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An Analysis of Stochastic Variance Reduced Gradient, for Linear
Inverse Problems

Bangti Jin* Zehui Zhou' Jun Zou'

Abstract

Stochastic variance reduced gradient (SVRG) is a popular varianee reduction technique
for accelerating stochastic gradient descent (SGD). We provide a first ‘analysis of the method
for solving a class of linear inverse problems in the lens ofithe classical regularization theory.
We prove that for a suitable constant step size schedule, the method can achieve an optimal
convergence rate in terms of the noise level (undertsuitable regularity condition) and the
variance of the SVRG iterate error is smaller than-that by SGD. These theoretical findings
are corroborated by a set of numerical experiments.

Keywords: stochastic variance reduced gradient; regularizing property; convergence rate;
saturation; inverse problems.

1 Introduction

In this paper, we consider the numerical solution‘of the following finite-dimensional linear inverse
problem:
Ar =y, (1.1)

where A € R™™™ ig the system/matrix representing the data formation mechanism, and x € R™
is the unknown signal of interest. In practice, we only have access to a noisy version y° of the
exact data yt = Axf (with #" being thé minimum norm solution relative to the initial guess z,
cf. (2.1)), i.e.,

v =yt ¢

where £ € R" denotes the noise in the data with a noise level § = ||£]|, with || - || being the
Euclidean norm of a veetor (and also the spectral norm of a matrix). We denote the ith row of
the matrix A by.a column vector a; € R™, ie., A = [aﬂ?zl (with the superscript ¢ denoting the
matrix/vector transpose)sand the ith entry of the vector y® € R™ by yf . Linear inverse problems
of the form/(1.1) arise in a broad range of practical applications, e.g., computed tomography
and optical imaging.

Overrthe last. few years, stochastic iterative algorithms have received much interest in the
inverse problemis community. The most prominent example is stochastic gradient descent (SGD)
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due to Robbins and Monro [30]. The starting point is the following optimization problem:
d : 2
J@) = A — g7 = 23 fle), with o) = b((an ) o) (12)
i=1

where (-, -) denotes the Euclidean inner product on R™. Then SGD reads as followss Given an
initial guess 5@8 = x¢, the iterate i"i is constructed as

5 5 8
L1 = T — kaz(k (%),

where 7, > 0 is the step size at the (k + 1)-th step, and the index 1 dsysampled uniformly
from the index set {1,...,n}. One attractive feature of the method is that the computational
complexity per iteration does not depend on the data size n, and thus it is directly scalable to
large data volume, which is especially attractive in the era of big data. ‘SGD type methods have
found applications in several inverse problems, e.g., randomized Kagzmarz method [12, 32| in
computed tomography, ordered subset expectation maximization,[13, 21] for positron emission
tomography, and more recently also some nonlinear inyverse problems, e.g., optical tomography
[4] and phonon transmission coefficient [8].

However, the relevant mathematical theory fordnverse problems in the lens of regularization
theory [7, 20, 14] is still not fully understood. Existing worksi[16, 17, 15, 18] focus on the standard
SGD for inverse problems, proving that SGD is a regularization method when equipped with
a suitable stopping criterion, and the SGD iterates converge at a certain rate. However, the
presence of stochastic gradient noise generally prevents SGD from converging to the solution
when a constant step size is used and leads te a slow, sublinear rate of convergence when a
diminishing step size schedule is employedimAmongst various acceleration strategies, variance
reduction (VR) represents one prominenthidea that has achieved great success, including SAG
[24], SAGA [5], SVRG [19, 36}, and SARAH,[27] etc; These methods take advantage of the
finite-sum structure prevalent in machine learning problems, and exhibit improved convergence
behavior over SGD; see the work [9] for a recent overview of variance reduction techniques in
machine learning.

Stochastic variance reditced ‘gradient (SVRG) combines SGD with predictive variance re-
duction and is very popular in stochastic optimization. It was proposed independently by two
groups of researchers, ie., Johnson and Zhang [19] and Zhang, Mahdavi and Jin [36], for accel-
erating SGD for minimizing smooth and strongly convex objective functions. When applied to
problem (1.2), the basic version of SVRG reads as follows. Given an initial guess 938 =zx9 € R™,
SVRG updates the iterate xi recursively by

where the row dndex #j, is drawn uniformly from the index set {1,--- ,n}, np > 0 is the step
size at thevkth iteration, M is the frequency of computing the full gradient, and kp; = [%]M ,
([-] takes the imtegral part of a real number). The choice of the frequency M can affect the
practical,performance of the algorithm, and it was suggested to be 2n and 5n for convex and
nenconvex optimization, respectively [19]. In this study, we show that SVRG can achieve optimal
convergence rates when M is chosen such that M > O(n%) When compared with SGD in (1.3),

SVRG emiploys the anchor / snapshot point xiM to reduce the variance of the gradient estimate:
§
ke

combines J’ (sz) with the gradient gap f], (z2) - i (xiM) to obtain a new gradient estimate for

it computes the full gradient J’ (miM) of J at the anchor point x9 for every M iterates, and then
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updating the SVRG iterate xi 41+ In contrast, SGD employs the stochastic gradient fi,k (ii) only,
and the classical Landweber method uses only the gradient J'(z). Thus, SVRG can be viewed
as a hybridization between the Landweber method and SGD. A detailed comparison between
SGD and SVRG are given in Algorithms 1 and 2, where SVRG is stated in the form of.deuble
loop. In practice, there are several variants of SVRG, dependent on the choicerof the anchor
point, e.g., last iterate, iterate average, random choice and weighted iterate average (within the
inner loop). In this work, we study only the version given in Algorithm 2.

Algorithm 1: Stochastic Gradient Descent (SGD) for problem (1.1).

Set initial guess ig =z and step size schedule 7,
for k=0,1,--- do ~
draw iy i.i.d. uniformly from {1,--- ,n}

update iiJrl = ii — nk((aik,fﬁi) — yfk)aik
check the stopping criterion
end

Algorithm 2: Stochastic Variance Reduced Gradient (SVRG) for problem (1.1).

Set initial guess acg = x0, frequency M and step size schedule 7y,

for K =0,1,--- do

compute J' (2% ) y
fort=0,1,--- ,M —1do
draw igpr4¢ 1.3.d. uniformly from {1y.-- , n}
update x(;(M-i-t-&-l = x?(M—f—t - T]KM+t((a’iKM+t’$§(M+t - x?(M)aiKM-H + ‘]I(xi(M))
end
check the stopping criterion.

end

It is known that VR enables speeding up the convergence of the algorithm in the sense of
optimization [3, 9]. Since its first"intreduction, SVRG has received a lot of attention within the
optimization community, and several convergence results of SVRG and its variants have been
obtained [11, 1, 2, 29, 34, 23y 3{1 Note that here the precise meaning of convergence depends
crucially on the property 6f the objeetive function J(z): (i) the distance of the SVRG iterate x
to a global minimizer for astfictly convex J(z), (ii) the optimality gap (i.e., J(2$) — min, J(x))
for a convex .J(z) and((iii) themetm of the gradient ||.J(x)]|| for a nonconvex J(z), in terms of
the iterate number k. Forexample, Allen-Zhu and Hazan [1] proved that SVRG (with a different
choice of the anchor point) converges at an O(n%efl) rate to an approximate stationary point z*
(ie., ||J'(x*)||?> £€) for a monconvex but smooth J(z). Reddi et al [29] proved a nonasymptotic
rate of convergence of SVRG for nonconvex optimization and identified a subclass of nonconvex
problems (satisfied by gradient dominated functions) for which a variant of SVRG attains linear
convergence.

These important breakthroughs in the optimization literature naturally motivate the follow-
ing question: Does the desirable convergence property of SVRG carry over to inverse problems
in the sense of regularization theory? The answer to this question is not self-evident, since
accelerated iterative schemes do not necessarily retain the optimal convergence in the sense
of regularization (see [26, 22| for studies on Nesterov’s accelerated scheme). For linear inverse
problems‘in (1.1), the objective J(x) in (1.2) is convex but not strictly so. Further, it is ill-posed
in the sense that a global minimizer often does not exist, and even if it does exists, it is unstable
with Tespect to the inevitable perturbation of the data ° and is probably physically irrelevant.
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Instead, we construct an approximate minimizer that converges to the exact solution-a! as'the
noise level § tends to 07 by stopping the iteration properly, a procedure commonly known as
iterative regularization (by early stopping) [20], and the accuracy of the approximation is mea-
sured in terms of the noise level §. To the best of our knowledge, the theoretical preperties
of SVRG and other variance reduction techniques have not been studied so faryin the lens of
regularization theory.

In this work, we contribute to the theoretical analysis of SVRG for a class,of linear inverse
problems from the perspective of classical regularization theory [7, 20,14]. Underithe constant
step size schedule and the canonical source condition, we prove that the epochwise SVRG iterate
:cg(M converges to the minimum norm solution z! at an optimalfrate (in_térms of &) when
combined with a priori stopping rule, and that due to the built-in variance reduction mechanism,
for the same iterate number, the variance of SVRG iterate is imdeed smaller than that of SGD,
showing the beneficial effect of variance reduction; see Theorems»2.14and 2.2. In particular,
SVRG allows using larger step sizes than that for SGD while still overcoming the undesirable
saturation phenomenon (cf. Remark 2.1). See Section 2 for precise statements of the theoretical
findings and related discussions in the context of inversé problems. These theoretical results are
complemented by extensive numerical results in Section 6.

The rest of the paper is organized as follows. lu'Section 2 we present and discuss the main
results of the work. In Section 3, we recall preliminary rfesultspespecially a careful decomposition
of the error of the epoch SVRG / SGD iterate into the bias and variance components. In
Section 4 we give the convergence rate analysis, and prove an optimal convergence rate, and
in Section 5 we present a comparative study ofsSVRG versus SGD, and show that variance
component of the SVRG error is smaller than that of the SGD error. Finally, in Section 6,
we present several numerical experimentsito.complement the theoretical analysis. For better
readability, the lengthy and technical ‘proofs of several auxiliary results are deferred to the
appendix. Throughout, the notation ¢ with'suitable subscripts denotes a generic constant.

2 Main results and/discussions

In this section, we state the main results of the work. First we state the standing assumption. We
denote by Fy, the filtration gemeratéd by the random indices {ig,i1,...,ix—1}. Let F = \/zil}"k,
Fi = F\ Fi, (Q,F,P) being the associated probability space, and E[] denotes taking the
expectation with respeet to the filtration 7 and E;[-] := E[-|F7,; UF;]. The SVRG iterate ? is
random, and measurable with(respect to Fj. Let ei = xi — 2t be the error of the SVRG iterate
xi with respect to the unigue minimum-norm solution z', defined by

e =arg  min |z —xo. (2.1)

rER™: Az=yT

Let B = Elajal] = n7' A'A'€ R™*™. Throughout we assume that || B|| < 1, which can easily be
achieved by scaling. In this work we consider a constant step size schedule, which is commonly
employed by SVRG. Assumption 2.1(ii) is commonly known as the source condition in the
inverse problems literature [7], which implicitly assumes a certain regularity on the initial error.
This condition is central for deriving convergence rates. It is well known that in the absence of
source type conditions, the convergence for a regularization method can be arbitrarily slow [7].
Assumption 2.1(iii) enables an important commuting property (cf. Lemma 3.2), which greatly
facilitates the analysis. Numerically this property does not affect the performance of SVRG,
and thus it seems largely due to the limitation of the analysis technique.
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Assumption 2.1. The following assumptions hold.

(i) The step size nj =co, j =0,1,---, with ¢cg < (max(max; [|a;||?, HB||2))_1.

(ii) There exist some v > 0 and w € R™ such that the exact solution x' satisfies 27 —ro =B w.
(iii) The matrizx A = XV with ¥ being diagonal and nonnegative and V' column orthonormal.

The next result represents the main theoretical contribution of the'work: It implies that
SVRG can achieve the optimal convergence rate for linear inverse problemsdnder the given
assumption on the step size. The step size restriction originates fromythe fact/that SVRG still
employs a randomized gradient estimate for the iterate update, albeitewith reduced variance,
when compared with the Landweber method. Nonetheless, the Testriction on the step size is
more benign than that for SGD: It allows achieving optimal convergencedate under larger step
size than that in SGD.

Theorem 2.1. Let Assumption 2.1 hold, and c, > 1 satisfy

(4+2(Mco||B|))))nM 2cpep sl — ¢, (2.2)
M—-1 -
with cpar = Y (1= (1= co| BI)" ) dandeg’= (1 — col| BI))~™.
=1

Then with constants ¢, = v’ (Mco)™" and ce =23 + 2(Mco||B||)>)nMcpc3||B||, there holds
B¢l ] <(2 + 22 Bilnnce ) B ]2 + (2Meco + oncs) KT

Remark 2.1. Let ¢ = ¢ B| M, which imaplies cg = (1 — M~ and cp i = M 711 -
(1 — cM~—Y))2, the condition (2:2) is satisfied whenever

nM 2 < (=) (A +2¢0) e gy

which holds for M = (’)(n%) s sufficiently small ¢ = O(1). It is instructive to compare the
conditions ensuring an optimdl convergence rate of SVRG and SGD: SGD requires the condition
co = O(n~Y) [18], whereas SVRG requires only M = O(n%) and ¢ = ¢o||B||M = O(1). The
latter implies co = (’)(n_%) for SVRG. Since (’)(n_%) is much larger than O(n~1) when the data
size n is large, SVRG shouldperform better for truly large-scale problems.

It is known that SGID with an inadvertent choice of the step size schedule can lead to
the undesirable saturation phenomenon, i.e., the convergence rate does not improve with the
regularity index# inAssumption 2.1(ii), whenever v exceeds the critical value 1/2 [15, 18]. This
is attributed to thelinherent variance of the stochastic gradient estimate used by SGD, and
one important issue is to overcome the saturation phenomenon. The next result sheds further
insight into this phenomenon by comparing the mean squared error of the (epochwise) SVRG
iterate withythat of the corresponding SGD iterate: it gives a refined comparison between the
variance eomponents of SVRG and SGD iterates, in view of the bias-variance decomposition.
In particular, it shows that the built-in variance reduction mechanism of SVRG does reduce
the variance component of the error, which represents a distinct feature of SVRG over SGD,
especially alleviating the step size restriction for achieving the optimal convergence.
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Theorem 2.2. Let Assumption 2.1(i) and (iii) be fulfilled and the constants cy, n and M. satisfy,
with the constant gy = (1 — c0||B||)—2(M—1),

(M —1)%¢2||B||> < (2cg) " and (M +1)* < (2cg) ' (n —a). (2.3)

For any K > 0, let Ry and Ra be measurable with respect to F,, and Ry is,combination of o
and Hy, (cf. (3.1) for the definition). Then for ¢ defined in Section 3.1, there holds

E[||Ri(efcar — B~Q) + Ro||?] < E[| Ru(efns — B~'¢) #Ra|°].

Remark 2.2. Let ¢ := co||B||(M — 1), which implies ¢y = (1 — ¢(M—1)"1)72M=1 " Then
condition (2.3) can be rewritten as ~

<27 )™ and (M +1)2 <27 Y)Y 0.

The first essentially requires ¢ < % For any M > 2, dp < 2e2¢, the eomdition can be satisfied by
2ce€ <1 and M +1 < 2*16*%%.

Last we briefly comment on the overall analysis strategy for,proving Theorems 2.1 and 2.2.
The overall strategy is to derive the recursion of the‘epochwise SVRG iterate m‘;( v (and also
the SGD iterate @‘;(M), forany K =0,1,---, i.e., at theranchor points only, and then bound the

error e‘;( M= x% M x! by bias-variance decomposition 4

Ellleka — 2% = IEleieuihs =" I "% Blllz% 1 — Elaten]l?)-

The two terms on the right hand side represent respectively the bias of the error due to early
stopping and data noise and the cemputational variance of error due to randomness of the
gradient estimate. These are analyzed in Propesition 3.1 and Lemma 4.1, respectively, and allow
proving the convergence rate in Theorem 2:1. The analysis of the variance component relies on
a novel refined decomposition inte terms that are more tractable to estimate for both SVRG and
SGD. This decomposition is alse-crucial for the comparative study between SVRG and SGD,
where a careful componentwise comparison of the decomposition allows establishing Theorem
2.2. Note that the decomposition. relies/heavily on the constant step size schedule, and thus the
overall analysis differs greatly from existing analysis of the SGD in the lens of regularization
theory [16, 17, 18] or thelanalysis of SGD in statistical learning theory [35, 33, 6, 25, 28]. The
extension of the analysis to a general step size schedule represents an interesting future research
problem.

3 Error decomposition

In this part; we presentiseveral preliminary results, especially error decompositions for SVRG
and SGD iterates. The deeompositions play a central role in the convergence rates analysis and
comparative analysis in Sections 4 and 5, respectively.

3.1 .. Notation and preliminary estimates

Kirst we introduce several shorthand notation. Below, we denote the SVRG iterates for the
exact. data y' and noisy data 3 by z; and xi, respectively, and that for SGD by Zj and i“g,
respectively. We use extensively the following shorthand notation for any £k =0,1,---:

ek::Ek—ZL'T, eizxi—IL‘T, észﬁk—ﬂ, éi:ii_ﬂv

Page 6 of 31
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_ 1 _ 1 _ 1 -
A=n"2A, &=n"2§, O6=n 20, My=1I—-coB, (=A%,
Pk :I_coaikagka Nk :B_aika§k7 Ck :alkglk

Note that P is the random update operator for the iteration, and we have the identity P, =
My + ¢ Ng, trivially. For all k € N, let

ky+M—1

. II P k#EKoL
Hy = Giy1Ng, with G = ik (31)

I, k=KDM.

~
Clearly, Hxar—1 = Nip—1- By definition, we have the following identity
Grmyj = Grmyjr1Praryi = Grargjr1(Mo + colNg ar )

=GrmyjriMo+coHgpyj, J=k,---,M—1. (3.2)

These notations are useful for representing the (epochwise) SVRG. iterates x% - cf. Proposition
3.1. The following simple identity will be used extensively.

Lemma 3.1. The following identity holds y
‘ M—i—1 :
GKM_H‘:M(;V[_Z—FCO Z HKM-H'—I—jM(gv i=1,...,.M —1. (33)
§=0

Proof. Tt follows directly from the definitiontof.Gy and Hj and the identity (3.2) that

0 1
Grm+yi = Grmtiy1Mo +ep Z Hignv+iM} = GrearrivaMG + co Z Hypviyi; M}
j=0 =0
A M—i=1 _
=...= 6]\4_1 NO Z HKM+Z+]M8
=0
This shows the desiredtidentity. 0

We use extensively. thefollowing direct consequence of Assumption 2.1(iii).

Lemma 3.2. Under Assumption 2.1(iii), the matrices My, B, P;; and Nij, are commutative
for any j and.g’

Proof. Note that, fof any j.and j', we have

n n
B=n""! g aiaf, My=1—-cyB=1- con_1 E aiaf,

i=1 i=1
¢ at —1 Z
Pij :I_Coa'i]'aija Nij/ =B - a/Z/ ’L/ - a;a aZ/ 7,,
It suffices to show the claim that aia;¢ and ajaE» are commutative for any 4,5 = 1,--- ,n. This

t-ai. OJ

claimis trivial when ¢ = j. If i # j, by Assumption 2.1(iii), there holds afa; =0 = aj

7
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We also state an identity which is crucial for the proofs of Theorems 2.1 and 2.2.

Lemma 3.3. Let Assumption 2.1(iii) be fulfilled. Then for any diagonal matriz D_€ R™*™ and
any vector v € R™, which are independent of i;, the following identities hold

E[|VDV'N;v|’] = (n — DE[|V DV Bol[],
E[|VDV'(¢; = Ol*] = (n = DE[VDV'¢|?].
Proof. Recall the standard bias-variance decomposition: for any matrix¢R and filtration F,
E[||R — E[R|F]|*|Fa] = E[|R|?|Fa] — [E[RIFJ(E.
Then the identity N; = B — a;, fj = Ejla;; a;] ai.ag_ gives ~
E;[||[VDV'Njv|*) = [HVDVt%a 1] = VRV Bol|?

=n1 Z |V DVia;atvlfP— |V DVEBu]?,
i=1
where a;alv = A*(alv)b; with b; = (0,...,0,1,0,...,0)" € R" being the ith canonical Cartesian
basis vector. By Assumption 2.1(iii), DVtAt DZ is diagonal, and hence

n 'Y |VDViaaly|® = 12 HVvaAt(a )b
=1 =1

=n"H[VDV'A"Y “(alv)by][* = 0|V DV Bu|*.
=1

This shows the first identity. Similarly,since Bj¢;) = ¢, by rewriting (; as ¢; = a;,&; = A%, b,
we obtain the second identity. This compléetes the proof of the lemma. O
Next we recall two technical estimates; see the appendix for the proof.

Lemma 3.4. Let Assumption/2.1(i) be fulfilled. For any s > 0, t € [0,1] and K € N, there hold
|B~HI — MEM) | <Feg)l KX and || BSMEM|| < s5(Mcg) S K% == ¢, K~°.

3.2 Error decomposition

Now we derive error‘decompositions for the (epochwise) SVRG error e‘;( M= x‘;( 4 — o' and the
SGD error é% ME i‘;(M — ! into the bias and variance components. These representations
follow from direct but lengthy computation using the definitions the SVRG and SGD iterates,
and the detailed-proof is deferred to the appendix.

Proposition 3.1. Under Assumption 2.1(i), for any K > 1, there hold

K M K M —

(K—
e(K+1)M Ee(K+1 ZMO oM Li(¢ - BejM)

with the random matrices L; defined by

M—-1
Li=co Y HjyyiI—Mj)B™".
=1

Page 8 of 31
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The next result gives an analogous bias-variance decomposition for the SGD iterate :%%M.
Note that when compared with Proposition 3.1, the expressions of E[z%,,] and [E[2 /] are
actually identical, since both methods use an unbiased estimate for the gradient. Their difference
lies in the variance component, which will be the main focus of the analysis below.

Proposition 3.2. Under Assumption 2.1(i), for any K >0, é?K+1)M satisfies

K+1)M ~ Kl
Eley 1ypy) =M TOME] + (1 - MEHIMy B,

K M-2M—i-2
K—j)M
e?KH)M IE[“3(K+1) =y > M TIM H i ©)
j=0 i=0 1=0 ~
K M-1
K—j)M > e
oy > My M (Hynrsi (Mg sl — M3)BT)
7=0 i=0

+ MY (G — Q).

Remark 3.1. Equation (A.4) in the proof (in the appendiz) indicates that at the snapshot point
x‘}{M, SVRG performs a gradient descent step, and_in-between the snapshot points, the update
direction is a linear combination between gradient dnd gradient,offset (between the current iterate
and the anchor point). Thus in this sense, SVRG isfactually a hybridization of the Landweber

method and SGD. Note that since J’(xiM) is independent of the random index iy, and the gap

i (29) — i (sz) is independent of the noise &y, for linear inverse problems, the SVRG iterate
:ci does not actually depend on &;, . This property contributes to the variance reduction, and

constitutes one magor difference betweensSVRG and SGD in terms of the noise influence.

4 Proof of Theorem 2.1

Now we prove the convergence rate for SVRG in Theorem 2.1. We begin with bounding the mean
squared residual E[|| Ry (€%, —B~1¢) + Ra||?] and weighted variance E[|| Ry (e, — E[e,1)11%,
where the quantities ?; and Rjsare measurable with respect to the filtration F%,, and com-
mutative with B, My, {Py} and {&V} for any k& > 0. The specific forms of R; and Ry arise
from the refined decompositions of SVRG errors in Lemma 4.1 and SGD errors in Lemma 5.1,
in order to carry out the componentwise comparison between them; see the proof of Theorem
2.2 in Section 5 forfurtherdetails.

Lemma 4.1. Under Assumption 2.1(i) and (iii), for any K > 0, let Ry and Ry be measurable
U;jth r;sg;;ct to F(CK+1)M and commutative with B, My, {Py} and {Ny}, for any k > 0. Then
there ho

K
E(|[Ry(e{x1y0s — B7') + Raf!] =lo+ YLy,
=0
E[l| Ri(e(ry1yar — Blefrerym)I?] lem
with theterms 1y and 1, j given by
To =E[|| R M§" Y (e = B710) + Ro ), (4.1)
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K—j)M

M—-1
Ly =& 3" Bl RiMS M Hipg (1 — Mi)(edy — BT, (4.9)
=1

Now we bound the mean squared (generalized) residual E[||R1(ed,, —eB~'¢)|[?]wef the
epochwise SVRG iterate x% a- This bound is useful in the proof of Theorem 2.1 below. The
proof relies on mathematical induction, and the decomposition in Lemma4.1.

Theorem 4.1. Let Assumption 2.1(i) and (iii) be fulfilled, Ry be a combination of My and B,
and ¢, > 1 be chosen such that (2.2) holds. Then for any K > 0, there holds

KM

_ KM A ~
E[|Ri(efar — BTN < cullRiMy 2 (eg — BTGNP

Proof. We prove the theorem by mathematical induction. The case, K#= 0 holds true trivially.
Now assume that the assertion holds up to some K > 0, i.ey

E[Ri(€y — BTOIP) < eo|[RiMy? () B O, T =0.1,.... K. (4.3)

and we prove it for the case K + 1. Lemma 4.1 witheRy =0 gives
L
E[| Ri(ei s 1ya= B O =To+ > Tuj,
§=0

with the terms Iy and I ; given by (4.1) (with.Ry =0) and (4.2). Note that VtRlMéK_j)MV
is diagonal, then direct computation with Temmas 3.2 and 3.3, the inequalities |G jar4it1] <1
and ||[I — M{|| =1 — (1 — co||BJ|)* and théidefinition of the constant cp s in Theorem 2.1 gives

(K+1)M 5 1 )
Io <E[|[RiM, * f(eg=B"C)],
M-—1
(K— _
3 SB SNT —MIBIC 3181 PEN RS Y Njag iy = B0
i=1

<ncdep uBYRIMSS Y B(edy — B0
K—j+1)M

2 7% 2 <K72j>M 2 ( 2 & -1 2
<ncycpmlfMy ° [1711M, BJ|"E[[| R M, (5 — B Ol

This, the induction hypothesis (4.3), and the identity

1My 2|2 = (1= col BI)™ = e (4.4)
give
(K—j)M (K+1)M 5 1 9
ZIuSncOchBMc*ZHM > BIAIRiM, > () — BT
By Lemma 3.4,

(K
HM 2 BH<2(<K_J)MCO)_17 jzov"'aK_27

10
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and consequently,

= EDIM o 2 2 2K_2 2 2y —9 2
g M, * B|*<2|B|*+4c," M~ E (K—j) "< (@d+2Mco||Blp*)eyg "M==, (4.5)
=0 §=0

The preceding estimates together imply
E[|| R (e{c 100 — B
2 2 pe Y 0 1 2
<(L+ (A +2(Meo| BI)*)nM " epepes) [RiMy > (eg =B Q)"

The condition on ¢, from (2.2) shows the induction step, and this compl\etes the proof of the
theorem. O

11
Setting R; = n2B2 in Theorem 4.1 gives an upper beund on the mean squared residual

E[||Az%,; — ¥°||?] of the (epochwise) SVRG iterate x9,,. Notérthat the mean squared residual
consists of one decaying term related to the source condition in Assumption 2.1(ii) and one
constant term related to the noise level. In particularjpit is essentially bounded, independent of
the iteration index. This behavior is similar to that«for the standard Landweber method.

Corollary 4.1. Under Assumption 2.1 and condition (2.2),’13}167’6 holds

E||Azfer —o°I1) < 2282 ne. Ba® ! [wl® + 2ne,8”.
2

_l’_
Proof. Theorem 4.1 and the triangle inequality,imply (noting ef = e)
5 5112 110 S0y 2 LB s pe1y2
E[l| Az nr — y°[I7] =E[lln> B2 (egpy — B~ Q)] < ne.l|[B2 My * (eg — B~ Q)|I7,
KM g KM g
<20y ? BEAIR + 2ne,l|M, * BECI2
Meanwhile, it follows from Lemma 3.4 and the source condition in Assumption 2.1(ii) that
1 1 1
L, Badh]| <2'*3c,., K~ |u],
P el 2 B L 21712 < 52
1My * B7=(" <|[M,* B2 A7|[7[I¢]]7 < 67
Combining the preceding estimates gives the desired assertion. O

Now we can, present the proof of Theorem 2.1. The proof employs the representation in
Theorem 4.1, and follows by directly bounding the involved terms using Lemma 3.4 (under
Assumption/2.1(i1)) and, Theorem 4.1.

Proof. By Lemima 4.1, setting Ry = I and Ry = B~!( gives

K

E[He((SKH)MHQ] <Io+ th
=0

with the terms Iy and I; ; given by (4.1) and (4.2), respectively. Now we bound them separately.
By the'triangle inequality, Assumption 2.1(ii) and Lemma 3.4, we deduce

Iy = | MM eq + (1 — MM 112

11
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< 2 MM e |12 4 2)|(1 — KTV B AN
< 2¢2(K + 1) ||w||® + 2Mco(K + 1)82.

Meanwhile, (4.2) with Ry = I gives
M-1
K— i _
Ly =c Y ElMS M — My Hjaryi(edy — BTHO 1)
=1

Note that by Lemma 3.2, the matrices I — M¢ and Hjp4; are commuting, and Hjp4; =
Gjntsir1Njprei. Thus by Lemma 3.3 (with VEMSS ™M (T — Mi)Gfaryi4q Vabeing diagonal) and
|Gjrr+iti]] < 1, we obtain

M-—1
Ly =(n— 13 Y 1M (I — MY)G i By = B0
=1

M-1
ned S E[IMS MBI - M) (& — B
i=1

L
Next by the identity

j—1
co > My=y(I - M)B™,
=0

the trivial inequality (30— ar)? < idSimga?, and || M| < 1, we have

M—-1 1—1
K—9M _
I; <nch e Bl Mg B2 Mi(edy, — BT

=1 t=0
M—-1 =1
. K—7)M
<ncd S i Y BN BME(BE, - )11
=1 . 1=0
M—1
. K—3)M
<nch > P MM B(Bed, — O],
=1

Since Zg;l i? < 371M3, it follows from Theorem 4.1 and (4.4) that

L, <8 'nMPc 4E[||M<K‘j’MB<Be§M ekt
_ 3 K— )1\/[ 9 (K +1)]M 6 9
<3ty TP, ¢ B E[HMOf (BeSyr — QI
(K—j)M K+1)M

(K+1)M
<3~ ncBM3COC*HM > B|? ||M 2 (Bey — )|
This.andithe inequality (4.5) imply

(K+1)M

ZIU<3 (4 +2(Mco||B|)? )nMchoc*HM 2 (Beg—C)H2

< (34 2(Meo B))nMepcge. (22| BlIPcp (K +1)7 [[wl® + || BI|6%).

12
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The last two estimates together yield

Elllefcsyarll’] <(2+ 2% (3 + 2(Meo||BI)*)nMepcd|| Bl *er) e (K + 1))
+ (2Mco + (3 + 2(Meo| B]))®)nMepcd|| Blle.) (K £ 1)5°.

This completes the proof of the theorem. O

5 Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2, and presents a comparative study on the
variance E[|[eS,, — Eled1/][I?] of SVRG iterates with E[[|é%,, = E[é%,]|I?] of SGD iterates.
First we give a bias-variance decomposition of the SGD iterate mg{ A in@nalogy with Lemma
4.1. The representations in Lemmas 4.1 and 5.1 facilitate the comparison between the variance
components directly, which, under certain conditions, enablesscomparing the variance of SVRG
and SGD iterates.

Lemma 5.1. Under Assumption 2.1(i) and (iii), fortany K >0, let Ry and Ry be measurable
with respect to F(y 4y, and commutative with B Mo, {Py} and {Ny}, for any k > 0. Then

(K+1
there hold v
K
E[| Ri(&(xc 10 — B8R =To + D (loj + I3,
K "
E[HRl(é(gKH) E[e(K—H wd)||’] Z Ioj +13),
7=0

with Iy given by (4.1) and Iz ; andls ; given by

M-1
K- N — — —i—
Loy =cg > Bl RMy™ ™ (Hyhs M€y — BQ) + HyngiB™' ¢+ M ™ (Gaa — ) I,
=0
(5.1)
M-11i—-1 P
oy =cg O Bl RIMG " Hyn i My(Giarvim1-e = QI (5.2)
i=1 t=0

Now, we cam prove Theorem 2.2. This result states that the variance component of the
SVRG iterate m‘;(M is.indeed smaller than that of the SGD iterate i‘;(M, as one may expect
from the comstruction ofwariance reduction, and thus the variance reduction step does reduce
the variance of the iterate, thereby alleviating the deleterious effect of the stochastic iteration
noise on the convergence of the SVRG iterates. The proof relies heavily on the explicit rep-
resentations of the variances for the iterates xﬁ( u and fc% a derived in Lemmas 4.1 and 5.1,
and-employs mathematical induction, certain independence relations (cf. (5.5)—(5.7)) as well as
lengthy computation.

Proof., Recall that the assumption on R; implies that it is commutative with B, My, { Py} and
{Nj} for any k£ > 0, and that in the inequality, R; and Ry are measurable with respect to %

whenrconsidering €9, ,). These facts will be used extensively without explicit mentioning below.
JM

13
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The proof proceeds by mathematical induction. The case K = 0 is trivial since ég = eg. Now

suppose that the assertion holds up to some K, i.e.,
E[|Ri(e}ar — B7'Q) + Ro|’] <E[||Ri(&]a; — B™'O) + Rol”],  j =04, K, (5.3)

and we prove it for j = K + 1. By Lemmas 4.1 and 5.1, we deduce

K

Elll Ry (e prpps — B7'C) + Ral?l =lo + 3 Tuy,
=0
K

E[|R1 (&0 1yar — B7C) + Ral®] =To + Y _ (18, +1g5)s
§=0

with the terms Iy j, I ; and I3 ; are given by (4.2), (5.1) and (5.2), respectively. Thus, it suffices
to show
Il,j < I2,j +I3,j7 .7 = 0717"' 5K- (54)

By the inequality (Zizl a;)? < iZizl a?, (A.5) andshe identityr|| M, | = (1 — co||B||) ™!, we
have

M—1 i1 4
K—j)M _
Ly =ct 3" Bl RMS M Hipg B> MES, £ B0
=1 t=0
M-1 i—1
<cd 3703 My PR MR My S B 0 BM (€50, — BTHO)P)
=1 t=0
M—-1 7—1
9 i K—j)M
<ed N7 i1 — ol BY)TH S ENMGR MM Hynr i MEB(2 — BT
=1 t=0
M—-1 =1
< 1— co| BI) 2 SURY MR ME M H L MEB( B!
< > i(1 - co|B) I MRy M MBS — BT,
=1 \ t=0

where the last step is due tofthedinduction hypothesis (5.3). Then by Lemma 3.2, adding
and subtracting suitable terms, and the triangle inequality, since || M| < 1, we deduce (with
shorthand notation ¢ = (1 —egl|B||)~2M~1)

M-1 1—1
. —92 K—j)M i/ A — _
Ly <cd Y il col BN S Bl R MM B(Hya i M€y — BTC) + Hjng B¢
=1 t=0
i K—j)M i
+ My 1(CjM+z'_O)_R1M(§ 2 +t(HjM+i<+MéV[ 'B(¢m+i — Q)|
M-1 i—1
i K—j)M+t
<M ~D3B|2clpedla,; + b Y i1 — ol BIN Y (4B R MG M Hyaac )
i=1 t=0

B[ Ry M B (G = Q)

Now Assumption 2.1(iii) and the condition on Ry imply that V'R M' G4 N,? B2V is diagonal
for any's1,s2 > 0, s3 = 0,1 and k € N. Thus, by Lemma 3.3, we obtain

E[| R MM 0 0¢ ) =(n - DE[I R MES MY G BUP)L (55)

14
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(n — DE[| Ry MM Be)2) o (5:6)
(n — DE[| R MM HyngaC |2
(n — 1)E[|| R M~ ”M”GjMHHBcuﬂ. (5.7)

E[||R, MM B (s — O
B[Ry MY M H 0 i (Garir o — O]

Using the relation Hjy4a—1 = Njar+m—1 and (5.7) leads to

M—-2 i—
_ 4
I35 =cy E
=1 t=

M_
+cd ST B[R MEOMN v (G2 Q)
t=0

M-21 K v

t
=(n—1)cg Y Y B[R Mg M Hingic])
=1

1
IE[HRlMéKﬁ)MHHjMH(CjMJrz'—lft -0
0

[\

I
—

MO

t=
= (K—j)M
t
+(n = 1% ST B[R MV B
=0

H—

. /'S .
Let 11, , = E[| Ry M ™M H;pi¢||?), and TLg, 2 B[R MM Be|?). Similarly, with
the identities (5.5) and (5.6), we deduce

M-2 i—1

I; <2(M — 1)? ||BH%Bc012,J+4coZ (1% ol BI) ™2 Y B[ R MM Hyag i)
t=0
M-—2 2
— M
+4cped(M — 1) Y B[R M N a1 ¢
t=0
1—1
K M+t— 1
+4coZ (1 — col B~ Y SBEI R MM B (i — )11
N t=0
M-2i—1
<2(M — 1)°| B|*dpclo,; +A(M —2)epeg > > 1
=1 t=0
M—-2 )
+ 4(n — AV Deged S B[R MM B
t=0
M-1 i—1 ) )
+ Al S Delged > i > E[|R MM B2,
i=1 t=0

Note that | MMmat|? < 1 for any 1 <i < M — 1. The last two terms on the right hand side of
the inequality, ‘denoted by II, can be bounded by

M—-2 M-1 i—1
11 <4(n — l)cjgcé<(M Y+ Y ) (IR MM pey2)

M—-2 M—
—4(n — 1)cgeh (M 14 Y i),
t=0 i=t+1
15



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103261.R1 Page 16 of 31

<2(n — 1)(M + 1)2ge Z 0.,

since M — 1+ Zl_tﬂ i < %(M +1)2, for 0 <t < M — 2. Consequently,

M-2i-1
I; <2(M = 1)°|| B|*dpcglay + 4(M — 2)cpel > Ty
i=1 t=0
+2(n —1)(M +1)%dgch Z IL 0.
~
Now the condition (2.3) implies (5.4), which shows the induction step and ¢ompletes the proof
of the theorem. O

Remark 5.1. For exact data, i.e., ) =0, ( =0, G =0 foriany i > 0, the comparative analysis
can be greatly simplified. Indeed, setting Ry = I and Ry =0 tn the_analysis leads to

K
Ellexsnnll] < Io F ZII,J’>

j=0
with
M—-1
K+1)M K ;
Ip = [ Mol and Ty =e@ SOENMg" M Hijngi(I — Mi)esa]|).
=1

Straightforward computation with Lemmand-3 gives

M—-1
K=j)M
I ; <(n—1)c) Z i’E ||Mé Z Gimtit1 B ejul]

=1 s
<(n = 1)(M 1) el BI? D EIIMGE M Gar i1 Bejur|?)
N i=1
Similarly, Lemma 5.1 with Ry= Itand Ry = 0 implies
K
Elllé(r+al?] =Io + ZIZJ,
§=0

with

M-1
K— N
D=2 > E[IMS M HyngyiMiéjar|)
=0

M—1
= (n—1)c§ Y EMg" M Carir Bejur ).

i=0
When co||Bl(M — 1) < (1 — co||B|))M=Y, the conditions for the optimal convergence rate of
SVRG is weaker than that of SGD. With ¢ = co||B||(M — 1) and ¢; = (1 — ¢(M — 1)~1H)M-1),
the eomditions can be satisfied if ¢ < c1. This short analysis clearly shows the beneficial effect of
variance reduction on the variance of the iterates a:i, and hence SVRG allows larger step size
while maintaining the optimal convergence.

16



Page 17 of 31

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103261.R1

6 Numerical experiments and discussions

In this section, we provide numerical experiments to complement the theoretigal findings in
Section 2. The experimental setting is identical with that in [18]. Specifically, we, employ
three academic examples, i.e., s=phillips (mildly ill-posed), s-gravity (severely.ill-posed),and
s-shaw (severely ill-posed), generated from phillips, gravity and shaw, taken from the MATLAB
package Regutools [10] (available at http://people.compute.dtu.dk/pcha/Regutools/, last
accessed on August 20, 2020), all of size n = m = 1000. To explicitly controlithe regularity
index v in Assumption 2.1(ii), we generate ' by o' = ||(A*A) x| 2L (A' A)"z§ where . is the
exact solution given by the package, and || - ||~ denotes the Euclidéan maximum norm. The
index v in Assumption 2.1(ii) is slightly larger than the one defined abéve. The corresponding
exact data y' is given by y! = Az' and the noise data y° generatedby

yf = yj + EHyTHE‘X’{i? 1= 17 RN 2

where &;s follow the standard Gaussian distribution, and €3> 0'issthe relative noise level. The
maximum number of epochs is fixed at 9eb, where one epoch refers to n’f%v[ SVRG iterations
or n SGD iterations so that the computational complexity of each method is comparable. All
statistical quantities are computed from 100 runs. We present also numerical results for the
Landweber method (LM) [7, Chapter 6] (with a step size HAH_Q), since it enjoys order optimality.
All methods are initialized with zg = 0.

The accuracy of the reconstructions is measured by the mean squared errors egyrg = E[||xg* —

ot)|?], esga = E[H:ﬁi — 27||?] for SVRG and SGDjrespectively, and the squared error e, =
Ha:i —x1||? for LM. The stopping indéxwk, (measured in epoch count) is taken such that the error
is smallest along the respective iteration'trajectory, due to a lack of rigorous a posteriori stopping
rules for SVRG and SGD (the discrepaneysprinciple is indeed convergent for SGD, without a
rate [15]). The constant ¢ in thestep size ¢y 18 ¢ = (max;(||a;]|?)) 7}, so that cg = O(cM ') for
SVRG and ¢y = O(cn™ 1) for SGD.

6.1 Numerical results.;for general A

The numerical results for the threefexamples with different regularity index v and different noise
levels are shown in Tables 13, where the employed constant step size is determined in order to
achieve optimal convergence (while maintaining good computational efficiency). For each fixed
regularity index v @allithe €rrors egyrg, €sga and ey, decrease to zero as the (relative) noise level
€ tends to zero with a certain rate, and the precise convergence rate depends on the index v

roughly as the theeretical prediction (’)(6%) (cf. Theorem 2.1 for SVRG, and Remark 2.1
for SGD). Generally a larger v leads to a faster convergence with respect to § as the theory
indicates, but the requiredinumber of iterations to reach the optimal error may not necessarily
decreasegdue to. thefuse of smaller step sizes. The latter contrasts sharply with that for LM, for
which @& smoother exact solution z! requires fewer iterations to reach optimal accuracy (when 0
is fixed)s. Note that for both SVRG and SGD, optimal convergence holds only for a sufficiently
small step size, and otherwise they suffer from the undesirable saturation phenomenon, i.e., the
error decdy may saturate when the index v exceeds a certain value, which also concurs with the
observation for SGD in [15, 18].

Now we examine more closely the convergence behaviour of the SVRG iterates, and compare
it with that of SGD and LM. For all these three examples and all v values, both SVRG and SGD

17
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Table 1: Comparison between SVRG (with M = 100), SGD and,LM for
s-phillips.

Method SVRG SGD LM

v € Co Esvrg ksvrg Co €sgd ksgd €lm klm

0 le3 5¢/M  1.67e-2 4134.35 de/n 1.66e-2  4691.28" 1.65e42 5851
le-2  5¢/M  1.3le-1  180.95 dc/n 1.29e-1  204.9047 1:28e-1 249
5e-2  5¢/M  5.42-1  96.25 dc/n 5.42e-1 . 10890 5.34e-1 136

1 1e-3 1.5¢/M 3.3le-4  430.65 c/n 3.48e-4 539.19, «2.28e-4 157
le-2  1.5¢/M 5.96e-3  41.25 c/n 6.64e-3  57.8L,  5.12e-3 16
5e-2  1.5¢/M  3.22¢-2  21.45 c/n 3.52e-2,,  29.40° 3.16e-2 8

2 1e-3 ¢/(2M) 7.16e5  165.10 ¢/(30n) 7d02e-5 201554 3.22¢5 19
le2 ¢/(2M) 1.07e-3 6875  ¢/(30n) (1.09¢-30,938.70 9.82¢-4 8
5e-2  ¢/(2M) 2.90e-2  46.75  ¢/(30n){2.92¢-2 63651 1.57e2 5

4 1e3 ¢/(BM) 3.05e-5 202.95 ¢/(30m)in0.77e-5 1966.38 1.30e-5 8
le2 ¢/(5M) 241e-3 14245 ¢/(30n) /256c8 78594 1423 5
5e-2  ¢/(BM) 5202 110.00 ¢/(30n)l 5.23¢-2 596.73 2.49¢-2 3

Table 2: Comparison between SVRG (with M = 100), SGD and LM for s-gravity.

Method SVRC SGD LM

v € Co Esvrg ksvrg Co €sgd ksgd €lm k'lm

le-3  ¢/10n.  9.506-2 5495.05  ¢/20  9.37e-2  1000.50 9.39e-2 27201
le2 /10 5.98c-1  217.80  ¢/20  5.8le-l 3411  5.73e-1 793
5e-2 £ ¢/100 2160 3575  ¢/20 2.23¢0 561  2.07¢0 149
1 1e34.¢/(BM) | 5784 1019.15 ¢/(30n) 5.90e-4 5604.80 5.68e-4 99
le-2om ef(5M) 4 1.14e-2 24640 ¢/(30n) 1.15e-2 1356.87 1.12e2 24
562 ¢/(5M).  6.47e-2 11220 ¢/(30n) 6.48e-2 613.41 6.19¢-2 11
2 1630 ¢/(I0M) 7575 47410 ¢/(50n) 1.32¢-4 244185 6.82e5 23
Je2 c/(A0M) 1.80e-3 229.90 ¢/(50n) 1.92e-3 1047.03 1.47e-3 10
5e-2. ¢/(10M) 2.32e-2 156.75 ¢/(50n) 2.35e-2 708.72 1.6le2 6
4 1e-3, ¢/(10M) 25le5 25080 ¢/(60n) 1.03e-4 221226 1.30e-5 10
(10M) (60n)
(10M) (60n)

le-20 ¢/(10M) 1.14e-3  170.50 ¢/(60n
2.23e-2  138.05 ¢/(60n

1.29e-3  941.19  6.42e-4 6

5e-2  ¢/(10M 2.2be-2  746.67  8.58e-3 3

18
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can achieve an accuracy comparable with that by LM, thereby achieving the order optimality,of
these methods, when the step size ¢ for SVRG and SGD is taken to be of order @(M ~)rand
O(n1), respectively. This observation agrees well with the analysis in Theorem 2. Generally,
the larger the index v is, the smaller the value ¢g should be taken in order t6'achieve theroptimal
rate. This can also be seen partly from the constant 22c, in the error bound imTheorenin2.1.
Next we discuss the computational complexity. For all three examples, SVRG takes fewer epochs
to reach the optimal error than SGD for a large index v, and LM requires fewestiiterations among
the three methods. For small v, SVRG stops earlier than LM, and can be faster than SGD for
suitably chosen ¢q (see, e.g., the case v = 0 in Table 1). These empirical observations agree
with the fact that SVRG hybridizes SGD and LM. Since in practicetthe index #/is rarely known,
SVRG is an excellent choice, due to its low sensitivity with respect toa. -

Table 3: Comparison between SVRG (with M = 100), SGD. and M for s-shaw.

Method SVRG SGD LM

4 € Co Esvrg ksvrg Co €sgd ksgd €lm kim

0 1le3 c 2.8le-1  30246.15 c 2.81e-1  2704.92 2.8le-1 760983
le-2 c 6.92e-1  503.25 c 7081 4242  6.67c-1 12385
5e-2 c 3.0le0  139.15 ¢ 3.91c0y 1059  2.9le0 3392

1 1e3 ¢/M  680e-5  579.15  ¢/(2n) [ 7.056-5 1047.60 5.95e-5 144
le-2  ¢/M  535e-3 2227500 c/(2n) | \542e-3 39400 5.2le-3 54
52  ¢/M  1.50e-1 14850 . @f(2n) 1.50e-1 271.00 147e-1 36

2 le3 ¢/(2M) 6.94c5 43450 ¢/(20m). 7.08¢-5 4147.00 6.36e-5 50
le-2 ¢/(2M) 5.80e-3  246.95 ¢f(20n)  5.80e-3 224250 5.7le-3 30
5e-2  ¢f/(2M)  7.84e-2 5280 me/(20n) 7.79¢-2  480.80 7.08¢2 5

1 13 ¢/(4M) 3835 18425, ¢/(30n) 5.79¢5 1966.38 3.13¢-5 9
le-2 ¢/(4M) 1963 12155 e/(30n) 1.99e-3 82845 1.0le-3 4
5e-2  ¢/(AM)  3.61e-20 9515  ¢/(30n) 3.61e-2  645.75  6.45¢-3 1

To verify the analysis in Section 5, we éxamine the bias bias = ||[E[z9] —zT||? = |E[#] —zT||?,
and the variances varsy, =Ble=E[z3]||%] and varsga = E[||#—E[29]||?]. The numerical results
are shown in Fig. 6.1, for the examples with v = 1, with the step size ¢y for SVRG used for both
methods. Although not presented, we note that any other suitable ¢y under condition (2.3) leads
to nearly identical observations."Note that the iteration index k in the figures refers to the exact
number of iterations.(nothcounted in epoch), to facilitate the comparison of the convergence
behaviour. For hoth exact and noisy data, when the iteration number k is fixed, the SVRG
variance varsy ¢ is always orders of magnitude smaller than the SGD variance varggq, which is
fully in line with"Theorem 2.2. This shows clearly the role of the variance reduction effect, which
in particular allows using,larger step size. Note that the frequency M = 100 is selected by the
condition (2.2)for optimal accuracy, but actually does not satisfy condition (2.3). Nonetheless,
we stilldobserve the assertion in Theorem 2.2.

Further, in‘the experiments, bias (which is equal to the error ey, of Landweber method) is
always much larger than the SVRG variance vargyyg (of similar magnitude during a few iterations
before stopping), and thus the variance has little influence on the optimal accuracy, especially
fornoisy data. In contrast, the SGD variance vargsq dominates the error sometimes and causes
the undesirable saturation phenomenon. These observations also agree with Theorem 2.1, which
states that the saturation of SVRG does not exist by choosing suitable frequency M and initial
step size ¢y. They also confirm the theoretical prediction in Remark 5.1, i.e., the condition for
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Figure 6.1: The convergence of the bias or variance with generic term e versus iteration number
for the examples with v = 1. Therowvs from top to bottom rows are for € = 0, ¢ =le-3 and
e=5e-2, respectively.

the optimality of SVRG isweaker than that of SGD, partly concurring with Theorem 2.2. These
empirical observations show elearly the beneficial effect of incorporating variance reduction into
stochastic iterative methods from the perspective of regularization theory.

6.2 Influence of M

SVRG involves enedree parameter, the frequency M of evaluating the full gradient. Clearly, the
parameter M will influence the overall computational efficiency of SVRG: ideally one would like
to makeit as large as possible, but a too large M would bring too little variance reduction into
SGD iteration. The theoretical analysis in this work indicates that SVRG can achieve optimal
convergence rates when M > O(n%) (cf. Remark 2.1), and that M < (’)(n%) is sufficient for
ensuring the SVRG variance smaller than SGD variance (cf. Remark 2.2). Nonetheless, a
complete theoretical analysis of the influence of the frequency M on the performance of SVRG
is still,bunknown. To gain insight, we present the numerical results for s-phillips with noisy
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data by SVRG with different M ranging from 0.1n to 5n in Table 4. Note that the.choices
2n and 5n were recommended for convex and nonconvex optimization problems, /respectively
[19]. The numerical results indicate that SVRG with all these frequencies can actually achieve
an accuracy comparable with that by the Landweber method when the constant step,size is
chosen suitably. In general, a larger M requires smaller step sizes in order tonmaintainythe
optimal convergence rate, agreeing well with the theoretical analysis in Section 4. Interestingly,
the overall computational complexity for these different M does not vary toewunuch. Thus, the
choice of M within a certain range actually has little impact on the!performance of SVRG.
Although not presented, the same observations can be drawn from the numerical results for the
examples s-shaw and s-gravity.

~
Table 4: SVRG with different M for s-phillips.
v=20 v=2

M € Co e k Co e k
0.1n 1le-3 5¢/M  1.67e-2 4134.35 ¢/(2M )" 7.16e-5 155.10
le-2  5e/M  1.31le-1  180.95 “¢/(2M) 1.07e-3 68.75
5e-2  5c/M  5.42-1  96.804 e/ (2M) 2.90e-2  46.75
0.5n  1le-3  5e/M  1.66e-2 565085 ¢/(2MW 4.18¢-5 204.30
le2 5¢/M  1.3lel 12590 [fc/(20) 9.90e-4  93.30
5e-2  be/M  5.40e-1 66.15 ¢/(2M) 2.90e-2  63.75

n le-3  10¢/M  1.67e-2" 3757.40 c/M 5.83e-5 139.50
le-2  10¢/M  1.29e-1 “163.80 c/M 1.04e-3  62.20
5e-2  10c/M  5:38e-1 87.40 c¢/M 2.92e-2  42.50

2n  le-3 15¢/M  1.67c-2°73781.35 1.5¢/M  7.63e-5 144.38
le-2  15¢/M  1.30e-by. 164.70 1.5¢/M 1.08¢-3  62.25
5e-2  15¢fM  5.39e-1 87.08 1.5¢/M  2.93e-2  42.53

5n le-3  25¢/M »1.66e-2 4519.86  2¢/M  7.33e-5 214.32
le-2  25¢/M 1.29e-1  197.28 2¢/M  1.05e-3  93.60
5e-2  25d/M  5.40e-1  104.64 2¢/M  2.90e-2 63.84

A S

6.3 On Assumption 241 (iii)

Assumption 2.1(iii) is crueial to the analysis in Sections 4 and 5. It is natural to ask whether the
assumption is actially necessary. We examine the issue numerically as follows. Let A = ULV?
be the SVD of A, and Aby A = U*A, and then replace A in (1.1) by A and y° by §° = Uty0.
Then preconditioned system Az = §° satisfies Assumption 2.1(iii). The numerical results for
s-phillipsfare shown in Table 5, and the trajectories of ei for the examples with ¥ = 1 in
Fig. 6.2. It is observed that for noisy data, the SVRG results for A and A are nearly identical
with eachother, indterms of the accuracy, stopping index, and convergence trajectory. For
exact data (cf.gthe top row of Fig. 6.2), the trajectories overlap up to a certain point around
le-3 for s-phillips and le-5 for s-gravity and s-shaw, which can be further decreased by
choosing smaller c¢g. These observations resemble closely the empirical observations for SGD,
see, especially Fig. 4.3 of [18]. Thus, Assumption 2.1(iii) is probably due to a limitation of the
proof.technique, and there might be alternative proof strategies that circumvent the restriction.
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Table 5: Comparison between SVRG (with M = 100) for
s-phillips with A and A.

Method SVRG with A SVRG with A

v € co e k e k

le-3  5¢/M  1.67e-2 4134.35 1.65e-2 4129.40
le-2  5¢/M  1.31e-1  180.95 1.28¢-1 176.55
5e-2  be/M  5.42e-1 96.80  5.36e-1 96.25
1 1e-3 1.5¢/M 3.3le-4 430.65 2.29e-4 372135
le-2 1.5¢/M 5.96e-3  41.25  5.32¢-3 A40.70
5e-2  1.5¢/M  3.22¢-2 2145  3.17e-2 [ 20.90 -
2 le-3 «¢/(2M) 7.16e-5 155.10  3.49e-5 14850

)
le-2 ¢/(2M) 1.07e-3  68.75  9.77e-4 168.75
52 ¢/(2M) 2.90e-2  46.75  2.89¢-2 4G5
4 le3 c¢/(5M) 3.05e-5 202.95 24665 201.30
le-2 ¢/(5M) 24le-3 14245 <2Mie-3 114245
5¢-2 ¢/(5M) 5.20e-2 110.00 [ 5.2Te2, 110.00
A Technical proofs S

In this appendix, we collect the proofs of §everal technical estimates.

A.1 Proof of Lemma 3.4

The proof relies on spectral decomposition. Let Sp(B) be the spectrum of B. Then by direct
computation, we have

eI BMEM | =c§ Ssup  [X*(1— coX)XM| < sup a*(1 - o) M.
AeSp(B) a€l0,1]

Let g(a) = a®(1—a)®M. Themgi(a) =(s(1—a)— KMa)a*"'(1—a)*M~1 so that g(a) achieves
its maximum over the intérval{0, 1] at a* = s(s + KM)~!. Consequently,

3| B M sg(@") = (M) M @ (KM) ™ < MK

This shows the second estimate. Similarly,

' IB7HI “Mg ™) = sup [(cod) M1 = (1= coA)* M) < sup a (1 - (1 —a)*M).
AESp(B) a€l0,1]

Note that foray a € [0, 1], there holds 1—(1—a)** < 1, and minycg 1) (a X M)" = min(aK M, 1),
since (@K M )*igmmonotone with respect to ¢t. Let h(a) := aKM — (1 — (1 — a)®M) which is
increasing over |0, 1], that implies h(a) > h(0) = 0. Thus

1—(1—a)®M < min(aKM,1) < (aKM)'.

Thisishows the first estimate and completes the proof of the lemma.
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Figure 6.2: The convergence of the error e versus iteration number for the examples with v = 1,
computed using A and A. /The rows from top to bottom rows are for € = 0, € =1e-3 and e=be-2,
respectively.

A.2 Proof of Proposition 3.1

To prove Proposition 3.1, we first give a representation of the (epochwise) SVRG iterate :L'i( M-

Lemma A.1. _Thefollowing recursion holds for any K > 0,
M-1

reaihr = (MY — LicB)elys + <c0 S M+ LK)C, (A1)
=0
where the random matrix Ly is given by
M-1 A
Li=co Y Hrmyi(I - My)B™". (A.2)
i=1

Proof. "Note that the SVRG iterate xi_H, k=0,1,..., can be rewritten as

5 5 5 5 P
Tpy1 = Tf — CO((aika € — ekM)aik + Bey,, — C)

23
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) t 1 1 1
= zj, — o a;, (e, — €y,,) — co(Bey,, — ().
Using the definitions of P, and Ng, the error ei = xi — 21 of the SVRG iterate xi satisfies

0 — B)eiM +coC = Pkei — coNkeiM +.coC. (A.3)

—_ ot N6 ot
err1 = (I = coayaz ey + colai a;,

For any K > 0, it follows from (A.3) and direct computation that
€%M+1 = PKMeg(M — C()NKMG%M + coC = Moei(M ~+ coC. (A.4)

Meanwhile, setting & = (K + 1)M — 1 in the recursion (A.3), then| repeatedly applying the

recursion (A.3) and using the definitions of the matrices Gy, and Hg 'lead to
~

5 5 5
C(K+1)M :P(K+1)M—1€(K+1)M—1 — CoN (K1) M-1€K M Hp€0C

=Gk +1)M—2€k 4 1012 — 0(Plac1)nr—1 Ny

+ Negerym—1)eder + co(Pacriyr—1d)¢

M-1 M
=...=Grum1€kars1 — o Z HE i€t co Z Grm+iC-
i=1 i=2
This identity and (A.4) imply that for any K > 05 IS

M—1 M
6?K+1)M =<GKM+1M0 ) Z HKMJri)e(;(M + (Co Z GKM+¢)C~
b i—1

Next we simplify the two terms in the brackets using the identity (3.3). It follows directly from
(3.3) that

M-1 M-1
Grm+1Mo — co Z Hygngi = M —co Z Hyenpi(I — MY).
i=1 i=1
Similarly, by the identity (3.3), we deduce
M N M-1 M—i—1

CoZGKMJri =col 4 ¢ Z (Mé\/[_l + co Z HKM+i+ng)
i=1 i—1 =0
M ' M—1M—i-1 '
ZCOZMéWﬂ + Z Z Hrenryig M
=1 =1 j=0
M-1 M—1 -1
S S b (So)
=0 i—1 =0
M—1 M—1
=co Z Mg+ co Z Hyarsi(T = Mg)B™,
i=0 i—1

where the last'line follows from the identity

j—1
co» M= (I—-M))B™! (A.5)
i=0
Combining the preceding identities completes the proof of the lemma. O
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Now we can give the proof of Proposition 3.1.

Proof. By the definitions of the matrices N; and G;41, they are independent. Thus, there hold

oNOYTULT D WN =

E[H;] = E[G;1]E[N;] =0 and E[L;] =0.
10 Then by Lemma A.1, we have

é M é i
13 Eletk 1yl = Mo Elegea] + co Z MC.
14 1=0
Repeatedly applying this identity gives

MEL

1

e Blefic o] = MYT (M Elelie_yyu] + o Z MGC) + o D, M
1=0

2 2M—1 (K+1)M—1

i K+1)M
22 :M(?ME[Q?K—UM] + o Z MyC=---= Mé = 68 +co Z MOC

25 This and the identity (A.5) show the expression for E[eKM] Let 2 := €%, — E[e%,,]. Then
26 for any K > 0, it follows from Lemma A.lsthat

28 zi41 =MMzg + Ry, “withhRy = L (¢ — BeSeyy),

30 and zg = 0. Repeatedly applying the recursion directly gives

K K
33 ZK41 = MéK+1)MZo + Z MgMRKfj = Z MéKﬁ])MRj.
34 Jj=0 Jj=0
36 This completes the proof of the proposition. O
37 N
38 A.3 Proof of Proposition 3.2

40 The following recursion is diréetrfrom the definition of SGD iteration in (1.3)
50 ot \s0 P ~0
42 €p 1 = (I — coai,aj, )y, + cobi,ai, = Préy + coCk-

44 Repeatedly applying the recursion and using the identity (3.3) (and its proof) yield that for any
45 K >0,

47 M-1

48 é?K+1)M =G rnr+1Prcarédens + co Z GrM+it1CKM+i
49 i=0

50 M—-1

g; = (Méw + co Z HKM+Z'M8> Eenr + col(ran) -1
=0

53 M—1 M—i—1

>4 +eo Y, (MM e Y HKM+z+tMo>CKM+z 1.
=1 t=0
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Since E[Hgpr4i] =0, for i =0,...,M — 1, and Hgpr44i4¢, t > 0, and (xar+i—1 are independent,

by the identity (A.5),

M-1

~ ~5 i K+1 M K+1)M
E[@((SKH)M] =My B[&) ] + co Z Mi¢ = MY + (I - Mj )B~'C
=0
This gives the desired expression of E[#%,,]. Next, the variance component e( KM —~E[¢&?
is given by
M-1
« « A 5 i A
e((sK—i-l)M - E[G?KH)M = Méw(eKM — E[éxm]) + co Z HKM#(Méeg(M
=0
M ‘ M—1M—i—1
+ co Z MY (Cxnmrrio — ) + ¢ Z Z Hier it 8GR i1
i=1 i=1 =0
K M—1 g
K- 1
=Cp Z Z M(g —M jM-‘r’LMOe]M + co ZZM ) Z(CJM—H 1— (_:)
Jj=0 =0 j=0m=1
K M—1M—i-1
)M
+eg Y MM Hy i M (G hieiw— ©)
j=0 i=1 t=0
K M—1M—i—1
K—j)M
+a MM Sy S MEC.
j=0 i=1 t=0
Then it follows from the identity (A'5) that
M—1M—i—1 M-1 ‘
@Y O Hprei M Z HJMH(ZMO) = 3 Hprall = M) B!
i=1 =0 i=1
Finally we derive
N
N ~0
C(K+1)M — E[e(K+1)M]
K M—1 K M—1
K—j)M i A K—j+1)M—i—
=co Y > Mg Mg 0l + 0y S MM G - ©)
j=0 i=0 j=0 i=0

K M-2M=i—2 o M
+ ng Z Z M( - Hjntier1 MGt — )
g=0 =0 t=0
KMy |
+Heo Yo DT IMGS M Hyng i1 — MBI
j=0 =1
Kl |
=< Z Z Mé & (HJMH(MOGJM + (I - MO) 71C) + Méw_l_l(CjMﬂ' - C))
9=0 =0
K MM
Fagy >, MM Hong i e MY — €).
=0 i=0 =0

This eompletes the proof of the proposition.
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A.4 Proof of Lemma 4.1

The proof employs the standard bias-variance decomposition and certain independence.” By
Proposition 3.1, the following identities hold

— C K+1)M _
E[Rl(e((sK+1)M — B70) + Rao|Flae ) = Ry(MSFMeh — B7I6) + o,
Ri(e{k 11y — B7'¢) + Ra — E[Ri(e{y 1yar — B7C) + Ral F tajndl

K
K—j))M
:Rl(e((SK-H)M - E[E?K-i-l)M]) =R’ Z M(g 7 LJ'(C - BegM)’
Jj=0
~

where the random matrices L; are defined in (A.2). Then we claim' the following identity for
any 1,7/ =0,..., M — 1,

E[(Hjn i€ Hynwelar)) =0, i 5540 or ji 5. (A.6)

Clearly, it suffices to analyze the two cases 0 <i < <M —1and j < 7 and 0 <4,/ < M —1
separately. Indeed, for any 0 < ¢ < ¢/ < M — 1, the random matrix Ny, is independent of
GjM+z’+1€gM and NjM+i/GjM+i/+1€§M- Thus, using the id(intity Ejrv+i[Njp4i) = 0, for any
i1=0,...,M — 1, we obtain
6 1
EJM+i[<HjM+iejM7HjM+i’ejM>]
) )
=Ejm+il{Njm+iGin+it1€ar, Njgpg+i Givir+1€50)]
0 )
=(Ejn+i[Njm+dGineit 1€ v Nivi+i Ginrtir+1€50) = 0.
Similarly, for any j < j/ and 0 < 4,7/ < My— 1, the random matrix Ny is independent of
NjM—i—iGjM—I—i-i—le?M and Gj’M+i’+1€§'/M7 and hence

B jr g [(Hgna i€ By 40 €5rnr)]
=B s i NG Gad i1 1€500 Nyt Gyrag s 11€51)]
=(Njnt Gt vis@€5nr, Bjongit [Ny 1) Gioaryirr1€5a) = 0.
The desired claim (A.6).follows by taking full conditional of the last two identities. Note that by

assumption, R; is independenthof e‘(SK LM T E[e‘(SK +1) 7). Then the bias-variance decomposition
and the claim (A.6) imply.

]E[E[“Rl(e((sl(-i-l)M — B7¢) + Ryf?| (k+1)0]]

K
K—73)M
=Io YE[| R Y M{IMLYC — By
j=0
K M-1 o '
=lo+cg ) E[| Ry MM Hyjnpa(1 — Mg)(€5ar = BTOI):
j=0 i=1

This andthe definitions of the terms Iy and I; ; complete the proof of the lemma.
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A.5 Proof of Lemma 5.1

The proof of the lemma is similar to Lemma 4.1, and employs suitable independence relation
crucially. By Proposition 3.2 and the standard bias-variance decompositiony, we have

E[l| Ry (&5 s 1y — B7¢) + Rall*) = To + E[[| R1 (60 1 1)nr — Ele{k iyn IIE,
with

K
6?K+1)M - E[é((;K+1)M] = Z dji,

where d;;, in view of Proposition 3.2, are given by

M—i—2
(K—
dji =sgn(M —1—i ) Z M o yM+z+t+1Mo(CgM+z - ()

+ oM )M(HJM+z(Mo€jM + (I M) B)
' M—i-+42
+ Méﬂ—z—l(CjM_H. _ C)) = Z dj,i,t + dj,i,—la

where the notation sgn(-) denotes the sign function with the convention sgn(0) = 0. Next
we repeat the argument for deriving (4.2); and, claim that ;. [Rld] ;] = 0 and d;, Z\]:]M+,

‘FJM+1+1 is 1ndependent of djr ir|Fjnr4i U Fihirmfor any j # j' or i # i where 0 < j/ <
j<K,0< 44 < M-1. Indeed the random vairable dj ; is measurable with respect to
Fiv4i UFS M1 Then the direct computation using the identities E;nr44[(jnr4i — ¢] = 0 and
Ejn4i[Hj M+z] = 0 implies that for any 00< 7 < K and 0 < i < M — 1, the following identity

holds
M—i—-2 .
Ejnryil Ridy) =sgn(M <1 — i) Yy RaM§" M Hing it MEE s il ei — €]

}— : t=0

+ Ry ME DM (B s [Hyari] (MG + (I — ME)B™YC)
+ Mo " Byar il Garyi — ¢]) = 0.

Thus we derive

M—-1

K
E[[| R (€0 1)nr — Bl a1 =Y D ElllRidyall?).
7=0 =0

Similarly, for fixed j,/¢ andany 0 < t,t' < M —i—2, E[d;; ¢|Fjm+tite+1]) = 0 and dj; ¢|Fjnmrtite+1
is independent of'd; ; /| Fjar4itt+1 when t > t'. Consequently,

M—1-2
El|Radjall?) = D E[l[Ridjisll”]-
t=—1
Thus, we obtain
BBy (&4 1y0r — Elelge o)1)
28
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K M-1
K—j)M N 7 — —i—
=33 N ENR MY TIOM (Hyngas (Ml + (I = MYBTC) + MY (Garri™ O]
7=0 =0
M—-2 M—i—2

Reorganizing the last summation gives

M-2M—i—2 KoM
Y Elll R M M Hyng i MG )
=0 t=0 ~
M-—1i—1 .

- E[|| R MY M H g ME(Gnr - T0= O
=1 t=0

This completes the proof of the lemma.
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