
1Scientific Data |           (2022) 9:196  | https://doi.org/10.1038/s41597-022-01264-y

www.nature.com/scientificdata

Ra-MaP, molecular immunological 
landscapes in early rheumatoid 
arthritis and healthy vaccine 
recipients
the Ra-MaP Consortium*

Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology 
characterised by synovial inflammation with variable disease severity and drug responsiveness. 
To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed 
comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients 
for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral 
blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have 
performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, 
transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data 
will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, 
progression and therapeutic response, ultimately contributing to the development and application of 
targeted therapies for RA.

Background & Summary
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease (IMID) that clinically manifests in the 
joints, but is systemic in impact. Early and intensive treatment is a critical determinant of long-term outcome, 
although clinical remission remains a minority outcome and sustained drug-free remission remains rare1.

The RA-MAP Consortium is a UK industry-academic precision medicine partnership funded by the Medical 
Research Council and the Association of the British Pharmaceutical Industry (ABPI). RA-MAP’s goals are to 
investigate clinical and biological predictors of disease outcome and treatment response in RA, using deep 
clinical and multi-omic phenotyping (Fig. 1). The study is in part motivated to inform the study design and 
analysis of future studies of blood and immune cell subsets in RA and other IMIDs. RA-MAP patients fol-
low the UK-NHS standard of care, with first-line treatment with conventional synthetic disease-modifying 
anti-rheumatic drugs (csDMARD), such as methotrexate, which have slow onset of action. In the case of 
non-responders to csDMARDs, prolonged periods of uncontrolled disease activity can lead to joint damage and 
disability. Thus, RA-MAP seeks to address a major unmet need to identify patient-level predictors of response in 
order to identify patients with a greater or lesser chance of clinically responding to csDMARD treatment. Such 
information could guide treatment choices, possibly supporting fast-track biologic therapy, leading to improved 
long-term outcomes for patients, and saving time and money in achieving sustained disease control and improv-
ing the efficiency of clinical trials.

Molecular profiling of whole blood and peripheral blood mononuclear cells (PBMCs) has been widely used 
to investigate the molecular heterogeneity and pathogenesis of RA across a number of transcriptome analysis 
platforms2–8. However only a small number of studies have profiled more than 100 patients9–11. Most studies 
have focused on patients with well-established disease who were already on DMARD therapy. Although findings 
of interest have been identified in these studies, such as association between therapeutic response and type I 
interferon signatures8, there remains a major unmet need for better molecular characterization of both hetero-
geneity and disease activity in RA without the confounding effects of immunomodulatory therapy.

The “Towards A Cure for Early Rheumatoid Arthritis” (TACERA) study12 was designed to detect distinct 
disease subtypes and the immunological correlates of disease activity and autoimmunity in patients with early, 
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seropositive RA, with a secondary objective to investigate biomarkers of initial drug response to methotrex-
ate. The study had an additional exploratory objective, to compare the immune profiles and response seen in 
RA with innate immune profiles seen in healthy subjects prior to and subsequent to hepatitis B immuniza-
tion. Although the RA and vaccine patients were not control matched, use of a common omics platform and 
bio-resource was initiated to enable a specific investigation of the innate immune response in RA, by comparison 
of the dysregulated immune response in early RA with a healthy innate immune response to the Hepatitis B 
antigen. To this end, we recruited a cohort of 267 early RA patients, and 52 healthy subjects receiving the hep-
atitis B vaccine. Following sample quality control exclusions we transcriptionally profiled 242 RA patients and 
37 healthy vaccine recipients utilising whole blood, PBMCs, and CD14+, CD8+, and CD4+ leukocyte subsets 
at their first visit to the clinic and after 6 months, totalling 2257 unique samples. We ultimately followed these 
patients longitudinally for up to 18 months, collecting rich bio-samples and a range of clinical and omic data on 
the genome, transcriptome, proteome, metabolome and autoantibodies. The RA-MAP project has generated an 
unparalleled range of data and insights into the molecular heterogeneity of RA phenotypes in peripheral blood, 
which can serve as a fundamental reference for analysis of the blood immunological landscape in RA and other 
IMIDs.

Methods
patient characteristics and study design. In the TACERA study, two hundred and seventy five patients 
were recruited of whom 270 fulfilled all eligibility criteria, that is newly diagnosed patients of at least 18 years of 
age with symptom duration less than 12 months, untreated with DMARDs or corticosteroids and who fulfilled 
either the 1987 American College of Rheumatology (ACR) or 2010 ACR/European League Against Rheumatism 
(EULAR) classification criteria for RA. Two eligible patients withdrew at baseline without providing any clinical 
information. A further patient who withdrew at baseline had some clinical information but insufficient to cal-
culate disease activity scores. Therefore, for our cohort summary in Table 1 we describe baseline characteristics 
of these 267 remaining patients. Note that 239 of these 267 eligible patients had a 6-month assessment visit. All 
patients were seropositive at baseline: 93% were rheumatoid factor (RF) positive, and 87% were citrullinated pro-
tein antibody positive (ACPA). Subjects were recruited from 28 participating centres across the UK. Following 
enrolment subjects received treatment at the discretion of the supervising rheumatologist per the National 
Institute for Health and Clinical Excellence (NICE) guidelines for the management of RA in adults13. Patients 
were followed up for 18 months and seen every 3 months. Based on EULAR response criterion, 47.2% patients 

Fig. 1 Overview of the RA-MAP project. a multi-omic bio-resource to facilitate the study of immune response 
in rheumatoid arthritis (RA) patients and healthy vaccine recipients (VC).
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Characteristics Baseline (n = 267)

Age, years 53.1 (15.2)

Female 192 (71.9%)

White Ethnicity 194 (72.7%)

BMI

  Female 27.53 (6.47)

  Male 27.43 (4.97)

  Overall 27.50 (6.08)

BMI Status

  Underweight: <18.5 9 (3.4%)

  Healthy weight: (18.5,25) 85 (31.8%)

  Overweight: (25,30) 95 (35.6%)

  Obese: ≥30 78 (29.2%)

Smoking

  Never smoked 95 (35.6%)

  Previous smoker 104 (39.0%)

  Current smoker 68 (25.4%)

Alcohol consumption

  None 86 (32.3%)

  1–5 units per week 115 (43.2%)

  6–10 units per week 25 (9.4%)

  11–15 units per week 11 (4.1%)

  16–20 units per week 15 (5.7%)

  More than 20 units per week 14 (5.3%)

Alcohol frequency

  Not Drinking 86 (32.2%)

  1–2 days a year 28 (10.5%)

  1–2 days a month 48 (18.0%)

  1–2 days a week 58 (21.7%)

  3–4 days a week 28 (10.5%)

  5 days or more a week 19 (7.1%)

Rheumatoid Factor (RF) positive 247 (92.5%)

Anti-citrullinated protein antibody (ACPA) positive 230 (86.1%)

Disease Duration (years) 0.43 (0.23)

X-ray Larsen’s Score (hands and feet) 6.70 (8.76)

Charlson’s Comorbidity Index (original) 0.44 (0.84)

Charlson’s Comorbidity Index (2008) 0.81 (1.10)

SDAI 28.80 (14.29)

DAS28-CRP 4.85 (1.22)

Prescribed Medication

  Methotrexate (MTX) 202 (75.7%)

  Hydroxychloroquine 141 (52.8%)

  Leflunomide 0 (0.0%)

  Sulfasalazine 18 (6.7%)

  Oral glucocorticoids 17 (6.4%)

  Parenteral glucocorticoids 126 (47.2%)

  No RA medication 2 (0.7%)

Medication combinations prescribed

  No RA medication 2 (0.7%)

  MTX only 51 (19.1%)

  Other DMARDs only 20 (7.5%)

  Oral glucocorticoids only 2 (0.7%)

  Parenteral glucocorticoids only 15 (5.6%)

  MTX & other DMARDs 53 (19.9%)

  MTX & oral glucocorticoids 6 (2.2%)

  MTX & parenteral glucocorticoids 33 (12.4%)

  Other DMARDs & oral glucocorticoids 2 (0.7%)

Continued
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achieved a good response, 33.9% a moderate response and 18.9% showed no response. Clinical, laboratory, life-
style, comorbidities and associated medication, patient reported outcome measures, and biological samples were 
collected at each visit. Blood samples for RNA extraction were taken at baseline and 6 months. Clinical data is 
summarised in Table 1. Ethical approval was authorised by the National Research Ethics Service London Central 
Committee (Reference number: 12/LO/0469). Informed, written consent was obtained from all study partici-
pants. Complete phenotypes and further details on the TACERA study are published elsewhere14,15.

Vaccine study design. Vaccine (Engerix B (recombinant Hepatitis B surface antigen)) recipients were 
recruited from healthcare workers receiving hepatitis B screening as part of their workplace induction at 4 par-
ticipating centres across the UK (Newcastle, Birmingham, London and Glasgow). Subjects received Hepatitis B 
vaccination (20 micrograms Engerix B by IM injection at 0, 1 and 2 months), and were followed up for 8 visits 
(day -7, 0 (baseline), 1, 3, 7, 56, 57, 63). Clinical, lifestyle, demographics, and biological samples were collected 
at each visit. Blood samples for RNA extraction were taken at all 8 visits, with transcriptomics performed to the 
TACERA transcriptomic protocol on day -7, 0, 3, 56 and 63. Clinical data is summarised in Table 2. Informed, 
written consent was obtained from all study participants (study protocol is available on the RA-MAP figshare16).

patient biosampling, extraction, and biobanking. Biosamples, including blood, serum, plasma and 
urine were obtained from patients every 3 months for 18 months in the TACERA and Vaccine studies. The SOPs 
required that blood was drawn and stored locally for up to 30 minutes before transport to the local processing 
hub. According to SOPs serum, plasma and urine samples were processed no longer than 60 minutes after collec-
tion. PBMC processing, followed by isolation of CD4, CD8 and CD14 subsets, took place within 60 minutes of 
blood draw. Isolated cells were then lysed and frozen in QIAzol lysis reagent and stored at −80 °C for later RNA 
extraction. Samples were stored prior to RNA extraction until the last participant, last visit. For the whole blood 
RNA the blood was drawn into a Tempus tube and then incubated for 3 hours at room temperature then frozen 

Characteristics Baseline (n = 267)

  Other DMARDs & parenteral glucocorticoids 23 (8.6%)

  Oral & parenteral glucocorticoids 1 (0.4%)

  MTX, other DMARDs & oral glucocorticoids 5 (1.9%)

  MTX, other DMARDs & parenteral glucocorticoids 53 (19.9%)

  MTX, oral & parenteral glucocorticoids 1 (0.4%)

Table 1. Baseline characteristics of patients in the TACERA study. Values are number (percentage) or mean 
(standard deviation). Abbreviations: BMI (Body Mass Index), SDAI (Simple disease activity index), DAS28-
CRP (Disease Activity Score-28 for Rheumatoid Arthritis with C-Reactive Protein).

Characteristics Baseline (n = 52)

Age, years 32 (13.8)

Female 32 (61.5%)

White Ethnicity 45 (86.5%)

BMI

  Female 24.69 (5.91)

  Male 25.84 (3.45)

  Overall 25.08 (5.18)

BMI Status

  Underweight: <18.5 4 (7.7%)

  Healthy weight: [18.5,25) 21 (40.4%)

  Overweight: [25,30) 19 (36.5%)

  Obese: ≥30 5 (9.6%)

  No data 4 (7.7%)

Smoking

  Non-smoker 42 (80.8%)

  Smoker 6 (11.5%)

  No data 4 (7.7%)

Alcohol consumption

  No 6 (11.5%)

  Yes 42 (80.8%)

  No data 4 (7.7%)

Table 2. Baseline characteristics of Vaccine recipients. Values are number (percentage) or mean (standard 
deviation).
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at −20 °C for 24 hours before long term storage at −80 °C. Like the cell subsets RNA the whole blood RNA was 
extracted from these samples at the end of the study. Blood for RNA extraction was collected in Tempus blood 
RNA tubes (Applied Biosystems) and mixed by inverting. Additional blood sampling for isolation of PBMCs 
was collected into EDTA Vacutainer collection tubes (Becton Dickinson) and separated using Leucosep sep-
aration tubes (Greiner). Cell subsets were isolated from the peripheral blood using magnetic cell sorting. The 
Miltenyi MACS system was used to positively isolate CD14-expressing monocytes, CD4-expressing T cells and 
CD8-expressing T cells from the isolated PBMCs by following the manufacturer’s protocol (Miltenyi Biotech). 
The purified cells were lysed in QIAzol Lysis Reagent. Cell subset micro RNA was extracted using miRNeasy 
minikits (Qiagen) following the manufacturer’s protocol. Whole blood RNA was extracted from Tempus Blood 
tubes using MagMAX RNA isolation kits (Ambion) and then was subjected to removal of globin mRNA using 
GLOBINclear human 20 reaction kits (Ambion) following the manufacturer’s protocol. Multi-omic analysis of 
samples was performed at baseline and 6 months. All samples (n = 34,540) were deposited with UK Biocentre 
(Milton Keynes, UK) and are available to researchers on request to the RA-MAP sample access panel (https://
research.ncl.ac.uk/ra-map/). Detailed SOPs are available in the RA-MAP figshare16. Some of the logistical pro-
cessing challenges faced by the study are described elsewhere12.

Microarray mRNA sample analysis. For microarray analysis, amplified RNA was hybridized to Illumina 
HumanHT-12 V4.0 expression beadchips and scanned on an Illumina Beadstation 500. Illumina’s GenomeStudio 
version 2011.1 with the Gene Expression Module v1.9.0 was used to generate signal intensity values. TACERA 
samples were randomized across the analysis plates, with samples from same RA subject (baseline and 6-month 
time points) assigned within same plate. Vaccine samples were run in separate batches, but also randomized 
across analysis plates. Non-normalised control and sample probe data was exported from GenomeStudio.

mRNA transcriptome data analysis. To perform QC and exploratory data analysis (EDA), all mRNA 
sample data was imported to the R Limma package17 as a combined matrix to enable direct comparison of cell 
subsets. Where the goal is to isolate effects within a particular cell type, single cell type processing may be more 
optimal. Background correction and quantile normalization were performed using the Limma neqc function18, 
based on methods described by Shi et al.19. All probes with detection p-values of at most 0.05 in at least 100 
samples were removed. This ensured that all remaining probes were expressed in a minimum of 100 samples, 
or just under 10% of all profiles. Probes were aggregated to gene level using the Limma avereps function to fur-
ther reduce dimensionality and increase reproducibility20, using a simple mean aggregator as implemented in 
the limma package. After pre-processing, filters and exclusions, 18,562 genes were present in the analysis ready 
expression matrix. Dimensionality reduction by Principal component analysis (PCA) was used to check for outli-
ers and unsupervised clustering effects. 12 samples were flagged as outliers in the dataset, we removed these from 
subsequent analysis (See full EDA and outlier markdown documents on GitHub).

Small RNA sample and transcriptome data analysis. For Small RNA sequencing analysis, amplified 
small RNA was sequenced on an Illumina HtSeq. 2500 unit with single read flow cells to a depth of at least 10 
million 50-bp reads per sample. TACERA samples were randomized across the analysis plates, with samples 
from same RA subject (baseline and 6-month time points) assigned within same plate. Adaptors were clipped 
off the reads using Trimmomatic21 (version 0.33) and then aligned to the GRCh38 genome using Bowtie-2 (ver-
sion 2.3.0)22. Next, alignments to miRNA reference were counted with the htseq-count function from HTSeq 
(version 0.6.1p2)23 and the miRBase annotation release 22.1. Prior to normalization, transcripts in the result-
ing count table were filtered to a mean count per million (CPM) of at least 2, and normalised using the EdgeR 
CalcNormFactors function24.

plasma protein analyte analysis. Plasma samples were selected from 100 baseline patients with higher 
baseline disease activity (DAS28 > 4) who divided equally at the 6 month visit into 50 patients in remission 
(DAS28 < 2.6) and 50 with active disease (DAS28 > 4). Plasma samples from 40 healthy (vaccine) recipient (VC) 
subjects, were analyzed concurrently with the RA patient samples. 1310 analytes were measured in the selected 
plasma samples for baseline (RA, vaccine) and 6-month (RA) visits at SomaLogic, LLC (Boulder, CO USA) using 
SOMAscan v3.2 platform. RA and vaccine recipient samples were randomized across the analysis plates, with 
samples from same RA subject (baseline and 6-month time points) assigned within same plate. 124 analytes 
were flagged by the vendor for failing QC standards, leaving 1186 analytes available for analysis. Relative fluores-
cence unit (RFU) data were sequentially normalized for hybridization controls (internal standards per sample) 
to remove inter-run hybridization artifacts, median signal across all samples to remove other potential assay 
biases (assumes same total protein concentration across sample set), and calibration controls (common sample 
standards across analysis plates). The normalized RFU values were log2-transformed and then each analyte was 
independently 0-centered to the mean of the healthy subject cohort by shifting. 2 samples failed the vendor’s QC 
standards for median normalization scale factors within range of 0.4 to 2.5 and were excluded from further anal-
ysis (both 6-month samples from the active disease group).

Auto-antibody sample analysis. 501 serum samples were analysed from the TACERA cohort, comprising 
265 baseline samples and 235 6-month follow-up samples. In parallel, 44 baseline and 38 follow-up samples from 
Vaccine recipients were measured. All samples were distributed on 96-well assay plates applying a randomised 
block design (timepoint, age, gender, healthy, RA).

A Luminex bead-based antigen array was produced (Protagen AG, Switzerland) to measure the autoantibody 
response against 192 human protein antigens. Antigens were selected based on literature data and autoantibody 
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reactivity data of previous high-content profiling studies in RA and other rheumatic diseases. A subset of protein 
antigens (n = 46) were citrullinated in vitro using peptidyl arginine deiminase (PAD) to compare the autoanti-
body reactivity towards citrullinated and corresponding uncitrullinated antigens in early RA patients. Briefly, 
proteins were produced in Escherichia coli as His-tagged fusion proteins and purified by immobilised metal affin-
ity chromatography. Coupling of antigens to magnetic carboxylated colour-coded beads (MagPlex microspheres, 
Luminex Corporation, Austin, Texas) was performed according to manufacturers’ protocols. Beads coupled 
with BSA, human IgG (hIgG), E. coli lysate and the eluate of vector only transformed E. coli were used as internal 
quality controls to evaluate the background reactivity, the measurement range or patient anti-E. coli reactivity, 
respectively. Finally, beads were combined and stored at 4–8 °C until use. An aliquot of the bead mix was incu-
bated with the 1:100 diluted patient serum sample. Bound antibodies were measured following incubation with 
a secondary PE-labelled anti-human-IgG antibody in a FlexMap3D instrument (Luminex Corporation, Austin, 
Texas). The IgG reactivity values are given as median fluorescence intensity (MFI) and data of antigens fulfilling 
the minimum bead count criterion (>10 beads measured per bead ID) was used for data analysis. To monitor 
the inter-assay coefficient of variation, three in-process control samples were measured in triplicate on each 
96-well assay plate using the autoantibody MFI values of all measured antigens. The overall median inter-plate 
CV was 7.7%. Evaluation of the control beads showed that the MFI values of control beads was as expected: 
The background reactivity towards BSA was 4 MFI, the reactivity to the E. coli lysate was 8 MFI, to the vector 
only eluate 6 MFI and to hIgG 22,000 MFI. The hIgG coupled bead was used to confirm the reactivity of the 
PE-conjugated detection antibody. To obtain reliable MFI values for data analysis the bead count statistics of 
the autoantibody data were evaluated. The median bead count of all samples was 167, with 0.01% of all samples 
having a bead count <10 and 0.9% of all samples having a bead count of <35. All samples and antigens met the 
bead-count criterion.

Auto-antibody data analysis. Raw Luminex autoantibody measurement values were processed and ana-
lysed using the R programming language (http://www.r-project.org/ version 3.3.0) and KNIME 3.2 (https://www.
knime.org/) to produce text CSV files for quality control and further statistical analysis. The main pre-processing 
steps were removal of data points that did not pass the quality control with regard to bead count criterion, MFI 
values were transformed into log2 values. Following the exclusion of autoantibodies with <10% seropositivity in 
RA patients, 163 autoantibodies were retained for analysis. To adjust for systematic variation in the overall MFI 
values of individual samples, the data were median-centred by the sample.

Metabolomic sample preparation. After thawing, TACERA serum samples were centrifuged at high 
speed (13000 ×x g(av)) and then filtered by centrifuging at 10,000 × g(av) through a thoroughly pre-washed 3000 
molecular weight cut-off filter (Pall, Omega 3k) to remove proteins which greatly improves the quality of the sub-
sequent NMR spectra25. The filtrate was diluted 1:4 with D2O/H2O (40%) containing NaCl (150 mM), deuterated 
4,4-dimethyl–4-silapentane-1-sulfonic acid (D6-DSS) (2 mM) as a chemical shift standard, difluorotrimethyl-
silanyl phosphonic acid (DFTMP) (0.4 mM) as a pH indicator26 as suggested by Chenomx Inc, sodium azide 
(0.4%) and sodium phosphate (100 mM) pH 7.0. The samples were then stored frozen at −80 °C until analysed, 
at which time they were thawed and a sample (35 µl) transferred to a 1.7 mm NMR tube which was then capped. 
Urine samples were thawed, centrifuged and diluted 1:4 with the NMR buffer detailed above. Samples were then 
carefully pH adjusted to 7.0 until stable27 and then frozen at −80 °C until analysed.

Urine and Serum metabolomics data analysis. One-dimensional 1H NMR spectra were acquired 
at 300 K using a NOESY pulse sequence including water suppression with pre-saturation on a Bruker DRX 
600 MHz NMR spectrometer equipped with a TXI 1.7 mm cryoprobe. 2D homonuclear (1J-resolved) spec-
tra were also acquired for each sample and heteronuclear (1H_1H_13H TOCSY and C HSQC) spectra were 
also recorded for selected samples to aid spectral assignment. Samples were processed and data calibrated 
with respect to the DSS signal. Spectra were read into Metabolab28, in Matlab (version 2016a, The Mathworks, 
Natick, MA), and spectra were segmented into 0.006-ppm (3 Hz) chemical shift ‘bins’ and the spectral area 
within each bin was integrated. Spectra were corrected for baseline offset using a spline fit and then normalised 
using Probabilistic Quotient Normalisation (PQN)29,30 and a generalised log transformation was applied31,32. 
Binned data were then compiled into a matrix, with each row representing an individual sample. NMR databases 
(Human Metabolome Database version 3) and the Chenomx NMR suite (Chenomx, Professional version 8.0)33 
were used to identify and quantify metabolites present in each sample. Automated metabolite identification 
with Chenomx was used to produce an initial fit and then manual fitting of the Chenomx provided metabolite 
spectral library was done. This focussed on a set of metabolites previously identified as being present in human 
serum34 and urine35. Other published data on metabolites identified in human sera were also used to guide iden-
tification36,37. Following automated and manual metabolite identification, 40 known metabolites were identified 
and quantified in sera and 42 in urine.

Genotyping. Genotyping was performed using the Illumina HumanCoreExome-24-v1-0 (Batch 1) or Illumina 
InfiniumCoreExome-24-v1-1 (Batch 2) according to the manufacturer’s SOP. Raw intensity data files (idat format) 
from the Illumina iScan instrument were imported into GenomeStudio (v2011.1). Samples <90% call rate were 
excluded. Data was exported to PLINK PED/MAP format on the forward strand. Data was converted from PED/
MAP to BED/BIM/FAM using PLINK v1.07. HumanCoreExome-24v1-0_A_PopulationReport_MAF_022015.txt 
or InfiniumCoreExome-24v1-1_A_PopulationReport_MAF.txt was used to obtain a list of all variants on the array 
with a MAF >0.005. This list was used to extract the variants from the genotype file. Variants with a GenomeStudio 
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Cluster Separation <0.3 were excluded. Variants with <98% call rate were excluded. Individuals with <98% call 
rate were excluded. Palindromic SNPs (AT/CG) were excluded and the file split per chromosome. Variant IDs were 
updated to match Haplotype Reference Consortium v1.1 using GenotypeHarmonizer. SNPs in common between 
the two arrays were extracted from each dataset and the files combined (TACERA_combined). W.Rayner’s script 
HRC-1000G-check-bim-4.23.pl was used to align SNPs to HRC v1.1 panel. PLINK v1.9 was used to convert the 
PLINK files to VCF. The Wellcome Trust Sanger Institute imputation server was used to impute the data to the 
HRC v1.1 panel using SHAPEIT2 for phasing and PBWT for imputation.

HLA imputation methods. HLA imputation was performed using PLINK to extract 28Mb-34Mb on chro-
mosome 6. SNP2HLA was used for imputation with the Type 1 Diabetes Genetics Consortium (T1DGC) Panel38. 
Custom bash and STATA scripts were used to extract the HLA haplotypes from the bgl.phased file.

Data Records
Figure 2 summarises the number of samples processed on each omic platform. All raw data and processed mRNA 
and small RNA data are available in the NCBI GEO series accession number GSE9747639. Serum and urine 
metabolomic data have been deposited at the MetaboLights database of the European Bioinformatics Institute 
(EBI) under MTBLS149740. Genotype data has been deposited in the European Genome-phenome Archive 
(EGA) with ID number EGAS0000100442441. De-Identified clinical data, X-ray, Somalogic proteomic data, 
including aptamer annotation and Protagen autoantibody data are available in the RA-MAP project in figshare16.

technical Validation
exploratory data analysis across omic platforms. Whole blood, cell subsets and serum readouts from 
each individual omic data platform were compared at baseline and six months, using a unified exploratory data 
analysis (EDA) approach employing a range of multi-dimensional visualisation and dimensionality reduction 
methods implemented in the bioplotr package (https://github.com/dswatson/bioplotr). The technical validity of 
each platform was explored using visualisations of mean variance / dispersion plots, density plots, subject simi-
larity and principal component analysis (PCA). Full EDA markdown documents and data files for each platform 
are available in the RA-MAP GitHub. In Fig. 3, PCA is used to gain an overview of each omics platform at baseline 
and 6-months in whole blood and cell subsets in the TACERA early RA cohort (a, c-h) and across a range of time 
points in the vaccine cohort (b, k-o). Similar separation by cell type is evident in both RA and vaccine cohorts. 
After QC, including limited outlier removal, all Omics platforms appear relatively homogeneous with no unex-
pected structure in PCA projections. Some evidence of separation by time is seen in the RA cohort in whole blood 
and cell subset mRNA, serum miRNA, serum autoantibodies and urine metabolomics. Clear time separation is 
less evident in the Vaccine cohort. Collectively the EDA across each platform provides consistent evidence of 
technical validation. In order to identify those clinical features driving the observed multi-omic changes, giving 
some biological validation to the data, we performed unsupervised PCA Driver analysis (Fig. 4) which shows 
the degree of association between Principal Components (PC1-5; % PC effect indicated) and clinical variables in 
each multi-omic platform. The driver plot heatmap indicates the –log q-value of the association with each clinical 
and technical variable. Significant drivers are indicated by outline with an FDR threshold of 5%. Unlike the rela-
tively non-specific PCA projections, PC driver plots allow direct evaluation of influence of different clinical and 
technical variables on variation of expression in the samples. In the TACERA cohort, the larger PCs, representing 
the largest source of variance, are closely associated with time and DAS28 and related disease activity scores in 
whole blood and cell subset mRNA and whole blood miRNA; and rather less closely associated with the other 
platforms. Notably time and DAS28 correlate closely with the exception of the urine metabolome where changes 
in time, including the joint strongest association seen in the dataset, are less well correlated with disease activity. 
This leads us to conclude that changes over time in the urine metabolome driven by PC2 are unlikely to be disease 
related. We note that region hub shows some correlation with measures of disease activity in some Omic plat-
forms. Samples from 28 patient recruiting centres were processed in 7 regional hubs14, we hypothesize that this 
may reflect a higher proportion of more severe RA cases seen in tertiary referral centres. In the Vaccine cohort, 
in contrast to the highly dysregulated immune system seen in RA patients, the disturbance following a vaccine 
related immune challenge in the healthy volunteers appears negligible.

Collectively insights from EDA in the TACERA and Vaccine cohorts support the high technical quality of 
both data sets. Principal Component Driver analysis provides biological evidence of disease signatures in the 
TACERA cohort that are guiding our ongoing analysis of this dataset.

Usage Notes
Genotype data is made available through the European Genome-phenome Archive (EGA). Request for 
data access will be referred directly to our Data Access Committee: https://ega-archive.org/datasets/
EGAD00001006736. If you need to request access to this data set, please contact the RA-MAP Data Access 
Committee (Contact person:m.r.barnes@qmul.ac.uk). Applicants will be asked to complete the Data Access 
Agreement (DAA) (including a brief summary of the proposal, proposed usage of the dataset, the storage of 
data, so the DAC can determine if the planned usage falls within the consents) and to agree to the terms and 
conditions of the DAA. The DAA must be signed by the applicant and the relevant Head of Department, or 
equivalent. If applications include a named collaborator then the collaborator’s Institution must sign and submit 
a separate DAA. A template DAA can be found on the EGA website: https://ega-archive.org/submission/dac/
documentation.
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a
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Fig. 2 Summary of sample-platform overlap in (a) The TACERA cohort, (b) The Vaccine Cohort. Vaccine 
V1-V8 relates to visits 1, 2, 4, 6 & 8 at day -7, 0, 3, 56, 63.
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Fig. 3 Principal component analysis (PCA) across multiple omic platforms at baseline and 6-months in whole 
blood and cell subsets in (a) the TACERA early RA cohort and (b) across 6 visits (day −7, 0, 3, 56 and 63) in 
the vaccine cohort. Similar separation by cell type is evident in both RA and vaccine cohorts. Some evidence 
of separation by time is seen in the RA cohort, but this is less evident in the Vaccine cohort. Multi-omic PCA 
comparison at baseline and 6-months in early RA across (c) whole blood mRNA, (d) micro RNA (serum), (e) 
proteome (plasma), (f) autoantibodies (serum), (g) metabolome (serum) and (h) metabolome (urine). Clear 
separation with time is seen in Whole Blood and cell subset mRNA, Serum miRNA, Serum Autoantibodies and 
Urine metabolome.
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Code availability
Fully annotated Executable R scripts and R Markdown documents are available in our public RA-MAP GitHub in 
order to allow complete reproduction of our analysis workflow (https://github.com/C4TB/RA-MAP). All analyses 
were conducted in R version 4.0.5.

Received: 14 January 2021; Accepted: 4 February 2022;
Published: xx xx xxxx

Fig. 4 Unsupervised PCA Driver analysis of multi-omic compartments across TACERA early RA patients 
and Hepatitis B vaccine recipients, showing clinical features and their degree of association with Principal 
Components (PC) 1–5, percentage indicating variation accounted for by the PC and with coloring indicating 
the –log q-value of the association (scaled to maximum range of PC1 across all compartments, off scale 
associations are indicated in grey with –log q written). Significant drivers with an FDR threshold of 5% are 
indicated by outline. Specific drivers of variation in expression in analysed samples are indicated in TACERA 
patients in (a) Whole Blood mRNA, (b) PBMC mRNA, (c) CD4 mRNA, (d) CD8 mRNA, (e) CD14 mRNA, 
(f) Whole Blood micro RNA, (g) Plasma proteomics, (h) Serum autoantibodies, (i) Serum metabolome, (j) 
Urine metabolome. In VACCINE recipients in (k) Whole Blood mRNA, (l) PBMC mRNA, (m) CD4 mRNA, 
(n) CD8 mRNA, (o) CD14 mRNA. Clinical features include XRAY (quantitative measure of bone erosion at 
sample timepoint (0 or 6 m)), TIME (sample annotation at baseline or 6-months), SYMP_DUR (Symptom 
duration at diagnosis), SMOKER (smoking status Y, N, Previous), SEX (M/F), RF (Rheumatoid factor positive 
Y/N), PAIN (quantitative measure of pain at sample timepoint (0 or 6 m)), FATIGUE (quantitative measure of 
fatigue at sample timepoint (0 or 6 m)), ETHNICITY (Ethnic origin), DAS28 (disease activity score in 28 joints 
at sample timepoint (0 or 6 m)), CRP (quantitative measure of C-reactive protein at sample timepoint (0 or 
6 m)), BMI (Body Mass Index at baseline), ALCOHOL (Y/N), AGE (Age at baseline), ACPA (anti-citrullinated 
protein antibody positive Y/N), SEROLOGY (Hepatitis B serology at week 9). In the TACERA cohort in 3a-j 
the first two PCs are closely associated with DAS28 scores in Whole Blood, PBMC mRNA, CD4 mRNA, and 
CD14 mRNA; and rather less closely associated with the other platforms. In 3k-o, in contrast to the highly 
dysregulated immune system seen in RA patients, the biological perturbation following a vaccine-related 
immune challenge in the healthy volunteers appears negligible.
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