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Abstract 

Believing that good things will happen in life is essential to maintain motivation and 

achieve highly ambitious goals. This optimism bias, the overestimation of positive outcomes, 

may be particularly important during childhood when motivation must be maintained in the 

face of negative outcomes. In a learning task, we have thus studied the mechanisms underlying 

the development of optimism bias. Investigating children (8-9 year-olds), early (12-13 year-

olds) and late adolescents (16-17 year-olds), we find a consistent optimism bias across age 

groups. However, children were particularly hyperoptimistic, with the optimism bias 

decreasing with age. Using computational modelling, we show that this was driven by a 

reduced learning from worse-than-expected outcomes, and this reduced learning explains why 

children are hyperoptimistic. Our findings thus show that insensitivity to bad outcomes in 

childhood helps to prevent taking on an overly realistic perspective and maintain motivation. 
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Introduction 

Learning and knowing what is good for us is crucial for survival and a key part of 

development in human and non-human animals. Organisms are known to use trial-and-error 

learning to acquire and continuously adjust their knowledge and behaviour (Schultz et al., 

1997). This reinforcement learning - the process of forming and adjusting expectations based 

on prediction errors (Sutton & Barto, 1998) - is known to converge to the optimal behaviour 

(Watkins & Dayan, 1992). This means that trial-and-error learning will allow the formation of 

correct and unbiased knowledge that maximises rewards (Körding & Wolpert, 2004; Sutton & 

Barto, 1998). Nevertheless, humans are known to be subject to many cognitive biases that 

distort these optimal representations (De Martino et al., 2006; Tversky & Kahneman, 1974). 

A prominent distortion is an optimism bias, the tendency to see the world through rose-

tinted glasses and to expect it to be better than reality actually is (Sharot, 2011). Even though 

this optimism bias may corrupt an adequate representation of one’s environment, it has been 

suggested to be beneficial because it boosts motivation and thus increases the likelihood of 

overcoming obstacles to achieve ambitious goals. Indeed, beneficial effects of optimism bias 

have been found in multiple domains, such as physical health (Rasmussen et al., 2009), mental 

health (Nolen-Hoeksema et al., 1992; Strunk et al., 2006) and professional development (Puri 

& Robinson, 2007). 

The optimism bias might be of particular importance during development in childhood 

and adolescence. For example, an overly optimistic view of a dream job will allow a child to 

pursue their ambition and overcome the many obstacles along the way. In fact, the first studies 

investigating abstract concept knowledge revealed that children show features of optimism 

biases about the future in general (Bamford & Lagattuta, 2020; Fischer & Leitenberg, 1986),  

as well as their own future knowledge (Lockhart et al., 2017), and overestimate positive traits 

in themselves and others (Boseovski, 2010; Lockhart et al., 2002). 
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However, little is known about how this optimism bias arises mechanistically, 

especially in youths. A pioneering study in adults has investigated this process and has shown 

that an optimism bias indeed arises from a bias in learning, in which better-than-expected 

(positive) outcomes are weighted more strongly than worse-than-expected (negative) outcomes 

(Lefebvre et al., 2017). Using computational modelling, the authors showed that this optimism 

bias could be explained by an ‘optimistic learning’ bias, by means of a decreased learning rate 

for negative compared to positive prediction errors (Lefebvre et al., 2017).  

 Such an optimistic learning bias could be of particular importance when investigating 

optimism biases during development because a growing body of evidence indicates that 

prediction error related learning changes substantially during development (Cohen et al., 2020; 

Hauser et al., 2015; Nussenbaum & Hartley, 2019). In particular, several studies have 

suggested that overall learning from prediction errors increases during youth, although not 

ubiquitously so (for review cf (Nussenbaum & Hartley, 2019)). Whether a bias towards 

learning from positive compared to negative events exists during development and whether 

this optimistic learning bias leads to an optimism bias is unclear. 

In this study, we investigate the development of optimism bias in childhood and 

adolescence, and how it is related to biases in reinforcement learning. We have chosen a sample 

that covers childhood (8-9 year-olds), early adolescence (12-13 year-olds) and late adolescence 

(16-17 year-olds) to understand how and when the optimism bias mechanistically changes over 

these key developmental stages. Using an ecologically realistic learning task (Hauser et al., 

2017) that assessed youth’s ability to predict and learn from effortful attainment of reward, we 

show that children are hyperoptimistic with an increased optimism bias compared to early and 

late adolescents, and this bias is driven by a depleted learning rate for worse-than-expected 

outcomes. 
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Methods 

 

We recruited 108 participants from multiple schools across Greater London, UK. We 

only included participants who were in a certain age range (8-9 years old (yo), or 12-13 yo or 

16-17 yo), and fluent in English. We allowed all children who provided consent to take part in 

the study but excluded from analysis those who had a history of neurological or psychiatric 

disorders, and visual impairment that was not corrected by the use of glasses or contact lenses. 

In total, nine participants were excluded from the analysis: 1 due to a pre-existing neurological 

condition (children group), 6 due to not understanding the task when asked questions about the 

task or not paying attention (as observed by experimenter; 2 from children group; 3 from early 

adolescents group; 1 from late adolescents group), 1 due to a technical problem (late 

adolescents group) and 1 due to low effort success rate (37.5%; children group). The final 

sample included 27 children (17 females; mean age = 9.32 ± 0.27), 38 early adolescents (20 

females; mean age = 13.13 ± 0.31) and 34 late adolescents (21 females, mean age = 17.17 ± 

0.28). All the behavioural findings reported were present when including those participants. 

These age ranges were selected to span late childhood, early- and late-adolescence. The groups 

did not differ in their age-adjusted IQ estimates (c.f. Table 1). We deliberately recruited 

participants from schools in socially diverse areas with lower socioeconomic status (SES) to 

counteract the currently overrepresented recruitment bias towards youth with higher SES  

(Fakkel et al., 2020). The sample size was selected assuming similar, medium to large effect 

sizes based on previous developmental studies and our own study using a similar task (Bamford 

& Lagattuta, 2020; Decker et al., 2015, 2016; Hauser et al., 2017; Lockhart et al., 2002, 2017). 

All participants provided written informed consent and participants under 16 provided written 

consent from a parent or legal guardian in addition to their own consent. Each participant was 

given a gift voucher of £7. The study was approved by the Research Ethics Committee of 

University College London (study number: 14261/001). Different tasks from the same 
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participants are reported elsewhere (Bowler et al., 2021; Dubois et al., 2020; Moses-Payne et 

al., 2020). The current study was not preregistered. The data, analysis code and modelling 

toolbox are publicly available at https://github.com/DevComPsy/EL-development.  

 Children 

(8-9 years) 

Early 

adolescents 

(12-13 years) 

Late 

adolescents 

(17-18 years) 

 

Mean age 

(±SD) 

9.32 ± 0.273 13.13 ± 0.312 17.17 ± 0.280  

Gender (F/M) 17 / 10 20 / 18 21 / 13  

IQ score 

(WASI-II) 

93.81 ± 13.471 98.97 ± 13.663 97.91 ± 10.461 F(2,96) = 1.377, 

p=0.257 

Table 1. Participants’ demographics. Age, gender and IQ scores for the three age groups. The groups 

did not differ in their IQ scores. 

 

 

Overview of procedure 

The testing took place in a quiet room in the participants’ school in groups of three to 

four students. The adolescent groups completed the experiment in about 1.5 hours. For the 

youngest group the testing was spread over two sessions to reduce fatigue and took about 2 

hours (including age-appropriate short breaks) in total to complete. Participants completed four 

tasks (other three reported elsewhere; e.g., (Bowler et al., 2021; Dubois et al., 2020; Moses-

Payne et al., 2020)), a battery of questionnaires (used in conjunction with the other tasks) and 

short form of the WASI-II including the Vocabulary and Matrix Reasoning subtests (Wechsler, 

1999) to estimate age-adjusted IQ. The participants were given both verbal and written 

instructions of the task before completing it. Children received longer instructions with 

examples to ensure that they understood the task. The order in which the tasks, questionnaires 

and WASI-II were administered, was pseudo-randomised across participants. 

 

https://github.com/DevComPsy/EL-development
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Task 

The goal of this study was to investigate how optimism bias and learning changed 

throughout development using an ecologically realistic effortful reward attainment task. We 

used a modified and child-friendly version of a previously established task (Hauser et al., 

2017), where participants were helping an astronaut to fly a rocket to planets across the 

universe.  They had to learn about the reward (1 to 7 gold coins) and an effort threshold that 

needed to be surpassed (amount of fuel the battery needed, which ranged between 42% and 

92% of maximal button presses) in order to reach the planet to collect coins. Both reward 

magnitude and effort threshold slowly changed over time in a Gaussian random-walk–like 

manner. These trajectories were constructed so that reward and effort were decorrelated (cf 

Fig. 1). Importantly, the exerted effort was calibrated individually for each participant’s 

maximum number of presses. The maximum button presses were obtained in the practice 

session where the participants had to perform as many button presses as they could in 5 

seconds. The calibration also included a staircase procedure, where the maximum effort was 

updated when the participant had exceeded their previous maximum effort in a trial. 

In the beginning of each trial, the participants rated their belief about the amount of fuel 

needed to reach the next planet and their belief about how many coins they will get, ranging 

from 1 to 7. There was no time limit for reporting one’s beliefs. This was followed by 5 seconds 

of rapid manual button presses to fill up the battery. If the exerted effort was above the effort 

threshold, participants received the coins that were on display during outcome. If the 

participants’ effort did not exceed the threshold, a cross appeared above the number on display, 

which indicated that the participant did not receive any coins for that trial. Participants did not 

receive any explicit information about the threshold but had to learn from trial and error. After 

training, participants completed 40 trials. 
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Multiple regression analyses 

To assess the factors that influenced reward belief (Fig. 2C), we used multiple 

regression (fitglm function in Matlab) to predict the reward belief at each trial, respectively. 

As predictors, we entered the number of points (displayed during feedback) on the previous 

trial (previous reward; range:1-7); and whether the force threshold was successfully surpassed 

on the previous trial (previous failure; failure coded as 1, success as -1). The last predictor was 

the participant’s reported reward belief on previous trial (previous reward belief; range: 1-7). 

The regression weights of the predictors were obtained for each individual and then tested for 

consistency across subjects using t-tests in a summary statistics approach.  

 

Statistical analyses 

We compared behavioural measures using one-way ANOVAs with age group as 

between-subject factor (children, early adolescents, late adolescents). Significant effects were 

further explored using (independent samples) t-tests. We report effect sizes using partial eta 

squared (η²) for ANOVAs and Cohen’s d (d) for t-tests.  

 

Computational model 

To investigate the computational mechanisms underlying age-related change in reward 

learning, we fitted six different variants of Rescorla-Wagner models (Rescorla & Wagner, 

1972). We provide a summary of the models with key equations, parameter and model recovery 

in the Supplementary Material. Here we provide a brief description of the winning model and 

the key model parameters. 

In this model, the subject starts with a prior belief μ0 about how big a reward will be, 

which is then adjusted based on the task feedback. This parameter can be seen as a static 
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optimism bias, reflecting subjects’ prior expectation about how good a reward will be. 

Subsequently, the subject will learn from the task feedback by using two learning rates: if the 

outcome is better-than-expected (i.e. positive prediction error), the subject will update their 

belief using positive learning rate (α+), and when the outcome is worse-than-expected (i.e. 

negative prediction error), then the subject will update the belief using a negative learning rate 

(α−). If α+>α−, then the subject learns more from positive outcomes compared to negative 

outcomes, in line with the precious account of optimistic learning bias (Lefebvre et al., 2017). 

The model also incorporates a noise parameter ξ that captures the noisiness of responding.  

 

Mediation analysis 

We used mediation analysis to evaluate whether the effect of age on optimism bias was 

mediated by negative learning rate. We used standard notation to report mediation paths, where 

X represents the independent variable (age), Y represents the dependent variable (optimism 

bias) and M represents the mediating variable (negative learning rate). Relationship between 

X and M is expressed by path a, and relationship between M and Y is expressed by path b. The 

overall/total effect of X on Y is defined by path c and the direct effect of X on Y controlling 

for M is defined by path c’.  The product ab defines the indirect effect of X on Y through M. 

If M mediates the relationship between X and Y, then the product ab should be significantly 

different from zero. 

We used Mediation Toolbox in Matlab (https://github.com/canlab/MediationToolbox; 

Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008; Wager et al., 2009) to perform the 

analysis. This toolbox is used to calculate mediation analysis based on a standard 3-variable 

path model (Baron & Kenny, 1986) with a bootstrap test for the statistical significance of the 

product ab (Efron & Tibshirani, 1993; Shrout & Bolger, 2002). This toolbox tests the 

significance of ab using the accelerated, bias-corrected bootstrap test (Efron & Tibshirani, 
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1993; Shrout & Bolger, 2002) with 10,000 bootstrap samples to test each of the a, b and ab 

path coefficients.  
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Results 

We examined the developmental differences in learning and optimism bias testing three 

groups of young people: 27 children (8-9 year-olds), 38 early adolescents (12-13 year-olds) 

and 34 late adolescents (16-17 year-olds). All subjects played a child-friendly, gamified version 

of a previously developed learning task (Hauser et al., 2017), in which subjects need to predict 

and learn from effortful attainment of reward. In essence, subjects needed to exert physical 

effort (button presses) to obtain a time-varying reward. Because both effort and reward changed 

over time (independently from each other), they had to constantly track and learn the changing 

effort demands and reward magnitudes through a process of trial and error (Fig. 1). 

On every trial, participants were asked to report their beliefs about the reward they 

could obtain (number of gold coins, ranging from 1 to 7) and the effort needed to do so (battery 

fuel level) using a visual analogue scale (Fig. 1A). This allowed us to assess the subjects’ 

beliefs about both effort and reward. After reporting their belief, subjects needed to charge the 

battery of a space rocket to the level they believed was needed to reach the next planet quickly 

alternating between two button presses (physical effort exertion; fixed total charging time of 5 

seconds). Subsequently, subjects were informed whether they exerted enough effort (i.e. 

reached the planet), and how many points they had won (or would have won). In the remainder 

of this paper, we will focus on reward learning and optimism bias, but detailed analyses on 

effort learning can be found in the supplementary material. 

 

Calibration ensures similar performance between groups 

Before investigating optimism bias, we were interested in the overall performance of 

this task. We constructed the task so that actual performance was equal across all ages, thus 

preventing performance from confounding optimism bias. Concretely, we used a staircase 
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procedure for each individual’s physical effort exertion to account for differences in physical 

or other abilities (cf Methods for details). This allowed the task to be challenging and 

achievable for everyone, whilst ensuring similar performance across groups. Indeed, we found 

that the number of successful trials (F(2,96) = 1.14, p = 0.323, η2 = 0.023, Table S1), and the 

total points won in the task (F(2,96) = 1.33, p = 0.268, η2 = 0.027) did not differ between the 

age groups. Furthermore, the average effort exerted (relative to the individual’s maximum 

effort) did not differ between groups (F(2,96) = 2.16, p = 0.121, η2 = 0.043), and neither did 

the variability of the effort exerted as measured by the effort standard deviation (SD; F(2,96) 

= 1.65, p=0.198, η2 = 0.033). These findings thus allow us to compare optimism bias and 

reward learning between groups without having to account for biases in their performance. 

 

Figure 1. Task procedure and behaviour. (A) An effortful reward attainment learning task was used to 

assess learning and optimism bias. In the beginning of each trial, participants were asked to report their 

effort and reward belief. They then exerted the effort they believed was needed to obtain the rewards 

using button presses. The duration of button presses was kept constant across all trials to remove 

temporal discounting that may confound effort execution (Floresco et al., 2008). If successful, 

participants received coins that were revealed during outcome (here, 5 coins). If a participant exerted 

too little effort (i.e., did not exceed the necessary effort threshold), a cross was superimposed over the 

number of (potential) coins, indicating they will receive no reward on that trial, but still allowing them 

to learn about the potential reward. (B) Reward belief trajectory across trials (grey), compared to the 

actual reward received (black). (C) Trajectories of effort belief (yellow), effort exerted (blue) and the 
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effort threshold (black) over trials. The line plots indicate the mean of beliefs and effort exerted ± 1 

SEM. 

 

Hyperoptimism in children  

Our key interest was to assess whether youths showed an optimism bias in this learning 

task. To this end, we compared the average reported reward belief across the entire task. We 

found that all groups consistently overestimated how many points they would get (Fig. 2B; all 

groups: t(98) = 77.77, p < 0.001; children: t(26) = 6.06, p < 0.001; early adolescents: t(37) = 

5.04, p < 0.001; late adolescents: t(33) = 2.71, p = 0.010). This means that all participants’ 

expectations were higher than reality, which is the key characterisation of optimism bias 

(Sharot, 2011). 

We next investigated whether this optimism bias changed with age showing a 

difference between age groups. We indeed found a significant age group effect (Fig. 2B, F(2, 

96) = 6.07, p = 0.003, η2 = 0.112). Subsequent analyses showed that this was driven by children 

being most (hyper-)optimistic and that the extent of optimism bias decreased in adolescence 

(children vs early adolescents: t(63) = 2.29, p = 0.025, d = 0.565; children vs late adolescents: 

t(59) = 3.30, p = 0.002, d = 0.841; early vs late adolescents: t(70) = 1.27, p = 0.175, d = 0.323). 

This suggests that children are hyperoptimistic, and that this optimism bias is reduced but still 

present in adolescents. Furthermore, we found that children’s optimism bias increased over the 

course of the task, whereas optimism bias was more stable in both adolescent groups (cf Figure 

S2 for more details) 

To make sure that children were not just more random in reporting their beliefs, we 

explored the variability of the participants’ reports and did not observe any age effects (SD of 

the reported reward belief; F(2, 96) = 1.68, p = 0.192, η2 = 0.034; cf Figure S1 for reward belief 
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distributions). Our findings thus suggest that an optimism bias is present in all youths, but it 

decreases as children get older.  

 

Figure 2. Hyperoptimism in youths decreases throughout development.  (A) Reward belief trajectories 

split between the age groups over trials. Children had higher reward belief (yellow) throughout the task. 

The line plots indicate the reward belief on every trial averaged across participants ± 1 SEM.  

(B) An optimism bias (as measured by the average reward belief compared to the average reward in the 

task) was present in all groups. Importantly, this bias weakened during development. Children (8-9 

year-olds) had a higher optimism bias compared to the adolescent groups (12-13 year-olds and 16-17 

year-olds), revealing the emergence of more realistic expectations during adolescence. (C) Reward 

belief was predicted by the intercept, previous reward magnitude, failure to exceed the threshold on the 

previous trial, and participant’s own belief about previous reward magnitude. The intercept, which 

shows the general belief about reward magnitude over trials, was lower for late adolescents (16-17 year-

olds) compared to children (8-9 year-olds) and early adolescents. Additionally, the previous reward 

magnitude predictor was higher for late adolescents compared to children and early adolescents, 

suggesting increased outcome sensitivity in late adolescence. Bar plots indicate mean ± 1 SEM; *** p 

<.001; ** p<.01; * p<.05; yo, year-olds; au, arbitrary units. 
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How are reward beliefs constructed? 

To evaluate how participants constructed their reward beliefs, we performed a linear 

regression to predict reward belief at every trial. Given that the reward magnitudes were slowly 

drifting over time, the reward magnitude on the previous trial was a good indicator for the 

subsequent magnitude and is a reflection of a continuous learning process, such as 

reinforcement learning (Sutton & Barto, 1998). Assuming that participants followed a similar 

principle, we used the reward magnitude revealed on the previous trial (‘previous reward’) as 

a predictor, in addition to an intercept that captures the general belief of reward magnitude 

across the entire task. We found that both significantly predicted reward beliefs (previous 

reward: M = 0.34, SD = 0.219, t(98) = 15.39, p < 0.001; intercept: M = 2.30, SD = 1.741, t(98) 

= 13.14, p < 0.001). 

We also evaluated whether further task aspects could influence the participants’ reward 

beliefs. In line with consistent reporting of one’s belief, we found that the current belief was 

also significantly related to the previous belief in an extended multiple regression (M = 0.20, 

SD = 0.197, t(98) = 10.29, p < 0.001). Lastly, we explored whether the effort had any influence 

on the reward beliefs. Indeed, we found some leakage from effort to reward belief formation, 

even though participants were instructed that these varied independently from each other. We 

found that previously exerted effort (i.e. button presses) did not predict the reward belief (M = 

0.00, SD = 0.019, t(98) = 0.40, p = 0.692), but previous effort failure (i.e. whether one fulfilled 

the effort requirements on the previous trial) had a significant impact (M = 0.09, SD = 0.288, 

t(98) = 3.26, p = 0.002). 
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Reward belief in late adolescents is more closely linked to previous reward  

Next, we investigated whether there were any age differences in how the reward beliefs 

were constructed. We used the same linear regression with an intercept, previous reward, 

previous failure to exert enough effort, and one’s previous belief about reward as predictors, 

this time investigating age-dependent effects on these regressors. Comparing the regressors, 

we found significant age effect on the intercept (Fig. 2C; F(2,96) = 8.27, p < 0.001, η2 = 0.147; 

children vs early adolescents:  t(63) = 1.42, p = 0.161, d = 0.359; children vs late adolescents: 

t(59) = 4.26, p < 0.001, d = 1.085; early vs late adolescents: t(70) = 2.74, p = 0.008, d = 0.653). 

We also found that previous reward magnitude was integrated differently into reward belief in 

the different age groups (F(2,96) = 4.39, p = 0.015, η2 = 0.084). This was mainly driven by late 

adolescents adjusting their reward belief more according to previous reward compared to early 

adolescents (t(70) = -2.83, p = 0.006, d = 0.668) and children (t(59) = -2.27, p = 0.027, d = 

0.580). There were no differences between children and early adolescents (t(63) = 0.235, p = 

0.815 , d = 0.059). As the previous reward magnitude is an indicative measure for learning, it 

suggests that learning may differ between age groups. 

We did not find any differences in how one’s own previous belief about reward was 

used to construct current reward belief (F(2,96) = 0.40, p = 0.674, η2 = 0.008), suggesting no 

age-related differences in how participants integrate their own internal reward belief into their 

learning. There were also no differences in how previous failure impacted on reward belief 

construction (F(2,96) = 0.16, p = 0.850, η2 = 0.003). Our findings thus indicate that the 

difference in optimism was driven, at least in part, by altered learning. However, this analysis 

is insensitive to more subtle learning biases, such as differences in learning for positive and 

negative outcomes. 
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Computational mechanisms underlying reward belief 

To better understand the mechanisms underlying the developmental effects on learning 

and optimism bias, we developed a computational model similar to the previous study reporting 

learning mechanisms in optimism bias (Lefebvre et al., 2017). In short (cf supplementary 

material for detailed model description), our model learns about the reward magnitude using a 

modified Rescorla-Wagner (Rescorla & Wagner, 1972) prediction error learning rule. In this 

model, learning is driven by a prediction error, the difference between expected and received 

reward. This prediction error is then used to update a reward belief using a learning rate α. 

Similar to the previous work on optimism bias, we used two separate learning rates, one for 

positive (α+) and one for negative (α-) prediction errors. If α+ > α-, one learns more from better-

than-expected than worse-than-expected outcomes (optimistic learning). If α- > α+, one deploys 

pessimistic learning. If α+ = α-, one would learn equivalently from positive and negative events 

(realistic learning). This is based on the assumption that optimistic learning would lead to 

optimism bias over time (Lefebvre et al., 2017). In addition, our model incorporated a prior in 

reward belief (μ0) as an additional free parameter, capturing any reward bias that was present 

at the outset of the task. Lastly, we used a noise parameter ξ to capture the noisiness of 

responding.  

We fitted the model to each participant’s behaviour (cf Supplementary material for 

detailed model comparison and fitting) and found that all groups showed optimistic learning as 

α+ was higher than α- for all ages (paired t-tests; children: t(26) = 4.04, p < 0.001, early 

adolescents: t(37) = 4.63, p < 0.001, late adolescents: t(33) = 2.25, p = 0.032). Moreover, the 

difference between positive and negative learning rate (α+ - α-) was highly correlated with the 

optimism bias (average reward belief) in our task (r = 0.582, p < 0.001, partial correlation 

controlling for age: r = 0.557, p < 0.001), suggesting that the optimistic learning bias is 

associated with the optimism bias. 



 

  18 

Negative learning rate increases with age 

To understand how the model parameters changed across age to drive the effect on 

optimism bias, we compared the parameters across age groups. We found significant age effect 

on the negative learning rate - (Fig. 3A; F(2,96) = 8.34, p < 0.001, η2 = 0.148), but no effect 

on the positive learning rate + (Fig. 3B; F(2,96) = 0.09, p = 0.914, η2 = 0.002). When further 

investigating -, we found the age difference was driven by children learning less from negative 

prediction errors compared to adolescents (children vs early adolescents:  t(54) = -3.66, p = 

0.001, d = 0.868; children vs late adolescents: t(37.25) = -4.03, p < 0.001, d = 0.988; early vs 

late adolescents: t(48.46) = -1.91, p = 0.063, d = 0.461). This means that while positive learning 

remains stable across ages, negative learning increases substantially, diminishing the optimistic 

learning bias in the older participants.  

We further explored the other task parameters and found a marginally significant age 

effect on μ0 (Fig., 3C; F(2,96) = 3.00, p = 0.054, η2 = 0.059). This was driven by children 

having higher prior beliefs about rewards compared to late adolescents (children vs early 

adolescents: t(63) = 1.69, p = 0.097, d = 0.410; children vs late adolescents: t(59) = 2.17, p = 

0.034, d = 0.560; early vs late adolescents: t(55.52) = -1.05, p = 0.297, d = 0.252). This suggests 

that besides an age-dependent learning optimism bias, there is also a trend towards a prior 

optimism bias in children. 
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Figure 3. Model parameters reveal differences in optimistic learning. The parameters of the best-fitting 

model reveal that children (8-9 yo) differed from the adolescent groups (12-13 yo and 16-17 yo) in their 

negative learning rate. (A) Children have a lower negative learning rate compared to both adolescent 

groups, whereas the positive learning rate is similar across all age groups (B). This means that children 

show a strong optimism learning bias, which diminishes with age. Additionally, children have 

marginally higher prior in reward belief compared to late adolescents (C). The relationship between age 

and optimism bias was mediated by negative learning rate (D). Mean values are shown, the c path 

represents the total effect of age on optimism bias and c’ represents the direct effect of age on optimism 

bias when controlling for the negative learning rate. The a path represents the effect on age on negative 

learning rate and b path represents the effect on negative learning rate on optimism bias. The ab path is 

the indirect effect of age on optimism bias through negative learning rate. Our findings suggest that the 

age-related decrease in optimism bias was primarily driven by the increase in the negative learning rate. 

*** p < 0.001; ** p < 0.01; * p < 0.05; t p < 0.10; yo, year-olds. 

 

 

Increase in negative learning rates mediates age-related decline in optimism bias 

To assess whether the observed optimism bias was driven by the changes in learning 

that we observed (especially the negative learning rates), we conducted a mediation analysis 

testing whether the negative learning rate mediated the association between age and optimism 
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bias. Our mediation analysis confirmed the significant associations between age and negative 

learning rate (path a: M = 0.03, SE = 0.01, z = 4.54, p < 0.001) and between age and optimism 

bias (path c: M = -0.06, SE = 0.02, z = -3.28, p = 0.001). Moreover, we found a significant 

association between negative learning rate and optimism bias (path b: M = -0.92, SE = 0.22, z 

= -3.93, p < 0.001).  

Our mediation analysis further revealed that the association between age and optimism 

bias was mediated by negative learning rate (path ab: M = -0.02, SE = 0.01, z = -3.44, p < 

0.001), and the association between age and optimism bias was substantially diminished and 

remained only marginally significant when accounting for negative learning rate (path c’: M = 

-0.04, SE = 0.02, z = -1.96, p = 0.051). Importantly, none of the other model parameters 

mediated the decrease in optimism bias (results not shown). These results suggest the decrease 

in optimism bias is mediated by the increased learning from events where the outcome is worse 

than expected, reducing the optimism learning bias.  
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Discussion 

Studying optimism bias in the context of a learning task revealed the mechanisms 

underlying the changes in optimism bias from childhood and adolescence. Our findings provide 

novel evidence that optimism bias exists at a more general reinforcement learning level during 

development, and the extent of optimism bias decreases from childhood to adolescence. 

Furthermore, we show that this optimism bias is associated with learning less from worse-than-

expected outcomes, and the change in learning from negative prediction errors mediates the 

age effect on optimism bias. In other words, as children become older, they learn more from 

negative outcomes, lose their hyperoptimism, and become more realistic. 

We use individuals’ reported beliefs about the future reward as an insight to their 

optimism bias (Stankevicius et al., 2014) and show that children and adolescents exhibit an 

optimism bias about rewards. To our knowledge, this is the first study that examines optimism 

bias in trial-and-error learning across development rather than optimism bias in more abstract 

contexts, such as future vulnerability (Moutsiana et al., 2013) or future knowledge (Lockhart 

et al., 2017). The difference between the previous studies (Bamford & Lagattuta, 2020; Fischer 

& Leitenberg, 1986; Lockhart et al., 2017; Moutsiana et al., 2013) and ours is that previous 

studies investigated (hypothetical) future events, whereas our study allowed to trace learning 

and the emergence of optimism bias instantly. It is interesting that the optimism bias is still 

present when rewards are immediate and experienced as in the current study rather than 

imagined in the future. Our findings demonstrate that children show hyperoptimism compared 

to both early and late adolescents, and thus extend the previous accounts that assessed optimism 

bias in abstract contexts in children, such as aspects of the future (Bamford & Lagattuta, 2020; 

Fischer & Leitenberg, 1986; Lockhart, Chang, & Story, 2002). By investigating development 

across childhood, early and late adolescence, our findings further extend previous studies 
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comparing adults to children (Lockhart, Chang and Story, 2002; Lockhart, Goddu and Keil, 

2017) and provide a more fine-grained developmental resolution.  

We use computational modelling to show that the observed optimism bias arises from 

optimistic learning, i.e. learning less from negative than positive prediction errors. This aligns 

with pioneering research in adults showing that more optimistic individuals disregard negative 

information about the future (Sharot et al., 2011), and they learn less from worse-than-expected 

than better-than-expected outcomes in reinforcement learning (Lefebvre et al., 2017). 

However, it is important to consider that optimistic learning, and consequently optimism bias, 

can be task-specific, as the adaptability of asymmetric learning (degree of positive and negative 

learning rates in relation to each other) depends on the reward distribution (Cazé & Van Der 

Meer, 2013) and perceived controllability of the task (Chambon et al., 2020; A. O. Cohen et 

al., 2020; Dorfman et al., 2019). Thus, the optimism bias that arises from optimistic learning 

may be adaptive to task environments.  

 Our findings suggest that learning from negative outcomes increases during 

development, whereas learning from positive outcomes stays constant during childhood and 

adolescence. This is in line with previous research, in which younger age was associated with 

diminishing negative information about how likely an individual is to encounter adverse life 

events (e.g. home burglary) (Moutsiana et al., 2013), but age did not affect how one updated 

their beliefs about positive information. Yet, our results are different from other previous 

studies that found a decrease in negative learning rates with age (Hauser et al., 2015; Rodriguez 

Buritica et al., 2018; Van Den Bos et al., 2012). However, two of the three studies compared 

either children to adults (Rodriguez Buritica et al., 2018), or adolescents to adults (Hauser et 

al., 2015), which do not necessarily contradict with our findings, as the change in negative 

learning rate might have an inverse u-shaped trajectory, peaking during adolescence (J. R. 

Cohen et al., 2010). Moreover, inconsistent findings about learning rates may reflect the task-
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specific adaptations that are dependent on the reward statistics of the task environment and 

how optimal learning is characterised in the task (Nussenbaum & Hartley, 2019). In the other 

mentioned studies (Hauser et al., 2015; Rodriguez Buritica et al., 2018; Van Den Bos et al., 

2012), the statistical properties of the task environment differ from our task, and thus the extent 

to which one should weigh the recent outcomes to make the most optimal decisions differs 

between tasks. In other words, every task has a different optimal strategy to learn depending 

on the task environment (Cazé & Van Der Meer, 2013; Dorfman et al., 2019), thus making 

learning rates task-specific and incomparable between different task environments. Indeed, 

Nussenbaum and Hartley (2019) suggest that the inconsistencies in how the learning rates 

change with age between tasks suggest that there may be a change how individuals adapt their 

behaviour with age – individuals may become better with age at adapting their behaviour to 

make the most optimal decisions in a particular environment. 

Interestingly, the increase in the negative learning rate seems to be at the heart of the 

age-dependent change in optimism bias. In our mediation analysis, we find that the increase in 

negative learning rate mediates the decrease of optimism bias from childhood to adolescence. 

No similar effect was found when investigating whether the other computational parameters 

mediate this association. Our findings thus suggest that the change in learning from worse-

than-expected outcomes is the mechanism underlying the hyperoptimism found in children: as 

children get older, they incorporate more negative information from the environment and thus 

become more realistic. It would be interesting to further assess this mechanism across the 

lifespan to understand how optimism bias changes later in life.  

It is important to consider other factors that may have influenced learning and optimism 

bias in our task. Recent papers have shown that the optimism biases may change based on the 

perceived controllability of the task (Dorfman et al., 2019). Concretely, a higher perceived 

controllability by the individual has been shown to be associated with higher optimism biases 
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(Klein & Helweg-Larsen, 2002). Contextual beliefs, such as whether the external environment 

is good or bad, may influence the extent of learning from negative and positive outcomes 

(Dorfman et al., 2019). In our study, we did not experimentally modify the controllability or 

the valence of the task, and can therefore not draw any conclusions about how these processes 

change with age, or how they depend on learning. Interestingly, a very recent study by Cohen 

and colleagues assessed the influence of locus of control on optimism bias in the context of 

development. In their study, the authors found that children did not use their beliefs about the 

causal structure of the environment to guide learning in the same manner as adolescents and 

adults (Cohen et al., 2020). It would thus be interesting to further assess whether these were 

two distinct processes that matured during adolescence, or whether they were driven by the 

same mechanisms. Secondly, it is noteworthy that we had only outcomes in the positive valence 

domain in this task (i.e. no potential losses were included). It is thus interesting to conjecture 

whether losses would differently affect the optimism bias. Some previous studies that have 

investigated optimism bias (e.g Moutsiana et al., 2013; Sharot et al., 2011; Sharot, 2011), have 

indeed used bad/negative valence outcomes such as negative life events, as the worst outcomes. 

Interestingly, Lefebreve and colleagues have compared different task versions that either had 

reward omission as the worst outcome (positive valence domain), or had losses as worst 

outcomes (negative valence). When investigating the optimism bias in adults, the authors found 

that this difference in reward valence did not affect the optimistic learning bias (Lefebvre et 

al., 2017). However, it would be interesting to investigate the influence of reward omission 

versus bad outcome on optimism bias during development. Another limitation of our study was 

not preregistering it, which we would carefully consider in our next studies. 

The increased learning from negative prediction errors with age, and the subsequent 

decrease in optimism bias, may be related to the development of dopaminergic system during 

adolescence (Blakemore & Robbins, 2012), but the exact, likely complex, mechanisms remain 
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unknown (Hauser et al., 2019). Dopamine has been previously shown to reduce learning from 

negative information (Sharot et al., 2012), and in our previous study in adults using a similar 

task (Hauser et al., 2017) we found that these reward prediction errors (PEs) were encoded in 

dopamine-rich areas, such as the ventral striatum (VS). Moreover, activity in VS has been 

shown to be associated with learning from negative PEs (Lefebvre et al., 2017), and sensitivity 

to rewarding outcomes in VS has been revealed to peak during adolescence in an inverted U-

shaped function (Braams et al., 2015; Hauser et al., 2015; Somerville et al., 2010; Somerville 

& Casey, 2010; Walker et al., 2017). Furthermore, the activity in response to negative 

compared to positive feedback was shown to increase during development (Peters & Crone, 

2017). In sum, this suggests that the decrease in hyperoptimism throughout childhood and 

adolescence might be related to dopamine functioning and its effect on learning from negative 

prediction errors, but needs to be investigated in more detail.  

It is fascinating to speculate why this over-optimism in children has developed. It may 

be a protective mechanism that helps children to maintain motivation and encourage 

perseverance (Boseovski, 2010). With an optimistic view on future outcomes, children may be 

more likely to pursue trial-and-error approaches (Boseovski, 2010), explore more (Dubois et 

al., 2020) and be more open-minded (Bjorklund & Green, 1992; Lucas et al., 2014), which is 

beneficial for learning in the long run. Furthermore, the optimism bias may encourage optimal 

learning strategies that lead to higher performance in specific environments, such as tasks with 

low reward probabilities (Cazé & Van Der Meer, 2013) or environments where one has high 

controllability over their actions (Chambon et al., 2020; Dorfman et al., 2019). Optimism may 

also act as a protective mechanism for the development of psychiatric disorders, such as 

depression. Lack of optimism bias has been shown to be higher in individuals with depression 

(Strunk et al., 2006), driven by increased learning from negative events (Garrett et al., 2014). 

Given that early adolescence is a period of heightened risk for mental health conditions 
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(Kessler et al., 2005) it would be interesting to study how trajectories of learning imbalances 

predict the risk of psychiatric symptoms. Thus, future studies could map the individual 

developmental trajectories of psychiatric symptoms, learning and optimism bias with age in 

longitudinal studies.  

In summary, we show that children are hyperoptimistic, and that this optimism bias 

decreases throughout adolescence. Using computational modelling, we show that the reduction 

in learning from negative prediction errors drives this age-related decrease in hyperoptimism. 

This optimism bias might act as a driving factor for children’s resilience and motivate them to 

keep on trying different approaches to learn more in the long run. 
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Context 

This developmental study was conducted to investigate the development of optimism 

bias during childhood and adolescence. Optimism bias is a general feature of human decision 

making, showing that humans are overly optimistic in their beliefs and decisions. This has been 

linked to neurotransmitter functioning (such as dopamine) and is hypothesised to be reduced 

in mental health disorders, such as depression. Here, we investigated how optimism bias 

develops during childhood and adolescence determining what the computational mechanisms 

underlying an age-related reduction in optimism bias are. This is important because 

neurotransmitter functioning changes substantially during that period and there is a sharp rise 

in depression during adolescence. Understanding the mechanisms how an optimism bias 

changes with development helps us understand the cognitive and biological mechanisms that 

underlie the increased risk for mental health problems during adolescence. 
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