “Planning Hybrid Driving-Stepping Locomotion
on Multiple Levels of Abstraction,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), 2018, pp. 1695–1702.

[25] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko,
D. Droeschel, and S. Behnke, “Supervised Autonomous Locomotion and

16 VOLUME 4, 2016



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Manipulation for Disaster Response with a Centaur-like Robot,” arXiv
preprint arXiv:1809.06802, 2018.

[26] R. Buchanan, T. Bandyopadhyay, M. Bjelonic, L. Wellhausen, M. Hutter,
and N. Kottege, “Walking Posture Adaptation for Legged Robot Naviga-
tion in Confined Spaces,” IEEE Robotics and Automation Letters (RA-L),
2019.

[27] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
Optimization Techniques for Efficient Motion Planning,” in IEEE Interna-
tional Conference on Robotics and Automation, 2009, pp. 489–494.

[28] R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege,
and M. Hutter, “Perceptive whole-body planning for multilegged robots
in confined spaces,” Journal of Field Robotics, vol. 38, no. 1, pp. 68–84,
2021.

[29] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[30] V. Suryamurthy, V. Sushrutha Raghavan, A. Laurenzi, N. Tsagarakis, and
D. Kanoulas, “Terrain Segmentation and Roughness Estimation using
RGB Data: Path Planning Application on the CENTAURO Robot,” in
IEEE-RAS International Conference on Humanoid Robots. IEEE-RAS,
2019.

[31] M. Stilman and J. Kuffner, “Navigation among movable obstacles: Real-
time reasoning in complex environments,” in 4th IEEE/RAS International
Conference on Humanoid Robots, vol. 1, 2004, pp. 322–341.

[32] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, “Planning and
Executing Navigation Among Movable Obstacles,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2006, pp. 820–826.

[33] M. Stilman, “Navigation Among Movable Obstacles,” Ph.D. dissertation,
2007.

[34] M. Stilman and J. Kuffner, “Planning Among Movable Obstacles with
Artificial Constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[35] H.-N. Wu, M. Levihn, and M. Stilman, “Navigation Among Movable Ob-
stacles in unknown environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010, pp. 1433–1438.

[36] M. Levihn, M. Stilman, and H. Christensen, “Locally optimal navigation
among movable obstacles in unknown environments,” in IEEE-RAS Inter-
national Conference on Humanoid Robots, 2014, pp. 86–91.

[37] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
Planning Among Movable Obstacles,” in IEEE International Conference
on Robotics and Automation, 2007, pp. 3327–3332.

[38] B. Renault, J. Saraydaryan, and O. Simonin, “Towards S-NAMO:
Socially-aware Navigation Among Movable Obstacles,” CoRR, vol.
abs/1909.10809, 2019.

[39] ——, “Modeling a Social Placement Cost to Extend Navigation Among
Movable Obstacles (NAMO) Algorithms,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 11 345–
11 351.

[40] M. Wang, R. Luo, A. Ö. Önol, and T. Padir, “Affordance-Based Mobile
Robot Navigation Among Movable Obstacles,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 2734–
2740.

[41] K. Ellis, H. Zhang, D. Stoyanov, and D. Kanoulas, “Navigation Among
Movable Obstacles
with Object Localization using Photorealistic Simulation,” 2021.

[42] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv, 2018.

VOLUME 4, 2016 17



V.S. Raghavan et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VIGNESH SUSHRUTHA RAGHAVAN ob-
tained his Bachelor of Technology degree in In-
strumentation and Control from National Institute
of Technology, Tiruchirappalli, India in 2014. He
obtained his Masters degree in Systems and Con-
trol from Technische Universiteit Delft, Nether-
lands in 2016. He is currently pursuing a PhD
degree with the Humanoids and Human Centered
Robotics (HHCM) lab in Istituto Italiano di Tec-
nologia, Genova, and Department of Information

Engineering, University of Pisa. His main research areas of interest include,
reconfigurable autonomous navigation and sensor data fusion for mapping
and localization

DIMITRIOS KANOULAS (Member IEEE) is
Lecturer (Assistant Professor) in Robotics and
Computation at the University College London
(UCL), Department of Computer Science. Before
joining UCL, he was a postdoctoral researcher
at the Italian Institute of Technology for 5 years
and obtained his PhD at Northeastern Univ. in
Boston. His research focuses on robot perception,
planning, and learning, while he has worked on
more than six humanoid/animaloid robots. He has

published more than 40 research articles in high-impact robotic journals and
conferences, while he has won the Best Interactive Paper Award in IEEE
Humanoids 2017 and Best Student Paper Award Finalist in IEEE ICARCV
2018.

DARWIN G. CALDWELL (Member IEEE) re-
ceived the B.Sc. and Ph.D.degrees in robotics from
the University of Hull, Hull, U.K., in 1986 and
1990 respectively, and the M.Sc. degree in man-
agement from the University of Salford, Greater
Manchester, U.K., in 1994. He is the Deputy Di-
rector of the Italian Institute of Technology (IIT),
Genoa, Italy, and the Director of the Department
of Advanced Robotics, IIT. He is or has been an
Honorary Professor with the University of Manch-

ester, Manchester, U.K.; the University of Sheffield, Sheffield, U.K.; the
University of Bangor,Bangor, U.K.; King’s College London, London, U.K.;
and Tianjin University,Tianjin, China. He has authored or coauthored more
than 500 academic papers, over 20 patents, and has received awards and
nominations from many international journals and conferences. His research
interests include humanoid and quadrupedal robotics (iCub, cCub, COMAN,
WalkMan, HyQ, HyQ2Max,HalfMan, and COMAN+), innovative actuators,
haptics and force augmentation exoskeletons, medical, rehabilitation and
assistive robotic technologies,and dexterous manipulators. Prof. Caldwell
has been the Chair of the IEEE Robotics and Automation Chapter, a Past
Co-Chair of the IEE (IET) Robotics and Mechatronics PN, the Secretary
of the IEEE/ASME TRANSACTIONS ON MECHATRONICS, an Editor
of Frontiers in Robotics and AI, on the editorial board of the International
Journal of Social Robotics and Industrial Robot, and on the Advisory Board
of Science Robotics. In 2015, he was elected as a Fellow of the Royal
Academy of Engineering.

NIKOS G. TSAGARAKIS (Member, IEEE)
received the D.Eng. degree in electrical and com-
puter science engineering from the Polytech-
nic School, Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 1995, and the M.Sc. de-
gree in control engineering and the Ph.D. degree
in robotics from the University of Salford, Sal-
ford, U.K., in 1997 and 2000, respectively. Since
2013, he has also been working as a Visiting
Professor with the Center for Robotics Research,

Department of Informatics, King’s College University, London, U.K. He is
currently a Tenured Senior Scientist with the Istituto Italiano di Tecnologia,
Genoa, Italy, with overall responsibility for humanoid design and human
centered mechatronics development. He was a Technical Editor of the
IEEE/ASME Transactions on Mechatronics. He is currently on the Editorial
Board of the IEEE Robotics and Automation Letters.

18 VOLUME 4, 2016


