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A model-based iterative learning approach for
diffuse optical tomography

Meghdoot Mozumder, Andreas Hauptmann, Member, IEEE , Ilkka Nissilä, Simon R. Arridge, and Tanja
Tarvainen

Abstract— Diffuse optical tomography (DOT) utilises
near-infrared light for imaging spatially distributed optical
parameters, typically the absorption and scattering coef-
ficients. The image reconstruction problem of DOT is an
ill-posed inverse problem, due to the non-linear light prop-
agation in tissues and limited boundary measurements.
The ill-posedness means that the image reconstruction
is sensitive to measurement and modelling errors. The
Bayesian approach for the inverse problem of DOT offers
the possibility of incorporating prior information about the
unknowns, rendering the problem less ill-posed. It also
allows marginalisation of modelling errors utilising the so-
called Bayesian approximation error method. A more recent
trend in image reconstruction techniques is the use of
deep learning , which has shown promising results in var-
ious applications from image processing to tomographic
reconstructions. In this work, we study the non-linear DOT
inverse problem of estimating the (absolute) absorption
and scattering coefficients utilising a ‘model-based’ learn-
ing approach, essentially intertwining learned components
with the model equations of DOT. The proposed approach
was validated with 2D simulations and 3D experimental
data. We demonstrated improved absorption and scattering
estimates for targets with a mix of smooth and sharp image
features, implying that the proposed approach could learn
image features that are difficult to model using standard
Gaussian priors. Furthermore, it was shown that the ap-
proach can be utilised in compensating for modelling errors
due to coarse discretisation enabling computationally effi-
cient solutions. Overall, the approach provided improved
computation times compared to a standard Gauss-Newton
iteration.

Index Terms— Deep learning, convolutional neural net-
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I. INTRODUCTION

Diffuse optical tomography (DOT) utilises boundary mea-
surements of near-infrared light to estimate spatially dis-
tributed optical absorption and scattering parameters in biolog-
ical tissues [1]–[3]. The distribution of these optical parameters
is useful in obtaining information on tissue function and
structure with applications, for example, in imaging of breast
cancer [4], [5], prostate imaging [6], [7], neonatal brain
imaging [8], functional imaging of the adult brain [9], [10],
and pre-clinical small animal imaging [11].

The image reconstruction problem of DOT, is an ill-posed
inverse problem. The ill-posedness means that even small
errors in measurements or modelling can cause large errors
in the image reconstruction. An established strategy to handle
the ill-posedness of DOT image reconstruction has been to
use regularisation techniques. These techniques utilised as-
sumptions such as smoothness of the solution [12], sparsity
[13], [14], or its derivative (total-variation) [15] to obtain
stable inversion. In a similar manner, Bayesian estimation
utilises prior probability distributions of the unknowns, based
on previously available knowledge, to compute the posterior
probability distribution as a solution to the inverse problem
[16]–[18]. In this regard, the Bayesian approximation error

(BAE) approach has become a standard computational tech-
nique in ill-posed inverse problems such as DOT [17], [19].
The BAE approach computes statistics of modelling errors,
such as reduced model or uncertainties, to compensate these
during the solution of the inverse problem, for example [19]–
[22]. For more information on image reconstruction problem
of DOT and various methodologies, see e.g. [3], [9], [13], [18],
[23] and the references therein.

Recently, deep learning methods have shifted the focus
of tomographic imaging from classical, purely model-based
techniques to data-driven approaches. A significant influence
of these techniques has been the availability of large mea-
surement databases, advances in computing capabilities and
the potential to learn image features from the data itself.
These have led to major improvements for many linear inverse
problems, where high quality reference reconstructions can be
readily obtained. Most notably, these include X-ray computed
tomography [24]–[26], magnetic resonance imaging [27]–[29]
and photoacoustic tomography [30]–[32].
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For non-linear inverse problems and in particular in DOT,
deep learning methods are scarce. This can be explained in
parts by the difficulty to obtain high quality training data,
costly model evaluations, and limitations of direct reconstruc-
tion approaches. Therefore, the initial applications of deep
learning methods for DOT have been based on directly learn-
ing a non-linear mapping from the boundary measurement data
to the spatially distributed optical coefficients [33]–[35] where
the reconstruction operator was learned either by classical
neural networks [33] or using convolutional neural networks
(CNNs) [34], [35]. The approach was utilised in estimating
absolute absorption coefficients [33], difference scattering
coefficients [34], and spatially-constant values of both the
coefficients [35]. The methods were validated with simulations
[33], [34] and with two homogeneous experimental phantoms
[35]. Improved estimates in terms of estimation accuracy and
computation time were reported.

In contrast to directly learning a reconstruction operator,
one can combine deep learning with model-based approaches.
This can offer the possibilities to overcome some inherent
limitations of the learning-based approaches, such as biases
due to training samples and need for large training datasets
[30]. Furthermore, model-based approaches are improved by
providing complementary prior information and information
on model uncertainties by training neural-networks to learn
image features from a database of target images. A straight-
forward possibility to include the model equations into the
reconstruction is to utilise CNNs as a post-processing tool after
an initial reconstruction is obtained, for instance by removing
streaking artefacts from filtered back-projection in comput-
erised tomography [24], [25] or sharpening D-bar reconstruc-
tions in electrical impedance tomography [36], [37]. Alter-
natively, an architecture to invert the Lippmann-Schwinger
equation for difference imaging of absorption coefficients in
DOT was developed in [38].

In this work, we follow the approach of iterative model-
based techniques [26], [28], [30] where learned components,
given for instance by a CNN, are intertwined with the model
equation. In particular, we extend the iterative model-based
approach in [30] for solving an inverse problem with a
non-linear forward operator. This enables us to tackle the
absolute imaging problem of reconstructing both absorption
and scattering coefficients in DOT. The image reconstruction
problem is solved with a Gauss-Newton algorithm augmented
with deep learning. To our knowledge, this is the first study
of simultaneous reconstruction of absolute absorption and
scattering parameters in DOT utilising deep learning. The
use of the iterative model-based learning was chosen because
of 1) non-linearity of the inverse problem, 2) to emphasise
generalisability of the inversion method, and 3) to learn non-
trivial features of images that are difficult to account for using
conventional regularisation methods or Gaussian priors. In this
approach, model correction is performed implicitly by the net-
work while computing the iterative updates. As such, model-
based estimates are enhanced by learned CNN components
to obtain more accurate estimates. Further, learning the step
length selection parameter, required for updating the estimates
in each iteration, provides an accelerated iteration.

The rest of the paper is organised as follows. An intro-
duction to DOT, Bayesian approach to inverse problems, and
the proposed model-based learning approach is presented in
Sec. II. Implementation of the proposed approach is presented
in Sec. III. The numerical simulations and experiments are
described in Secs. IV and V. These are followed by discussion
in Sec. VI and conclusions in Sec. VII.

II. METHODS

A. Diffuse optical tomography

In a typical DOT measurement setup, near-infrared light is
introduced into an object from its boundary. Let Ω ⊂ Rd, (d =
2or 3) denote the domain with boundary ∂Ω where d is the
(spatial) dimension of the domain. In a diffusive medium, like
soft biological tissue, the commonly used light transport model
for DOT is the diffusion approximation to the radiative transfer
equation [39]. Here, we consider the frequency-domain version
of the diffusion approximation [1](
−∇ · 1

d(µa(r) + µ′
s(r))

∇+ µa(r) +
jω

c

)
Φ(r) = 0, r ∈ Ω,

(1)

Φ(r) +
1

2ζ

1

d(µa(r) + µ′
s(r))

α
∂Φ(r)

∂n̂
=

{ q
ζ , r ∈ s
0, r ∈ ∂Ω \ s ,

(2)
where Φ(r) is the photon fluence, µa(r) is the absorption
coefficient, µ′

s(r) is the (reduced) scattering coefficient, j is
the imaginary unit, ω is the angular modulation frequency of
the input signal and c is the speed of light in the medium.
The parameter q is the strength of the light source at location
s ⊂ ∂Ω, operating at angular modulation frequency ω. Further,
the parameter ζ is a dimension-dependent constant (ζ = 1/π
when Ω ⊂ R2, ζ = 1/2 when Ω ⊂ R3) and α is a parameter
governing the internal reflection at the boundary ∂Ω, and
n̂ is an outward unit vector normal to the boundary. The
measurable data on the boundary of the object, exitance Γ(r),
is given by

Γ(r) = − 1

d(µa(r) + µ′
s(r))

∂Φ(r)

∂n̂
=

2ζ

α
Φ(r). (3)

The numerical approximation of the forward model (1)-(3)
is typically based on a finite element (FE) approximation [1].
In the FE-approximation, the domain Ω is divided into Ne non-
overlapping elements joined at Nn vertex nodes. The photon
fluence in the finite dimensional basis is given by

Φh =

Nn∑
k=1

ϕkψk(r) (4)

where ψk are the nodal basis functions of the FE-mesh and
ϕk is photon fluence in the nodes of the FE-mesh. We write
the finite dimensional approximations for µa(r) and µ′

s(r) as

µa(r) ≈ µh
a (r) =

Nn∑
l=1

µa,lψl(r) (5)

µ′
s(r) ≈ µ

′h
s (r) =

Nn∑
l=1

µ′
s,lψl(r) (6)
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where µa,l,µ′
s,l denote the absorption and scattering at the

nodes of the FE-discretisation.
Typical data types for frequency-domain DOT are the log-

arithm of amplitude and phase, which is obtained from the
real and imaginary parts of the logarithm of complex exitance
Γ = A exp(iϕ), as

y =

(
Re log(Γ)
Im log(Γ)

)
=

(
log(A)
ϕ

)
, (7)

where y ∈ RNm is the data vector, A is the amplitude and ϕ is
the phase delay of the measured signal. The FE-approximation
of (1)–(3) and (7) is denoted by Ah and the observation model
is written as

y = Ah(µa, µ
′
s) + e (8)

where e ∈ RNm models the random noise in measurements,
µa = [µa,1, . . . , µa,Nn ] ∈ RNn and µ′

s = [µ′
s,1, . . . , µ

′
s,Nn

] ∈
RNn are discretised absorption and scattering coefficients. The
sub index h in the mapping Ah is a mesh parameter controlling
the level of discretization. The operator Ah(µa, µ

′
s) converges

to the continuous forward operator as h→ 0 and Nn →∞.

B. Bayesian estimation
In the Bayesian approach to inverse problems, all the param-

eters are considered as random variables and the uncertainties
of their values are encoded into probability density models
[17]. Let us consider the observation model (8). The solution
of the inverse problem is the posterior probability density
which is obtained through Bayes’ theorem, and can be written
as

π(µa, µ
′
s|y) ∝ π(y|µa, µ

′
s)π(µa, µ

′
s) (9)

where π(y|µa, µ
′
s) is the likelihood density and π(µa, µ

′
s) is

the prior density.
Since we aim at computationally efficient solutions, we

compute point estimate(s) from the posterior density, the
most typical choice being the maximum a posteriori (MAP)
estimate. Assuming that the unknowns µa and µ′

s and noise e
are mutually independent and Gaussian distributed, i.e.

µa ∼ N (ηµa
,Γµa

), µ′
s ∼ N (ηµ′

s
,Γµ′

s
), e ∼ N (ηe,Γe),

where ηµa , ηµ′
s

and ηe are the means, and Γµa ,Γµ′
s

and Γe are
the covariance matrices, the MAP estimate is obtained as

(µ̂a, µ̂
′
s) = arg min

µa,µ′
s

{
∥Le(y −Ah(µa, µ

′
s)− ηe)∥

2
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∥∥Lµ′
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∥∥2} (10)

where LT
µa
Lµa

= Γ−1
µa
, LT

µ′
s
Lµ′

s
= Γ−1

µ′
s

and LT
e Le = Γ−1

e .
The mimisatisation problem can be solved using an iterative
method, such as Gauss-Newton method with iteration of the
form

(µ̂a, µ̂
′
s)i+1 = (µ̂a, µ̂

′
s)i + si(δµ̂a, δµ̂

′
s)i (11)

where (δ̂µa, δ̂µ
′
s)i is given by(

δµ̂a

δµ̂′
s

)
i

=

(
JT
i Γ−1

e JT
i +

(
Γ−1
µa

0

0 Γ−1
µ′
s

))−1

(
JT
i Γ−1

e

(
y −Ah(µ̂a,i, µ̂

′
s,i)− ηe

)
+Γ−1

µa
(µ̂a,i − ηµa) + Γ−1

µ′
s

(
µ̂′
s,i − ηµ′

s

)) (12)

and si is the step length parameter. Here Jacobian Ji is the
discrete representation of the Fréchet derivative of the non-
linear mapping Ah(µ̂a,i, µ̂

′
s,i) at the current iterate.

C. Prior
In this work, we use the following two Gaussian forms as

our prior distributions for absorption and scattering.
1) Gaussian Ornstein-Uhlenbeck prior: To model smooth

parameter distributions, we chose the prior model for the
unknown parameters (10) as the Ornstein-Uhlenbeck process,
which belongs to the Matérn class of covariance functions
[40]. Ornstein-Uhlenbeck prior is a Gaussian distribution with
the covariance matrix Γ defined as

Γµ,mk = σ2
µ exp

(
− ∥rm − rk∥

ℓ

)
(13)

where µ denotes the unknown parameters (absorption and
scattering), σµ is the standard deviation, rm and rk are the
locations of the FE-discretisation nodes m and k, and ℓ
is the characteristic length scale which controls the spatial
range of correlation. The prior supports correlation between
neighborhood discretization points, promoting distributions
that can be locally close to homogeneous.

In this work, the means of the prior were ηµa = 0.01mm−1

and ηµ′
s
= 1mm−1, and the standard deviations were σµa

=
0.0033mm−1 and σµ′

s
= 0.33mm−1. The correlation length

was ℓ = 8mm.
2) Gaussian sample-based prior: For targets which con-

sisted of both non-smooth and smooth features, Gaussian
sample-based priors were constructed using a set of sample
images {µa, µ

′
s}j , j = 1, . . . , Nsamp. The prior means and

covariances were computed as

ηµ =
1

Nsamp

Nsamp∑
i=1

µj (14)

Γµ =
1

Nsamp − 1

Nsamp∑
i=1

(µj − ηµ)(µj − ηµ)T. (15)

D. Bayesian approximation error method
In practical applications, the use of a sufficiently dense

discretization may be infeasible due to computational resource
and time limitations. In such a case, the observation model (8)
with a forward operator with a fine discretisation is replaced
by an approximate model

y = AH(µ̄a, µ̄
′
s) + e (16)

where the discretization parameter H > h and (µ̄a, µ̄
′
s) are the

corresponding discretised optical coefficients with discretisa-
tion H . In the Bayesian approximation error approach, instead
of just using the approximate model (16) we re-write the
observation model (8) in the following way

y = AH(µ̄a, µ̄
′
s) + {Ah(µa, µ

′
s)−AH(µ̄a, µ̄

′
s)}︸ ︷︷ ︸

ε

+e. (17)

Here, ε is the discretisation error describing the discrepancy
between the accurate forward model and the approximate
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model. The Bayesian approximation error method carries out
an approximate marginalisation of the posterior over the error
ε. Following [17], [19], the MAP estimate with the Bayesian
approximation error model is obtained as

( ˆ̄µa, ˆ̄µ
′
s) = arg min

µa,µ′
s

{
∥Lε+e(y −AH(µ̄a, µ̄

′
s)− ηε − ηe)∥

2

+ ∥Lµa
(µ̄a − ηµa

)∥2 +
∥∥Lµ′

s
(µ̄′

s − ηµ′
s
)
∥∥2}

(18)

where ηε and Γε are the mean and covariance of the ap-
proximation error. Further, LT

ε+eLε+e = (Γε + Γe)
−1. In the

following sections, we refer to the solution of (18) as the
MAP estimate with the Bayesian approximation error (BAE)
approach.

E. Model-based learning using deep Gauss-Newton
In this work, instead of the regular Gauss-Newton update,

Eq. (11), we propose to learn an update function for each
iteration

(µ̂a, µ̂
′
s)i+1 = Gθi((µ̂a, µ̂

′
s)i, (δµ̂a, δµ̂

′
s)i). (19)

The functions Gθi correspond to CNNs with different, learned
parameters θi but with the same architecture. This implies that
the update of the optical parameters including the step length
selection is now learned from the data during training. The
network structure is kept simple and shown in Fig. 1. Due to
the representation of each update by a CNN applied to the op-
tical parameters (µ̂a, µ̂

′
s)i the Gauss-Newton search directions

(δµ̂a, δµ̂′
s)i, we refer to the algorithm as a deep Gauss-Newton

(DGN) . In contrast to the previously proposed model-based
learning technique for DOT difference imaging in Ref. [38],
we train the DGN layer by layer (layer corresponding here
to one iterate), due to the non-linear nature of the absolute
imaging problem. Hence, we learn the parameters θi for each
iteration separately.

III. IMPLEMENTATION

The Toast++ software [41] was utilised in the FE-solution of
the diffusion equation using MATLAB (R2017b, Mathworks,
Natick, MA). A Python library, Tensorflow (version 1.14.0)
[42] was utilised in implementation and training of the DGN
algorithm. The simulations, were carried out in a Fujitsu
Celcius W550 desktop workstation, with Intel®Xeon(R) W-
2125 CPU @ 4.00GHz×8. The training of the DGN were
carried out on a NVIDIA Tesla V100 GPU.

A. Implementation of the deep Gauss-Newton
The architecture chosen for the CNNs performing the update

in Eq. (19) is illustrated in Fig. 1. In each iteration, optical
coefficients and the corresponding search directions are given
as an input to a pipeline. They are expanded to 20 and then 40
channels by a convolutional layer with kernel size of 5 pixels,
and dimension d = 2or 3, including bias and equipped with a
‘leaky’ rectified linear unit (LReLU) as non-linearity, that was
defined as

LReLU(µ) = max(µ, 0.1µ).

As opposed to commonly used ReLU, the use of LReLU
allow for negative values of input parameters (δµ̂a, δµ̂

′
s). The

number of channels represent the number of images that
are output after each convolution and non-linear operations,
representing the number of image variations to be learned.
The expansive part of the network serves as a feature extractor
(encoder) and the contracting part feature fusion (decoder).
The kernel size is the pixel size on which the convolution
filters are applied, and relates to the size of spatial variations
to be learned. The outputs of the pipelines are added together,
and first reduced to 20 channels, equipped with a LReLU, and
then to 1 channel without a non-linearity, but multiplication
to a scalar value (representing the step length parameter si).
The outcome is added to the current iterate and projected
to the positive numbers by a LReLU. Before applying the
network, the optical parameters (µa, µ

′
s) were scaled (µa 7→

102 × µa, µ
′
s 7→ µ′

s) to present values in the same numerical
range.

Since the main contribution of this work is not the specific
neural network architecture, we used a simple architecture
following Ref. [30]. As shown, the network structure is kept
rather small with the idea that each Gθi primarily learns
how to combine the current iterate parameters and the search
directions, in contrast to a large post-processing network.

B. Training the deep Gauss-Newton

The network was trained by simulations utilising absorption
and scattering distributions, i.e. ’ground-truth images’, drawn
from a prior {µa,true, µ

′
s,true}j , j = 1, . . . , Nsamp and corre-

sponding simulated measurement data. The data was simulated
using a FE-approximation of the diffusion approximation (1)-
(3) and it was corrupted with additive noise. Since CNNs
operate on uniform pixel domains, the images drawn in the
mesh basis were interpolated to the image basis for the
application of the CNN and back for simulation of (1)-(3).
Alternatively, one can use graph structures to formulate the
problem on the FE mesh directly [43].

The parameters θi for i = 1, . . . , imax, were trained sequen-
tially, where imax was the maximum number of iterations. The
parameters were trained on each iteration i by minimising the
‘L2-loss’ function

min
θi

∑
j

∥µj
a,i+1 − µ

j
a,true∥+ ∥µ

′j
s,i+1 − µ

′j
s,true∥, (20)

where µj
i+1 at an iterate was given by Eq. (19). For the

iteration, the initial guess, µj
1 was chosen as the mean of prior.

Thereafter, θ1 was trained to minimise the difference between
µj
true and µj

2 (computed using Eq. (19)) for all indices j. The
procedure was repeated to train all θi’s. In this work, imax was
chosen as 5, which has been a typical number of iterations
required for convergence of Gauss-Newton iterations in DOT
absolute imaging according to our experience. Training of the
θi’s was carried out by minimising (20) with the TensorFlow’s
implementation of the Adam optimiser [44] using batches of
size 2, maximum of 10 epochs and step size of 5 · 10−4

(learning rate). The estimate µj
i+1 at an iterate approaches the

accurate solution when trained to a sufficiently low loss. The
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Fig. 1. Diagram of one CNN denoted as Gθi
, representing one iteration of the deep Gauss-Newton. The red arrows denote a convolutional layer

with 5×5 kernel for a 2D image (or 5×5×5 kernel for a 3D image), bias and followed by a LReLU. The resulting channels in each layer are indicated
in the squares. The blue arrow denotes a convolutional layer followed by a scalar multiplication. The residual update (by the skip connection) is then
projected to the positive numbers by the last LReLU (shown as green arrow).

training was terminated when the change of average L2-loss
(20) was less than 0.1% between two consecutive epochs.

The training procedure is aimed to improve the conventional
update of optical parameters (12) based on image features
learned from the training samples. These image features and
the step length selection are encoded in the learned parameters
θi. The training procedure is summarised in Algorithm 1.

Algorithm 1 Training the deep Gauss-Newton
1: Draw set {µa,true, µ

′
s,true}j , j = 1, . . . , Nsamp, from prior.

2: Generate noisy measurement data using Eq. (8).
3: Set (µ̂a, µ̂

′
s)

j
1 as mean of prior (10), for Nsamp cases.

4: function ITERATE
5: i← 1
6: while i < imax do
7: Compute (δµ̂a, δµ̂

′
s)

j
i , using Eq. (12) for Nsamp

cases.
8: function TRAIN((µ̂a, µ̂

′
s)

j
i , (δµ̂a, δµ̂

′
s)

j
i , (µa,true,

µ′
s,true)

j)
9: Train θi’s by minimizing Eq. (20)

10: end function Return θi
11: (µ̂a, µ̂

′
s)i+1 ← Gθi((µ̂a, µ̂

′
s)i, (δµ̂a, δµ̂

′
s)i).

12: i← i+ 1
13: end while
14: end function

C. Evaluating the deep Gauss-Newton
After training the parameter sets θi, the learned iterative

reconstruction scheme was evaluated by applying the net-
work Gθi at each iteration. This procedure was equivalent
to Algorithm 1, starting by setting (µ̂a, µ̂

′
s)1, calling function

‘ITERATE’, and skipping the function ‘TRAIN’.

IV. SIMULATIONS

A. Data generation
In the numerical studies, the domain Ω ⊂ R2 was a circle

with a radius of 35mm. The measurement setup consisted
of 16 sources and 16 detectors modelled as 2 mm wide
surface patches located at equi-spaced angular intervals on
the boundary. The target optical parameters were either drawn
from the Gaussian Orstein-Uhlenbeck prior, as shown in Fig.

Fig. 2. (a) Three samples of ’smooth’ absorption µa and scattering
µs images drawn from Ornstein-Uhlenbeck prior and (b) three samples
drawn from ’mix’ targets.

2 (a), or drawn as a mix of smoothly varying background
(drawn from the Orstein-Uhlenbeck prior) and sharp circular
inclusions with varying contrast and radii, as shown in Fig. 2
(b). The optical parameter values were chosen to mimic those
in biological tissues [45].

The measurement data were simulated using the FE-
approximation of the diffusion approximation (1)-(3), using
a ’forward mesh’ shown in Fig. 3 (a). Random measurement
noise e drawn from a zero-mean Gaussian distribution

π(e) = N (0,Γe), Γe = diag(σ2
e,1, . . . , σ

2
e,Nm

), (21)

where the standard deviations σe,k were specified as 1% of the



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Fig. 3. Meshes used in 2D simulations. Locations of the sources and
detectors are shown as red and blue stars on the mesh boundaries.
The number of FE-nodes Nn and elements Ne for the meshes are
also displayed. (a) Forward mesh was used for simulating measurement
data. (b)-(c) Inversion meshes 2D mesh 1 and 2D mesh 2 were used for
estimating the optical coefficients from the simulated data.

TABLE I
COMPUTATION TIMES FOR TRAINING 1000 ‘SMOOTH’ SAMPLES IN

HOURS (H) OR SECONDS (S), USING DIFFERENT INVERSION MESHES.
AVERAGE EVALUATION TIME PER SAMPLE IS REPORTED.

Inverse mesh Training Evaluation
DGN BAE GN BAE DGN

2D mesh 1 17h 9s 7s
2D mesh 2 19h 127s 4s 4s 3s

3D mesh 1 615s
3D mesh 2 20h 3319s 112s 132s 96s

simulated noise-free data, was added to the simulated data.

B. Estimation

Estimation of the optical parameters was first carried out
in a ‘2D mesh 1’, shown in Fig. 3 (b). ‘Forward mesh’ and
‘2D mesh 1’ had a similar level of discretisation but they were
chosen differently to avoid making an inverse crime [17].

The deep Gauss-Newton (DGN) were trained with a set of
1000 absorption and scattering images as described in Section
III-B. The training images were either smooth distributions or
mix distributions or both of these. The training times are given
in Table I.

Absorption and scattering images were estimated using the
model-based DGN as described in Sec. III. For comparison,
reconstructions using the conventional Gauss-Newton (GN)
Eq. (11) were computed. The conventional GN method used
the Orstein-Uhlenbeck prior when estimating smooth targets
and the Gaussian sample-based prior when estimating mix
targets. The DGN utilised the Gaussian Orstein-Uhlenbeck
prior for all cases. The mean ηe = 0 and covariance Γe of
the measurement noise were assumed known.

1) Case 1: DGN trained with smooth images: In this case, the
proposed DGN was trained using the smooth images. Example
reconstructions from one smooth target and one mix target are
shown in Fig. 4 (a)-(c). Further, statistics of relative errors
of absorption and scattering estimates from 1000 simulated
targets and the computation times are shown in Fig. 4 (d)-(e)
and in Table I.

DGN trained with smooth images

Fig. 4. Reconstructions of (top) smooth and (bottom) mix targets, with
conventional GN and DGN trained using smooth images. (a) Target
absorption µa and scattering µ′

s, (b) estimates using GN and (c)
estimates using DGN. Statistics of estimation errors for 1000 evaluation
cases are shown as ‘boxplots’ in (c), and the evaluation times in (d).

As shown, DGN provide estimates with similar quality
and accuracy as the conventional GN for both smooth and
mix targets. The computation times of the estimates with
DGN were lower than with the GN. Although the DGN
required additional evaluation of CNNs, it still provided a
computational advantage since the step-length parameter (si)
was learned and didn’t need to be computed at each iteration.

2) Case 2: DGN trained with mix targets: In this case, the
DGN was trained with mix images. Example reconstructions
from one smooth target and one a mix target are shown in
Fig. 5 (a)-(c). Further, statistics of relative errors of absorption
and scattering estimates from 1000 simulated targets and the
computation times are shown in Fig. 5 (d)-(e) and in Table I.

As it can be seen, the absorption and scattering inclusions
of the mix targets are visualised more clearly when estimated
using the proposed DGN method. Furthermore, the estimates
from the mix targets obtained using DGN have lower errors
when compared to the estimates obtained conventional GN.
On the other hand, the ‘out-of-distribution’ smooth targets now
show higher errors, due to artificial sharpening of the estimated
images with the DGN. Again, the computation times of the
estimates with the DGN were lower.

3) Case 3: DGN trained with both smooth and mix targets:
In this case, the DGN was trained with both smooth and mix
images, i.e. 50 % of the training samples were smooth images
and 50 % were mix images.

Example reconstructions from one smooth target and one
mix target are shown in Fig. 6 (a)-(c). Further, statistics of
the relative errors of absorption and scattering estimates from
1000 simulated targets and the computation times are shown
in Fig. 6 (d)-(e) and in Table I.
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DGN trained with mix images

Fig. 5. Reconstructions of (top) mix and (bottom) smooth targets,
with conventional GN and DGN trained using mix images. (a) Target
absorption µa and scattering µ′

s, (b) estimates using GN and (c)
estimates using DGN. Statistics of estimation errors for 1000 evaluation
cases are shown in (c), and the evaluation times in (d).

DGN trained with both smooth and mix images

Fig. 6. Reconstructions of (top) smooth and (bottom) mix targets, with
conventional GN and DGN trained using both smooth and mix images.
(a) Target absorption µa and scattering µ′

s, (b) estimates using GN
and (c) estimates using DGN. Statistics of estimation errors for 1000
evaluation cases are shown in (c), and the evaluation times in (d).

As it can be seen, the reconstructions from smooth targets
are similar in quality when comparing DGN and GN solutions.
Also the relative errors are similar in magnitude. For the mix
targets, the reconstructions obtained using DGN show slightly

better contrast than those obtained with GN. However, the
difference between these is not as clear as when compared to
results obtained using mix training data. Further, the relative
errors are similar in magnitude. Computation times of the
estimates with the DGN were lower.

C. Estimation in presence of modelling errors

Then, the DGN method in the presence of modelling errors
due to a coarse discretisation was studied. Use of coarse
discretisation is beneficial for memory consumption and com-
putation times. In these simulations, a mesh, ‘2D mesh 2’
shown in Fig. 3 (c), was used.

Absorption and scattering images were estimated using the
DGN. For comparison, estimates using conventional GN and
Gauss-Newton augmented with Bayesian approximation error
modelling (BAE) described in Sec. II-D were computed.

For training the DGN, the network parameters were trained
using 1000 smooth distributions or mix distributions. For
training the BAE method, the statistics of the discretisation
errors were calculated with 1000 samples of smooth or
mix distributions. These absorption and scattering parameters
(µa, µ

′
s) were projected from ‘2D mesh 1’ to ‘2D mesh 2’

to obtain (µ̄a, µ̄
′
s). Thereafter, the accurate forward solutions

Ah(µa, µ
′
s) and approximate forward solutions AH(µ̄a, µ̄

′
s)

were computed. Finally, the mean (ηε) and covariance (Γε) of
the approximation error ε = Ah(µa, µ

′
s) − AH(µ̄a, µ̄′

s) were
computed. The training times of the BAE and DGN are given
in Table I. As seen, the DGN training times were higher than
training of the conventional BAE.

1) Case 1: DGN and BAE trained with smooth images:
Example reconstructions from a smooth target in the presence
of discretisation errors is shown in 7 (a)-(d). The estimates
were computed using the proposed DGN and compared against
conventional GN and GN augmented with BAE. Further,
statistics of the relative errors of the estimates and computation
times from 1000 simulated targets, are shown in Fig. 7 (e)-(f)
and Table I.

It can be seen that the proposed DGN and the BAE
effectively marginalise modelling errors, providing comparable
images that have lower errors when compared to the GN. The
relative errors obtained with the BAE were comparable to
using the DGN. As seen, the evaluation time of the DGN
was lower than using the BAE, although the training time of
the DGN was higher than the BAE.

2) Case 2: DGN and BAE trained with mix images: Example
reconstructions from a smooth target obtained using DGN, GN
and BAE in the presence of discretisation errors are shown in
Fig. 8 (a)-(d). Statistics of the relative errors of the estimates
and computation times from 1000 simulated targets are shown
in Fig. 8 (e)-(f) and Table I.

As it can be seen, the DGN and the BAE provide images
with better quality than the conventional GN that suffers from
artefacts due to the modelling errors. Furthermore, the relative
errors of DGN and BAE are lower than of GN, with DGN
providing the lowest relative errors for both absorption and
scattering estimates. The results demonstrate that the DGN can
compensate for modelling errors slightly better than the BAE
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DGN and BAE trained with smooth images

Fig. 7. Reconstructions of smooth targets in the presence of modelling
erros. (a) Target absorption µa and scattering µ′

s, (b) estimates using
GN, (c) BAE, and (d) DGN. Artefacts due to modelling errors are seen
in the GN estimates. These are compensated in the BAE and DGN
estimates. Statistics of the estimation errors for 1000 evaluation cases
are shown in (e), and the evaluation times in (f).

DGN and BAE trained with mix images

Fig. 8. Reconstructions of mix targets in the presence of modelling
errors.(a) Target absorption µa and scattering µ′

s, (b) estimates using
GN, (c) BAE, and (d) DGN. Artefacts due to modelling errors are seen
in the GN estimates. These are compensated in the BAE and DGN
estimates. Statistics of the estimation errors for 1000 evaluation cases
are shown in (e), and the evaluation times in (f).

in the case of non-smooth targets. The DGN also had lower
computation time compared to BAE. However, the training
time was higher.

V. EXPERIMENTS

The phantom experiment was carried out with the
frequency-domain DOT instrument at the Aalto University,

Fig. 9. (a) DOT experimental setup with position of sources (red circles)
and detectors (blue crosses) and two cylindrical inclusions. (b) ’3D mesh
1’ is a densely discretised 3D mesh used in calculating ’reference’
estimate with the GN method. (c) ’3D mesh 2’ was used in calculating
estimates with the DGN, GN and GN augmented BAE. The number of
FE-nodes (Nn) and elements (Ne) in the meshes are also displayed. (d)
Top view of the phantom showing location of the inclusions.

Finland [46]. A cylindrical phantom with a radius of 35 mm
and height of 110 mm illustrated in Fig. 9 (a) and (d) was stud-
ied. The background optical parameters were approximately
µa = 0.01 mm−1 and µ′

s = 1 mm−1 at wavelength 800 nm,
and two cylindrical inclusions which both had the diameter and
height of 9.5 mm, were located such that the central planes
of the inclusions coincided with the central xy-plane of the
cylinder domain. The optical properties of the inclusion 1 were
approximately µa,inc.1 = 0.02mm−1, µ′

s,inc.1 = 1mm−1 (i.e.,
purely absorption contrast) and the optical properties of the
inclusion 2 were µa,inc.2 = 0.01 mm−1, µ′

s,inc.2 = 2 mm−1

(i.e., purely scatter contrast), respectively.
The phantom provides absorption and scattering contrast of

2:1, similar to optical parameter variations in tumors [45]. The
source and detector configuration in the experiment consisted
of 16 sources and 15 detectors arranged in an interleaved order
on two rings located 6 mm above and below the central xy-
plane of the cylinder domain. The locations of sources and
detectors are shown with red circles and blue crosses respec-
tively in Fig. 9 (a). The measurements were carried out at 785
nm with an optical power of 8 mW and angular modulation
frequency ω = 100MHz. The nearest measurement data from
each source position were removed from measured amplitude
and phase data. Logarithm of amplitude and phase shift were
stored as data, leading to real-valued measurement vectors
y ∈ R360.

1) Reference estimate: The absorption and scattering pa-
rameters were estimated in a densely discretised mesh to
provide a reference for the other approaches. A ‘3D mesh
1’ shown in Fig. 9 (b) was used.

To calibrate the source strength and phase coupling of the
forward model to the experimental setup, a global calibration
was carried out on the measured data as the initial step in
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the reconstruction process. Following the initial estimation
procedure in [47], the logarithm of source strength and phase
coupling were modelled by additive constants. The initialisa-
tion step consisted of a four-parameter fit of global background
parameters µa1∗ and µ′

s1∗ as well as a global additive shift η
of log(amplitude) data and a global additive shift ϕ of phase
data,

(µa∗, µ
′
s∗, η, ϕ) = arg min

µa∗,µ′
s∗,η,ϕ

∥Le((y+∆y)−A(µa∗, µ
′
s∗))∥2,

(22)
where ∆y = (η, ϕ)T. The initialization problem was solved
using GN method which resulted in parameter estimates: η =
3.5, ϕ = 0.025, µa1∗ = 0.01mm−1, µ′

s1∗ = 0.8mm−1.
Once the initialisation was completed, the measurement data

was transformed for the standard GN estimation (11) by the
recovered global offsets as y 7→ y + ∆y, and the initial
parameter values and the prior means were set to the estimated
values µa1∗ and µ′

s1∗.
Thereafter, the reference estimates were calculated with the

standard GN method. In the solution, the measurement noise
was assumed to be 1% of the measured absolute values of
the log amplitude and phase. Further, the Ornstein-Uhlenbeck
prior was used with the same parameter values that were used
in the simulations used.

2) Estimates in presence of model errors: A coarse ‘3D
mesh 2’, shown in Fig. 9 (c) was used in evaluating the
proposed DGN approach in the presence of discretisation
errors. For comparison, the BAE approach was utilised, and
the related minimisation problem was solved using GN. Before
reconstructions, the above described global calibration was
repeated for the data using the ‘3D mesh 2’.

To train the DGN, 1000 samples of 3D distributed ab-
sorption and scattering distributions were drawn from the
Ornstein-Uhlenbeck prior and simulated measurement data
was calculated using ‘3D mesh 1’. To mimic the experimental
situation of unknown source strengths and phase coupling,
the corresponding coefficients (η, ϕ) were drawn from uniform
distributions

η ∼ U(1, 4), ϕ ∼ U(0.01, 0.04)

and added to the simulated measurement data. Thereafter, for
the training procedure, the ‘3D mesh 2’ was used to compute
the four-parameter fit using Eq. (22), transform the data (y 7→
y+∆y), and subsequently to train the DGN with the procedure
described in Section III-B.

3) Results: Estimated absorption and scattering distribu-
tions calculated using the DGN, GN and GN augmented with
BAE in a coarse discretisation and a GN in a fine discretisation
are shown in Fig. 10. Estimates on the central xy-plane of the
cylindrical domain are visualised.

As it can be seen in Fig. 10 (a), reference estimates
computed in ‘3D mesh 2’ show locations of absorption and
scattering inclusions with some boundary artefacts. Absolute
and difference imaging reconstructions using the phantom
were earlier presented in Refs. [47], [48], and they show
similar quality reconstructions. The boundary artefacts are
larger in both absorption and scattering estimates obtained
with the GN in ‘3D mesh 2’ in Fig. 10 (b). Furthermore,

Fig. 10. Absorption µa and scattering µ′
s distributions reconstructed

from experimental data. (a) Reference estimate computed with dense
mesh ‘3D mesh 1’, (b) GN estimate computed with mesh ‘3D mesh 2’
and (c) DGN estimate compute with ‘3D mesh 2’.

these artefacts are reduced utilising both the GN augmented
with BAE and DGN, as seen in Fig. 10 (c)-(d).

Note that the training of the DGN utilised smooth 3D
images drawn from Ornstein-Uhlenbeck prior, and not sharp
inclusions as were present in the experimental phantom.
As such, the evaluation in this case was carried out using
a ‘out-of-distribution’ target. The experiment demonstrates
that DGN trained on generalised smooth images and coarse
meshes can produce images with comparable quality to more
dense meshes, using lower computational resources than BAE
method.

The training and reconstruction time for the DGN, GN and
the BAE method are presented in Table I. It can be seen that
the reconstruction time using the experimental data was lower
using the proposed DGN, although the training time (using
simulated data) was higher.

VI. DISCUSSION

This work proposed a ‘model-based’ deep-learning ap-
proach to absolute imaging of DOT. We demonstrated that
model-based learning can provide computational advantages to
the standard Bayesian inversion methods, when convolutional
neural networks trained with similar images are utilised in
the iterative parameter estimation procedure. This was demon-
strated utilising smooth and mix targets in Figs. 4, 5 and 6.

In addition to the improvement in computation time, we
demonstrated that the method can lead to improved estimates
for targets which contain both sharp and smooth features, in
Fig. 5. As such, the proposed method can learn non-Gaussian
image features more efficiently than standard Gaussian priors.
We note that using hyper-priors in Bayesian estimation also
allow estimating such sharp image discontinuities [49]. How-
ever, utilising hyper-priors in DOT might lead to additional
computational burden, for further estimating hyper-parameters
related to the priors.

In Figs. 7, 8 we demonstrated the efficacy of the proposed
method in compensation of discretisation errors. As shown
in 7, the proposed DGN can marginalise discretisation errors
with similar accuracy to BAE for smooth targets, providing
an advantage in computational time. For mix targets, the
proposed DGN outperforms the BAE in estimation accuracy
and computational times. This is possibly because CNNs can
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learn and compensate non-Gaussian modelling errors more
efficiently than BAE, which assumes modelling errors as
Gaussian. The authors refer to [50], [51] for more discussions
on modelling error corrections using CNNs.

The proposed approach was applied to experimental data
and the estimates are presented in Fig. 10. As shown, both
BAE and DGN trained on smooth images can effectively com-
pensate modelling errors, and provide accuracy comparable to
reference estimates.

The purpose of the study was to present the applicability
of the approach to absolute imaging problem of DOT with
one relevant architecture. Therefore, we have not presented an
in-depth assessment of different deep learning architectures
in this work. The proposed DGN approach could be further
improved by carrying out a systematic optimisation of the
network architectures and involved parameters. Further, the
different estimation scenarios, such as the discretisation level
and geometry affect on the optimal training procedure as
well as modelling errors and experimental system related
uncertainties. These topics are part of planned future studies.
The authors refer to [27], [32] for other architectures that could
also be relevant for DOT.

A classical challenge in DOT is the cross-talk between
the optical parameters in the reconstructions. Artifacts due to
cross-talk are difficult to spot in smooth or mix images, as were
used in the article. Figure 11 shows reconstructions with sharp
inclusions solved with GN and DGN. The DGN was trained
with sharp inclusions, with random inclusion locations, sizes
and contrast. As seen, the cross-talk artefacts that are visible
in GN reconstruction are not seen in DGN. We also compared
the approach with a sparse recovery scheme that is known
to reduce spatial variations in a reconstructed image, whilst
preserving sharp discontinuities [13]. We used a sparsity-
promoting total-variation (TV) prior [52] implemented with
Toast++ software [41] and the conventional GN algorithm. The
reconstructed images are shown in Figure 11(d). As seen, use
of TV prior results in lower background variations compared
to using Gaussian prior in Figure 11(b). However, the cross-
talk artifact of the scattering inclusion in the absorption image
is still visible.

The study draws connections between statistical Bayesian
and learning-based approaches, showing that insights from
Bayesian inversion can be used in the design of learned image
reconstruction. This opens the possibility for future studies to
analyse these connections more carefully.

VII. CONCLUSIONS

We presented a novel approach for estimating absolute
optical parameters in DOT, utilising a model-based iterative
deep-learning approach. The results were validated with 2D
simulations and a DOT experiment. The results show that
the proposed approach leads to improved computational times
compared to conventional Gauss-Newton method. Also, the
proposed approach can learn non-Gaussian image features
and provide improved estimates for targets presenting sharp
inclusions. No considerable loss of image quality was re-
ported in situations where imaging targets did not match

Fig. 11. (a) Target absorption (top) and scattering (bottom) distributions.
The reconstructed distributions using (b) Gauss-Newton (GN) algorithm,
(c) deep Gauss-Newton (DGN) algorithm and (d) Gauss-Newton algo-
ritm using a total-variation prior (GN-TV).

the training data. Furthermore, the proposed approach was
shown to effectively compensate for modelling errors. It was
shown to provide improved computational time and estimation
accuracy for non-Gaussian targets, compared to the Bayesian
approximation error method.
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