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Abstract. Computer vision based models, such as object segmenta-
tion, detection and tracking, have the potential to assist surgeons intra-
operatively and improve the quality and outcomes of minimally invasive
surgery. Different work streams towards instrument detection include
segmentation, bounding box localisation and classification. While seg-
mentation models offer much more granular results, bounding box an-
notations are easier to annotate at scale. To leverage the granularity
of segmentation approaches with the scalability of bounding box-based
models, a multi-task model for joint bounding box detection and seg-
mentation of surgical instruments is proposed. The model consists of
a shared backbone and three independent heads for the tasks of clas-
sification, bounding box regression, and segmentation. Using adaptive
losses together with simple yet effective weakly-supervised label infer-
ence, the proposed model use weak labels to learn to segment surgical
instruments with a fraction of the dataset requiring segmentation masks.
Results suggest that instrument detection and segmentation tasks share
intrinsic challenges and jointly learning from both reduces the burden
of annotating masks at scale. Experimental validation shows that the
proposed model obtain comparable results to that of single-task state-
of-the-art detector and segmentation models, while only requiring a frac-
tion of the dataset to be annotated with masks. Specifically, the proposed
model obtained 0.81 weighted average precision (wAP) and 0.73 mean
intersection-over-union (IOU) in the Endovis2018 dataset with 1% anno-
tated masks, while performing joint detection and segmentation at more
than 20 frames per second.

Keywords: Instrument detection · instrument segmentation · multi-
task learning · semi-supervised learning.

1 Introduction

Detection of surgical instruments in minimally invasive surgery video frames al-
lows automatic generation of offline surgical analytics, that can provide valuable
information for improving surgical procedures [1]. Additionally, surgical instru-
ment detection can provide real-time decision support during the surgery and
notify preventable risks during computer assisted interventions [2].



Accurate models are required to successfully use decision support systems
during surgical procedures. Current machine learning approaches typically esti-
mate the location and type of surgical instruments via either bounding boxes
detection [3] [4] or semantic segmentation [5] [6]. Tool detection models gen-
erally rely on annotated bounding boxes during training. This has a major
limitation for instrument detection as the annotated bounding boxes include
a high number of background pixels due to the elongated dimensions of the
surgical instruments, which might impede a model from learning discriminative
features of the instruments. Alternatively, segmentation models directly estimate
the probability of each pixel to belong to a specific instrument type by relying on
fine-grained pixel-wise segmentation mask annotations. While masks solve the
aforementioned challenge faced by bounding boxes, the annotation cost signifi-
cantly grows up to almost two orders of magnitude for annotating masks with
respect to only annotating frame-level labels or bounding boxes [7]. In practice,
the annotation of datasets with masks at scale could be unfeasible, which can
prevent models from achieving the generalisation and robustness required to be
applied in real-world applications.

To address some of the challenges above and leverage the strengths of both
workstreams, a multi-task model is proposed that jointly learns to estimate
bounding boxes and masks for surgical instruments. The model aggregates in-
formation from the multiple tasks by using a shared backbone as encoder, while
having a head for each task: instrument classification, bounding box regression
and segmentation. While the classification and regression heads allow to lo-
calise and classify surgical instruments using scalable annotations, the segmen-
tation head achieves the detailed pixel-wise annotations. To alleviate the burden
of expensive pixel-wise annotation on large datasets, we introduce a training
framework that accounts for missing masks and uses a weakly-supervised loss
computed on frame-level labels which can be freely obtained from the bounding
box annotations. Experimental results show that our model achieves detection
and segmentation performance on par with fully supervised alternatives, while
requiring as little as 1% of the masks in training.

2 Related work

Surgical tool identification and localisation is an active research field, which
has resulted in multi-centre collaborations releasing novel surgical datasets to
encourage the research community to design models to advance segmentation
quality [8], model robustness and generalisation [9].

Proposed research directions to tackle surgical tool identification and localisa-
tion include semantic segmentation and tool detection. Segmentation models are
able to segment instruments against background (binary segmentation) [10], tool
types (semantic segmentation) [6] or tools instances (instance segmentation) [5].
Most relevant, Gonzalez et al. [5] proposed to segment entire instruments in-
stances instead of pixel-wise segmentation to achieve state-of-the-art results. A
comprehensive overview of the latest segmentation models is available in [9].



Recent detection models [3] [4] are anchor-based and are composed of a con-
volutional backbone with ResNet architecture, that generates feature maps at
different scales, and two task-specific heads that perform object classification
and bounding box regression from the feature pyramid. This approach faces an
extreme foreground-background class imbalance during training. This can be
handled by using the focal loss [3], a variation of the cross-entropy loss function
that down-weights the loss assigned to well-classified examples. EfficientDet [4]
proposed to jointly scale up model width, depth and resolution to meet real-
time requirements without sacrificing detection accuracy. The model computes
a feature pyramid using EfficientNet [11] as backbone. EfficientDet proposed a
weighted bi-directional feature pyramid network (BiFPN) to efficiently leverage
the multi-scale feature information for object detection.

More complex approaches have also been proposed. Joint detection and seg-
mentation can be learnt jointly [12]. A semi-supervised object segmentation
model can rely on a single manual bounding box initialisation to produce class-
agnostic object masks and rotated bounding boxes with a fully-convolutional
siamese model [13]. Multi-task models using weak supervision can jointly detect
and segment with a weakly-supervised cyclic policy can be used to comple-
ment the learning of both tasks simultaneously [14]. In the same line of work,
other works show that a weakly-supervised convolutional model can be used to
estimate the presence and localisation of surgical instruments using only frame-
label annotations [15], [16]. However, the performance of these weakly-supervised
models is still far from that of the fully supervised ones.

3 Proposed model

3.1 Joint detection and segmentation

Let x ∈ {0, 255}W,H,C be an RGB image with width W , height H and C = 3
colour channels. Let D(·) : x → (BN,4,CN ,MW,H,M ) be a joint detection and
segmentation model that localises and classifies surgical instruments within x
which outputs are a set of bounding boxes (BN,4), their corresponding estimated
classes (CN ), and a segmentation mask (MW,H,M ), with N being the number of
detected instruments and M the total number instrument types in the dataset.

The problem is formulated as a multi-task learning problem. The proposed
model, depicted in Fig. 1, is composed of three main components, namely, back-
bone, feature fusion module, and three heads - one for each task: localisation,
classification, and segmentation. The shared backbone acts as a joint represen-
tation learning module whose aim is to learn multi-level feature representations
suitable for all the tasks. Having x as input, the backbone β(·) : x → P gener-
ates a pyramid of features at S scales P = (ps)

s=S
s=1 . The feature pyramid is fed

to a bi-directional feature pyramid network (BiFPN) [4] that fuses the features

across scales while maintaining their number and resolution γ(·) : P → P̂. The
heads guide the learning of the backbone and the feature fusion modules to learn
more discriminative and complementary features to further improve the three
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Fig. 1. Proposed multi-task model composed of an EfficientNet backbone, a set of bi-
directional feature pyramid network (BiFPN), and the proposed three heads for the
tasks of bounding box regression, bounding box classification, and segmentation. The
model is trained using four loss functions named regression Lreg, classification Lclf ,
weak supervision Lws and segmentation Lseg. The model requires bounding box and
label annotations for every frame, and segmentation masks for a reduced number of
frames. mpool is the global maxpool operation. The text on the most-right arrows
indicates the shape of the annotations, where N is the number of instruments in a
given frame, M is the total number instrument types in the dataset, and W , H are the
dimensions of the input frame.

tasks while adapting the generated features for task-specific problems. In our
implementation, we use the localisation and classification heads proposed in [4].

The following subsections describe the proposed segmentation head as well as
the mechanism that allows learning to segment with only a fraction of annotated
masks via weak supervision.

3.2 Segmentation head

The segmentation head aims to generate a mask MW,H,M from the fused fea-
ture pyramid P̂. The segmentation head architecture (Fig. 2) is composed of
three main steps: feature upsampling and concatenation, convolutional block,
and upsampling.

To make use of the information contained in the multiple scales of the fused
feature pyramid, P̂, the S− 2 smallest feature maps (p̂s)

s=S
s=2 are first upsampled

to the resolution of p̂2 using bi-linear interpolation. Then, the S−1 feature maps
are concatenated

P̃ = (p̂2, U2(p̂3), U2(p̂4), U2(p̂5), U2(p̂6), U2(p̂7)) (1)

where U2(·) is the bilinear interpolation operation that upsamples the feature
map to the resolution of p̂2, and (·, . . . , ·) represents the concatenation operation.
A convolutional block is then applied to achieve a feature map with M channels
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Fig. 2. Diagram of the segmentation head with the proposed weak-supervision module.
Lseg is the cross entropy segmentation loss that is computed for a given frame when
the mask is annotated. Lws is the cross entropy weak supervision loss computed at
every frame. mpool is the global maxpool operation. The text on the most-right arrows
indicates the shape of the annotations, where W , H are the dimensions of the input
frame, and M is the total number instrument types in the dataset.

as
M̃ = conv2(relu(bn(conv1(P̃)))), (2)

where conv1(·) is a 2D convolution with kernel (1x1) and S − 1x64 channels
that fuses the features with different resolutions, bn(·) is a batch normalisation
layer, relu(·) is the Rectified Linear Unit (ReLU) operation, and conv2(·) is a 2D
convolution with kernel (1x1) and M channels to reduce the number of channels
to the number of instrument types in the dataset, M .

Finally, M̃ is upsampled to generate masks with same dimensions than the
input images

M = U0(M̃), (3)

where U0(·) is the bilinear interpolation operation that upsamples the feature
map to the resolution of the input image x.

3.3 Semi-supervised learning with weak supervision

When the annotated mask, M̄, is available for a given frame, we use the cross-
entropy loss function (LCE(·, ·)) for training the segmentation head. However,
as not all samples will have an annotated mask, in each batch we weight the
cross-entropy loss by the ratio of samples with annotated masks A to the total
number of samples within the batch B as

Lseg =
A

B
LCE(M, M̄). (4)



Thus, batches with fewer annotated masks have a lower weight.

In addition, we enable the training of the segmentation head in the absence
of annotated masks. We reduce the estimated mask with a global max pooling
into a vector that is supervised with frame-level annotations (presence of the
instruments in each frame) [15] as

O = mpool(M), (5)

where mpool(·) is the 2D maxpool operation with kernel size (H, W ) that
generates a vector O ∈ R1,1,M . The information within O estimates the pres-
ence/absence of each instrument type within the frame. These outputs indicate
the presence of a given instrument type within the frame. Note that these anno-
tations, which are cheap to generate, are already available to the model within
the bounding box annotations.

The weakly-supervised loss is the cross entropy between O and the instrument
type frame-level multi-label annotations, Ō as

Lws = LCE(O, Ō). (6)

Note that we compute Lws(·) for all frames, regardless of whether their mask is
provided or not.

In conclusion, the full loss used to train the backbone, BiFPN, and heads is

L = wreg · Lreg + wclf · Lclf + wseg · Lseg + wws · Lws, (7)

where (Lreg, Lclf ) is the focal loss [3], and wreg, wclf , wseg, and wws are weights
of regression, classification, segmentation and weak supervision losses that tune
the contribution of each loss.

4 Experimental setup

4.1 Dataset

We validate the performance of the proposed model in EndoVis2018 dataset
released as part of the Robotic Scene Segmentation Challenge [17]. The dataset
is composed of 15 sequences of 149 frames each. We use the annotated masks
of the instrument type provided by [5]. We automatically generate bounding
boxes from the masks by selecting the minimum and maximum values for the
vertical and horizontal coordinates of each mask. We split the data in training
and validation sets as done by [5]. Sequences 5, 9, and 15 compose the validation
set and the remaining ones the training set. The sequence seq2 is discarded from
either of the sets as it contains frames with two instances of the same instrument
type, and therefore, we cannot automatically generate bounding boxes.



4.2 Performance metrics

We evaluate detection using the mean Average Precision weighted (wAP) by
the number of samples in the validation set. As proposed by [5], segmentation
is evaluated using IOU averaged over the number of classes, M , and over the
number of images, K:

IOU =
1

K

K∑
k=1

(
1

M

M∑
m=1

Mk,m ∩ M̄k,m

Mk,m ∪ M̄k,m

)
. (8)

4.3 Implementation details

As backbone, we use EfficientNet-D0 [11] pre-trained on ImageNet. We mod-
ify the BiFPN layer [4] to aggregate S = 6 feature scales instead of five for
improved segmentation accuracy. The five smallest scales are used for both the
regression and classification heads. Images are downscaled to 512x512 pixels and
data augmentation that includes geometrical and colour transformations is used.
A sampler to balance the number of different instruments types in each epoch
is used. All models are trained for 150 epochs. We report the results on the
validation set obtained in the last epoch. SGD optimiser with momentum and
1Cycle learning scheduler [18] with cosine decay and a maximum learning rate of
5e−4 is used. Each batch contains 32 samples. The proposed loss (Eq. 7) weights
are empirically set to: wreg = 1, wclf = 5, wseg = 700, and wws = 5. These
parameters encourage all losses to be in a similar range. These settings remain
fixed for all the experiments.

4.4 Results

Ablation study. We first study how the proposed joint detection and segmenta-
tion model compares against the only-detection and only-segmentation alterna-
tives. Results in the supplementary material indicate that performing detection
and segmentation jointly slightly improves detection while maintaining similar
segmentation performance when 100% of the masks are available. However, the
segmentation-only model performance rapidly degrades when fewer masks are
available during training. For instance, the performance drops from an IOU of
0.821 to 0.651 when reducing the masks from 100% to 20%, and to 0.544 when
further reduced to 1%. Secondly, we perform an ablation study to understand
how the presence/absence of the weakly supervised loss impacts the performance
with limited availability of annotated segmentation masks. Results in the sup-
plementary material show that when the weakly supervised loss is present the
performance approximately remains stable, even when reducing the number of
masks up to 1%. For instance, the performance between using 100% or 1% of
the masks varies in 0.01, and 0.09 points for wAP and IOU, respectively.

Comparison against state of the art. The proposed model obtain com-
petitive segmentation results against fully-supervised state-of-the-art alterna-
tives while only requiring a 1% of annotated masks (Table 1). In terms of



Table 1. Comparison of the proposed model against state-of-the-art detection and
segmentation models. The proposed model performance is evaluated for a range of
different availability of masks during training. When available, mean and standard
deviation (mean±std) over three trainings with different random seeds are reported.
KEY: *, sequence seq2 is used in the validation set.

Model Task
Weak

superv.
% annotated

masks
Detection Segmentation

Det. Segm. wAP IOU

[4] EfficientDet X - 0.808±0.008 -

[19] TernausNet* X 100% - 0.399
[20] MFTAPnet* X 100% - 0.391
[5] ISINet* X 100% - 0.710
[6] HRNet* X 100% - 0.714±0.019
[6] HRNet X 100% - 0.738

Proposed X X X 100% 0.827±0.007 0.822±0.015
Proposed X X X 20% 0.817±0.003 0.800±0.014
Proposed X X X 5% 0.808±0.026 0.791±0.022
Proposed X X X 1% 0.813±0.016 0.728±0.006
Proposed X X X 0% 0.786±0.021 0.345±0.012

detection, the proposed model outperforms by up to 3% with respect to the
detection-only model. We also study how reducing the number of segmentation
masks available during training (100%, 20%, 10%, 5%, 1%, and 0% of the total
number of training samples) affects the detection and segmentation performance
of the proposed model. During the different training setups for different mask
ratios, frames with masks are sampled equally spaced across the dataset. Re-
sults show that the proposed model outperforms the rest of the alternatives
while only requiring 5% of masks. Even with only 1% of the masks available, the
proposed model obtain competitive results when compared with fully-supervised
alternatives. When no masks are available (0%), the model solely relies on the
weakly-supervised module for learning to segment, and both detection and seg-
mentation performance significantly drops (see the last column of Fig. 3). Three
visual segmentation samples, one per each sequence of the validation set, are dis-
played in Fig. 3 for models trained using 100%, 20%, 5%, and 0% of annotated
masks. The estimated masks maintain the quality even when the available masks
are reduced to 5%. Some classification errors are observed in the second sequence
when limited masks are used. When no masks are used during training (0%) the
estimated masks tend to only focus on representative parts of the instrument.
Additional visual examples are available in the supplementary material.

The proposed model has 4.01M parameters and can perform detection and
segmentation simultaneously while requiring only 5% and 1% more parameters
than the only-detection and only-segmentation models, respectively. The pro-
posed model obtains an inference speed of 22.4fps in an NVIDIA Quadro RTX
6000.



Input Annotated % of available masks during training

100% 20% 5% 0%

Fig. 3. Visual segmentation results of the proposed model with different percentage of
available annotated masks during training. The colours encode the instrument type.

5 Conclusion

This work3 proposed a multi-task model that jointly learns to detect and seg-
ment surgical instruments. A weakly-supervised adaptive loss is also proposed,
that enables the learning of segmentation masks when only a fraction of masks
are available during training by supervising the learning with frame-level annota-
tions. Experimental results showed that the proposed model obtains comparable
results to a fully-supervised alternative, while only requiring a 1% of the frames
to have annotated masks.

Further investigation is required to understand how to effectively add tempo-
ral information and consistency to the model as well as how to further interrelate
the learning of the multiple tasks.
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5. C. González, L. Bravo-Sánchez, and P. Arbelaez, “Isinet: An instance-based ap-
proach for surgical instrument segmentation,” in International Conference on Med-
ical Image Computing and Computer Assisted Intervention (A. L. Martel, P. Abol-
maesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, and
L. Joskowicz, eds.), pp. 595–605, 2020.

6. K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,
and J. Wang, “High-resolution representations for labeling pixels and regions,”
CoRR, vol. abs/1904.04514, 2019.

7. H. Bilen, “Weakly supervised object detection,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.

8. M. Allan, S. Kondo, S. Bodenstedt, S. Leger, R. Kadkhodamohammadi, I. Luengo,
F. Fuentes, E. Flouty, A. Mohammed, M. Pedersen, A. Kori, V. Alex, G. Krish-
namurthi, D. Rauber, R. Mendel, C. Palm, S. Bano, G. Saibro, C.-S. Shih, H.-A.
Chiang, J. Zhuang, J. Yang, V. Iglovikov, A. Dobrenkii, M. Reddiboina, A. Reddy,
X. Liu, C. Gao, M. Unberath, M. Kim, C. Kim, C. Kim, H. Kim, G. Lee, I. Ullah,
M. Luna, S. H. Park, M. Azizian, D. Stoyanov, L. Maier-Hein, and S. Speidel,
“2018 robotic scene segmentation challenge,” 2020.

9. T. Ross, A. Reinke, P. M. Full, M. Wagner, H. Kenngott, M. Apitz, H. Hempe,
D. M. Filimon, P. Scholz, T. N. Tran, P. Bruno, P. Arbeláez, G.-B. Bian, S. Bo-
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P. Halvorsen, P.-A. Heng, E. Hosgor, Z.-G. Hou, F. Isensee, D. Jha, T. Jiang, Y. Jin,
K. Kirtac, S. Kletz, S. Leger, Z. Li, K. H. Maier-Hein, Z.-L. Ni, M. A. Riegler,
K. Schoeffmann, R. Shi, S. Speidel, M. Stenzel, I. Twick, G. Wang, J. Wang,
L. Wang, L. Wang, Y. Zhang, Y.-J. Zhou, L. Zhu, M. Wiesenfarth, A. Kopp-
Schneider, B. P. Müller-Stich, and L. Maier-Hein, “Robust medical instrument
segmentation challenge 2019,” 2020.
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