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Abstract

Cluster pictures are a recent innovation which have been developed to study

the arithmetic of hyperelliptic curves. The cluster picture of such a curve C :

y2 = f(x) over a local field K is a completely combinatorial object containing

the data of the p-adic distances between the roots of f . It determines many

invariants associated to C, and most pertinently for us it was used in [19] to

calculate the minimal regular model of C when it has semistable reduction.

We extend their results to the case where C has tame reduction, calcu-

lating its minimal snc model in terms of its cluster picture. As an application

we state a condition in terms of the cluster picture for C to have a K-rational

point. In addition we use a generalisation of the cluster picture, the chromatic

cluster picture, to work out the minimum regular model of a bihyperelliptic

curve with semistable reduction.



Impact Statement

The Birch–Swinnerton-Dyer conjecture is one of the principal unsolved prob-

lems in modern mathematics. It unifies two vastly different perspectives on

elliptic and hyperelliptic curves, fundamental number theoretic objects which

have generated decades of research, and promises to unlock deep secrets of

number theory. A proof of the conjecture is not yet within reach, but improv-

ing our understanding of (hyper)elliptic curves is an important step towards it.

My work aims to be a small step in the right direction, calculating a key local

invariant of hyperelliptic curves and bihyperelliptic curves, the minimal model.

Techniques used in this thesis will be applicable to greater classes of curves,

stimulating future research into minimal models of curves. In addition, it is

possible to use the condition given in Chapter 5 for local solubility of hyper-

elliptic curves to determine what proportion of hyperelliptic curves of a given

genus are locally soluble, with additional work to determine the probability of

hyperelliptic curves having a given cluster picture.

Outside of academia, number theory plays a crucial role in modern com-

munication and cryptography. Algorithms such as RSA, which use Fermat’s

Little Theorem, have made the contemporary information boom possible, and

more recently elliptic and hyperelliptic curves have been used in cryptographic

algorithms (ECC and HCC) to facilitate faster and more secure methods of

communication. With more and more of life moving online, from workplaces

to currencies, such methods are becoming increasingly necessary. While my

work is not directly related to this utilisation of hyperelliptic curves, it exists

within the same context.
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Chapter 1

Introduction

1.1 Models

Frequently in number theory one would like to understand an object locally; it

is then possible to stitch together this local information to gain global insight.

A classical example of this is the Hasse-Minkowski Theorem, which states that

two quadratic forms over a number field are equivalent if and only if they

are equivalent locally at all places. This fails in general: for example, Selmer

showed that 3x3 + 4y3 + 5z3 = 0 is an elliptic curve with points over R and Qp

for all p, but no Q-rational points. However, all hope is not lost. There is still

much to learn from studying objects locally.

We will be interested in curves over a field K with a discrete valuation

v = vK . A natural question is to ask about the reduction of a curve X modulo

v. In an ideal world, this would always result in a smooth curve X̃ over the

residue field k. Such a curve is said to have good reduction overK. However, we

do not live in such a world; in the real world there exist curves of bad reduction.

Sometimes this problem is assailable — the elliptic curve y2 = x3 + p6 has bad

reduction but the isomorphic curve y2 = x3 + 1 has good reduction — but

other times the bad reduction is honest and we must overcome it via different

means.

In this thesis we calculate an important local invariant of curves which

offers a solution to the issue of bad reduction: the regular model. Formally for
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a curve X, a regular model of X is a flat, proper, regular OK-scheme X whose

generic fibre XK is isomorphic to X and whose special fibre Xk represents the

reduction of X modulo v and determines much of the local arithmetic of X.

For example, the special fibre can be used to calculate Tamagawa numbers

and local root numbers, invariants which appear in the statements of deep

unsolved conjectures such as the Birch–Swinnerton-Dyer conjecture and the

Parity conjecture.

The quest to find regular models of curves has a long and varied history.

In the 1960s, Kodaira [24] classified the possible special fibres which can appear

in the minimal regular model of an elliptic curve. This classification was also

done by Néron [39] in a more arithmetic setting. In [38], Namikawa and Ueno

devised a similar (albeit much, much longer) classification for genus 2 curves.

These classifications are useful in their own right, but often we would

like to calculate the minimal regular model for a given curve X. In theory,

this can be done in the following way: first take any model of X and take its

normalisation. This results in a normal model, whose singularities are therefore

closed points on the special fibre. A theorem of Lipman from [27] tells us that

after a finite number of further normalisations and blow ups we obtain a regular

model, and after contracting exceptional components we obtain the minimal

regular model. In practice, computing these normalisations and blow ups is a

time consuming task. We would prefer a more direct way to calculate models.

The case of genus 1 curves was completed in the 1970s, and can be com-

puted using Tate’s algorithm [44] (see also [42, § IV]). In the same spirit, Liu

[28] devised an algorithm which can explicitly determine the minimal regular

model of a genus 2 curve as a function of the coefficients of the defining equa-

tion. Both of these algorithms rely heavily on the classification of possible

special fibres, which makes them difficult to generalise to genus g > 2 since no

such classification exists. Therefore, different approaches are necessary.

More recently, several other cases have been computed. The semistable

model of a hyperelliptic curve can be deduced from its cluster picture, a com-
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binatorial invariant of the curve which we shall describe shortly. This work is

due to the Dokchitser brothers, Maistret and Morgan in [19]. Their theorem

was extended to the case of hyperelliptic curves with tame reduction by Sarah

Nowell and the author in [22], using the rich theory of tame quotients of mod-

els developed in papers such as [47], [32], [12, § 2] and [23]. T. Dokchitser has

devised a way to work out the minimal snc model — a model with nonreduced

special fibre but manageable singularities — of a curve which is ∆v-regular

from its Newton polygon in [15]. Being ∆v-regular is a rather strict condition,

but it has been loosened considerably by Muselli in [37].

Non-hyperelliptic genus 3 curves and their models have also attracted

interest in recent years, such as [26], which allows us to calculate whether a

genus 3 curve has (potentially) good hyperelliptic or quartic reduction, or bad

reduction, using Dixmier-Ohno invariants. Further work in this direction has

been carried out in [10].

Other than that, there is currently a flurry of activity dedicated to using

MacLane valuations to study models. This was started in Rüth’s thesis [40],

and continued in a variety of papers such as [41] and [11]. A large advantage

of this method is that it can deal with the wild case as effectively as the tame

case. However since this technique is rather tangential to ours, we shall not

focus on it too much, and shall concentrate on the cluster picture approach

instead.

1.2 Hyperelliptic Curves and Cluster Pictures

Much of the thesis will be devoted to finding models of hyperelliptic curves.

These are classical objects defined by an equation y2 = f(x), where f is a

polynomial of degree greater than 4. Taking the naïve projective closure of

this does not result in a smooth curve; the point at infinity is a singularity.

Upon normalising, we obtain a smooth curve C which is given by two affine

charts:

y2 = f(x) and w2 = v2g+2f(1/v),
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which are glued together via

(x, y) 7→ (v, w) = (1/x, y/xg+1).

Here g is the genus of the curve and it is such that deg(f) = 2g + 1 or 2g + 2.

These curves come with a natural 2-to-1 map to P1, given by sending a point to

its x-coordinate. The ramification points of this cover are precisely the roots

of the polynomial f , and we shall denote this set R.

It transpires that the combinatorial data of the p-adic distances between

these roots determines much of the local arithmetic of C; we call this con-

figuration the cluster picture of C. Cluster pictures were first introduced in

[35], and have been used in subsequent papers to calculate various invariants,

such as the Galois representation, semistable model, conductor and minimal

discriminant of C in [19], the Tamagawa number in [6], the root number in [9]

and finally differentials in [25] and [37]. A survey article of many of the key

uses is available at [5]. In this thesis, we use cluster pictures to compute the

minimal snc model of a C when it has tame reduction, as well as using a gen-

eralisation of cluster pictures to compute the semistable model of a curve with

maps to two distinct hyperelliptic curves. We also use it to state a condition

for a hyperelliptic curve to be locally soluble. More precisely, a cluster picture

is defined as follows.

Definition 1.2.1. Let C : y2 = f(x) be a hyperelliptic curve over K, with

R the set of roots of f . A cluster is a non-empty subset s ⊆ R of the form

s = D ∩ R for some disc D = z + πnOK , where z ∈ K and n ∈ Q. If s is a

cluster and |s| > 1, s is a proper cluster and we define its depth

ds = min
r,r′∈s

vK(r − r′).

The cluster picture Σ = ΣC/K is the set of all clusters of the roots of f .

Example 1.2.2. Let C : y2 = (x3 − 136)((x − 1)4 − 1316)(x3 − 8) be a hy-

perelliptic curve over Q13. The cluster picture of C is given in Figure 1.1.

The number to the bottom right of a cluster indicates its relative depth, the



1.2. Hyperelliptic Curves and Cluster Pictures 12

difference between its depth and its parent’s (the smallest cluster containing

it).

2

s1

4

s2

0

R

Figure 1.1: Cluster picture of C : y2 = (x3 − 136)((x− 1)4 − 1316)(x3 − 8).

The set of roots (appearing from left to right in the cluster picture) is

R = {132, 132ζ, 132ζ2, 1 + 134, 1− 134, 1 + 134i, 1− 134i, 2, 2ζ, 2ζ2},

where ζ is a fixed third root of unity. The first cluster s1 = R ∩ D0,2 is the

intersection of R with a p-adic disk centred around 0 of radius 2. The second

cluster s2 = R∩D1,4. Finally, R itself is a cluster because R = R∩ Z13, and

since Z13 contains D0,2 = 132Z13 and D1,4 = 1 + 134Z13, we draw the clusters

s1 and s2 inside the cluster R. Indeed s1 and s2 are children of R.

There are many advantages to working with cluster pictures. One of the

most important is that they allow us to consider hyperelliptic curves in families,

parametrised by cluster picture. Since there are only finitely many cluster

pictures of a given genus, and the cluster picture determines many invariants

of the curve, this allows us to exhaustively classify all the situations which

can arise. A possible application would be to classify how many hyperelliptic

curves of a given genus are locally soluble (using Theorem 5.1.3); this would

require us to calculate the probability of a curve having a given cluster picture.

The use of cluster pictures reduces the problem from one about proportions of

curves to one about proportions of polynomials. A similar situation for genus

1 curves has been explored in papers such as [13] and [8].

In addition, cluster pictures allow us to give explicit and (relatively) suc-

cinct descriptions of invariants in terms of completely combinatorial data. This

removes dependence on the exact form of the defining polynomial f , offering

a more conceptual understanding of these invariants, as well as allowing us to

compute them without the need to follow laborious algorithms. Many results
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utilising cluster pictures have been implemented computationally in Magma

by Best and van Bommel; see [5] for details.

Ultimately, the motivation for calculating these invariants is due to their

appearance in the Birch–Swinnerton-Dyer conjecture and the Parity conjec-

ture. The former conjecture first links the L-function of a hyperelliptic curve to

the algebraic rank of its Jacobian, and secondly gives a formula for the leading

coefficient of the L-function in terms of various invariants of the hyperelliptic

curve. Understanding the invariants could lead to a deeper understanding of

the conjecture. See for example [45] and [46] where the author verifies the

second conjecture numerically up to squares. The latter conjecture links the

global root number of a hyperelliptic curve to the parity of the algebraic rank

of its Jacobian. This is a strictly weaker conjecture, but still has remarkable

implications; for example, it implies that any elliptic curve with global root

number −1 has infinitely many rational points. This has been proven in vari-

ous cases given the finiteness of the Tate-Shafarevich group, such as for elliptic

curves in [17] and for principally polarised abelian varieties of dimension 2 in

[20]. The second of these uses cluster pictures in an integral way.

The other class of curves whose models we will find using cluster pictures

are bihyperelliptic curves. These are smooth curves with maps to two distinct

hyperelliptic curves. They are similar to bielliptic curves, curves with a degree

2 map to an elliptic curve, although we are rather more restrictive in our

definition. Our notion of a bihyperelliptic curve insists that it is a C2 × C2

cover of P1, which is not the case for all bielliptic curves. Bihyperelliptic

curves arise naturally in the study of the Parity conjecture; indeed let Y be a

bihyperelliptic curve and C : y2 = f(x) and C ′ : z2 = g(x) the hyperelliptic

curves it maps to, wiht f and g coprime. The Parity conjecture implies a

relationship between the Tamagawa numbers of Y , C, C ′ and the curve Ch :

w2 = f(x)g(x). This is because of the isogeny between the Jabocians of Y and

C × C ′ × Ch, and the invariance of the BSD formula under isogeny (see [36,

Theorem 7.3]). Hence being able to calculate the Tamagawa number of Y is
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important to comprehend this relationship. This application is currently being

researched by Holly Green. We calculate the minimal regular model of Y in

the case where Y has semistable reduction. A similar situation is studied in

[10], where C and C ′ are assumed to be elliptic, but not hyperelliptic curves.

It is possible to construct a cluster picture on the set of roots of both

hyperelliptic curves C and C ′. This is not quite sufficient to describe the

semistable model of Y ; we must also remember the data of which root belongs

to which hyperelliptic curve. This motivates our definition of a chromatic

cluster picture, a cluster picture on the roots of C and C ′ where the roots

coming from C are coloured red and the roots coming from C ′ are coloured

blue. Note that Y is smooth if and only if C and C ′ have no roots in common,

so there is no confusion about which colour to assign a given root. A colouring

on the remaining clusters is induced by this condition. We will show that

this data is enough to find the minimal regular model of Y , given that Y has

semistable reduction.

1.3 Results of Thesis
The main aim of this thesis is to give explicit descriptions via cluster pictures

of minimal models of two classes of curves: hyperelliptic curves with tame

reduction (i.e., that obtain semistable reduction after a tame extension), and

bihyperelliptic curves with semistable reduction. In the first case, we show

that the cluster picture, along with the valuation of the leading coefficient of

the defining equation, is sufficient to determine the minimal snc model.

Theorem 1.3.1 (Theorem 4.1.11). Let K be a local field with residue field k

of characteristic p > 2. Let C : y2 = f(x) be a hyperelliptic curve over K

with tame reduction and cluster picture Σ. Let Cmin be the minimal snc model

of C over OKur. Then the dual graph, with genus and multiplicity, of Cmin
k

is completely determined by Σ (with depths) and the valuation of the leading

coefficient vK(cf ) of f .

Remark 1.3.2. We have defined the cluster picture via the defining equation
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f of C. However, we could have defined abstract cluster pictures as a set of

subsets of {1, . . . n} with a depth function d : Σ → Q. When we say above

that the cluster picture determines the minimal snc model, we really mean the

abstract cluster picture, i.e., the one that does not depend on the exact nature

of the defining equation of C.

The proof is constructive; the structure of Cmin
k is detailed in Theorem

4.1.13 and exact details of the multiplicities of components are Theorem 4.1.19.

The action of Frobenius on the components of Cmin
k is also determined by the

cluster picture, as well as characters εs which are attached to the clusters of Σ:

this is Theorem 4.1.21. As an application, we give a condition (Theorem 5.1.3)

for C to have aK-rational point in terms of Σ, assuming that the characteristic

of the residue field is large enough for the components of the special fibre to

have points. When K does not have algebraically closed residue field, this

crucially requires the action of Frobenius on Cmin
k .

Corollary 1.3.3. Let K be a local field with residue field k of characteristic

p > 2 and let C be a hyperelliptic curve over K such that p > 2g(C) + 1. Then

the cluster picture of C, along with the action of Frobenius induced on the

cluster picture of C and the characters εs(Frob), determines the local solubility

of C.

Our results follow closely from [19], where the authors give an explicit de-

scription of the minimal regular model of a hyperelliptic curve with semistable

reduction. Indeed, let C : y2 = f(x) be a hyperelliptic curve with semistable

reduction and cluster picture Σ. The minimal regular model C of C can roughly

be described as follows. A cluster s ∈ Σ is principal if |s| ≥ 3 so long as s 6= R,

in which case there are a few exceptions. A sufficient condition for R to be

principal is for it to have at least 3 children, none of which have size 2g. To

each principal cluster s there is one component Γs or two components Γ+
s and

Γ−s in Ck. The components Γs and Γs′ of two clusters s and s′ are linked by

one or two chains of rational curves if s′ is a maximal subcluster of s (a child



1.3. Results of Thesis 16

of s), or vice versa. Twins, clusters of size 2, contribute loops to the model:

chains of rational curves from the component of their parents to itself.

The action of Frobenius on Cmin
k is also described. The cluster picture

inherits a natural action of Frobenius, and the principal components of Ck are

permuted as their corresponding clusters are. There are additional characters

εs associated to clusters which determine the action of Frobenius when there

are two components associated to a cluster, and the action on the clusters

themselves is not sufficient.

Now let C : y2 = f(x) be a hyperelliptic curve with tame reduction; that

is, C obtains semistable reduction over a finite extension L/K whose degree

is prime to p. We describe the dual graph with genus and multiplicity of the

minimal snc model Cmin of C in terms of the cluster picture of C. An snc model

is a model which is regular as a scheme and whose special fibre has smooth

components and at worst ordinary double points as singularities.

This is morally similar to the semistable case, but practically somewhat

more complicated, as components do not have to be reduced. One particular

difference is that we now consider Galois orbits of clusters, not just clusters on

their own. This makes sense, as inertia acts trivially on the cluster picture of

a semistable hyperelliptic curve (see Theorem 2.4.2), but can act non-trivially

on the cluster pictures of one with tame reduction.

Orbits of principal clusters give rise to one or two components, and parents

are still linked to their children by chains of rational curves. However, there

are additional chains of rational curves, tails, which intersect the rest of the

special fibre in only one place. Orbits of twins can contribute loops or crossed

tails, whose definition we delay until later. The action of Frobenius is also

more involved, but is determined by the cluster picture and the characters εs.

For bihyperelliptic curves with semistable reduction, we show that the

chromatic cluster picture is sufficient to determine the minimal regular model.

Theorem 1.3.4 (Theorem 6.3.1). Let K be a local field with residue field k

of characteristic p > 2. Let C1 and C2 be two hyperelliptic curves over K.
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Suppose that the bihyperelliptic curve Y arising from C1 and C2 has semistable

reduction and all the depths in the chromatic cluster picture of Y are integers.

Let Y min be the minimal regular model of Y . Then the dual graph of Y min
k is

entirely determined by the chromatic cluster picture of Y .

A description of the dual graph is given in Theorem 6.3.1 and the action

of Frobenius in Theorem 6.3.3. These are again similar to above: principal

clusters give rise to components of the special fibre, components of parents are

linked to parents of children and twins have corresponding loops. Principal

components are permuted by Frobenius in the same way as their associated

principal clusters, and characters εs,1 and εs,2 for s a cluster determine the rest

of the action of Frobenius.

A possible application of this concerns the Parity Conjecture and in par-

ticular the behaviour of Tamagawa numbers in towers of curves. The minimal

regular model of Y with Frobenius action allows us to calculate its Tamagawa

number cY hence and compare cY to the Tamagawa numbers of the hyperel-

liptic curves Y maps to. This application is inspired by work such as [7] and

[16]. However, it is beyond the scope of this thesis so we shall dwell on it no

further.

1.4 Structure of Thesis
Chapter 2 covers the background material that we will use throughout the

thesis, starting with standard definitions and results about models in Section

2.1. We expound on cluster pictures in Section 2.2, illustrating definitions

with examples and giving intuition behind some of the most important invari-

ants associated to cluster pictures. The remainder of the background section

discusses techniques from the literature for calculating models: using tame

quotients in Section 2.3, cluster pictures for semistable hyperelliptic curves in

Section 2.4 and finally via Newton polygons in Section 2.5.

The results of [22] concerning minimal snc models of hyperelliptic curves

with tame reduction are detailed in Chapters 3 and 4. The first proves the re-
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sult for the simplest examples: hyperelliptic curves with tame potentially good

reduction in Section 3.1 and curves whose cluster pictures have exactly two

proper clusters in Section 3.2. The main results, a description of the special

fibre of the minimal snc model of a hyperelliptic curve with tame reduction,

are Theorems 4.1.13 and 4.1.19. These are proven in Section 4.2. Their ap-

plication, a condition for a hyperelliptic curve to be locally soluble over K in

terms of its cluster picture, is Chapter 5.

The thesis finishes with a chapter on bihyperelliptic curves, Chapter 6.

In Theorem 6.3.1 we give the dual graph of the minimal regular model of a

bihyperelliptic curve with semistable reduction in terms of its chromatic cluster

picture.

1.5 Notation

K local field vK discrete valuation

OK ring of integers πK uniformiser of K

k residue field of K p characteristic of k

K algebraic closure of K Kur maximal unramified extension of K

Table 1.1: General notation associated to fields, curves, and models

ΣC/K (2.2.3) δ(s, s′) (2.2.14) reds (2.4.9)

s (2.2.3) principal (2.2.8) ∆(C) (2.5.3)

ds (2.2.3) s∗ (2.2.16) ∆v(C) (2.5.3)

as, bs (2.2.3) gss(s) (2.2.17) v∆ (2.5.3)

odd cluster (2.2.8) singleton (2.2.21) L, F (2.5.4)

even cluster (2.2.8) ssing (2.2.21)∆(Z), L(Z), F (Z) (2.5.5)

twin (2.2.8) νs (2.4.6) ∆(Z)L(Z), F (Z) (2.5.5)

s′ < s (2.2.13) χ (2.4.6) δλ (2.5.6)

P (s) (2.2.13) λs (2.4.6) sL1 , s
L
2 (2.5.10)

ŝ, s̃ (2.2.13) αs (2.4.6) g(s) (3.1.23)
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cotwin (2.2.13) βs (2.4.6) principal orbit (4.1.1)

übereven (2.2.13) γs (2.4.6) λX (4.1.4)

zs (2.2.3) θs (2.4.6) KX (4.1.2)

s ∧ s′ (2.2.13) εs (2.4.6) eX (4.1.9)

δs (2.2.14) cs (2.4.9) g(X) (4.1.9)

Table 1.2: Notation associated to cluster pictures and Newton polytopes



Chapter 2

Preliminaries

In this chapter we detail some of the background that is necessary for our re-

sults. We begin with section 2.1 on models and different types of “nice” models.

This is all very standard. After that is a summary of cluster pictures in section

2.2. This is the most important part of the background, as it is a rather novel

approach and may be unfamiliar; we shall use cluster pictures extensively. We

continue with various strategies to calculate models: via quotients, cluster pic-

tures and Newton polytopes in sections 2.3, 2.4 and 2.5 respectively. Nothing

in this chapter is new, but theorems and definitions have been illustrated with

examples to demonstrate their importance. Recall that K is a local field with

residue field k of characteristic p > 2.

2.1 Models
In Section 2.1.1 there is an initial discussion of models and how they relate

to the naïve approach of reduction mod ν. We follow this by defining certain

“nice” models which are particularly useful: (minimal) regular models in 2.1.2

and semistable models in 2.1.3. A canonical reference for this section is [29],

especially Sections 9 and 10. Throughout this section we assume that K has

algebraically closed residue field, unless explicitly stated otherwise.

2.1.1 First Definitions

Any good notion of a model of X should remember the original curve X,

and allow us to reduce points of X modulo m. In addition, there should be
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some overarching structure which allows us to utilise the full power of algebraic

geometry. Both of these goals are achieved using OK-schemes. Since Spec(OK)

has two points, the zero ideal and the maximal ideal, any OK-scheme X is

composed of two fibres — the generic fibre XK , which is a curve over K, and

the special fibre Xk, which is a curve over k, and will be our reduction modulo

m. We will demand that the former is isomorphic to X, but the latter can,

within reason, be whatever we want it to be. Without further ado:

Definition 2.1.1 (Models). Let X/K be a curve. A model X of X is flat,

proper OK-scheme with generic fibre XK
∼= X. Morphisms of models are

morphisms of the underlying schemes which induce an isomorphism on the

generic fibres.

Example 2.1.2. The most straightforward way to form a model is to consider

a curve over OK defined by a single equation. Let E : y2 = x3 + ax+ b be an

elliptic curve over K = Qur
p in Weierstrass form and let E = E×KOK . Then E

is a model of E. The special fibre of E is the reduction of E modulo p. Such a

model is called a Weierstrass model. Now suppose in fact that E : y2 = x3 +p.

We can repeatedly blow up the singular point on the special fibre, starting

with (0, 0) on the special fibre of the Weierstrass model, obtaining a sequence

of models of E whose special fibres are shown below. This example shows that

models are not required to be reduced or irreducible. It also illustrates one of

the most effective tools we have to construct new models: blowing up points

on the special fibre.

2

3

21
6

3 2 1

Figure 2.1: Models of the elliptic curve y2 = x3 + p.

Elliptic curves can have good or bad reduction: there are analogues for

models of general curves.
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Definition 2.1.3 (Good Reduction). Let X/K be a curve. Then X has good

reduction over K if there exists a smooth model X of X (i.e., a model X such

that the underlying scheme is smooth). If no such model exists, X has bad

reduction. If there exists a finite extension L/K such that X ×K L has good

reduction over L, then X has potentially good reduction. If the extension L/K

can be chosen such that [L : K] is coprime to p, then X has tame potentially

good reduction, and it has wild potentially good reduction otherwise.

Remark 2.1.4. Throughout this thesis, we will often consider a model X of

a curve X over a field K which does not have algebraically closed residue field.

In this case, what we mean is the model of X over Kur along with the action

of Frobenius on the special fibre Xk; i.e. the action of Gal(Kur/K). This is

analogous to the difference between split and non-split multiplicative reduction

for elliptic curves. For both types of multiplicative reduction, the special fibre

of the stable model is a rational curve with a node. However, an elliptic curve

E has split multiplicative reduction if the tangent lines are defined over K,

and non-split reduction otherwise. In the latter situation, Gal(Kur/K) acts

non-trivially on the special fibre, and when we talk about the stable model of

E we are also referring to this action.

2.1.2 Regular Models

Weierstrass models, while intuitive, do not provide any information beyond

simply reducing modulo m. We must impose some additional structure on

our models in order to utilise their full power. In particular, we frequently

demand a model X be regular, i.e. that the underlying scheme be regular.

Such a model determines, for example, the Tamagawa number of an elliptic

curve — see [42, p 365]. Indeed, if K has algebraically closed residue field, the

Tamagawa number is simply the number of multiplicity 1 components in the

special fibre of the minimal regular model, a canonical choice of regular model.

Definition 2.1.5 (Regular Models). Let X/K be a curve and X a model

of X. Then X is said to be a regular model (resp. a normal model resp.
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a smooth model) if the underlying scheme X is regular (resp. normal resp.

smooth). A regular model X is minimal if any map X → X ′ to another

regular model X ′ is an isomorphism.

One of the main strengths of regular models is that we can define an

intersection theory on X , an incredibly effective tool whose usefulness we shall

already see in Theorem 2.1.7. In particular, let Div(X ) be the (Weil) divisor

group of X , the free group on codimension one closed integral subschemes of

X , and let Divk(X ) be the subgroup of vertical divisors : divisors which are

contained in the special fibre Xk. Then there is a well defined local intersection

product for any x ∈Xk given by:

Divk(X )×Div(X ) −→ Z

(E · E ′) = dimkOX ,x/(g, g
′),

where g and g′ are uniformisers for E and E ′ respectively (informally, functions

which vanish to order 1 along E and E ′ respectively). Roughly, if E 6= E ′,

then (E ·E ′) counts the number of intersections of E and E ′ with multiplicity.

If E and E ′ intersect everywhere transversally (e.g. in an snc or semistable

model), this simply counts the number of intersection points of E and E ′.

We have discussed how blowing up allows us to create new models from old

models, and blowing up a point on the special fibre of a regular model results

in another regular model. Intersection theory allows us to classify when we

can go in the other direction.

Definition 2.1.6 (Exceptional Components). Let X be a curve over K and

X a regular model of X. Let E ∈ Xk be a component of the special fibre.

Suppose there exists another regular model X ′ and a morphism φ : X →X ′

such that φ(E) is a point and φ is an isomorphism away from E and f(E).

Then E is an exceptional divisor and φ is a contraction or blow down of E.

Theorem 2.1.7 (Castelnuovo’s Criterion). Let X be a curve over K and X

a regular model of X. Let E ∈ Xk be a component of the special fibre. Then

E is exceptional if and only if it is isomorphic to P1
k and (E · E) = −1.
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Proof. [29, 9.3.8]

This criterion implies the following powerful theorem concerning minimal

regular models: namely that they exist, and are unique.

Theorem 2.1.8 (Minimal Regular Models). Let X/K be a smooth curve of

genus g ≥ 1. Then X admits a minimal regular model over OK, which is

unique up to unique isomorphism.

Proof. [29, Theorem 9.3.21]. Roughly, a proof proceeds as follow. A regular

model exists, since we can take any model of X, and repeatedly normalise

and blow up the singularities until the resulting scheme is regular. Such a

process terminates by [27]. Then, blowing down any exceptional components,

we recover a model with no exceptional components. This is the minimal

regular model.

Remark 2.1.9. In theory, the proof of Theorem 2.1.8 provides an explicit way

of calculating the minimal regular model of a given curve. In practice, it is an

incredibly time consuming process (as anyone who has ever had to do a blow

up by hand can attest), even for a computer. As a result, mathematicians have

strived to find more practical ways of finding the minimal regular model of a

given curve. This is the motivation for much of this thesis.

2.1.3 Semistable Models

Even on a regular model, the singularities on the special fibre can be rather

unpleasant. For example, the minimal regular model of the elliptic curve y2 =

x3 + p has a cusp on its special fibre. In some settings this is less than ideal.

As a result we often demand that the singularities on the special fibre are, in

a sense, “as pleasant as possible”. Unfortunately, we cannot always demand

a smooth model, as not all curves have even potentially good reduction. The

mildest possible singularities are ordinary double points or normal crossings,

points which (étale) locally look like the intersection of two coordinate axes.

We will define two classes of models whose special fibres only have these as
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singularities: snc models, where the special fibre is allowed to be non-reduced,

and semistable models, where the special fibre is reduced. Such special fibres

have a combinatorial description, the dual graph (Definition 2.1.17), which is

a very effective tool for studying the underlying models.

Definition 2.1.10 (Snc Models). Let X/K be a curve and X a model of

X. We say X is an snc model if Xk is an snc divisor: a curve over k whose

components are smooth and whose worst singularities are normal crossings.

The model X is a minimal snc model if any map X → X ′ to another snc

model X ′ is an isomorphism.

Remark 2.1.11. There does not seem to be a widespread consensus in the

literature regarding the difference between normal crossing (nc) and strict

normal crossing (snc) models. However, a common convention is to allow

the former to have non-smooth components, but not the latter, which is the

convention we adopt in this thesis.

Theorem 2.1.12 (Minimal snc Models). Let X/K be a smooth curve of genus

g ≥ 1. Then X admits a minimal regular snc model over OK, which is unique

up to unique isomorphism.

Proof. [29, Theorem 9.3.36].

Example 2.1.13. In figure 2.2 are the special fibres of the minimal regular

and minimal snc models of an elliptic curve of Kodaira Type IV, given for

example by Weierstrass equation y2 = x3 − p2. Note that they are not the

same! The multiplicity 3 component of the minimal snc model is isomorphic

to P1 and has self intersection −1, and so can be blown down by Castelnuovo’s

Criterion 2.1.7. The result of this blow down is the minimal regular model,

which is not snc as its singularity is the intersection point of three curves, not

an ordinary double point.

The most important type of snc model is the semistable model. Curves

with a semistable model are analogous to elliptic curves with multiplicative
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3
1 1 1

(a) Special fibre of the minimal

snc model.

1

11

(b) Special fibre of the minimal

regular model.

Figure 2.2: Elliptic curve of Kodaira Type IV.

reduction, and indeed, an elliptic curve has semistable reduction if and only if

it has multiplicative or good reduction. Curves with semistable reduction give

rise to particularly nice Galois representations; hence they are ubiquitous in

number theory.

Definition 2.1.14 (Semistable Model). An snc model X of a curve X/K is

a semistable model if Xk is reduced and each component of Xk isomorphic to

P1 intersects the rest of the special fibre in at least 2 points. A curve which

admits a semistable model has semistable reduction.

A famous theorem of Deligne and Mumford states that after a finite ex-

tension, every curve has semistable reduction.

Theorem 2.1.15 (Semistable Reduction Theorem). Let X/K be a curve.

Then there exists a finite, separable extension L/K such that XL = X ×K L

has semistable reduction.

Proof. Originally [14]. See also [29, Section 10.4], or [2] for a proof conceptually

more similar to the techniques used in this thesis.

Of particular interest are curves where the extension required for semista-

bility is a tame extension of K.

Definition 2.1.16 (Tame Reduction). Let X/K be a curve and let us suppose

that L/K is minimal such that X achieves semistable reduction over L. Then

X has tame reduction if [L : K] is coprime to p, and wild reduction otherwise.
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2.1.4 Structure of Semistable Models

Since the singularities of semistable models are all ordinary double points, such

models have a nice combinatorial description: the dual graph.

Definition 2.1.17 (Dual Graph). Let X/K be a curve with semistable reduc-

tion, and let X be a semistable model of X. We can associate a genus graph

Υ to Xk as follows: to each component Γ there is a vertex v ∈ Υ of genus g(Γ)

and two vertices vi, vj are linked by (Γi · Γj) edges.

Definition 2.1.18 (Thickness). Let X/K be a curve with semistable model

X , and let x ∈ Xk be a singularity of X . Then locally x is of the form

OK [u, v]/(uv − c) with vK(c) = ex. We say that the point x has thickness ex.

See [29, Corollary 10.3.22, Definition 10.3.23].

Remark 2.1.19. (i) There is the equality of genera: g(X) = g(Υ) +∑
v g(v).

(ii) We can also make Υ into a metric graph where the length of an edge is

the thickness of the intersection it represents.

(iii) The graph Υ with this metric is an augmented Z-graph in the sense of

[1]. More on this in Section 6.

Lemma 2.1.20. Let X be a curve over K with semistable reduction and let

X be a semistable model of C. Let L/K be a totally ramified extension of

degree e. Then X ×OK OL is a semistable model of X ×K L with the same

dual graph as X , but with the lengths of all edges multiplied by e.

Proof. This follows from [29, Corollaries 10.3.36,10.3.25], noting that the thick-

ness of all double points multiplies by e after extending the field.

A semistable model has the following structure: there are principal compo-

nents which are linked by chains of rational curves. An snc but not semistable

model can in addition have tails, which are chains of rational curves intersect-

ing the rest of the special fibre in precisely one point.



2.2. Cluster Pictures 28

Definition 2.1.21 (Principal Components). Let X be a curve over K. Let

X be an snc model of X. Then a component E ∈ Xk is principal if it is of

positive genus, or if it contains three or more singular points of Xk.

Definition 2.1.22 (Linking Chain). Let X be an snc model of a curve over

K. Suppose E1, . . . , Eλ are smooth irreducible rational components of Xk. A

divisor D =
⋃λ
i=1Ei is a chain of rational curves if

(i) (Ei · Ei+1) = 1 for all 1 ≤ i < λ and (Ei · Ej) = 0 for j 6= i± 1,

(ii) (E1 ·Xk D) = 1,

(iii) (Ei ·Xk D) = 0 for i 6= 1, λ,

where (E · F ) is the usual intersection pairing defined on regular models. If

(Eλ ·Xk D) = 0 then D is a tail. If (Eλ ·Xk D) = 1 then D is a linking

chain.

We say a chain of rational curves D =
⋃λ
i=1Ei is a loop if D is a linking

chain such that E1 and Eλ both intersect the same component of Xk D.

Furthermore, if (Eλ ·Xk D) = 2 then D is a crossed tail if Eλ intersects

two rational components of Xk D, say E+
λ+1 and E

−
λ+1, such that (E±λ+1·Eλ) = 1

and (E±λ+1 ·Xk Eλ) = 0. We call the components E±λ+1 the crosses.

2.2 Cluster Pictures
This section is an exposition on the key combinatorial object which will be used

to describe the various models, the cluster picture. We begin in section 2.2.1 by

giving initial definitions and examples of cluster pictures, and in section 2.2.2

discuss in brief why cluster pictures are so effective in determining the local

arithmetic of C by describing a canonical model of P1 attached to a cluster

picture. Section 2.2.3 defines many of the properties of cluster pictures, and

illustrates their utility with examples. We finish in 2.2.4 by relating cluster

pictures to Berkovich theory, placing them in a more conceptual framework.
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2.2.1 Disks and Clusters

Let R denote the set of roots of f . The cluster picture of f is a set of subsets

(clusters) of R such that a cluster contains elements of R which are p-adically

close together. Roots are p-adically close together if they are contained in a

p-adic disk of small radius.

Definition 2.2.1 (p-adic Disk). A p-adic disk is a subset of the form

D = Dz,d = {x ∈ K | vK(x− z) ≥ d},

for some z ∈ K a centre and d ∈ R the depth. Such a disk is integral if it has

a centre in Kur and d ∈ Z.

Note that we use valuations and depths rather than absolute values and

radii, so in our terminology a p-adic disk of small radius is a p-adic disk of

large depth. To each p-adic disk there is an associated valuation (see e.g. [4,

Section 1.4.4]).

Definition 2.2.2 (Valuation of a Disk). Let Dz,d be a p-adic disk. There is

an associated p-adic valuation of K(x) extending vK defined by

vD(g) = inf
t∈D

vK(g(t)),

or equivalently, writing g(x) =
∑

i ci(x− z)i,

vD(g) = min
i

(ci + di).

This allows us to define cluster pictures.

Definition 2.2.3 (Clusters). Let C : y2 = f(x) be a hyperelliptic curve over

K and let R be the set of roots of f . A cluster is a non-empty subset s ⊆ R

of the form s = D ∩ R for some p-adic disc D = Dz,d. Any such z = zs is a

centre of s. If s is a cluster and |s| > 1, we say that s is a proper cluster. For

a proper cluster s we define its depth ds to be

ds = min
r,r′∈s

vK(r − r′).
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It is the minimal d for which s is cut out by such a disk. We write D(s) for

the disk of depth ds cutting out s and ds = as
bs

with as, bs coprime. The cluster

picture Σ = ΣC/K of C is the collection of all clusters of the roots of f . The

cluster picture Σ inherits a natural action of Gal(K/K) in the obvious way.

Remark 2.2.4. It is possible to define cluster pictures completely combinato-

rially, without reference to a hyperelliptic curve: an (abstract) cluster picture

on n elements is a subset Σ of the power set P(R) of R = {1, . . . , n}. It is

then possible to attach a depth function d : Σ → Q. Isomorphisms of cluster

pictures are then defined in the obvious way. This point of view can be very

illuminating, but we won’t require it in this thesis.

The most important relationship is that between children and their par-

ents.

Definition 2.2.5 (Children). Let Σ be a cluster picture and s ∈ Σ is a cluster.

Suppose s′ ( s is a maximal subcluster of s. Then we say that s′ is a child of

s and s is a parent of s′, written s′ < s and s = P (s′) respectively.

Example 2.2.6. Let C : y2 = ((x− i)3 − 76)((x+ i)3 − 76) be a hyperelliptic

curve over Q7. Its cluster pictures is given below.

2

s1

2

s2

0

R

Figure 2.3: Cluster picture of C : y2 = ((x− i)3 − 76)((x+ i)3 − 76).

The set of roots (appearing from left to right in the cluster picture) is

R = {i+ 72, i+ 72ζ, i+ 72ζ2, i− 72, i− 72ζ, i− 72ζ2},

where ζ is a fixed third root of unity. The important thing to note about this

example is that the proper clusters s1 = R ∩ Di,2 and s2 = R ∩ D−i,2 are

permuted by Frobenius since their centres are not in Q7.
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13
3

s2

5
2

s1

0

R

Figure 2.4: Cluster picture of C : y2 = (x3 − p13)(x2 − p5)(x3 − 1).

Example 2.2.7. Let C : y2 = (x3 − p13)(x2 − p5)(x3 − 1) be a hyperelliptic

curve over Qp (where p is such that Qp has cube roots of unity). The cluster

picture of C is given below.

The set of roots (appearing from left to right in the cluster picture) is

R = {p
13
3 , ζp

13
3 , ζ2p

13
3 , p

5
2 ,−p

5
2 , 1, ζ, ζ2},

where ζ is a fixed third root of unity. We have that s1 = R ∩ D0,5/2, s2 =

R∩D0,13/3 and R = R∩ Zp. The cluster s2 is a child of s1 but not of R, and

s1 is a child of R. Inertia permutes the roots in s2, and the roots in s1, but

fixes all proper clusters.

2.2.2 Models of P1

If our cluster picture Σ is sufficiently nice (see Theorem 2.4.2), we can use it

to construct a regular, semistable model X Σ of P1 which separates the points

of R — in other words, any r ∈ R reduces to a unique point of X Σ
k under

the specialisation map X Σ
K → X Σ

k . Herein lies the power of cluster pictures;

such models behave particularly nicely. For example if we normalise X Σ in

the function field of C, by [43, Lemma 2.1] we obtain a regular model C of

C, and possible after an extension of degree 2, we can guarantee that C is a

regular, semistable of C, and the cover C → P1 extends to a map of models

C → X Σ. This is [31, Theorem 2.3]. This normalisation approach is what is

used in [19], and we shall use similar ideas in Section 6 to find the minimal

regular model of a bihyperelliptic curve with semistable reduction.

The construction in full can be found at [19, Section 3]. The idea is

as follows: we use Σ to construct an admissible set of integral disks, a finite

collection D of integral p-adic disks such that D has a maximal element Dmax
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with respect to inclusion, and if D ⊆ D′ ∈ D, then any integral disk D′′ such

that D ⊆ D′′ ⊆ D′ is also in D. Usually, we take Dmax = D0,0 = OK , the unit

ball in K. In particular, we take the minimal admissible collection of disks

which contains all of the disks of Σ.

We then construct a model of P1 inductively. Starting with P1
OK , we blow

up on the special fibre at any point zD ∈ P1
k such that zD ∈ K is a centre of a

maximal subdisk D ⊆ Dmax. After this first step, there is a component ΓD in

the special fibre for any maximal subdisk D ⊆ Dmax. Now for any such disk

D, we blow up on ΓD at any point corresponding to the centres of its maximal

subdisks. Continuing in this way, we obtain a model of P1 whose components

are parametrised by the disks of D.

2.2.3 Properties of Clusters

Clusters possess many properties which are used to determine the local arith-

metic of curves. For example, when trying to determine the minimal regular

model C of a hyperelliptic curve C with semistable reduction, these properties

tell us which clusters give rise to components in Ck, how many components,

their genera and between which components there are linking chains.

Definition 2.2.8. A cluster s is even (resp. odd) if |s| is even (resp. odd).

Furthermore s is a twin if |s| = 2. A cluster s is principal if |s| ≥ 3 except if

either s = R is even and has exactly two children, or if s has a child of size 2g.

Remark 2.2.9. Principal clusters are the most important class of clusters. If

C is a hyperelliptic curve with semistable reduction, these components lift to

give us the principal components of the minimal regular model C of C. The

proper clusters which are not principal – twins, and in some cases R – lift to

rational curves with two intersection points in C (and in the case of twins of

half integer depth — don’t have a corresponding component at all in C).

Example 2.2.10. Let C : y2 = (x2− p6)(x4− 1) be a hyperelliptic curve over

Qp. This is a genus 2 curve with reduction type I6,0,0 in the terminology of

[38]. The figure below shows, from left to right, the cluster picture Σ of C, the
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minimal model of P1 which separates the points of R and the minimal regular

model C of C. The cluster s is even and not principal (it is a twin), whereas

the cluster R is even and principal. We observe that the component arising

from s is not principal, it is isomorphic to P1 and only has two intersection

points with the rest of the special fibre.

3

s

0

R

vRvs
3

vRvs 1
3

3

Figure 2.5: From left to right: the cluster picture of C : y2 = (x2−p6)(x4−1),

the model of P1 separating the points of R and the minimal regular model of

C.

Example 2.2.11. Let C : y2 = (x3−p18)(x3−1) be a hyperelliptic curve over

Qp. This is a genus 2 curve with reduction type I0 − I0 − 3 in the terminology

of [38]. The figure below shows, from left to right, the cluster picture Σ of

C, the minimal model of P1 which separates the points of R and the minimal

regular model C of C. We observe that s is odd and R is even. Both s and

R are principal — and indeed, they give components of positive genus, vs and

vR, in C.

6

s

0

R

vRvs
6

vRvs 1 1
3

Figure 2.6: From left to right: the cluster picture of C : y2 = (x3−p18)(x3−1),

the model of P1 separating the points of R and the minimal regular model of

C.

Example 2.2.12. Let C : y2 = (x3 − p12)((x − 1)3 − p6) be a hyperelliptic

curve over Qp. This is also a genus 2 curve with reduction type I0 − I0 − 3 in

the terminology of [38]. We observe that s1 and s2 are odd and R is even. The

clusters s1 and s2 are principal and contribute components of positive genus
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to C, but R is not, and while we can assign to it a component in C, it is a

rational curve with two intersections, and hence not a principal component.

4

s1

2

s2

0

R
vR

vs2vs1

4 2

vR

vs2vs1 1 1
2 1

Figure 2.7: From left to right: the cluster picture of C : y2 = (x3− p12)((x−

1)3 − p6), the model of P1 separating the points of R and the minimal regular

model of C.

Definition 2.2.13 (Sets of Children). Let s be a cluster. If s′ ( s is a maximal

subcluster of s then s′ is a child of s and s is a parent of s′. We write s′ < s,

and P (s′) = s. Denote by ŝ the set of all children of s, and by s̃ the set of

all odd children. A cluster is übereven if it has only even children. A cluster

s is a cotwin if it has a child of size 2g whose complement is not a twin. For

clusters s and s′, write s ∧ s′ for the smallest cluster containing s and s′.

Definition 2.2.14. If s and s′ are two clusters then the distance between them

is δs,s′ = ds + ds′ − 2ds∧s′ . For a proper cluster s 6= R define the relative depth

to be δs = δs,P (s) = ds − dP (s).

Remark 2.2.15. The distance between two clusters is precisely the shortest

distance between the respective components in the dual graph of X Σ
k , the

model of P1 associated to a cluster picture Σ described in Section 2.2.2. The

relative distance is the shortest distance from a child to its parent.

Definition 2.2.16. For a cluster s that is not a cotwin we write s∗ for the

smallest cluster containing s, whose parent is not übereven. If no such cluster

exists we write s∗ = R. If s is a cotwin, we write s∗ for its child of size 2g.

Definition 2.2.17. For a proper cluster s we write gss(s) for the semistable

genus of s. If s is übereven, we set gss(s) = 0. Otherwise the genus is deter-

mined by

|s̃| = 2gss(s) + 1, or 2gss(s) + 2.
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Lemma 2.2.18. Let Σ be such that K(R)/K is a tame extension, and let

s ∈ Σ be a proper cluster fixed by Gal(K/K).

(i) There exists a centre zs of s such that zs ∈ K.

(ii) Any child s′ < s is in an orbit of size bs, except possibly for one child sf ,

where we can choose zsf such that vK(zsf − zs) > ds, which is fixed by

Gal(K/K).

Proof. (i) See [19, Lemma B.1]. (ii) See [9, Theorem 1.3].

Definition 2.2.19. Let s′ < s be clusters in Σ. Then s′ is a stable child of s

if the stabiliser of s also stabilises s′. Otherwise s′ is an unstable child of s.

Remark 2.2.20. Let s ∈ Σ be fixed by Gal(K/K). If s has depth ds with

denominator > 1 then, by Lemma 2.2.18 (ii), s has at most one stable child.

Definition 2.2.21. If r ∈ s is a root which is not contained in a proper child

of s then we call r a singleton of s. Define ssing to be the set of all singletons

of s. In other words ssing is the set of all children of size 1 of s.

2.2.4 The Berkovich Projective Line and Clusters

Valuations associated to disks and models of P1 interact remarkably in

Berkovich’s theory of analytic spaces [4], which lends a powerful, alternative

perspective on cluster pictures. This theory was developed by Berkovich as a

non-archimedean analogue to complex analytification, since naïve attempts to

develop a theory of non-archimedean analytic spaces fail due to the patholog-

ical nature of the topology of K.

Definition 2.2.22 (Berkovich Analytification). Let X/K be a curve. As a

set, the Berkovich analytification Xan of X consists of points of the form

x = (ξx, vx), where ξx is a point of X and vx is a valuation on the residue

field κ(ξx) extending the valuation vK . The space Xan is given the weakest

topology such that

(i) ι : Xan → X given by x 7→ ξx is continuous and,
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(ii) for any U ⊆ X open and any f ∈ OX(U), the function ι−1(U)→ R given

by x 7→ vx(f) is continuous.

We say that Xan is a Berkovich curve.

Remark 2.2.23. The usual definition of the Berkovich analytification uses

absolute values, as opposed to valuations, and this convention is used through-

out the literature on Berkovich curves. However in order to align ourselves

with [19], we have given this definition in terms of valuations.

Example 2.2.24 (The Berkovich Projective Line). As a set, X = P1
K
consists

of closed points: points of K and infinity, which have residue field K; and the

generic point ξη which has residue field K(t). If ξx is a closed point of X, then

there is a unique valuation on K extending vK — vK itself. Therefore, there

is a unique point x ∈ Xan arising from ξx. These are type I points, and in this

way X(K) embeds into Xan.

The other points which arise are all of the form (ξη, v) where v is a valu-

ation on K(t) extending vK . For every p-adic disk D = Dz,r, there is a point

(ξη, vD) where vD is the valuation defined in Definition 2.2.2. These are called

type II points if r ∈ vK(K) and type III points otherwise.

In addition there are type IV points. These arise due to a curious property

of K called spherical incompleteness — there exist sequences of disks D =

D1 ⊇ D2 ⊇ D3 ⊇ · · · such that
⋂
Di = ∅. To such a sequence, we can define

a valuation vD(g) = sup vDi(g). These are now all of the points of Xan.

As a topological space, Xan has the structure of a tree, where type I and

type IV points are leaves, and at every type II point (ξη, vD) the branches are

in 1-to-1 correspondence with the points of k, as these parametrise the centres

of disjoint disks contained in D.

Suppose X is a model of X = P1. Then the dual graph of X embeds

canonically into Xan: any such model of P1 arises from a collection of disks,

as in Section 2.2.2. Consider the points of Xan corresponding to the disks.

Since Xan has the structure of a tree, there is a unique smallest subspace Υ
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of Xan containing these points. This is a topological graph, and is in fact

the dual graph of X . The complement of Υ is very well behaved — it is a

disjoint union of (Berkovich) open disks, which are essentially isomorphic to

the Berkovich projective line minus the point at infinity. Such a subspace Υ

is called a skeleton of Xan, and skeletons are in one to one correspondence

with semistable models of P1. Since such models arise from cluster pictures,

we have a canonical way of finding cluster pictures inside Xan.

This is in fact true much more generally: given a curve X, there exists a

skeleton Υ of Xan, which is a topological graph such that Xan Υ is a disjoint

union of (Berkovich) open disks. Furthermore, such skeletons are in bijection

with semistable models of X, where a semistable model is sent to its dual

graph. See [3] for more details. Tame morphisms between Berkovich curves

are more or less determined by restriction to the skeleton, and hence there

is an intimate relationship between tame morphisms of Berkovich curves and

tame morphisms of semistable models of algebraic curves.

Many theorems about simultaneous semistable reduction and lifting

semistable models, such as can be found in [31] and [30], have been proven

in this setting (see for example [1, Section 5]). The link between skeleta of

P1,an
K and cluster pictures also lends a conceptual justification to cluster pic-

tures. Theorems such as 2.4.11 can be proved in an analytic setting (perhaps

even more succinctly), and we shall use this point of view in Section 6.

2.3 Tame Quotients

Let X/K be a curve whose minimal regular model we would like to find, where

K has algebraically closed residue field. Finding such a model is not necessarily

straightforward, as has been discussed. Suppose we extend the field L/K such

that X has semistable reduction over L, and that we know the minimal regular

model Y of X over L. What can we say about the minimal regular model of

X over K?

WhenX has tame reduction (i.e. the extension L/K required is tame), the
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situation is very well understood, and has been studied thoroughly in papers

such as [32], [12], [23] and [47]. We take the quotient Z of Y by Gal(L/K),

and then resolve the singularities on Z . The focus of this section is how

exactly to do that. The quotient Z is a normal model of X over K and the

singularities of Z are all tame cyclic quotient singularities. Their resolution

is well understood using Hirzebruch-Jung continued fractions.

The wild case is much more complicated, and much less is known. Some

work has been done in that direction (e.g. [33] and [34]), but we shall focus

on the tame case.

2.3.1 Taking the Quotient

Let X/K be a curve and let L/K be a tame extension of degree e over which

XL = X ×K L has semistable reduction. Write G = Gal(L/K). Since K has

an algebraically closed residue field, the extension L/K is totally ramified and

G is a cyclic group of order e. Let Y be a semistable model of XL. Any σ ∈ G

induces an automorphism of Y which makes the following diagram commute:

Y Y

OL OL

σ

σ

By a gentle abuse of notation, we shall also call this automorphism σ, and think

of G as a group of automorphisms of Y . Since Y is projective, the quotient

Z = Y /G is constructed in the usual way by glueing together the rings of

invariants of G-invariant open sets of Y . The scheme Z is a normal model of

X over K and as such its singularities are isolated points of the special fibre.

We denote the quotient map q : Y → Z , and this has degree e.

What can we say about the model Z ? The genera of the components of

Z can be calculated via Riemann-Hurwitz: indeed, if E ∈ Yk is a component

with pointwise stabiliser I, then x ∈ E has ramification degree |Ix|/|I|, where

Ix is the stabiliser of x. The multiplicity of q(E) is also straightforward to

calculate:
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Proposition 2.3.1. Let E ∈ Yk be a component with pointwise stabiliser I.

Then q(E) ∈ Zk has multiplicity e/|I|.

Proof. [32, Fact IV]

Resolving a singularity z ∈ Z results in a chain of rational curves (Defi-

nition 2.1.22): a linking chain if z lies on two components of Zk, and a tail if

z lies on a unique component. The model X , obtained by resolving all of the

singularities of Z , is a regular snc model of X over K. To explicitly describe

X , we must better understand the singularities of Z .

2.3.2 Tame Cyclic Quotient Singularities

The singularities of Z are tame cyclic quotient singularities. As the name

suggests, these are the singularities that arise when taking the quotient of a

surface by a cyclic action whose degree is prime to the size of the residue field.

The following definition is [12, Definition 2.3.6]:

Definition 2.3.2 (Tame Cyclic Quotient Singularities). Let X be a curve

over OK and let s ∈ X be a closed point. The point s is a tame cyclic

quotient singularity if there exists

(i) a positive integer m > 1 which is invertible in k,

(ii) a unit r ∈ (Z/mZ)×,

(iii) integers m1 > 0 and m2 ≥ 0 satisfying m1 ≡ −rm2 mod m,

such that ÔC,s is isomorphic to the subalgebra of µm-invariants in

OKJt1, t2K/(tm1
1 tm2

2 − πK) under the action t1 7→ ζmt1, t2 7→ ζrmt2. We call

the pair (m, r) the tame cyclic quotient invariants of s.

Fortunately the resolution of such singularities is very well understood.

The result is a chain of rational curves — a linking chain if m2 6= 0 and a tail

otherwise. The self intersections and hence the multiplicities of the components

are given by the Hirzebruch-Jung continued fraction of m
r
.
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Theorem 2.3.3 (Resolving Tame Cyclic Quotient Singularities). Let X be

a flat, proper, normal curve over OK with smooth generic fibre. Suppose s ∈

Xk is a tame cyclic quotient singularity with tame cyclic quotient invariants

(m, r), as in Definition 2.3.2 above.

Consider the Hirzebruch-Jung continued fraction expansion of m
r
given by

m

r
= bλ −

1

bλ−1 − 1
··· − 1

b1

,

where bi ≥ 2 for all 1 ≤ i ≤ λ. Then the minimal regular resolution of s is a

chain of rational curves
⋃λ
i=1Ei such that Ei has self intersection −bi.

Proof. [12, Theorem 2.4.1].

The multiplicities can then be calculated via intersection theory. Write

E0 and Eλ+1 for the components of Xk which the minimal resolution of s

intersects. By the discussion above, these have multiplicities m1 and m2 (with

Eλ+1 empty if m2 = 0). Suppose Ei has multiplicity µi for 0 ≤ i ≤ λ + 1.

Since E ·Xk = 0 by [42, Proposition IV.7.3] and each Ei only intersects Ei−1

and Ei+1, we obtain the system of linear equations:

Ei · (µi−1Ei−1 + µiEi + µi+1Ei+1) = 0,

⇒ µi−1 − biµi + µi+1 = 0,

for 1 ≤ i ≤ µ. Using the multiplicities of E0 and Eλ+1, we can solve this

system.

Example 2.3.4. Let C : y2 = p(x3 + p)((x− 1)3 + p2) be a hyperelliptic curve

over Qur
p . This is a type II∗ − IV∗ − α in Namikawa and Ueno’s terminology.

An extension L of degree 6 is required for semistability, and below we show

from left to right: the cluster picture of C over Qur
p , the cluster picture of C

over L, and the minimal regular model Y of C over L. The model Y consists

of two genus 1 components linked by a linking chain of length 3 (so with 2

rational curves).

We take the quotient of Y by Gal(L/K) and we obtain a normal model

Z of C over K with some tame cyclic quotient singularities. In particular,
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there are four singularities which lie on a unique component: two on each

of the images of the genus 1 components. There is another singularity at

an intersection point of two components. The other intersection points are

regular points of Z . The action of Gal(L/K) on the components of Y and

hence the invariants for all the tame cyclic quotient singularities comes from

Theorem 2.4.11 in the next section, but for now we will take it all on faith

and try to resolve them. Below we show Z and the result of resolving all the

singularities, which is the minimal regular model of C — no additional blow

downs are needed.

6 3

3

2

6 3

5

4

3

2

3

4

2

2

2

Figure 2.8: Resolving the tame cyclic quotient singularities on the special

fibre of Z .

First let us examine the singularity which is the intersection point of the

two components. This is a tame cyclic quotient singularity with m1 = 6,m2 =

3,m = 3, r = 2. The Hirzebruch-Jung continued fraction is:

3

2
= 2− 1

2
,

and so the resolution consists of two rational curves, each with self intersection

−2. Solving the system of linear equations 6− 2µ1 + µ2 = 0, µ1 − 2µ2 + 3 = 0

we obtain µ1 = 5, µ2 = 4. The tame cyclic quotient singularities on the

component of multiplicity 6 have invariants 2/1 and 3/2, and both of those

on the component of multiplicity 3 have invariants 3/2. After putting all this

together, the result is the picture on the right.
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2.4 Semistable Hyperelliptic Curves
A description of the semistable model is needed before its quotient can be

taken. When C/K is a hyperelliptic curve, this [19, Theorem 8.5], and here

we recreate their main results. In Section 2.4.1 we state a criterion in terms of

cluster pictures for a hyperelliptic curve to have semistable reduction. Using

this, we also find the degree of minimal extension required for semistability,

assuming that C has tame reduction. Following on, in Section 2.4.2 we describe

the dual graph of the minimal regular model of C over an extension L where

C has semistable reduction.

2.4.1 The Semistability Criterion

In order to apply the results of the previous section, we must first find an

extension L over which C has semistable reduction. In [19], there is a criterion

in terms of the cluster picture of C, which will be most useful for our purposes.

We attach an invariant to each cluster s as follows, using the valuation attached

to the disk D(s) cutting out s (see Definition 2.2.2):

Definition 2.4.1. (νs) Let C : y2 = f(x) be a hyperelliptic curve with cluster

picture Σ, and let s ∈ Σ be a cluster. We define

νs = vD(s)(f) = vK(cf ) +
∑
r∈R

dr∧s,

where D(s) is the smallest p-adic disk cutting out s and vD(s) is the valuation

associated to D(s), as defined in Section 2.2.1.

This allows us to state the semistability criterion. Roughly, these are

precisely the conditions on the cluster picture which allow us to construct a

model of P1 which separates the points of R, as discussed in Section 2.2.2.

Theorem 2.4.2 (The Semistability Criterion). Let C : y2 = f(x) be a hyperel-

liptic curve, and let R be the set of roots of f(x) in K. Then C has semistable

reduction over L if and only if

(i) the extension L(R)/L has ramification degree at most 2,
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(ii) every proper cluster of ΣC/L is IL invariant,

(iii) every principal cluster s ∈ ΣC/L has ds ∈ Z and νs ∈ 2Z.

Proof. [19, Theorem 1.8]

Example 2.4.3. Let C : y2 = (x3 − p18)(x3 − 1) be a hyperelliptic curve over

Qp. Its cluster picture is shown below, left. It consists of two proper clusters,

R and s, both of which are principal. The extension K(R)/K has degree 1

and every proper cluster is clearly IK invariant. Furthermore, ds = 6, dR = 0

which are both integers, and νs = 18, νR = 0, both of which are even integers.

Therefore C satisfies the semistability criterion, and indeed its minimal regular

model (shown below, right) is semistable.

6

s

0

R

vRvs 1 1
3

Figure 2.9: Cluster picture and minimal regular model of C : y2 = (x3 −

p18)(x3 − 1).

Example 2.4.4. Let C : y2 = p(x6 − p12) be a hyperelliptic curve over Qp.

This is type I∗0,0,,0 in Namikawa and Ueno’s terminology. Its cluster picture

is shown below, left. There is a unique proper cluster which is therefore IK

invariant, and again K(R)/K has degree 1. Furthermore dR = 2 is an integer,

but νR = 13, which is odd. Therefore C does not have semistable reduction,

and indeed its minimal regular model has a component of multiplicity 2, as

shown below. However, C does have semistable reduction over an extension of

degree 2.

2

R
2

Figure 2.10: Cluster picture and minimal regular model of C : y2 = p(x6 −

p12).
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Example 2.4.5. Let C : y2 = (x2 − p)3 − p9 by a hyperelliptic curve. This

is a type 2I0,1 hyperelliptic curve. The two clusters s1 and s2 are permuted

by inertia. Since they are proper clusters, this implies that C does not have

semistable reduction. Its cluster picture and minimal regular model are shown

below. The curve C does obtain semistable reduction over an extension of

degree 2.

5
2

s1

5
2

s2

1
2

R

2g1 2

2

Figure 2.11: Cluster picture and minimal regular model of C : y2 = (x2 −

p)3 − p9.

2.4.2 The Special Fibre

Once we have a hyperelliptic curve C with semistable reduction over some

extension L/K, we would like to describe its minimal regular model. This

is always possible by taking a normal model of C and resolving singularities,

but such a method is inefficient. We present an explicit description of the

special fibre in terms of the cluster picture of C, along with the equations of

the components and the action of Galois.

The idea is: to each principal cluster, there is one or two associated prin-

cipal components in the special fibre. Two principal clusters s′ and s are linked

by a chain of rational curves if s′ < s (or vice versa), and in a few other ex-

ceptional cases. A twin t contributes a loop from the component of P (t) to

itself. Any σ ∈ Gal(K/K) permutes the principal components as it does the

corresponding clusters.

Before we can state the theorem in full, we require several invariants

attached to cluster pictures.

Definition 2.4.6 (Invariants and Characters). For σ ∈ Gal(K/K) let

χ(σ) =
σ(πL)

πL
mod m.
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For a proper cluster s ∈ ΣC define

λs =
νs
2
− ds

∑
s′<s

⌊
|s′|
2

⌋
.

Define θs =
√
cf
∏

r/∈s(zs − r). If s is either even or a cotwin, we define εs :

Gal(K/K)→ {±1} by

εs(σ) ≡ σ(θs∗)

θ(σs)∗
mod m.

For all other clusters s set εs(σ) = 0.

Remark 2.4.7. The quantity εs(σ) = −1 if and only if σ swaps the two points

at infinity of Γs,L. When k = k, εs(σ) = (−1)νs∗−|s
∗|ds∗ for σ a generator of

inertia since

νs∗ = vK

(
cf
∏
r/∈s∗

(zs∗ − r)

)
+
∑
r∈s∗

ds∗ .

Remark 2.4.8. Our λs is slightly different from the one defined in [19, Def-

inition 6.1] (and is in fact equal to λ̃s, defined in Definition 6.4 of loc. cit.).

This is because the authors of loc. cit. allow components of the special fibre

to be singular, whereas we forbid this.

Next we would like to state the equations of our principal components.

Definition 2.4.9 (Reduction). Let s ∈ ΣC/K be a principal cluster. Define

cs ∈ k× by

cs =
cf

π
vL(cf )
L

∏
r 6∈s

zs − r
π
vL(zs−r)
L

mod m,

and for t ∈ K define

reds(t) =
t− zs
πdsK

mod m.

For s′ < s define reds(s
′) = reds(r) for any r ∈ s′.

Definition 2.4.10 (Component Equations). Let s be a principal cluster. De-

fine the hyperelliptic curve Γs/k by

Γs : Y 2 = cs
∏
o<s
odd

(X − reds(o)).

Note that if s is übereven then this is two disjoint P1s.
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Finally we are ready to state the description of the dual graph of the

semistable model.

Theorem 2.4.11 (Dual Graph of Minimal Regular Model). Let C : y2 = f(x)

be a hyperelliptic curve over K. Suppose C obtains semistable reduction over

L. Let Υ be the dual graph of the special fibre of the minimal regular model

of C over OLur. Then Υ has a vertex vs for every non-übereven cluster s

and two vertices, v+
s and v−s for every übereven cluster, corresponding to Γs.

Furthermore, these are linked by chains of edges (writing vs = v+
s = v−s if s is

not übereven):

Name From To Length Condition

Ls′ vs vs′
1
2
δs′ s′ < s both principal, s′ odd

L+
s′ v+

s v+
s′

δs′ s′ < s both principal, s′ even
L−s′ v−s v−s′

Lt v+
s v−s δs′ s principal, t < s twin

Lt v+
s v−s δs′ s principal, s < t cotwin

Moreover, if R is not principal:

Ls,s′ vs vs′
1
2
(δs + δs′) R = s′ t s, s, s′ both principal, odd

L+
s,s′ v+

s v+
s′

δs + δs′ R = s′ t s, s, s′ both principal, even
L−s,s′ v−s v−s′

Ls,t v+
s v−s 2(δs + δt) R = s t t, s principal, even, t twin

Furthermore, σ ∈ Gal(K/K) acts on Υ as:

(i) σ(v±s ) = v
±εs(σ)
σ(s) ,

(ii) σ(L±s ) = L
±εs(σ)
σ(s) ,

(iii) for t a twin or cotwin σ(Lt) = εt(σ)Lσ(t), where −L denotes L with the

reversed orientation,
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and the induced permutation on the remaining edges and vertices. On compo-

nents, σ acts as

σ|Γs(x, y) = (χ(σ)edsσ(x), χ(σ)eλsσ(y)) ∈ Γσ(s).

Proof. [19, Theorem 8.5]. Idea: let X Σ be the model of P1 associated to Σ,

as described in Section 2.2.2. Normalise this in the function field K(C) of

C. This is a proper, regular model by [43, Lemma 2.1]. After blowing down

components of multiplicity 2, we obtain the description given above.

Remark 2.4.12. It is possible to give a different but morally similar proof

using Berkovich curves. SupposeK has algebraically closed residue field. After

an extension L/K, we can assume that the cover C → P1 extends to a map of

semistable models C →X Σ by [31, Theorem 2.3]. Furthermore, this induces a

harmonic morphism of augmented Z-graphs on the dual graphs of X Σ and C,

in the sense of [1, Section 2]. Comparing the cluster picture Σ and the model

X Σ, and using this fact, we obtain the same description as above. We can

then use Lemma 2.1.20 to move between different fields where C has semistable

reduction. We will use this strategy in Section 6 to find the minimal regular

model of a bihyperelliptic curve with semistable reduction.

One drawback of this method is it doesn’t immediately provide explicit

equations for the components, which in turn makes it tricky to deduce the

Galois action. However, this is potentially possible with some additional work.

In many of the previous examples we have already drawn the special fibre

of a hyperelliptic curve with semistable reduction. Here we present a couple

of more involved examples for fun.

Example 2.4.13. Let C : y2 = (x3−p24)((x−p2)3−p18)((x−1)2−p10)(x3−2)

be a hyperelliptic curve over Qur
p . This curve has a cluster picture (shown

below) with five proper clusters: four of them principal and non-übereven,

and one twin. The twin contributes a loop of length 10 to the special fibre.

The cluster R has three odd children and so contributes a component vR of
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genus 1 to the special fibre. Its unique principal child s3 is even and has two

odd children, so contributes one component of genus 0 to the special fibre,

with two linking chains of length 2 to the component of its parent. The two

children of s3, s1 and s2 are both odd with three odd children, and so each

contribute a component of genus 1 with a linking chain to vs3 of length half

the relative depth of the cluster.

6

s1

4

s2

2

s3

5
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vR

vs2vs1
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Lt

1

11
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22

23

Figure 2.12: Cluster picture and minimal regular model of C : y2 = (x3 −

p24)((x− p2)3 − p18)((x− 1)2 − p10)(x3 − 2).

Example 2.4.14. Let C : y2 = (x2 − p6)((x − 1)2 − p6)((x − 2)2 − p6) be

a hyperelliptic curve over Qur
p . The key thing to note here is that the top

cluster R is übereven, since all of its children are twins, and hence there are

two components associated to R in the special fibre: v+
s and vs− . Each of

its children twins contributes a linking chain of length 6 between these two

components.
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t3

0

R

v+Rv−R 1 1
6

Figure 2.13: Cluster picture and minimal regular model of C : y2 = (x2 −

p6)((x− 1)2 − p6)((x− 2)2 − p6).

Example 2.4.15. Let C : y2 : ((x− i)3−p12)((x+ i)3−p12) be a hyperelliptic

curve over Qp, p such that −1 does not have a square root mod p. The cluster

picture and minimal regular model are shown below (R is not principal so

does not contribute a component). The crucial thing to spot is that Frobenius



2.5. Models via Newton Polygons 49

swaps the two clusters s1 and s2, and therefore also swaps the two components

vs1 and vs2 .

4

s1

4

s2

0

R

vs1vs2 1 1
4

Figure 2.14: Cluster picture and minimal regular model of C : y2 : ((x −

i)3 − p12)((x+ i)3 − p12).

2.5 Models via Newton Polygons
The final piece of the puzzle concerns a different approach to calculating mod-

els. Following [15], we describe how to use the Newton polygon of a curve

to calculate its minimal snc model in the case where it has tame reduction.

Another condition required is that the curve be ∆v-regular, which simplifies to

a relatively nice condition in the case of hyperelliptic curves. Some work has

been done by Muselli in [37] to loosen this condition and apply the construc-

tion of Theorem 2.5.11 to a larger class of curves. We use Theorem 2.5.11 to

do the heavy lifting of calculating linking chains when we prove our description

of the snc model of a hyperelliptic curve with tame reduction.

We briefly recall some definitions of Newton polygons in Section 2.5.1,

before describing the main result of [15] in Section 2.5.2. We finish the section

off by defining sloped chains of rational curves, a definition which will be crucial

when stating our main theorems in Section 2.5.3.

2.5.1 Newton Polygons

The results of this section only apply to ∆v-regular curves. For hyperelliptic

curves this condition is that its cluster picture is nested ; roughly, any cluster

can contain at most one proper child.

Definition 2.5.1 (Nested Cluster Picture). A cluster picture Σ is nested if

for all proper clusters s, s′ ∈ Σ either s ⊆ s′, or s′ ⊆ s. If C is a hyperelliptic

curve, we say C is nested if ΣC is nested.
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Example 2.5.2. Below are three cluster pictures. The first and second are

nested, but the rightmost is not, because s1 and s2 are disjoint.

R s1

s2

R
s1 s2

R

Figure 2.15: Nested and non-nested cluster pictures.

To such a hyperelliptic curve we attach Newton polytopes. This can be

defined for any curve given by a bivariate polynomial, but we restrict our focus

to nested hyperelliptic curves.

Definition 2.5.3 (Newton Polytopes). Let G(x, y) = y2−f(x) =
∑
aijx

iyj be

the defining equation of a hyperelliptic curve C over K. The Newton polytopes

of C over K and OK respectively are:

∆(C) = convex hull {(i, j) | aij 6= 0} ⊆ R2,

∆v(C) = lower convex hull {(i, j, vK(aij)) | aij 6= 0} ⊆ R2 × R.

Above every point P ∈ ∆ there is exactly one point (P, vK(P )) ∈ ∆v.

This defines a piecewise affine function v∆(C) : ∆(C) → R. When there is no

risk of confusion, we may sometimes write ∆ = ∆(C), and ∆v = ∆v(C) and

the pair (∆, v∆) determines ∆v.

Definition 2.5.4 (v-edges and faces). Under the homeomorphic projection

∆v → ∆, the images of the 1 and 2 dimensional open faces of ∆v are called v-

edges, and v-faces respectively. A v-edge is homeomorphic to an open interval,

and a v-face is homeomorphic to an open disc.

Notation 2.5.5. For a v-edge L and a v-face F we write

L(Z) = L ∩ Z2, F (Z) = F ∩ Z2, ∆(Z) = (∆o) ∩ Z2,

and L(Z), F (Z), ∆(Z) to include points on the boundary. We use subscripts to

restrict to the set of points P with vK(P ) in a given set, for instance F (Z)Z =

{P ∈ F (Z) | v∆(P ) ∈ Z}.
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Definition 2.5.6 (Denominator). The denominator δλ, for every v-face or v-

edge λ is defined to be the common denominator of v∆(P ) for P ∈ λ(Z). For

two alternate, but equivalent, definitions see [15, Notation 3.2].

Remark 2.5.7. We shall see that the denominator of a v-face or v-edge λ,

in some sense, tells us the multiplicity of the component or chain of the snc

model arising from λ. Roughly, for a v-face F , δF is the multiplicity of the

component ΓF , and for a v-edge L, δL is the minimum multiplicity appearing

in the chain of rational curves arising from L.

We distinguish between v-edges which lie on precisely one or two v-faces

of the Newton polytope, the former giving rise to tails and the latter to linking

chains (see Definition 2.1.22).

Definition 2.5.8 (Inner and outer edges). A v-edge L is inner if it is on the

boundary of two v-faces. Otherwise, if L is only on the boundary of one v-face,

L is outer.

2.5.2 Calculating a Model

Before we state how to calculate an snc model given the Newton polygon, we

define a few constants related to v-faces and v-edges which will be necessary

for the description.

Definition 2.5.9 (Function on edges). Let L be a v-edge on the boundary of

a v-face F . Write

L∗ = L∗(F ) = the unique affine function Z2 � Z with L∗|L̄ = 0, and L∗|F ≥ 0.

Definition 2.5.10 (Slopes). Let L be a v-edge. If L is inner it bounds two

v-faces, say F1 and F2. If L is outer it bounds one v-face, say F1. Choose

P0, P1 ∈ Z2 with L∗(F1)(P0) = 0, and L∗(F1)(P1) = 1. The slopes [sL1 , s
L
2 ] at L are

sL1 = δL(v1(P1)− v1(P0)), and sL2 =

 δL(v2(P1)− v2(P0)) for L inner,

bsL1 − 1c for L outer,

where vi is the unique affine function Z2 → Q that agrees with v∆ on Fi.



2.5. Models via Newton Polygons 52

The following is the main theorem of the section:

Theorem 2.5.11 (Minimal snc model from Newton Polytope). Suppose C :

y2 = f(x) is a nested hyperelliptic curve over K. Then there exists a regular

snc model C∆/OK of C/K. Its special fibre is as follows:

(i) Every v-face F of ∆ gives a complete smooth curve ΓF/k of multiplicity

δF and genus |F (Z)Z|.

(ii) For every v-edge L with slopes [sL1 , s
L
2 ] pick mi

di
∈ Q such that

sL1 =
m0

d0

>
m1

d1

> · · · > mλ

dλ
>
mλ+1

dλ+1

= sL2 , with

∣∣∣∣∣∣ mi mi+1

di di+1

∣∣∣∣∣∣ = 1.

(2.1)

Then L gives |L(Z)Z| − 1 chains of rational curves of length λ from ΓF1

to ΓF2 (if L is outer these chains are tails of ΓF1) with multiplicities

δLd1, . . . , δLdλ.

Proof. [15, Theorem 3.13].

Remark 2.5.12. The model C∆ is not necessarily the minimal snc model of

C. However, there is an exact description of which components must be blown

down in order to obtain the minimal snc model, which can be found at [15,

Section 5]. For nested hyperelliptic curves, the only such components are those

arising from twins in certain circumstances. We discuss this in further detail

when we apply this theorem in Sections 3.2 and 4.

Remark 2.5.13. In (2.1), λ = 0 indicates that ΓF1 and ΓF2 intersect |L(Z)Z|−

1 times in the inner case, and that L contributes no tails in the outer case.

Remark 2.5.14. An explicit equation for ΓF is given in [15, Definition 3.7],

where it is denoted by XF .

Remark 2.5.15. To see that the sequences in Theorem 2.5.11 exist, take

all numbers in [sL2 , s
L
1 ] ∩Q of denominator ≤ max{denom(sL1 ), denom(sL2 )} in

decreasing order. This is essentially a Farey series, so satisfies the determinant
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condition in (2.1). One can then repeatedly remove, in any order, terms of the

form

· · · > a

b
>
a+ c

b+ d
>
c

d
> · · · 7→ · · · > a

b
>
c

d
> . . . ,

where (a+c) and (b+d) are coprime, until no longer possible. This corresponds

to blowing down P1s of self intersection −1. The resulting minimal sequence

is unique (else this would contradict uniqueness of minimal snc model), and

still satisfies the determinant condition. If (sL2 , s
L
1 ) ∩ Z = {N, . . . , N + a} 6= ∅

this minimal sequence has the form

sL1 =
m0

d0

> · · · > mh

dh
> N + a > · · · > N >

ml

dl
> · · · > mλ+1

dλ+1

= sL2 , (2.2)

with d0, . . . , dh strictly decreasing and dl, . . . , dλ+1 strictly increasing. If

(sL2 , s
L
1 ) ∩ Z = ∅ this minimal sequence has the form

sL1 =
m0

d0

> · · · > ml

dl
>
ml+1

dl+1

> · · · > mλ+1

dλ+1

= sL2 , (2.3)

with d0, . . . , dl strictly decreasing, dl+1, . . . , dλ+1 strictly increasing, and di > 1

for all 1 ≤ i ≤ λ.

Notice that shifting either sL1 or sL2 by an integer does not change the

denominators di, that appear in this sequence. If s2 > 0, which is always

the case after shifting by an integer, the numbers N > ml
dl
> · · · > mλ+1

dλ+1
are

the approximants of the Hirzebruch-Jung continued fraction expansion of sL2 .

Similarly for m0

d0
> · · · > mh

dh
> N + a, consider the expansion of 1− sL1 . This

makes sense, as we could have also obtained this model via the techniques

of Section 2.3, and the resolution of tame cyclic quotient singularities uses

Hirzebruch-Jung continued fractions.

Example 2.5.16. Let C : y2 = (x3− p5)(x2− 1) be a hyperelliptic curve over

Qp. This has Namikawa–Ueno type I0 − II∗ − 0. Below is the cluster picture,

Newton polytope ∆ and minimal snc model of C.

There are two faces F1 and F2 which give two principal components, the

former of genus 1 since (3, 1) is a point in the interior of F1 with integer

valuation. There is one inner edge (between the faces F1 and F2), which
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0
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Figure 2.16: Cluster picture, Newton polygon and minimal snc model of C.

we shall label LI , and four outer edges — the intersection of ∆ with the y-

axis, which we shall call Ly, the intersection with the x-axis, split into Lx,1

and Lx,2 (with Lx,i an edge of Fi), and finally the sloped edge LO. We shall

calculate the slopes for the inner edge, and leave the rest as an exercise. The

edge LI intersects Z2 in two points, both of which have valuation 0, so its

denominator is δ = 1. The affine functions vi are given by v1(x, y) = 0 and

v2(x, y) = 5 − 5
2
y − 5

3
x. Furthermore, the function L∗I,1(x, y) = 3y − 2x − 6

and L∗I,2 = −L∗I,1. Putting this together, we find sL1 = 0 and sL2 = −5/6. This

results in the sequence

0

1
> −1

2
> −2

3
> −3

4
> −4

5
> −5

6
,

whose denominators are the multiplicities of the rational curves in the linking

chain between the two principal components.

2.5.3 Sloped Chains of Rational Curves

The following definition allows us to disambiguate parts of chains of rational

curves arising from v-edges in the Newton polytope of C.

Definition 2.5.17 (Sloped Chain). Let t1, t2 ∈ Q and µ ∈ N. Pick mi, di as

in Theorem 2.5.11; that is, such that

µt1 =
m0

d0

>
m1

d1

> · · · > mλ

dλ
>
mλ+1

dλ+1

= µt2, and

∣∣∣∣∣∣ mi mi+1

di di+1

∣∣∣∣∣∣ = 1,

with d0 ≥ · · · ≥ dl and dl ≤ · · · ≤ dλ+1, for some 0 ≤ l ≤ λ+ 1.

Let A = {i | 1 ≤ i ≤ λ and di = 1}. If A is non-empty, let a0 be

the minimal element of A and let a1 the maximal element of A. Suppose
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C =
⋃λ
i=1 Ei is a chain of rational curves where Ei has multiplicity µdi. Then

C is a sloped chain of rational curves with parameters (t2, t1, µ) and we split C

into three sections. If A 6= ∅ we define the following:

(i) E1 ∪ · · · ∪ Ea0−1, the downhill section,

(ii) Ea0 ∪ · · · ∪ Ea1 , the level section,

(iii) Ea1+1 ∪ · · · ∪ Eλ, the uphill section.

If instead A = ∅ we define:

(i) E1 ∪ · · · ∪ El, the downhill section,

(ii) El+1 ∪ · · · ∪ Eλ, the uphill section,

and there is no level section.

We define the length of each section to be the number of Ei contained in

it, and each section is allowed to have length 0. For instance, the level section

has length 0 if and only if A = ∅, and the downhill section has length 0 if and

only if 1 ∈ A.

Remark 2.5.18. A tail is a sloped chain with level section of length 1 and

no uphill section. Therefore any tail can be given by just two parameters,

namely t1 and µ (since t2 = 1
µ
bµt1 − 1c). We will often refer to a tail as a

tail with parameters (t1, µ). It follows from Remark 2.5.15 that a tail with

parameters (t1, µ) has the same multiplicities as the tail obtained by resolving

a tame cyclic quotient singularity with tame cyclic quotient invariants 1
µt1

.

Remark 2.5.19. All of our chains of rational curves, be they tails, linking

chains or crossed tails, are sloped chains. For example, a linking chain in a

semistable model will consist of only a level section. Both tails and crossed

tails in a minimal snc model will have no uphill section.



Chapter 3

Toy Hyperelliptic Curves

This chapter and the next is the product of joint work with Sarah Nowell. In

them we give an explicit description of the minimal snc model of a hyperelliptic

curve with tame reduction. The published article can be found at [22]. This

begins with some base cases of our inductive proof, namely hyperelliptic curves

with tame potentially good reduction in Section 3.1 and curves whose cluster

pictures have precisely two proper clusters in Section 3.2. These two cases are

the building blocks of a hyperelliptic curve with a more complicated cluster

picture. Throughout this section we will assume that the residue field k is

algebraically closed.

3.1 Potentially Good Reduction

In this section we calculate the minimal snc model of a hyperelliptic curve C/K

with genus g ≥ 1 which has tame potentially good reduction. Recall that C has

tame potentially good reduction if there exists a field extension L/K of degree

e such that e and p are coprime, and C has a smooth model over OL. In order

to calculate this model, we assume that L is the minimal such extension. The

minimal snc model of such a hyperelliptic curve has a rather straightforward

description: it consists of a principal component with some tails (in the sense

of Definition 2.1.22) whose multiplicities can be explicitly described using the

results of Section 2.3. The size and depth of the unique proper cluster s, as

well as the valuation of the leading coefficient cf will be sufficient to calculate



3.1. Potentially Good Reduction 57

the (dual graph with multiplicity of the) minimal snc model of C over K:

Theorem 3.1.1 (Minimal snc model, tame potentially good reduction). Let

C be hyperelliptic curve over K with tame potentially good reduction. Then the

special fibre Xk of the minimal snc model X of C/K consists of a principal

component Γ of multiplicity e. Furthermore, if e > 1 then the following tails

intersect the principal component Γ:

Name Number of tails Condition for tail to arise

T∞ 1 s odd

T±∞ 2 s even and vK(cf ) even

T∞ 1 s even, e > 2 and vK(cf ) odd

Tys=0
|ssing|
bs

e = 2bs

Txs=0 1 bs | |s|, λs 6∈ Z and e > 2

T±xs=0 2 bs | |s| and λs ∈ Z

T(0,0) 1 bs - |s|

Remark 3.1.2. The genus of the central component can be calculated using

Riemann Hurwitz, and we prove an explicit formula for it in Proposition 3.1.25.

Example 3.1.3. Let C : y2 = x7 − p11. The cluster picture and minimal snc

model of C are shown below.

11/7
s 14

4
7

3

2 1

Figure 3.1: Cluster picture and minimal snc model of curve with tame po-

tentially good reduction.

The curve requires an extension of degree 14 for semistability by Theorem

2.4.2, so the central component of its minimal snc model has multiplicity 14.

The unique cluster s is odd, so there is a tail T∞ (the rightmost tail). We

have 14 = e = 2bs = 7 so there is a Tys=0 tail (the middle tail). Finally,

bs | |s|, λs = 11/2 and es > 2 so there is a Txs=0 tail (the leftmost tail). The

multiplicities of the components of the tails are calculated using Proposition
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3.1.12. The minimal snc model is not the minimal regular model, but this can

be straightforwardly obtained by blowing down the exceptional components:

14

4
7

3

2 1

3

1

4

2

7
4

2

1

3

Figure 3.2: Blowing down exceptional components on the special fibre to

obtain the minimal regular model.

3.1.1 The Strategy

Since C has tame potentially good reduction, by [19, Theorem 1.8(3)] we can

assume (possibly after a Möbius transform) that the cluster picture of C over

K consists of a single proper cluster s. After an appropriate shift of the affine

line we can assume that s has centre 0 and that C is given by one of the

following two equations:

y2 = cf
∏

0 6=r∈R

(x− urπds), or y2 = cfx
∏

06=r∈R

(x− urπds),

if b | |s| or b - |s| respectively, where the ur ∈ K are units.

We will proceed in the manner of Section 2.3. Let Y be the smooth

Weierstrass model of C over L. This is in general obtained by a substitution

xL = π−dsx, yL = π−λsy and will be given by the equation

y2
L = cf,Lf

∏
06=r∈R

(xL − ur), or y2
L = cf,LxL

∏
06=r∈R

(xL − ur),

if b | |s| or b - |s| respectively, and where cf,L = cf/π
vK(cf )
K . Let q : Y → Z

be the quotient map induced by the action of Gal(L/K). We will explicitly

describe the singular points of Z , show that they are tame cyclic quotient sin-

gularities in the sense of Definition 2.3.2, and give their tame cyclic quotient

invariants in Proposition 3.1.12. Theorem 2.3.3 then tells us the self inter-

section numbers of the rational curves in the tails obtained by resolving the
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tame cyclic quotient singularities. Using intersection theory, this allows us to

describe the special fibre of the minimal snc model X of C/K in full.

3.1.2 The Automorphism and its Orbits

To describe the singularities on Zk, we must first explicitly describe the Galois

automorphism on the unique component Γs,L = Γ ⊆ Yk of the special fibre

of the smooth Weierstrass model of C over L. The following fact from [32,

Fact IV] describes the singularities of Zk in terms of the quotient q : Y → Z .

Proposition 3.1.4. Let z1, . . . , zd be the ramification points of the morphism

q : Γ→ Zk. Then {z1, . . . , zd} is precisely the set of singular points of Zk.

Furthermore, the ramification points of q correspond to points whose

preimage is an orbit of size strictly less than e.

Definition 3.1.5 (Small Orbits). LetX be an orbit of points of Yk. If |X| < e,

we say that X is a small orbit.

So, describing the singular points of Zk is equivalent to describing the

small orbits of Gal(L/K). In order to list these orbits, we simplify some

cluster invariants from 2.4.6.

Lemma 3.1.6. Let C/K be a hyperelliptic curve with tame potentially good

reduction and unique proper cluster s. Then:

νs = |s|ds + vK(cf ), λs =
νs
2

=
|s|ds + vK(cf )

2
, εs = (−1)vK(cf ),

and any σ ∈ Gal(K/K) induces on the special fibre

σ|Γ : (xs, ys) 7−→ (χ(σ)edsxs, χ(σ)eλsys),

where xs, ys are coordinates on the special fibre.

Proof. This follows directly from the definitions in Definition 2.4.6, and The-

orem 2.4.11.
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Since χ(σ)eds and χ(σ)eλs are non-zero and k is algebraically closed, the

only points which can lie in orbits of size strictly less than e are points at

infinity, or points where xs = 0 or ys = 0. This gives four cases which we

will take care to distinguish between, as it will make it easier to describe the

minimal snc model for a general cluster picture. With this in mind we make

the following definitions:

Definition 3.1.7 (Types of Small Orbits). We split the small orbits that can

occur into the following types.

— ∞-orbits : orbits on the point(s) at infinity,

— (y = 0)-orbits : orbits on non-zero roots,

— (x = 0)-orbits : orbits on the points (0,±√cf ),

— (0, 0)-orbits : the orbit on the point (0, 0).

The following lemmas describe in which situations we see these small

orbits. We will assume e > 1 since no small orbits occur when e = 1.

Lemma 3.1.8. If deg(f) is odd then there is a single ∞-orbit consisting of a

single point. If deg(f) is even and vK(cf ) ∈ 2Z then there are two ∞-orbits

each of size 1. If deg(f) is even, vK(cf ) 6∈ 2Z and e > 2 then there is a single

∞-orbit of size 2.

Proof. Let u = 1/x, v = y/xg+1 denote the coordinates at infinity. The curve

C has a single point at infinity (u, v) = (0, 0) if deg(f) is odd, and two points

at infinity (u, v) = (0,±√cf ) if deg(f) is even. In the latter case, the action at

infinity is given by σ : (0,
√
cf ) 7→ (0, χ(σ)eλs

√
cf ). Therefore, when deg(f) is

even, the points at infinity are swapped if and only if χ(σ)eλs = −1 for some

σ ∈ Gal(L/K). This is the case if and only if vK(cf ) is odd. In this case, the

orbit at infinity has size 2 and is only a small orbit if e > 2.
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Lemma 3.1.9. If f(0) = 0 then there is a single (0, 0)-orbit consisting of a

single point. Otherwise f(0) 6= 0, and if λs ∈ Z then there are two (x = 0)-

orbits of size 1, else λs 6∈ Z and e > 2 there is a single (x = 0)-orbit of size

2.

Proof. If f(0) = 0 then {(0, 0)} ∈ Γ is the unique (0, 0)-orbit. If f(0) 6= 0 then

(0,±
√
cf ) ∈ Γ, and these points are swapped by some element of inertia if and

only if λs 6∈ Z. If λs 6∈ Z then the orbit has size 2 hence it is only a small orbit

if e > 2.

Lemma 3.1.10. Either e = bs or e = 2bs, where bs is the denominator of ds.

In particular e = 2bs if and only if bsνs 6∈ 2Z.

Proof. By Theorem 2.4.2, e is the minimal integer such that eds ∈ Z and

eνs ∈ 2Z. Since eds ∈ Z, we can deduce that bs | e. Furthermore, since

2bsνs ∈ 2Z, e = bs or e = 2bs. It is straightforward to check that the other

conditions of Theorem 2.4.2 are satisfied over a field extension of degree e.

Lemma 3.1.11. If e > bs then there are |s|
bs

(y = 0)-orbits if bs | |s|, or |s|−1
bs

(y = 0)-orbits if bs - |s|.

Proof. This follows since the non-zero points with y = 0 are of the form (ζ ibs , 0)

for ζbs a primitive bths root of unity. Note that (y = 0)-orbits always have size

bs so if e = bs then the (y = 0)-orbits are not small orbits.

These lemmas allow us to fully describe how many singularities Zk has.

The following proposition tells us that they are tame cyclic quotient singular-

ities in the sense of Definition 2.3.2. Theorem 2.3.3 then allows us to resolve

these singularities.

Proposition 3.1.12. Let z ∈ Zk be a singularity which is the image of a

Galois orbit Y ⊆ Yk. Then z is a tame cyclic quotient singularity. In addition,

with notation as in Definition 2.3.2, m
r

= e
r
where 1 ≤ r < e and r mod e is

given in the following table:
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Orbit Type r mod e Condition

∞ eλs − e(g(C) + 1)ds s odd

∞ −eds|Y | s even

ys = 0 eλs|Y | None

xs = 0 eds|Y | None

(0, 0) eλs None

Proof. Recall that for z to be a tame cyclic quotient singularity, there must

exist m > 1 invertible in k, a unit r ∈ (Z/mZ)× and integers m1 > 0 and

m2 ≥ 0 such that m1 ≡ −rm2 mod m, and such that OZ ,z is equal to the

subalgebra of µm-invariants in kJt1, t2K/(tm1
1 tm2

2 − πK) under the action t1 7→

ζmt1, t2 7→ ζrmt2. We will show that m = e
|Y | = |Stab(Y )|, m1 = e, m2 = 0 and

will explicitly calculate r.

Let Y ⊆ Yk be a small orbit and let Q ∈ Y . Then OZ ,z is the subalgebra

of µm-invariants of OY ,Q under the action of Stab(Y ), where m = |Stab(Y)|.

This follows from the definition of Z as the quotient of Y under the action

of Gal(L/K), which for a generator σ ∈ Gal(L/K) sends

σ : πL 7−→ χ(σ)πL, σ : xs 7−→ χ(σ)edsxs, σ : ys 7−→ χ(σ)eλsys.

To prove that z is a tame cyclic quotient singularity we must calculate OY ,Q.

First, suppose Y is a (ys = 0) or a (0, 0)-orbit, and write Q = (xQ, 0).

Then OY ,Q is generated by πL, xs − xQ and ys. However, since xs − xQ = uy2

for a unit u ∈ OY ,Q, OY ,Q is generated by πL and ys. Therefore, OY ,Q
∼=

kJπL, ysK/(πeL−πK), and OZ ,z is the subalgebra of µm-invariants of this under

the action πL 7→ ζmπL, ys 7→ ζeλsm ys where ζm = χ(σ)|Y | generates Stab(Y ) (as

Gal(L/K) is cyclic). Let r be such that 0 < r < m and r ≡ eλs|Y | mod m.

Then to prove z is a tame cyclic quotient singularity all that is left to show is

that r is a unit in (Z/mZ)× and that e ≡ 0 mod m. The second is clear, and

for the first note that since ζrm also generates Stab(Y ), it must be a primitive

mth root of unity hence r must be a unit.

If Y is an (xs = 0)-orbit, then Q = (0,±
√
cf,L). By a similar argument to

above, OY ,Q
∼= kJπL, xsK/(πeL−πK) and OZ ,z is the subalgebra of µm invariants
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under the action πL 7→ ζmπL, xs 7→ ζrmxs, where m = e
|Y | and r is such that

0 < r < m and r ≡ eds|Y | mod m.

If Y is an ∞-orbit, then we can calculate m, r,m1 and m2 explicitly by

going to the chart at infinity.

Example 3.1.13. Recall example 3.1.3. Let C : y2 = x7 − p11. The cluster

picture and minimal snc model of C are recreated below.

11/7
s 14

4
7

3

2 1

Figure 3.3: Cluster picture and minimal snc model of C : y2 = x7 − p14.

The tail arising from the ∞-orbit is the rightmost. Proposition 3.1.12

states that the singularity from which it arises has tame cyclic quotient

invariantsm
r

where m = e
1

= 14 since there is a single point at infinity and

r = eλs−e(g(C)+1)ds = 14
(

11
2
− 4× 11

7

)
= 3. Then we have the Hirzebruch-

Jung continued fraction 14
3

= 5− 1
3
and hence the tail from the∞-orbit consists

of two components with self intersection −5 and −3 respectively. Some quick

and dirty linear algebra then tells us that their multiplicities must be 3 and

1. Similarly the (ys = 0)-orbit has size 7 and gives a singularity with tame

cyclic quotient invariants2
1
and the (xs = 0)-orbit has size 2 and gives a singu-

larity with tame cyclic quotient invariants 7
2
, resolving to give the centre and

leftmost tail respectively.

Corollary 3.1.14. If Y is a (ys = 0)-orbit which gives rise to a tame cyclic

quotient singularity z ∈ Zk, then the tame cyclic quotient invariants (m, r) of

z are such that m
r

= 2.

Proof. The orbit Y is a (ys = 0)-orbit hence has size bs. Lemma 3.1.10 tells us

that, |Y | < e if and only if e = 2bs. In this case eλs|Y | = 2bs · νs2 · bs = b2
sνs.

Since bs = e
2
and bsνs is an odd integer, this gives eλs|Y | ≡ e

2
mod e, hence

m
r

= 2.
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3.1.3 Tails

Resolving singularities as in Section 3.1.2 results in tails. These are chains of

rational curves intersecting the central component once and intersecting the

rest of the special fibre nowhere else. It is useful to distinguish between tails

based on the type of orbit they arise from.

Definition 3.1.15 (Tails). Define the following tails based on the type of

singularity of Zk they arise from:

— ∞-tail : arising from the blow up of a singularity of Zk which arose from

an ∞-orbit,

— (ys = 0)-tail : arising from the blow up of a singularity of Zk which arose

from an orbit of non-zero roots,

— (xs = 0)-tail : arising from the blow up of a singularity of Zk which arose

from an orbit on the points (0,±
√
cf,L),

— (0, 0)-tail : arising from the blow up of a singularity of Zk which arose from

the point (0, 0).

Proof of Theorem 3.1.1. The central component Γ is the image of the unique

component of Yk under q. Since blowing up points on Γ does not affect its

multiplicity, this has multiplicity e, by Proposition 2.3.1. The description of

the tails follows from Lemmas 3.1.8, 3.1.9, and 3.1.11, since the tails are in a

bijective correspondence with the orbits of points of Yk of size strictly less than

e. We must check that Γ really appears in the minimal snc model. Suppose Γ

is exceptional. Then g(Γ) = 0 and Riemann-Hurwitz tells us∑
z∈Zk

(
e

|q−1(z)|
− 1

)
≥ e.

Therefore there must be at least three ramification points, so Γ intersects at

least three tails.

Remark 3.1.16. The method for calculating the multiplicities of the ratio-

nal curves in these tails is described in Theorem 2.3.3 using the tame cyclic

quotient invariants given in Proposition 3.1.12.
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Remark 3.1.17. The central component Γ is the only component of Xk which

may have non-zero genus. Its genus, g(Γ), can be calculated via the Riemann-

Hurwitz formula. Explicitly,

2gss(s)− 2 = e(2g(Γ)− 2) +
∑
z∈Z

(
e

|q−1(z)|
− 1

)
.

An even more explicit calculation of g(Γ) in terms of the Newton polytope is

given in Proposition 3.1.25.

3.1.4 Relation to Newton polytopes

Up to this point, this section has described the minimal snc model of a hyperel-

liptic curve C/K with tame potentially good reduction using the methods from

Section 2.3. However, such a hyperelliptic curve has a nested cluster picture so

we can also calculate the minimal snc model using Newton polytopes and the

techniques described in Section 2.5.1. By the uniqueness of the minimal snc

model, these two methods will give the same result: for the reader’s sanity, in

this section we will show that this is indeed the case. Recall that without loss

of generality we can assume that C/K with tame potentially good reduction

is given by one of the following two equations:

y2 = cf
∏

06=r∈R

(x− urπdsK ), if bs | |s|,

y2 = cfx
∏

0 6=r∈R

(x− urπdsK ), if bs - |s|.

The Newton polytope of C is shown in Figure 3.4a if bs | |s|, and in Figure

3.4b if bs - |s|. In each case there is exactly one v-face of ∆v(C), which we

shall label F . Therefore, by Theorem 2.5.11, the minimal snc model consists

of a central component Γs = ΓF , and possibly tails arising from the three outer

v-edges of F .

Lemma 3.1.18. The multiplicity of Γs = ΓF is δF ; that is δF = e.

Proof. We will first show that e | δF , and then that δF | e. Note that, in

both Newton polytopes in Figure 3.4, the valuation map is given by the affine
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νs
(0, 0)

vK(cf )
(|s|, 0)

0
(0, 2)

F

(a) If 0 6∈ R.

νs − ds
(1, 0)

vK(cf )
(|s|, 0)

0
(0, 2)

F

(b) If 0 ∈ R.

Figure 3.4: ∆v(C) of a hyperelliptic curve C with tame potential good re-

duction.

function

v∆(x, y) = νs − dsx−
νs
2
y.

Since e is such that eds ∈ Z and eνs ∈ 2Z, we have that

ev∆(x, y) = eνs − edsx− e
νs
2
y ∈ Z.

As δF is the common denominator of all v∆(x, y) for x, y ∈ ∆, this gives that

δF | e. For the other direction, note that

δF (v∆(n− 1, 0)− v∆(n, 0)) = δFds ∈ Z,

and

δF (v∆(1, 0)− v∆(1, 1)) = δF
νs
2
∈ Z.

By minimality of e, this implies e | δF .

Lemma 3.1.19. The ∞-tails arise from the outer v-edge of ∆v(C) between

(0, 2) and (|s|, 0).

Proof. We will first check that this v-edge gives the correct number of∞-tails,

and then calculate the slope to check that the multiplicities of the components

are the same.

Let us call this v-edge L. By Theorem 2.5.11 then L contributes |L(Z)Z|−1

tails to the snc model. Since the points (0, 2), (|s|, 0) ∈ L̄(Z)Z, it contributes

two tails if and only if P = ( |s|
2
, 1) ∈ L̄(Z)Z. If s is odd then P 6∈ L̄∩Z2, hence

L contributes one tail. If s is even then v∆(P ) =
vK(cf )

2
, hence P ∈ L̄(Z)Z if and
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only if vK(cf ) ∈ 2Z. Therefore L contributes one tail if s is even and vK(cf ) is

odd, and two tails if s and vK(cf ) are even. This agrees with Theorem 3.1.1.

A quick calculation tells us that δL = 2 if and only if s is even and

vK(cf ) 6∈ 2Z, and that δL = 1 otherwise. Therefore, δL = |Y |, where Y

is the orbit at infinity. The unique surjective affine function which is zero

on L and non-negative on F is L∗F (x, y) = 2|s| − 2x − |s|y if s is odd, and

L∗F (x, y) = |s| − x − 1
2
|s|y if s is even. Therefore, sL1 = (g + 1)ds − λs if s is

odd, and sL1 = −ds|Y | if s is even. Since the multiplicities of the components

of a tail are the Hirzebruch-Jung approximants of the slopes, we are done after

comparing the slopes to the table in Proposition 3.1.12.

If e = 2 (when s is even and vK(cf ) is odd) then s1
L ∈ Z, so the associated

tail is empty, which agrees with the table in Theorem 3.1.1.

Lemma 3.1.20. In both cases, when 0 ∈ R and when 0 /∈ R, the (ys = 0)-tails

arise from the outer v-edge of ∆v(C) on the x-axis. Also, if bs | |s| then the

(xs = 0)-tails arise from the v-edge between (0, 0) and (0, 2). Else the (0, 0)-tail

arises from the v-edge between (1, 0) and (0, 2).

Proof. This follows after a similar calcuation to Lemma 3.1.19.

3.1.5 The Curve Cs̃

To conclude this section, we drop the requirement for C/K to have tame poten-

tially good reduction. We will describe a hyperelliptic curve with potentially

good reduction which we associate to a principal cluster s ∈ ΣC with gss(s) > 0.

This new curve, which we will denote by Cs̃, will be invaluable in describing

the components of the minimal snc model of C/K which are associated to

s ∈ ΣC . For s ∈ ΣC/K with gss(s) > 0, the cluster picture Σs̃ of Cs̃/K will be

such that the singletons in Σs̃ correspond to odd children of s and the even

children of s are in effect discarded. The leading coefficient of Cs̃/K is chosen

so that everything behaves well, and allows us to make the comparisons we

wish between the minimal snc model of C/K and the minimal snc model of

Cs̃/K.
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Definition 3.1.21 (Cs̃). Let C/K be a hyperelliptic curve, not necessarily

with tame potentially good reduction. Let s ∈ Σ be a principal cluster with

gss(s) > 0 such that s is fixed by Gal(K/K). Suppose furthermore that centres

are chosen such that σ(zs′) = zσ(s′) for any σ ∈ Gal(K/K), s′ ∈ ΣC/K . We

define another hyperelliptic curve Cs̃/K by

Cs̃ : y2 = cfs
∏
o∈s̃

(x− zo), where cfs = cf
∏
r 6∈s

(zs − r).

Write Σs̃/K = Σs̃ = Σ(Cs̃/K) for the cluster picture of Cs̃/K, and Xs̃ for the

minimal snc model of Cs̃/K. The special fibre of the minimal snc model of Cs̃

is denoted Xs̃,k, and the central component is denoted Γs̃. We also write Rs̃

for the set of all roots of cfs
∏

o∈s̃(x − zo), and define ds̃ = dRs̃
, νs̃ = νRs̃

, and

λs̃ = λRs̃
.

Remark 3.1.22. Let Y be the minimal semistable model of C over OL, for

some L/K such that C/L is semistable. Let s be a principal cluster with

gss(s) > 0. If we reduce Cs̃ mod m, we obtain Γs,L, the component of Yk

corresponding to s (see Definition 2.4.10 for the equation of Γs,L). In addition,

cfs has been carefully chosen so that ds = ds̃, νs = νs̃ and λs = λs̃. In particular,

the automorphisms induced by Galois on Γs,L and Γs̃,L are the same.

Definition 3.1.23 (es, g(s)). For a principal, Galois-invariant cluster s, define

es to be the minimum integer such that esds ∈ Z and esνs ∈ 2Z. Furthermore,

if gss(s) > 0 define g(s) to be the genus of Γs̃ and if gss(s) = 0 define g(s) = 0.

We call g(s) the genus of s.

Remark 3.1.24. By the Semistability Criterion 2.4.2, if s is not übereven

then es is the minimum integer such that Cs̃ has semistable reduction over a

field extension L/K of degree es. In particular, the central component Γs̃ of

Xs̃,k has multiplicity es and genus g(s). If es = 1 then gss(s) = g(s), but the

converse is not necessarily true.
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Proposition 3.1.25. If gss(s) > 0, the genus g(s) is given by

g(s) =


bgss(s)

bs
c λs ∈ Z,

bgss(s)
bs

+ 1
2
c λs 6∈ Z, bs even,

0 λs 6∈ Z, bs odd.

Proof. By Theorem 2.5.11, we know g(s) is given by |F (Z)Z|. This is the

number of interior points with integer valuation of the unique face F of the

Newton polytope of Cs̃. By examining Figure 3.4, we see that all interior points

are of the form (x, 1) with 1 ≤ x ≤ gss(s). For such points, v∆(x, 1) = λs−dsx.

Therefore,

g(s) = |{x : 1 ≤ x ≤ gss(s), λs − xds ∈ Z}| .

When λs ∈ Z this is therefore equal to

|{x : 1 ≤ x ≤ gss(s), bs | x}| =
⌊
gss(s)

bs

⌋
.

When λs 6∈ Z, this is equal to∣∣∣∣{x : 1 ≤ x ≤ gss(s), xds ∈
1

2
Z Z

}∣∣∣∣ .
When λs 6∈ Z and bs is odd this set is always empty, and when λs 6∈ Z and bs

is even it has size
⌊
gss(s)
bs

+ 1
2

⌋
.

Lemma 3.1.26. Let C be a hyperelliptic curve and let s ∈ ΣC be a principal

cluster which is fixed by Galois. Let L be an extension such that C is semistable

over L, and let σ generate Gal(L/K). Then σ|Γs,L
: Γs,L → Γs,L has degree es.

Proof. The map σ|Γs,L
is given by (xs, ys) 7→ (χ(σ)esdsxs, χ(σ)esλsys). The result

follows as es, by definition, is the minimal integer such that esds, esλs ∈ Z.

3.2 Curves with Two Clusters
The minimal snc model of a general hyperelliptic curve C/K can roughly be

described as follows. Each principal cluster of ΣC has one or two central

components, and some tails associated to it. These principal components are
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linked by chains of rational curves. Section 3.1 will allow us to describe these

central components and tails, while this section will be used to describe these

linking chains. This includes describing any loops. We will also see the simplest

example of the general philosophy that the components of the special fibre of

the minimal snc model of C/K associated to a principal cluster s “look like”

the special fibre of the minimal snc model of Cs̃/K.

Throughout the rest of this section we will take C/K to be a hyperelliptic

curve such that ΣC/K consists of exactly two proper clusters: a proper cluster

s and a unique proper child s′ < s. This is illustrated in Figure 3.5. Note that

ds′ > ds and |s| > |s′|. If C is such that s is even and |s| = |s′| + 1 then C/K

has potentially good reduction, this case is covered in Section 3.1. To avoid

this case we will assume that if s is even then |s| ≥ |s′|+ 2. Since hyperelliptic

curves of this type are nested we can directly apply the methods from Section

2.5.1.

ds′
s′

ds

s

Figure 3.5: Cluster picture with a parent s and a unique proper child s′ with

no proper children of its own.

3.2.1 Structure of Special Fibre

For such a hyperelliptic curve C we prove the following structure theorem.

Theorem 3.2.1 (Minimal snc model, unique proper child). Let C/K be a

hyperelliptic curve with cluster picture as in Figure 3.5. If s is principal, then

the special fibre of the minimal snc model has a component Γs,K arising from s

with multiplicity es and genus g(s). If s′ is principal then there is a component

Γs′,K arising from s′ of multiplicity es′ and genus g(s′). These are linked by

sloped chain(s) of rational curves with parameters (t1 − δ, t1, µ), which are

described in the following table:
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Name From To t1 δ µ Conditions

Ls,s′ Γs Γs′ −λs δs′/2 1 s principal, s′ odd, principal

L+
s,s′ Γs Γs′

−ds δs′ 1 s principal, s′ even, principal, εs′ = 1
L−s,s′ Γs Γs′

Ls,s′ Γs Γs′ −ds δs′ 2 s principal, s′ even, principal, εs′ = −1

Ls′ Γs Γs −ds 2δs′ 1 s principal, s′ twin, εs′ = 1

Ts′ Γs - −ds δs′ +
1
2

2 s principal, s′ twin, εs′ = −1

Ls′ Γs′ Γs′ −ds 2δs′ 1 s cotwin, vK(cf ) ∈ 2Z

Ts′ Γs′ - −ds δs′ +
1
2

2 s cotwin, vK(cf ) 6∈ 2Z

The chains where the “To” column has been left empty are crossed tails with

crosses of multiplicity 1. If s is principal and es > 1 then Γs has the following

tails with parameters (t1, µ):

Name Number t1 µ Condition

T∞ 1 (g(s) + 1)ds − λs 1 s odd

T±∞ 2 −ds 1 s even and εs = 1

T∞ 1 −ds 2 s even, εs = −1 and es > 2

Tys=0 |ssing|/bs −λs bs es = 2bs

If s′ is principal and es′ > 1 then Γs′ has the following tails with parameters

(t1, µ):

Name Number t1 µ Condition

Tys=0 |s′sing|/bs′ −λs′ bs′ es′ = 2bs′

Txs=0 1 −ds′ 2 bs′ | |s′|, λs′ 6∈ Z and es′ > 2

T±xs=0 2 −ds′ 1 bs′ | |s′|, λs′ ∈ Z

T(0,0) 1 −λs′ 1 bs′ - |s′|

Remark 3.2.2. For this particular type of hyperelliptic curve, s will be prin-

cipal unless it is a cotwin (i.e. if |s′| = 2g(C)), and s′ will be principal unless

it is a twin. Since we have assumed that g ≥ 2, these cases cannot coincide.

Note that neither s nor s′ can be übereven in this case.
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Remark 3.2.3. Suppose s is principal. In Xk we can see most of the compo-

nents of Xs̃,k. The central component Γs will have the same multiplicity and

genus as Γs̃, and will have almost the same tails. The only difference being

that one or two of the tails (the (0, 0)-tail in the case s′ is odd and the (xs = 0)-

tail(s) otherwise) will instead form either part of a linking chain between Γs

and Γs′ (in the case s′ principal); or a loop or a crossed tail associated to s′

(in the case where s′ is a twin). We will say that the downhill section of the

linking chain corresponds to this tail. If the linking chain, loop or crossed tail

in Xk has a non-trivial level section, then all the components of the tails in

Xs,k appear in the linking chain(s) in Xk. If the level section has length zero

then some of the lower multiplicity components do not appear - we expand on

this in Section 3.2.4.

Similarly, if s′ is principal, we see most of the components of Xs̃′,k in Xk.

In this case, Γs′ has the same tails as Γs̃′ except that the infinity tail(s) of the

latter are absorbed into the linking chain(s) Ls,s′ (or the loop or crossed tail

arising from s if it is a cotwin). In this case, we say that the uphill section

of the linking chain corresponds to the infinity tail in Xs̃′,k. We shall see that

this is a phenomenon which generalises to the main theorems in Section 4.

Remark 3.2.4. The length of the level section of a linking chain, loop or

crossed tail C ⊆ Xk (that is, the number of P1s with multiplicity µ) is equal

to |(µ(t1 − δ), µt1) ∩ Z|. Let Y be the minimal regular model of C over L,

q : Y → Z be the quotient by Gal(L/K) and φ : X → Z the resolution of

singularities. Then any irreducible component E in the level section of C is

not an exceptional divisor — that is to say, it is the image of µ components

of Yk which are permuted by Gal(L/K). This can be seen by looking at the

explicit automorphisms on the components of Y given in [19, Theorem 6.2].

Example 3.2.5. Consider the hyperelliptic curve C : y2 = (x2 − p)(x3 − p5)

over K = Qur
p . The special fibre of the minimal snc model of C/K can be seen

in Figure 3.6. The central components Γs, and Γs′ are labelled and shown in

bold.
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5
3

s′

1
2

s 4
Γs

1 2

1

3
Γs′

1 1

Figure 3.6: Cluster picture and special fibre of the minimal snc model of

C : y2 = (x2 − p)(x3 − p5).

The minimal snc models of the curves Cs̃ and Cs̃′ are pictured in Figure

3.7 below.

41 2 1

(a) where Cs̃ : y2 = x(x2 − p).

31 1 1

(b) where Cs̃′ : y2 = p(x3 − p5).

Figure 3.7: The special fibres of the minimal snc models of Cs̃ and Cs̃′

We can see that all the components in both Figures 3.7a and 3.7b also

appear in the special fibre of the minimal snc model of C. They are glued

together along one of their multiplicity one components which forms the linking

chain in Figure 3.6. This illustrates Remark 3.2.3.

3.2.2 The Newton polytope

Without loss of generality, we can assume that the defining equation of C/K

will be either

y2 = cf
∏
r∈R s′

(
x− urπdsK

)∏
r∈s′

(
x− urπ

ds′
K

)
, (3.1)

or

y2 = cfx
∏
r∈R s′

(
x− urπdsK

) ∏
0 6=r∈s′

(
x− urπ

ds′
K

)
. (3.2)

where the ur are units. If C has defining equation (3.1), then νs′ = vK(cf ) +

(|s| − |s′|)ds + |s′|ds′ , and the Newton polytope ∆v(C) of C will be as shown

in Figure 3.8a. If instead C has defining equation (3.2), the Newton polytope

will be as shown in Figure 3.8b.
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νs′
(0, 0)

νs′ − |s′|ds′
(|s′|, 0)

vK(cf )

(|s|, 0)

0
(0, 2)

F2 F1

(a) if C has defining equation (3.1)

νs′ − ds′
(1, 0)

νs′ − |s′|ds′
(|s′|, 0)

vK(cf )

(|s|, 0)

0
(0, 2)

F2 F1

(b) if C has defining equation (3.2)

Figure 3.8: Newton polytope ∆v(C) of C.

Lemma 3.2.6. Let C have Newton polytope as in Figure 3.8a. Then there is

an isomorphism ψ : F1 → ∆v(Cs̃), from the closure of the v-face marked F1

to the Newton polytope of Cs̃ (whose only v-face we label Fs̃), shown in Figure

3.9. In particular ψ preserves valuations and δF1 = δFs̃
. In this sense we say

that F1 corresponds to the cluster s. Similarly the v-face F2 in Figure 3.8a

corresponds to s′.

Proof of Lemma 3.2.6. Let us compare the v-face F1 in Figure 3.8a to the

Newton polytope, ∆v(Cs̃), of Cs̃. This is given in Figure 3.9a if s′ is even, and

given in Figure 3.9b if s′ is odd.

If s′ is even we can define

ψ : F1 → ∆v(Cs̃) : (x, y) 7→
(
x− |s

′|
2

(2− y), y

)
.

It is easy to show that this is an isomorphism, and that the valuations are

preserved. Similarly if s′ is odd we can define

ψ : F1 → ∆v(Cs̃) : (x, y) 7→
(
x− (|s′|+ 1)

2
(2− y), y

)
,

which is also an isomorphism that preserves the valuations. In particular, in

both cases we have δF1 = δFs̃
, and if v1 is the unique affine function agreeing

with v∆(C) on F1, then v1(x, y) = v∆s̃
(ψ(x, y)), where v∆s̃

= v∆(Cs̃).

Similarly, we can see that the v-face F2 in Figure 3.8a corresponds to s′

by considering the Newton polytope ∆v(Cs̃′) of Cs̃′ . This is shown in Figure

3.10. We see that the map

F2 → ∆v(Cs̃′) : (x, y) 7→ (x, y)
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νs′ − |s′|ds′
(0, 0)

vK(cf )

(|s| − |s′|, 0)

0
(0, 2)

Fs̃

(a) if s′ is even

νs′ − |s′|ds′
(1, 0)

vK(cf )

(|s| − |s′| + 1, 0)

0
(0, 2)

Fs̃

(b) if s′ is odd

Figure 3.9: Newton polytope ∆v(Cs̃) of Cs̃,where C is given by either defining

equation (3.1), or (3.2).

is an isomorphism that preserves the valuations, that is v2(x, y) = v∆(C
s̃′ )

(x, y),

and δF2 = δF
s̃′
, where v2 is the unique affine function agreeing with v∆(C) on

F2.

νs′ = vK(cf ) + (|s| − |s′|)ds + |s′|ds′
(0, 0)

νs′ − |s′|ds′
(|s′|, 0)

0
(0, 2)

Fs̃′

Figure 3.10: Newton polytope ∆v(Cs̃′) of Cs̃′ , where C has defining equation

(3.1).

Lemma 3.2.7. Let C have Newton polytope as in Figure 3.8b. Then the v-

face marked F1 in Figure 3.8b corresponds to the cluster s. That is there is

a valuation preserving isomorphism between F1 and ∆v(Cs̃), and δF1 = δFs̃
,

where Fs̃ is the unique v-face of ∆v(Cs̃). Similarly the v-face marked F2 on

the Newton polytope in Figure 3.8b corresponds to the cluster s′.

Proof. Follows by a similar argument to Lemma 3.2.6.

3.2.3 Proof of Theorem 3.2.1

Without further ado let us prove Theorem 3.2.1. We will begin with some

lemmas.
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νs′ − ds′ = vK(cf ) + (|s′| − |s|)ds + (|s′| − 1)ds′
(1, 0)

νs′ − |s′|ds′
(|s′|, 0)

0
(0, 2)

Fs̃′

Figure 3.11: Newton polytope ∆v(Cs̃′) of Cs̃′ , where C has defining equation

(3.2).

Lemma 3.2.8. If s is principal then the special fibre has an irreducible com-

ponent Γs = ΓF1 of multiplicity es and genus g(s). If s′ is principal then there

is a component Γs′ = ΓF2 of multiplicity es′ and genus g(s′).

Proof. Follows from Lemmas 3.2.6 and 3.2.7.

Remark 3.2.9. Lemma 3.2.8 further proves that δF1 = es and δF2 = es′ since,

by Theorem 2.5.11, ΓFi has multiplicity δFi .

Lemma 3.2.10. If s is principal and es > 1, the following tails of Γs arise

from outer v-edges of the v-face F1 in Figure 3.8, with conditions as in Theorem

3.2.1:

(i) ∞-tail(s) arising from the v-edge connecting (0, 2) and (|s|, 0),

(ii) (ys = 0)-tail(s) arising from the v-edge connecting (|s′|, 0) and (|s|, 0).

Proof. This is a consequence of our discussion above, relating F1 to the Newton

polytope of Cs̃. The conditions in Theorem 3.2.1 for the tails to occur follow

since εs(σ) = (−1)vK(cf ) for σ a generator of inertia.

Lemma 3.2.11. If s′ is principal and es′ > 1, the following tails of Γs′ arise

from outer v-edges of the v-face F2 in Figure 3.8, with conditions as in Theorem

3.2.1:

(i) if bs′ | |s′|, (xs = 0)-tail(s) arise from the v-edge connecting (0, 0) and

(0, 2),

(ii) if bs′ - |s′|, a (0, 0)-tail arises from the v-edge connecting (1, 0) and (0, 2),
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(iii) in both cases, (ys = 0)-tail(s) arise from the v-edge intersecting the x-

axis.

Proof. This is a consequence of our discussion above, relating F2 to the Newton

polytope of Cs̃′ . The conditions in Theorem 3.2.1 for these tails to occur follow

since εs′(σ) = (−1)νs′−|s
′|ds′ for σ a generator of inertia.

In order to find the lengths of the level sections of the linking chains, we

must calculate the slopes of the unique inner v-edge L, adjacent to both v-faces

F1 and F2 in Figure 3.8.

Lemma 3.2.12. If s′ is odd sL1 = −λs, and sL2 = −λs − δs′
2
. Else sL1 = −δLds,

and sL2 = −δLds′.

Proof. Suppose s′ is odd. Then the only points in L(Z) are the endpoints (0, 2)

and (|s′|, 0), so δL = 1. The unique function L∗F1
: Z2 → Z such that L∗F1

∣∣
L

= 0

and L∗F1

∣∣
F1
≥ 0 is given by

L∗F1
(x, y) = 2x+ |s′|y − 2|s′|.

To calculate sL1 and sL2 we need P0 and P1 such that L∗F1
(P1) = 1 and L∗F1

(P0) =

0. We will take P0 = (|s′|, 0) and P1 = ( |s
′|+1
2
, 1). The unique affine function

which agrees with v∆ on F1 is defined by v1(x, y) = νs − dsx− νs
2
y. Therefore,

sL1 = δL(v1(P1)− v1(P0)) = νs − ds
|s′|+ 1

2
− νs

2
− νs + ds|s′|

= −
(
νs
2
− ds
|s′| − 1

2

)
= −λs.

The calculations for sL2 and s′ even are similar.

Proof of Theorem 3.2.1. Recall that es is the minimum integer such that esds ∈

Z, and esνs ∈ 2Z. If es = 1 then ds, λs ∈ Z, hence the slopes of the outer v-edges

of F1 are integers and Γs has no tails. If es > 1 then Lemma 3.2.10 describes

the tails of Γs. Similarly if es′ = 1 then Γs′ has no tails and if es′ > 1 then

Lemma 3.2.11 describes the tails of Γs′ . The statement on the parameters of

the tails and the linking chain follows from Remark 2.5.15 and the calculation
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of the slopes in Lemma 3.2.12. The multiplicity of the level section is δL where

L is the inner v-edge between F1 and F2.

The two cases left to consider are when s′ is a twin or when s is a cotwin.

We will only argue the case where s′ is a twin, as the case where s is a cotwin

is proved similarly. Recall from Remark 2.4.7 that for σ a generator of inertia

εs′(σ) = (−1)νs′−|s
′|ds′ . So, εs′(σ) = 1 if and only if v∆(|s′|, 0) = νs′−|s′|ds′ ∈ 2Z.

Suppose that εs′ = 1. Since v∆(0, 2) = 0 ∈ 2Z and |s′| = 2 we have that

( |s
′|

2
, 1) = (1, 1) ∈ Z2, and v∆(1, 1) ∈ Z. So, |L(Z)Z| = 3 and by Theorem

2.5.11 there are two linking chains from Γs to the component ΓF2 arising from

the v-face F2 of ∆v(C) in Figure 3.8. The component ΓF2 is exceptional by

[15, Proposition 5.2] and the linking chains between Γs and ΓF2 are minimal.

After blowing down ΓF2 , this results in a loop from Γs to itself.

Suppose instead that, εs′(σ) = −1. Then there is a single chain of rational

curves from Γs to ΓF2 , and ΓF2 has two other rational curves intersecting it

transversely (which arise from the v-edge connecting (0, 0) and (0, 2)). There-

fore, ΓF2 is not exceptional and must appear in the minimal snc model. This

means, if we consider ΓF2 as a component of the level section, that this chain

of rational curves is a crossed tail.

3.2.4 Small Distances

Let s1 and s2 be the principal clusters such that there is a linking chain C ⊆

Xk from Γs1 to Γs2 . If C has level section of length greater than 0, it is

straightforward to compare the multiplicities of C to those of the corresponding

tails (see Remark 3.2.3). All of the multiplicities of the corresponding tails

appear in the uphill and downhill sections of C. However, if the level section

is empty and the downhill section of C corresponds to a tail, say T1, then

not all of the multiplicities of T1 ⊆ Xs̃1,k appear in the downhill section of

C. Similarly if the uphill section corresponds to a tail, say T2 ⊆ Xs̃2,k. We

shall show that in this case, T1 and T2 “meet” at a component of second least

common multiplicity. In other words, if we consider a chain of rational curves

C ′ such that C ′ has level section of length 1, and whose downhill and uphill
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sections correspond to T1 and T2 respectively, then we “cut out” a section of C ′

to obtain C.

Example 3.2.13. Consider the hyperelliptic curves given by y2 = (x4−p)(x5−

p2+10m) over K = Qur
p for m ∈ Z≥0, with cluster pictures shown in Figure 3.12.

2
5

+ 2m
s′

1
4

s

Figure 3.12: Cluster picture ΣC of C : y2 = (x4 − p)(x5 − p2+10m).

The level section of the linking chain between Γs and Γs′ has length m.

Figure 3.13 shows the special fibres of the minimal snc models for both when

m = 1, and the small distance case (when m = 0). Here we can see that when

m = 1 the uphill and downhill sections of the linking chain have a common

multiplicity greater than 1, namely 3, and that to obtain the m = 0 case

we remove the dashed section of the linking chain and glue back along the

multiplicity 3 components.

10

8

3
2
1 3

5 2

4 1

Γs′

Γs

(a) m = 1 case.

10

8

3

5 2

4 1

Γs′

Γs

(b) m = 0 case.

Figure 3.13: Example of “cutting out” a section of linking chain to obtain

the small distance case.

Theorem 3.2.14 (Small Distances). Let C =
⋃λ
i=1Ei be a sloped chain of

rational curves with parameters (t2, t1, µ), as in Definition 2.5.17. Suppose that

C has level section length 0 and [µt2, µt1] ⊂ (0, 1). Suppose Ei has multiplicity

µi; the downhill section comprises of Ei for 1 ≤ i ≤ l, for some l ∈ Z with

1 ≤ l ≤ λ; and all remaining components form the uphill section. Write µ0 =



3.2. Curves with Two Clusters 80

denom(µt1) and µλ+1 = denom(µt2). Let Tj =
⋃λj
i=1 F

(j)
i for j = 1, 2 be tails

(with Tj possibly empty, in which case λj = 0), where T1 has parameters (t1, µ)

and T2 has parameters ( 1
µ
− t2, µ). Let F (j)

i have multiplicity µ(j)
i (and write

µ
(j)
0 = denom(µtj)), and let lj < max(1, λj) be maximal such that µ(1)

l1
= µ

(2)
l2
.

Then l = l1 = λ− l2, µi = µ
(1)
i for 0 ≤ i ≤ l1 and µλ+1−i = µ

(2)
i for 0 ≤ i ≤ l2.

Remark 3.2.15. Let C be as in Theorem 3.2.14. Since the level section of C

is empty, it must be the case that (µt2, µt1) ∩ Z = ∅. Therefore, after shifting

µt2 and µt1 by an integer if necessary, we may insist that [µt2, µt1] ⊆ [0, 1].

If µt2 ∈ Z (hence T2 is empty) then it is immediate from Remark 2.5.15 that

λ = λ1 − 1 and µi = µ
(1)
i for 1 ≤ i ≤ λ, since the multiplicities come from

the same sequence of fractions. A similar conclusion applies if µt1 ∈ Z. So

we are able to assume without loss of generality that µt2, µt1 6∈ Z, hence our

assumption in Theorem 3.2.14 that [µt2, µt1] ⊂ (0, 1).

Roughly, Theorem 3.2.14, states that when there is no level section, rather

than seeing all of the multiplicities of the tails which the uphill and downhill

sections correspond to, the two tails “meet” at the component of minimal

shared multiplicity greater than µ. Before we prove this theorem, let us prove

a couple of lemmas.

Lemma 3.2.16. Let q1, q2 ∈ Q with [q1, q2] ∩ Z = ∅. Then there is a unique

fraction with minimal denominator in the set [q1, q2] ∩ Q, when written with

coprime numerator and denominator.

Proof. Suppose not, and suppose r1, r2 ∈ [q1, q2] ∩ Q can be written ri = mi
d

with mi, d coprime and d the minimal denominator of elements in the set

[q1, q2] ∩Q. We will show that there exists a rational number r lying between

r1 and r2 of denominator < d.

Write ri = mi(d−1)
d(d−1)

, and consider the set S = [m1(d − 1),m2(d − 1)] ∩ Z.

Since m2 > m1 and m1,m2 ∈ Z, |S| ≥ d and there must exist a multiple of

d in S. That is, there exists m ∈ Z such that md ∈ S. Since mi and d are
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coprime, we have m1 < md < m2. Therefore,

m1(d− 1)

d(d− 1)
<

md

d(d− 1)
<
m2(d− 1)

d(d− 1)
=⇒ r1 <

m

d− 1
< r2,

which contradicts the minimality of d.

Lemma 3.2.17. With notation as in Theorem 3.2.14, there exists some lj <

λj, for j = 1, 2, such that µ(1)
l1

= µ
(2)
l2
.

Proof. Write si = µti. Recall that we assumed that, [s2, s1] ⊂ (0, 1), so [s2, s1]∩

Z = ∅. Let m
d
be the unique fraction of minimal denominator in [s2, s1], which

exists by Lemma 3.2.16. Then if

s1 = µt1 =
m0

d0

>
m1

d1

> · · · > mλ

dλ
>
mλ+1

dλ+1

= µt2 = s2,

is the reduced sequence giving rise to the linking chain C, as in Remark 2.5.15,

where (mi, di) = 1, d0 > · · · > dl and dl < · · · < dλ+1 for some 1 ≤ l ≤ λ, we

must have that dl = d.

Consider the following two reduced sequences:

µt1 =
m

(1)
0

d
(1)
0

>
m

(1)
1

d
(1)
1

> · · · >
m

(1)
λ1

d
(1)
λ1

>
m

(1)
λ1+1

d
(1)
λ1+1

= −1,

1− µt2 =
m

(2)
0

d
(2)
0

>
m

(2)
1

d
(2)
1

> · · · >
m

(2)
λ2

d
(2)
λ2

>
m

(2)
λ2+1

d
(2)
λ2+1

= −1.

These give rise to the multiplicities µ(j)
i = µ · d(j)

i for 1 ≤ i ≤ λj, j = 1, 2 of

the tails Tj. We will show that there exist 0 ≤ l1 < λ1 + 1 and 0 ≤ l2 < λ2 + 1

with d(1)
l1

= d = d
(2)
l2
.

We will first prove that d(1)
l1

= d for some l1 ∈ Z. Since [s2, s1] ⊂ (0, 1), we

have that s2 > bs1c = 0. So, some fraction of denominator d, say m
d
, appears

in the full sequence of fractions in [bs1c, s1] ∩ Q of denominator less than or

equal to max{d0, dλ+1}. To obtain a reduced sequence, we remove all terms of

the form

· · · > a

b
>
a+ c

b+ d
>
c

d
> · · · 7→ · · · > a

b
>
c

d
> . . . ,
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as in Remark 2.5.15. We can only remove m
d
if there exists some q ∈ Q with

denom(q) < d and s1 > q > m
d
. No such q can exist since d is the minimal

denominator of any element of [s2, s1]∩Q. Therefore, m
d
cannot be removed in

the reduction process and so must appear in the reduced sequence. Therefore

there exists 0 ≤ l1 < λ1 + 1 such that d(1)
l1

= d. Proving that there exists

0 ≤ l2 < λ2 + 1 such that d(1)
l1

= d = d
(2)
l2

is done similarly.

We can now prove Theorem 3.2.14.

Proof of Theorem 3.2.14. The fractions m0

d0
, m1

d1
, . . . , ml

dl
in the reduced sequence

depend only on the elements of [s1,
ml
dl

] of denominator less than or equal

to max(d0, dλ+1), as do the fractions m
(1)
0

d
(1)
0

, . . . ,
m

(1)
l1

d
(1)
l1

= ml
dl
. This proves that

d
(1)
i = di hence µi = µ

(1)
i for 0 ≤ i ≤ l1. Similarly d

(2)
i = dλ+1−i hence

µλ+1−i = µ
(2)
i for 0 ≤ i ≤ l2. It remains to show maximality of l1 and l2.

Suppose there is some r1, r2 such that λi > ri > li and µ
(1)
r1 = µ

(2)
r2 < µ

(1)
l1
.

In addition to this, d(1)
r1 = d

(2)
r2 < d (recall m

d
is the unique fraction with

least denominator in [s2, s1] ∩ Q). Therefore q2 = 1 − m
(2)
r2

d
(2)
r2

∈ (s1, 1] and

q1 =
m

(1)
r1

d
(1)
r1

∈ [0, s2). Let q′ be the unique rational with least denominator

d′ in [q1, q2]. By uniqueness, d′ < d
(1)
r1 < d. Therefore, q′ ∈ (s1, q2) or (q1, s2).

Suppose for now that q′ ∈ (s1, q2), and consider again the reduced sequence

1− µt2 =
m

(2)
0

d
(2)
0

>
m

(2)
1

d
(2)
1

> · · · >
m

(2)
λ2

d
(2)
λ2

>
m

(2)
λ2+1

d
(2)
λ2+1

= −1.

However 1 − q2 cannot appear in this reduced sequence since a fraction with

smaller denominator, 1 − q′, appears to the left of it in the non-reduced se-

quence. So, at some step in the reduction process 1 − q2 would have been

removed. Therefore, q′ 6∈ (s1, q2). Similarly, one can show that q′ 6∈ (q1, s2).

This is a contradiction. So no such r1 and r2 exist.



Chapter 4

Hyperelliptic Curves with Tame

Reduction

In Chapter 3 we described the minimal snc model of a hyperelliptic curve with

tame reduction and a particularly nice cluster picture: with precisely one or

two proper clusters. In this section we use those two cases as the base step

in an induction which will allow us to describe the minimal snc model of a

general hyperelliptic curve C/K with tame reduction.

This description is presented as several theorems. The first, Theorem

4.1.11 states that the cluster picture of C determines the minimal snc model C

of C. Theorem 4.1.13 allows us to construct the dual graph of Ck by describing

the principal components and chains of the special fibre, albeit without multi-

plicities, genera and lengths of chains. These are in later theorems: Theorem

4.1.18 for the genera and multiplicity of principal components, and Theorem

4.1.19 for the multiplicities and lengths of the chains linking them. Finally in

Theorem 4.1.21 we state the action of Frobenius of Ck in the case where K

does not have algebraically closed residue field. These theorems are proven in

Section 4.2.

4.1 Structure of Special Fibre

Here we state our main theorems describing the special fibre of the minimal

snc model of a hyperelliptic curve with tame reduction, beginning with some
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key definitions in Section 4.1.1, and continuing to the dual graph in 4.1.2 and

the multiplicity and genera of components and lengths of chains in 4.1.3.

4.1.1 Orbits

In the description from [19] of the minimal regular model of a hyperelliptic

curve C with semistable reduction (Theorem 2.4.11), conditions are given in

terms of clusters. In this case inertia acts trivially on the proper clusters of

ΣC . However when C has tame but not necessarily semistable reduction, there

can be a non-trivial action of inertia on the proper clusters. It transpires that

inertia orbits of proper clusters will play the role of proper clusters in the

description of the minimal snc model of C. To this end, we extend many of

the definitions of 2.2 to orbits of clusters. Roughly, if we apply any adjective

to a cluster s (such as even or odd), then we will also apply it to the inertia

orbit it belongs to.

Definition 4.1.1. Let X be a inertia orbit of clusters. Then X is übereven if

for all s ∈ X, s is übereven. Define an orbit X to be odd, even, and principal

similarly.

Definition 4.1.2. Let X be an inertia orbit of clusters. Define KX/K to be

the field extension of K of degree |X|.

Remark 4.1.3. By Lemma 2.2.18, KX/K is the minimal field extension over

which for any s ∈ X, σ ∈ Gal(K/KX) we have σ(s) = s.

Definition 4.1.4. Let X be a Galois orbit of clusters, and choose some s ∈ X.

Then we define

dX =
aX
bX

= ds, νX = νs, λX = λs, gss(X) = gss(s).

Furthermore, we define εX = ε
|X|
s . This is the restriction of the character εs to

the stabiliser of X, i.e. to the group Gal(K/KX).

Remark 4.1.5. Note that the invariants defined in Definition 4.1.4 are well

defined, i.e they do not depend on the choice of s ∈ X.
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Definition 4.1.6. An orbit X ′ is a child of X, written X ′ < X, if for every

s′ ∈ X ′ there exists some s ∈ X such that s′ < s. Define δX′ = δs′ for some

s′ ∈ X ′.

Definition 4.1.7. Let X be a principal orbit of clusters with gss(X) > 0 and

choose some s ∈ X. Then CX̃ is defined to be the curve Cs̃ overKX . We denote

the minimal snc model of CX̃/KX by XX̃/OKX , and the principal component

by ΓX̃/k.

Remark 4.1.8. The exact curve CX̃ depends on a choice of s ∈ X, but the

combinatorial description of the special fibre of the minimal snc model will

not. Since this is what we need CX̃ for, we do not need to worry about this.

Definition 4.1.9. Let X be a principal orbit of clusters. Define eX to be the

minimal integer such that eX |X|ds ∈ Z and eX |X|νs ∈ 2Z for all s ∈ X. Define

g(X) = g(s) for s ∈ X over KX , where g(s) is as defined in Definition 3.1.23.

Remark 4.1.10. Analogously to Section 3.1.5, the curve CX̃/KX is semistable

over an extension of KX of degree eX and the quotient map Γs,L → Γs,KX has

degree eX for s ∈ X.

4.1.2 The Minimal snc Model

We state here the first of our main theorems. Roughly this tells us that the

cluster picture, the leading coefficient of f , and the action of Gal(K/K) on the

cluster picture is enough to calculate the structure of the minimal snc model,

along with the multiplicities and genera of the components.

Theorem 4.1.11. Let K be a local field with residue field k of characteristic

p > 2. Let C : y2 = f(x) be a hyperelliptic curve over K with tame reduction

and cluster picture Σ. Let C be the minimal snc model of C over OKur. Then

the dual graph, with genus and multiplicity, of Ck is completely determined by

Σ (with depths) and the valuation of the leading coefficient vK(cf ) of f .

Remark 4.1.12. If K does not have algebraically closed residue field, then

the Frobenius action on the dual graph is determined by this data, as well as

the values of εX(Frob) for each orbit of clusters X. See Theorem 4.1.21.
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The proof of this will follow from the theorems proved in the rest of this

section, and we make this more precise later. First we split Theorem 4.1.11

into several smaller theorems. The first tells us which components appear

in the special fibre of the minimal snc model. Roughly, there is a central

component for every orbit of principal, non übereven clusters, one or two

central components for every orbit of principal übereven clusters, and a chain

of rational curves associated to each orbit of twins. These central components

are linked by chains of rational curves, and certain central components will also

have tails intersecting them. The following theorem gives us the structure of

the special fibre but is missing important details such as multiplicities, genera

and lengths of these chains. These remaining details will be discussed in a

later theorem.

Theorem 4.1.13 (Structure of the snc model). Let K be a local field with

residue field of characteristic p > 2. Let C/K be a hyperelliptic curve with

tame reduction. Then the special fibre of its minimal snc model is structured

as follows. Every principal Galois orbit of clusters X contributes one principal

component ΓX , unless X is übereven with εX(σ) = 1 for σ a generator of

inertia, in which case X contributes two central components Γ+
X and Γ−X .

These principal components are linked by chains of rational curves, or are

intersected transversely by a crossed tail in the following ways (where, for any

orbit Y , we write Γ+
Y = Γ−Y = ΓY if Y is not übereven):

Name From To Condition

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ odd

L+
X,X′ Γ+

X Γ+
X′

X ′ < X both principal, X ′ even with εX′ = 1
L−X,X′ Γ−X Γ−X′

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ even with εX′ = −1

LX′ Γ−X Γ+
X X principal, X ′ < X orbit of twins, εX′ = 1

TX′ ΓX - X principal, X ′ < X orbit of twins, εX′ = −1

Note that any chain where the “To” column has been left blank is a crossed tail.

If R is not principal then we also get the following chains of rational curves:
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Name From To Condition

LR Γ−s Γ+
s R a cotwin, s < R principal of size 2g, εs = 1

TR Γs - R a cotwin, s < R principal of size 2g, εs = −1

Ls1,s2 Γs1 Γs2 R = s1 t s2, with si both principal and odd, eR = 1

TX ΓX - R = s1 t s2, with X = {s1, s2} a principal, odd orbit

L+
s1,s2

Γ+
s1

Γ+
s2 R = s1 t s2, si both principal and even, eR = 1, εsi = 1

L−s1,s2 Γ−s1 Γ−s2

Ls1,s2 Γs1 Γs2 R = s1ts2, si both principal and even, eR = 1, εsi = −1

T+
X Γ+

X - R = s1 t s2, with X = {s1, s2} a principal, even orbit,

T−X Γ−X - εsi = 1

TX ΓX - R = s1 t s2, with X = {s1, s2} a principal, even orbit,

εsi = −1

Lt Γ−s Γ+
s R = s t t, s principal and even, t a twin, εt = 1

Tt Γs - R = s t t, s principal and even, t a twin, εt = −1

Finally, a principal component ΓX is intersected transversally by some tails if

and only if eX > 1. These are explicitly described in Theorem 4.1.19.

Example 4.1.14. Let K = Qur
p for p ≥ 5, and C/K be the hyperelliptic curve

given by C : y2 = ((x3 − p)3 − p15)((x − 1)4 − p9). The cluster picture and

minimal snc model of this hyperelliptic curve are shown below.

13
3

s3 s4 s5

1
3

s2

9
4

s1

0

R

(a) Cluster picture ΣC/K .

1
ΓR

1 1

1 1 4
Γs1

2
6

Γs2

2
3
3 3

3 3
3 6

ΓX
333

(b) Special fibre of the minimal snc model

of C/K.

Figure 4.1: C : y2 = ((x3 − p)3 − p15)((x− 1)4 − p9) over K = Qur
p .
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The principal orbits are: X = {s3, s4, s5}, {s2}, {s1} and {R}, none of

which are übereven, and so there are four principal components corresponding

to each of these. There are linking chains arising from the parent-child relations

s1 < R, s2 < R and X < s2. Finally, eR = 1 so ΓR has no tails, and

es1 , es2 , eX > 1 so their corresponding components have tails.

Remark 4.1.15. At no point do we give explicit equations for the principal

components Γ±X . However, these can be calculated using the method laid out in

this thesis. In particular, one can take the explicit equations given in Theorem

2.4.11 for the components Γ±s,L in the semistable model of C/L and the Galois

action on these components, and apply [18, Theorem 1.1].

Before we prove this, let us prove a couple of lemmas. Recall that L is

a field over which C has semistable reduction and that Γs,L is the component

associated to a cluster s in the special fibre of the minimal semistable model

Y of C over L.

Lemma 4.1.16. Let s be a principal cluster with gss(s) = 0.

(i) If s = R and s is not übereven (resp. übereven) then Γs,L (resp. each of

Γ+
s,L and Γ−s,L) intersects at least two other components.

(ii) If s 6= R and s is not übereven (resp. übereven) then Γs,L (resp. each of

Γ+
s,L and Γ−s,L) intersects at least three other components.

Proof. (i) Let s = R and suppose s is not übereven. Since gss(s) = 0, s can

have at most two odd children and in particular at most two singletons. Since,

g(C) ≥ 2, we have |s| ≥ 5. If |s| is odd then s must have an even child s′ and,

by Theorem 2.4.11, Γs,L is intersected by the two linking chains to Γs′,L. Note

that, since s is principal, s cannot be the union of two odd clusters. So, if |s|

is even then s has an even child and we are done by Theorem 2.4.11.

If s = R is übereven then every child of s is even. In particular, there are

at least two even children s1 and s2. So, each of Γ±s,L intersects L±s1 and L±s2

(the linking chains to the children).
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(ii) Let s 6= R and suppose s is not übereven. Since s is principal, we

know |s| ≥ 3. Therefore, s must have at least one proper child s′. Suppose

that P (s) is principal. If s′ < s is even then Γs,L intersects the linking chain

to ΓP (s),L and the two linking chains to Γs′,L. Otherwise s must be the union

of two odd clusters, hence s is even. In this case there are two linking chains

to ΓP (s),L and one to Γs′,L. A similar argument works if s is übereven. If

P (s) = R = st s2 is not principal, the argument is similar, but linking chains

to ΓP (s),L are replaced by linking chains to Γs2,L.

Proposition 4.1.17. Let Y be the semistable model of C/L and Z the image

under the quotient map. Let X be the snc model obtained by resolving the sin-

gularities of Z such that all rational chains are minimal. Let X be a principal

orbit of clusters. Let ΓX,K ∈ Xk be the image of Γs,L for some s ∈ X under

the quotient by Gal(L/K). Then if g(ΓX,K) = 0 and (ΓX,K ·ΓX,K) = −1, ΓX,K

intersects at least three other components of the special fibre (i.e. blowing down

ΓX,K would not result in an snc model).

Proof. If |X| > 1, there is a non trivial field extension of K to KX . Over

KX , each s′ ∈ X is fixed by Gal(K/KX). The Galois group Gal(KX/K)

then induces an étale morphism
⊔

s′∈X Γs′,KX → ΓX,K . Therefore, g(ΓX,K) =

g(Γs′,KX ), (ΓX,K · ΓX,K) = (Γs′,KX · Γs′,KX ), and ΓX,K and Γs′,K intersect the

same number of other components. So, it is enough to prove this proposition

when |X| = 1, and from now on let X = {s}. When g(Γs,L) > 0, Riemann-

Hurwitz implies that ∑
P∈Γs,K

(
es

|q−1(P )|
− 1

)
≥ 2es,

where q : Γs,L → Γs,K is the quotient by Gal(L/K). So, if g(Γs,L) > 0, there

must be at least three points P ∈ Γs,K with |q−1(P )| < es. These ramification

points are singular points by Proposition 3.1.4. After blowing up these singular

points, we see that Γs,K intersects at least three other components of Xk.

It remains to deal with the case when g(Γs,L) = 0. If es = 1, Lemma

4.1.16 implies that Γs,K intersects two or more other components. In this case
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Γs,K will have multiplicity es = 1. This tells us that (Γs,K ·Γs,K) < −1, so Γs,K

is not exceptional.

Suppose instead that es > 1. We will show that the component Γs,K

intersects at least three components. There are two branch points P0 and P∞

of the morphism q : Γs,L → Γs,K , the images of xs = 0 and xs =∞ respectively.

Both P0 and P∞ are singularities. If q−1(P0) is an intersection point of Γs,L

with another component Γ then P0 will be the intersection point of Γs,K and

q(Γ)1. Otherwise, blowing up P0 introduces a component intersecting Γs,K .

Similarly for P∞. If s = R then q−1(P∞) will never be an intersection point by

[19, Propositions 5.5, 5.20]. Since Γs,L has two intersection points with other

components Q1 and Q2, either q(Q1) 6= q(Q2), or q(Q1) = q(Q2) 6= P0 (since

|q−1(P0)| = 1). If q(Q1) 6= q(Q2) then these are both intersection points with

other components, hence Γs,K intersects at least 3 components at P∞, q(Q1)

and q(Q2) which are all distinct. If q(Q1) = q(Q2) 6= P0 then P∞, q(Q1) and

P0 are distinct intersection points with other components. A similar argument

works if s 6= R.

We are now able to prove our structure theorem (Theorem 4.1.13).

Proof of Theorem 4.1.13. First let us find which central components appear.

By Theorem 2.4.11, we know there is a component over L for every principal,

non-übereven cluster, and we know the action of Gal(L/K) on these principal

components is the same as the action on the clusters. After taking the quotient

by Gal(L/K), there is a component for every orbit of principal, non übereven

clusters. Similarly over L, by Theorem 2.4.11 there are two components for

every übereven cluster s. These are swapped by inertia if and only if εs(σ) =

−1 for σ a generator of inertia. After taking the quotient this gives us two

components for an übereven orbit X if εX = 1 and a single component if

εX(σ) = −1. Showing which linking chains appear is done similarly, using the

1We may have to blow down q(Γ) but even then P0 will remain an intersection point,

since the eventual linking chain will be minimal. This follows from Lemmas 4.2.3 and 4.2.4

below.
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information given in Theorem 2.4.11.

To ensure these principal components do in fact appear in the minimal snc

model, we must check that they cannot be blown down. Any central component

ΓX,K ∈ Xk is the image of Γs,L ∈ Yk for some s ∈ X. A central component

ΓX,K can only be blown down if g(ΓX,K) = 0, and (ΓX,K ·ΓX,K) = −1. However,

by Proposition 4.1.17, any central component ΓX,K with g(ΓX,K) = 0 and

(ΓX,K · ΓX,K) = −1 intersects at least three other components of the special

fibre. Therefore, if ΓX,K were to be blown down, Xk would no longer be an snc

divisor. So ΓX,K must appear in the special fibre of the minimal snc model.

4.1.3 A More Explicit Description

Theorem 4.1.13 describes the structure of the special fibre, but says nothing

about the multiplicity or genera of the components, or the action of Frobenius.

The following theorems fill in these details. The first focuses on the principal

components, the second describes the chains of rational curves present in the

special fibre, and the last gives the Frobenius action.

Theorem 4.1.18 (Principal Components). Let K and C/K be as in Theorem

4.1.13. Let X be a principal orbit of clusters in Σ. If X is not übereven then

ΓX has multiplicity |X|eX and genus g(X). If X is übereven with εX(σ) = 1

for σ a generator of inertia then Γ+
X and Γ−X have multiplicity |X|eX and genus

0, and if εX(σ) = −1 then ΓX has multiplicity 2|X|eX and genus 0.

Proof. Let X be a principal, non-übereven orbit, and choose some s ∈ X.

Recall that KX is the minimal field extension of K such that the clusters of X

are fixed by Gal(K/KX), and L is the minimal field extension of K such that

C is semistable over L. The image Γs,KX of Γs,L after taking the quotient by

Gal(L/KX) has multiplicity eX , since the action on Γs,L has multiplicity eX

(by Lemma 3.1.26). There are |X| such components, which are permuted by

Gal(KX/K) in the minimal snc model of C/KX . So, ΓX has multiplicity |X|eX
by [32, Fact IV]. The multiplicities of components corresponding to übereven

clusters follows similarly, being careful to account for whether Γ+
s,L and Γ−s,L
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are swapped by Gal(L/K) in the semistable model (which happens precisely

when εs(σ) = −1).

To find the genus of the central components, note that if g(Γs,L) = 0 then

g(ΓX,K) = 0. So let us assume that g(Γs,L) > 0. In this case, as mentioned in

Remark 3.1.22, Γs,L is isomorphic to the special fibre of the smooth model of

Cs̃ over L. Furthermore, the action on Γs,L is the same as the action on Γs̃,L.

Hence, the genus of Γs,KX is g(X), and also the genus of ΓX,K .

Theorem 4.1.19 (Description of Chains). Let K and C/K be as in Theorem

4.1.13. Let X be a principal orbit of clusters with eX > 1. Choose some s ∈ X

of depth ds with denominator bs. Then the principal component(s) associated

to X are intersected transversely by the following sloped tails with parameters

(t1, µ) (writing ΓX = Γ+
X = Γ−X if X is not übereven):

Name From Number t1 µ Condition

T∞ ΓX 1 (g + 1)dR − λR 1 X = {R}, R odd

T±∞ Γ±X 2 −dR 1 X = {R}, R even, εR = 1

T∞ ΓX 1 −dR 2 X = {R}, R even, eR > 2, εR =

−1

Tys=0 ΓX
|ssing||X|

bX
−λX bX |ssing| ≥ 2, and eX > bX/|X|

Txs=0 ΓX 1 −dX 2|X| X has no stable child, λX 6∈ Z,

eX > 2 and either gss(X) > 0 or

X is übereven

T±xs=0 Γ±X 2 −dX |X| X has no stable child, λX ∈ Z,

and either gss(X) > 0 or X is

übereven

T(0,0) ΓX 1 −λX |X| X has a stable singleton or

gss(X) = 0, X is not übereven

and X has no proper stable odd

child

The central components are intersected by the following sloped chains of ratio-
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nal curves with parameters (t1 − δ, t1, µ):

Name t1 δ µ Condition

LX,X′ −λX δX′/2 |X ′| X ′ < X both principal, X ′ odd

L+
X,X′ −dX δX′ |X ′| X ′ < X both principal, X ′ even with εX′ = 1

L−X,X′

LX,X′ −dX δX′ 2|X ′| X ′ < X both principal, X ′ even with εX′ = −1

LX′ −dX 2δX′ |X ′| X principal, X ′ < X orbit of twins, εX′ = 1

TX′ −dX δX′ +
1
µ

2|X ′| X principal, X ′ < X orbit of twins, εX′ = −1

If R is not principal we get additional sloped chains with parameters (t1 −

δ, t1, µ) as follows:

Name t2 δ µ Condition

LR −dR 2δs 1 R a cotwin, s < R child of size

2g, vK(cf ) ∈ 2Z

TR −dR δs + 1
µ

2 R a cotwin, s < R child of size

2g, vK(cf ) 6∈ 2Z

Ls1,s2 (g(s1) + 1)ds1 − λs1
1
2
δs1,s2 1 R = s1 t s2, si principal, odd,

eR = 1

LX (g(s1) + 1)ds1 − λs1
1
2
δs1,s2 2 R = s1 t s2, X = {s1, s2} princi-

pal, odd orbit

L+
s1,s2

ds1 δs1,s2 1
R = s1 t s2, si principal, even,

L−s1,s2 eR = 1, εsi = 1

Ls1,s2 ds1 δs1,s2 2 R = s1 t s2, si principal, even,

eR = 1, εsi = −1

L+
X

ds1 δs1,s2 2
R = s1 t s2, X = {s1, s2}

L−X principal, even orbit, and εsi = 1

TX ds1 δs1,s2 + 1
µ

4 R = s1 t s2, X = {s1, s2} princi-

pal, even orbit, and εsi = −1



4.1. Structure of Special Fibre 94

Lt ds 2δs,t 1 R = stt, s principal even, t twin,

εt = 1

Tt ds δs,t + 1
µ

2 R = stt, s principal even, t twin,

εt = −1

Finally, the crosses of any crossed tail have multiplicity µ
2
.

Proof. Postponed to Section 4.2.

Remark 4.1.20. Let X be a principal orbit of clusters in ΣC . As in Remark

3.2.3, we make a comparison between the rational chains intersecting a central

component, ΓX ∈Xk to the tails in the special fibre of the minimal snc model

XX̃ . This comparison makes sense when g(Γs,L) > 0 for some s ∈ X. The

central component ΓX ∈Xk will have the same genus as the central component

ΓX̃ ∈XX̃,k and multiplicity multiplied by |X|. It will have the same tails (with

all multiplicities multiplied by |X|) except these tails will make up part of the

linking chains intersecting ΓX in the following cases:

(i) If X 6= R and P (X) is principal, an ∞-tail in XX̃,k will form the uphill

section of one of the linking chains L±P (X),X ,

(ii) If X < R and R is not principal, then any ∞-tail in XX̃,k will form

the uphill section of a chain: the linking chain between Γs1 and Γs2 if

R = s1ts2 andX = {s1}; the crossed tail ifR = s1ts2 andX = {s1, s2};

and the loop or crossed tail arising from R if R is a cotwin,

(iii) a (ys = 0)-tail will form the downhill section of a linking chain LX,X′ if

there exists some X ′ < X, a non-trivial orbit of odd, principal children,

(iv) a (xs = 0)-tail will form the downhill section of a linking chain L±X,X′ if

there exists some {s′} = X ′ < X, a stable even child,
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(v) a (0, 0)-tail will form the downhill section of a linking chain LX,X′ if there

exists some {s′} = X ′ < X, a stable odd child.

where again, all multiplcities are multiplied by |X|.

We finish with a description of the Frobenius action on the components

of the minimal snc model (or equivalently, on the dual graph).

Theorem 4.1.21 (Frobenius Action). Let K be a local field and let C/K be

a curve with tame reduction and minimal snc model C over OKur. Then the

Frobenius automorphism, Frob, acts on the components of C as:

(i) Frob(Γ±X) = Γ
±εX(Frob)
Frob(X) ,

(ii) Frob(L±X, X′) = L
±εX′ (Frob)

Frob(X), Frob(X′),

(iii) a loop LX is sent to εX(Frob)LFrob(X), a crossed tail TX to εX(Frob)TFrob(X),2

(iv) tails are permuted as Frob(T±∞) = T
±εX(Frob)
∞ , Frob(T±xs=0) = T±1v(cX )

xs=0 ,

and (ys = 0)-tails are permuted as the corresponding roots of the cluster

pictures are.

Proof. Let C have semistable reduction over a Galois extension L of K, and

let Y be the minimal semistable model of C over Lur. Then Frob acts on the

components of Yk as required by Theorem 2.4.11. Let Z be the quotient of

Y be Gal(Lur/Kur). By considering G-invariant open affines, we see that the

following square commutes:

Y Y

Z Z

q

Frob

q

Frob

So Frob permutes the components of Z as required. Since all central

components are components of Z , this proves (i).

It remains to show that, after resolving the singularities on Z , Frobenius

acts on the components as desired. Consider a single blow up of an ideal sheaf
2−LX is same loop but with reversed orientation. −TX is the same crossed tail but with

crosses swapped.
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I corresponding to an orbit of points under Frobenius. Denote the resulting

scheme Z ′. The Frobenius automorphism on Z extends to an automorphism

on Z ′, which must also be induced by Frobenius. Note that the exceptional

components of Z ′ are permuted by Frobenius in the same way as the corre-

sponding singularities of Z are. So it is sufficient to show that Frobenius acts

on the singularities of Z as expected.

The action on singularities on linking chains is determined by the action

on the rest of the linking chain. The action on the linking chain is entirely

determined by the action on the central components they link, except in the

case that there are two linking chains between central components. In this

case, they are swapped if and only if εX(Frob) = −1. This follows from [19,

Theorem 8.15] and the commutative square above. This proves (ii). Loops

and crossed tails can be dealt with similarly to prove (iii).

If there are two infinity tails, the singularities they arise from are the

images of two points at infinity of a component of Yk (see the proof of Theorem

4.1.13). Points at infinity of a component Γs of Yk, arising from a cluster s,

are swapped by Frobenius if and only if εs(Frob) = −1. This proves the first

condition of (iv). The singularities giving rise to (ys = 0)-tails are images of

roots of f(x), and those giving rise to (xs = 0)-tails are images of the points

(0,±√cX), hence (iv).

4.1.4 Examples

We present some examples to illustrate the theorem. So far all examples we

have given have had principal top cluster; here we also provide examples with

R not principal.

Example 4.1.22. This table shows Xk, of the minimal snc model X for

the different Kodaira-Néron types of elliptic curves with tame potentially

semistable reduction (for which it is sufficient to take p ≥ 5). Our table

differs from the table found in [42, p 365], where instead the special fibers of

the minimal regular models for the different types of elliptic curves are shown.

This makes a difference for type II, III or IV elliptic curves, whereas for all the
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other types the minimal regular model is snc. These special fibres can be read

off straight from Theorems 4.1.13 and 4.1.19: one does not need to follow any

laborious algorithm.

Type Cluster Picture Xk

I0 0
1 g1

In n/2
0

1

1

. . .
n-gon
. . .

1

1

II 1/3

6

3 2 1

III 1/2

4

1 2 1

IV 2/3

3

1 1 1

I∗0 1

21 1 1 1

I∗n (n+ 1)/2
1

2

2 . . .n 2

2

1 1 11

IV∗ 4/3

3
2 1 2 1 2 1

III∗ 3/2

4

2 3 2
1

3 2
1

II∗ 5/3

6

3 4 2 5 4
32

1

Table 4.3: Kodaira-Néron types of elliptic curves with p ≥ 5.
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Example 4.1.23. Let C over K = Qur
p for p ≥ 5 be the hyperelliptic curve

given by C : y2 = f(x) = (x3 − p2)(x4 − p11). The cluster picture of C/K

consists of two proper clusters R and s, shown in Figure 4.2a. The special

fibre Xk of the minimal snc model X of C/K is shown in Figure 4.2b.

11/4
s

2/3

R

(a) Cluster picture ΣC/K .

42 3

2 1

1

3

2 1

1
3

1

(b) Special fibre of the minimal snc model

of C/K.

Figure 4.2: C : y2 = (x3 − p2)(x4 − p11) over K = Qur
p .

Define elliptic curves C1 and C2 over K by C1 : y2 = f1(x) = x3 − p2 and

C2 : y2 = p2f2(x) = p2(x4 − p11) respectively. Note that f(x) = f1(x) · f2(x).

The roots of f1(x) contribute the roots inR s, and the roots of f2(x) contribute

the roots in s. The coefficient in the defining equation of C2 is chosen to

somehow “see” the roots of f1. It is interesting to compare the minimal snc

models of Ci to that of C for i = 1, 2. Note that C1 and C2 are type IV and

type III∗ elliptic curves respectively, as shown in Table 4.3. It appears that

the roots of f1 and f2 are making their own contributions to Xk, as both the

special fibres of the minimal snc models of Ci can be seen as “submodels” of

Xk for i = 1, 2. This shows how R and s each make their own contribution

to Xk. Since s is an even child of R, and εs = 1, there are two linking chains

between their contributions in Xk .

Example 4.1.24. Let K = Qur
p for p ≥ 5, and C/K be the hyperelliptic curve

given by C : y2 = (x3 − p4)((x− 1)3 − p17)((x− 2)3 − p13).

The central components of the minimal snc model of C (Figure 4.3b),

which arise from clusters in ΣC/K (4.3a), are labeled. Note that R contributes

components to the model which look like those appearing in the minimal snc

model of a type I0 elliptic curve; s1 those of a type IV∗ elliptic curve; s2 those

of a type II∗ elliptic curve; and s3 those of a type II elliptic curve. The special
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4/3

s1

17/3

s2

13/3

s3

0

R

(a) Cluster picture ΣC/K .

1 g1
ΓR

23
Γs1

2
1

2
1

1 1
2 3

4
56

Γs234 2

1

1 6
Γs3

3 2

(b) Special fibre of the minimal snc model

of C/K.

Figure 4.3: C : y2 = (x3 − p4)((x− 1)3 − p17)((x− 2)3 − p13) over K = Qur
p .

fibers of the minimal snc models of these Kodaira types are all shown in Table

4.3 in Example 4.1.22. This reflects the general phenomenon discussed in

remark 4.1.20 that the chains intersecting a central component arising from a

cluster s “correspond” to the tails of a hyperelliptic curve constructed from s.

Example 4.1.25. Let C : y2 = ((x2 − p)2 + p4) ((x− 1)2 − p3) be a hyperel-

liptic curve over K. Note that t1 and t2 are swapped by Gal(K/K) and denote

their orbit by X. This is a hyperelliptic curve of Namikawa-Ueno type II2−4

as in [38, p. 183]. Note s is übereven and εs = 1, hence s gives rise to two

components; X is an orbit of twins with εX = 1, so gives rise to a linking

chain, and R is a cotwin (Definition 2.2.13) so gives rise to a linking chain.

Also es = 2 so Γ±s are both intersected by tails.

Example 4.1.26. Let C/K be the hyperelliptic curve given by C : y2 =

x(x2− p) ((x− 1)3 − p2). This is a curve of Namikawa-Ueno type IV − III− 0

as in [38, p. 167]. Observe that R is not principal so gives rise to a linking

chain between Γs1 and Γs2 .

4.2 The Proof
To prove Theorem 4.1.19, we will proceed by induction on two things: the

number of proper clusters in ΣC/K , and the degree e = [L : K] of the minimal

extension L/K such that C/L is semistable. The base cases for these are when
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(a) Cluster picture ΣC/K .
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LX

1 1
Lt3

(b) The special fibre of the minimal snc

model of C/K.

Figure 4.4: C : y2 = ((x2 − p)2 + p4)((x − 1)2 − p3) over K = Qur
p , whose

minimal snc model is reminiscent of a hot tub, according to a friend of the

author’s.
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0

R

(a) Cluster picture ΣC/K .

4
Γs1

1 2

1

3
Γs2

1 1

(b) Special fibre of the minimal snc model

of C/K.

Figure 4.5: C : y2 = x(x2 − p)((x− 1)3 − p2) over K = Qur
p .

ΣC/K consists of a single proper cluster (which is covered in Section 3.1, in

particular Theorem 3.1.1 and Proposition 3.1.12), and when C has semistable

reduction over K i.e. e = 1 (which is covered in Section 2.4).

The proof itself is split into two sections: the first when the top cluster

R is principal, and the second when it isn’t. The second is technically not

needed, as there is always a Möbius transform to take a hyperelliptic curve to

an isomorphic one whose cluster picture has a principal top cluster. However,

many of the hyperelliptic curves encountered in the wild (such as many genus

2 curves) have a non-principal top cluster. Proving the theorem in this way

allows us to explicitly describe the minimal snc model of such curves without

having to make a Möbius transform.
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4.2.1 Principal Top Cluster

We start by assuming that the top cluster R is principal, and that it has a

inertia invariant proper child s. We will calculate the tails of Γ±R,K and, if

s is principal, Γ±s,K . We will also calculate the linking chain(s) (or the chain

arising from s if s is a twin) between them. This will be done by comparing

the linking chain(s) to those in the special fibre of the minimal snc model of

another hyperelliptic curve over K, which we will call Cnew. We will write

Cnew : y2 = fnew(x), and denote the set of roots of fnew over K by Rnew.

The curve Cnew/K is chosen so that ΣCnew/K has a unique proper cluster

snew 6= Rnew, enabling us to apply the results of Section 3.2. We will then use

induction to deduce the components of the model arising from the subclusters

of s. Finally, we will remove the assumption that s is inertia invariant.

Lemma 4.2.1. Let R be principal and suppose that eR > 1. The tails of the

central component(s) associated to R are as described in Theorem 4.1.19.

Proof. First suppose that R is not übereven. Let Y be the semistable model

of C/L and consider ΓR,L ⊆ Y . The stabiliser of R has order eR. Under the

quotient map, a Galois orbit T of points of ΓR,L gives rise to a singularity on

ΓR,K lying on precisely one component of ZK if and only if |T | < eR and the

points of T lie on ΓR,L and no other components of Yk.

Suppose that g(ΓR,L) = 0. There are only two orbits with size less than

eR, which after an appropriate shift we can assume are at xR = 0 and xR =∞.

The point at ∞ certainly lies on no other component of Yk by [19, Proposi-

tions 5.5,5.20], so ΓR,K will always have∞-tails. By Theorem 2.4.11, the point

xR = 0 lies on no other component of Yk if and only if R has no stable proper

odd child. This is because if s < R is a stable odd child then LR,s intersects

ΓR,L at xR = 0, however no other linking chain to a child will ever intersect

ΓR,L at xR = 0. Therefore ΓR,K will have a (0, 0)-tail if and only if it has no

stable proper odd child. The description of the tails follows.

Suppose instead that g(ΓR,L) > 0. The orbits of points on ΓR,L of size less

than eR are the same as the small orbits of points on ΓR̃,L, which are described
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in Lemmas 3.1.8 - 3.1.11. To complete the description, we must calculate when

these small orbits are intersection points with other components. We do this

using the explicit description of the components of Yk given in Theorem 2.4.11

and how they glue in [19, Proposition 5.5]. From this, we can deduce that

the points at ∞ never lie on a component other than ΓR,L, (ys = 0)-orbits

are intersection points if and only if s has a non-trivial orbit of proper odd

children, (xs = 0)-orbits are intersection points if and only if s has a stable

even child, and the (0, 0)-orbit is an intersection point if and only if R has a

proper stable odd child.

Now suppose R is übereven. Then each Γ±R,L has two orbits of size less

than eR, {xR = 0} and {xR = ∞}. The points at ∞ do not lie on any other

components of Yk. The points at 0 lie on no other component of Yk if and

only if R has no stable child. So, Γ±R,K has a (xs = 0)-tail if and only if R

does not have a stable child. The description of the tails follows.

Lemma 4.2.2. Let s < R be a principal, Galois invariant cluster with es > 1.

Then the tails intersecting the central component(s) assosciated to s are as

described in Theorem 4.1.19.

Proof. The proof is similar to that of the previous lemma, noting that all of

the orbits at infinity are the intersection points of Γ±s,L and the linking chain

between Γ±R,L and Γ±s,L.

Following is a technical lemma allowing us to compare the chain(s) ap-

pearing between ΓR,K and Γs,K to those of a simpler curve Cnew.

Lemma 4.2.3. Let s1, s2 be two inertia invariant principal clusters (resp. a

principal cluster and a twin) such that either s2 < s1, or R = s1 t s2 is not

principal. Then any linking chain between Γ±s1,K and Γ±s2,K (resp. the chain of

rational curves arising from s2 intersecting Γ±s1,K) is determined entirely by λsi
mod Z, the parity of |s2|, dsi, and when R is not principal dR.

Proof. Assume that both si are principal, inertia invariant clusters. From

Section 2.3, a linking chain between Γ±s1,K and Γ±s2,K is completely determined
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by the length and number of linking chains between Γ±s1,L and Γ±s2,L, the order

of the action of Gal(L/K) on any individual component of a linking chain

between Γ±s1,L and Γ±s2,L, and the nature of the singularities at the intersection

points of components after taking the quotient. Recall from Theorem 2.4.11

that there is one linking chain, say C, between Γ±s1,L and Γ±s2,L if s2 is odd and

two linking chains, say C+ and C−, if s2 is even. We will write C = C+ = C−

if s2 is odd. Theorem 2.4.11 tells us that the length of C± is determined by

δ(s1, s2), which is given in terms of ds1 and ds2 (and dR in the case where

R = s1 t s2 is not principal).

Let P be an intersection point of components E1, E2 ∈ {Γs1,L,Γs2,L, C±},

and σEi the induced Gal(K/K) action on Ei for a generator σ ∈ Gal(L/K).

Suppose σaE1
, and σbE2

, generate the stabilisers of P in E1 and E2 respectively.

Then q(P ) is a tame cyclic quotient singularity with parameters

n = gcd(o(σaE1
), o(σbE2

)), r =


d−aE1

dbE2

n2 s2 even,
λ−aE1

λbE2

n2 s2 odd,

m1 = o(σaE1
)/n, and m2 = o(σbE2

)/n,

where o(τ) is the order of τ ∈ Gal(L/K). In other words, the tame cyclic quo-

tient singularity is determined entirely by the automorphisms on the Ei and

the parity of s2. Therefore, since the automorphisms on Ei are determined en-

tirely by the invariants in the statement of the theorem (by [19, Theorem 6.2]),

we are done. The case where s2 is a twin follows similarly.

For the following lemma we first need some notation. Recall that a child

of s ∈ ΣC/K is stable if it has the same stabiliser as s. Let ŝf denote the set of

stable children of s, and ŝnf denote the set of unstable children of s.

Lemma 4.2.4. Let C/K be a hyperelliptic curve with R principal, and let

s < R be a Galois invariant proper child. We can construct a hyperelliptic

curve, Cnew, such that the cluster picture ΣCnew of Cnew consists of two proper

clusters snew < Rnew, where |s| ≡ |snew| mod 2, dR = dRnew , ds = dsnew and

λR − λRnew , λs − λsnew ∈ Z.
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Proof. Let Cnew be the hyperelliptic curve over K defined by Cnew : y2 =

cffRfs, where

fR =


∏

s6=o∈R̃

(x− zo) |R̃ s| ≥ 2,

π
|R̂ R̃|dR
K

∏
s6=s′<R

(x− zs′) otherwise,

fs =



∏
o∈R̃

(x− zo) |̃s| ≥ 2,

∏
o∈s̃f

(x− zo)
∏
s′∈ŝnf

(x− zs′) |̃s| ≤ 1 and |̂snf | even,

∏
o∈s̃f

(x− zo)
∏
s′∈ŝnf

(x− zs′)(x+ zs′) |̃s| ≤ 1 and |̂snf | odd.

It is clear that ΣCnew/K consists of proper two clusters which we will call Rnew

and snew, where Rnew consists of the roots of fR · fs, and snew consists of the

roots of fs. It follows that snew < Rnew. It remains to check how the cluster

invariants of Rnew and snew compare to those of R and s. Since any root

in a cluster can be taken as its center, it is immediate that dR = dRnew and

ds = dsnew . By comparing deg(fs) to |s| we see that |s| ≡ |snew| mod 2.

It remains to check that λR−λRnew , λs−λsnew ∈ Z. Let us begin with the

first. By construction, snew is odd if and only if s is. Therefore, if |R̃ s| ≥ 2

it follows that λRnew = λR. Else,

2(λRnew − λR) = vK(cf ) + |R̂|dR + |R̂ R̃|dR − vK(cf )− |R̃|dR = 2|R̂ R̃|dR.

If dR ∈ Z, then clearly λRnew−λR ∈ Z. Otherwise, dR 6∈ Z. By Lemma 2.2.18,

the children of R must lie in orbits of size bR > 1. Therefore, any such orbit

must be an orbit of even children of R, since s is fixed and there is at most

one child not equal to s. Hence, |R̂ R̃|dR ∈ Z, and so λRnew − λR ∈ Z. It can

be checked similarly that λsnew − λs ∈ Z.

By the above lemmas and Theorem 3.2.1, we have proved the statements

in Theorem 4.1.13 about the linking chain(s) between Γ±s,K and Γ±R,K where

s < R is a inertia invariant proper child.



4.2. The Proof 105

We now turn our focus to the components of Xk which arise from s and

its subclusters. In order to do this, we construct another new hyperelliptic

curve, which we shall call C ′, given by

C ′ : y2 = c′f
∏
r∈s

(x− r), where c′f = cf
∏
r 6∈s

(zs − r). (4.1)

Note that C ′ is also semistable over L, and let Y ′ be the semistable model of

C ′ over L. Comparing the cluster pictures of C ′ and C, we see that the cluster

picture ΣC′ appears within the cluster picture ΣC of C. This is illustrated in

Figure 4.6. In particular, s and all of its subclusters in ΣC are drawn in solid

black in Figure 4.6a. These are exactly the clusters that make up ΣC′ , also

shown in solid black.

. . .
s

. . .

R

(a) Cluster picture ΣC .

. . .

(b) Cluster picture ΣC′ .

Figure 4.6: Comparison of the cluster pictures of C and C ′

The leading coefficient of C ′ has been chosen so that the corresponding

clusters in ΣC and ΣC′ have the same cluster invariants. Therefore, there is a

closed immersion Y ′
k → Yk which commutes with the action of Gal(K/K). We

can see this by calculating the explicit equations of the components of Y ′ and

using the explicit Galois action on these components given in Theorem 2.4.11.

Therefore, this immersion also commutes with the quotient by Gal(L/K).

After taking this quotient by Gal(L/K), and performing any appropriate

blow ups and blow downs, we obtain a closed immersion X ′
k T∞ →Xk, where

X ′ is the minimal snc model of C ′/K and T∞ is the set of infinity tails of X ′
k .

We remove the infinity tails since in the small distance case (see Section 3.2.4)

the whole tails do not appear in Xk. By our inductive hypothesis we can

calculate X ′
k . This gives us a full description of the components of Xk which

arise from the subclusters of s.
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(a) Special fibre Yk, of the minimal

snc

model of C/L.

(b) Special fibre Y ′k , of the minimal

snc model of C ′/L.

Figure 4.7: Comparison of the special fibres of the minimal snc models of C

and C ′

Finally let us remove the assumption that s is Gal(K/K) invariant. Let

X < R be a non-trivial orbit of children. Extend K by degree |X| to the field

KX , the minimal extension such that each cluster in X is fixed by Gal(K/KX).

By our inductive hypothesis (since C/KX needs an extension of degree strictly

less than C/K does in order to have semistable reduction), we can calculate the

minimal snc model of C over KX , which we denote XX . Since each cluster of

X is fixed by Gal(L/KX), there is a divisor Ds corresponding to every cluster

s ∈ X and all of the subclusters of s. Let DX =
⋃

s∈X Ds be the union of these

divisors. Since Gal(KX/K) simply permutes these divisors, the quotient by

Gal(KX/K) is an étale morphism, and the image of DX consists of precisely

the same components as Ds for some s ∈ X, but with all the multiplicities

multiplied by |X|. See Figure 4.8 for an illustration. This concludes the proof

when R is principal.

µ

Ds1 Ds2 Ds3

. . .

Dsl

q

quotient
|X|µ

q(DX)

Figure 4.8: Divisors Dsi , where X = {s1 . . . , sl}, are permuted by

Gal(KX/K).
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4.2.2 Non-Principal Top Cluster

Now suppose that R is not principal. If R is a cotwin, then the contribution

to the special fibre of the minimal snc model from R can be deduced using

Remark 3.2.3 and Lemmas 4.2.3 and 4.2.4. The contribution of s < R, the

child of size 2g, can be calculated by induction using a curve C ′ as in (4.1)

above.

If R is not principal and not a cotwin then R is even and the union of

two proper children. In this case, we will write R = s1 t s2. Here the si are

either fixed or swapped by inertia. We will deal with the case when si are

swapped at the end of this section, so for now suppose that both si are fixed

by inertia. The first of these lemmas shows that there is a Möbius transform

taking a certain class of curves with R not principal to the curves we studied

in Section 3.2.

Lemma 4.2.5. Let C/K be a hyperelliptic curve with cluster picture ΣC/K,

and set of roots R.

(i) Let s ∈ ΣC/K be a cluster with centre zs. Write every root r ∈ s as

r = zs + rh, where vK(rh) ≥ ds. Then there exists at most one r ∈ s such

that vK(rh) > ds.

(ii) If R = s1 t s2 with dR ≥ 0, where s1 and s2 are both fixed by Gal(L/K),

have no proper children, and zs1 = 0. Then the Möbius transform ψ :

r 7→ 1
r
takes C to a new curve CM which has cluster picture ΣM =

{RM = s1,M , s2,M}, with s1,M = {1
r

: 0 6= r ∈ s1}, s2,M = {1
r

: r ∈ s2},

ds1,M = −ds1 and ds2,M = ds2 − 2dR.

Proof. (i) Suppose there are two roots r and r′ such that vK(rh), vK(r′h) > ds.

Then ds = vK(r − r′) = vK(rh − r′h) ≥ min(vK(rh), vK(r′h)) > ds.

(ii) Since zs1 = 0, we have that vK(r) = ds1 for any 0 6= r ∈ s1. Note also

that, vK(zs2) = dR, hence vK(r) = dR for any r ∈ s2. The statement then

follows from the fact that vK
(

1
x
− 1

y

)
= vK(x− y)− vK(x)− vK(y).
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Remark 4.2.6. Note that δs1,M = δs1 + δs2 , λs1,M = λs1 − (g(s) + 1)ds and

λs2 − λs2,M = (|s1| − |s2|)dR ∈ 2Z.

The next lemma is analogous to Lemma 4.2.4, it constructs a new curve,

which we will again call Cnew, to which we can apply Lemma 4.2.5. This will

allow us to calculate the linking chain(s) between Γ±s1 and Γ±s2 , by using Lemma

4.2.3.

Lemma 4.2.7. Let R = s1 t s2 with si both fixed by Galois. Then there exists

a hyperelliptic curve Cnew : y2 = fnew(x) whose set of roots of fnew we denote

by Rnew, such that Rnew = snew
1 t snew

2 , where snew
i has no proper children,

|si| − |snew
i | ∈ 2Z, dsi = dsnew

i
and λsi − λsnew

i
∈ Z for i = 1, 2.

Proof. For i = 1, 2 define

fsi =



∏
o∈s̃i

(x− zo) g(Γsi,L) > 0,

∏
o∈ŝif

(x− zo)
∏

s′∈ŝinf

(x− zs′) g(Γsi,L) = 0 and |ŝinf | even,

∏
o∈ŝif

(x− zo)
∏

s′∈ŝinf

(x− zs′)(x+ zs′) g(Γsi,L) = 0 and |ŝinf | odd.

Let fnew = cffs1fs2 , so Cnew : y2 = cffs1fs2 . Proving this satisfies the condi-

tions in the statement of this lemma is similar to the proof of Lemma 4.2.4.

So, if R is not principal and a union of two clusters si which are fixed by

inertia then, by Lemma 4.2.7, Lemma 4.2.3, and Lemma 4.2.5, we know now

the linking chain(s) between Γ±s1 and Γ±s2 . We can calculate the components

associated to si and its subclusters by induction, constructing a curve as in

(4.1). Therefore this gives us the full special fibre of minimal snc model of

C/K when R = s1 t s2 is not principal and si are fixed by inertia.

It remains to consider the case when R = s1ts2 is not principal and si are

swapped by inertia. This is solved by extending the fieldK toKX , an extension

of degree two. Here, C/KX has a non principal top cluster R′ = s′1t s′2, where

s′i are both proper clusters, and are fixed by Gal(K/KX). So we can apply
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the above lemmas to find the special fibre of the minimal snc model of C/KX .

Taking the quotient by Gal(KX/K), which we know how to do by Section 2.3,

gives the special fibre of the minimal snc model of C/K. This completes the

cases when R is not principal.

Proof of Theorem 4.1.11. We are done by combining the theorems proved in

the rest of the section.



Chapter 5

Local Solubility

An important application of regular models of curves concerns finding K-

rational points, as there is an intimate connection between the k-rational points

of the special fibre and the K-rational points of the generic fibre. If K is

henselian (which for us it always is), we can lift k points of the special fibre to

the generic fibre.

In this section we present a condition for hyperelliptic curve C to have

a K-rational point in terms of the cluster picture of C. This allows us to

straightforwardly check whether a given curve has a K-rational point without

explicitly calculating the model. In addition we can check whether families of

hyperelliptic curves (classified by their cluster picture) have K-rational points.

With additional work to calculate what proportion of hyperelliptic curves have

a given cluster picture (which has been done for elliptic curves in [13] and genus

1 curves in [8]), this would allow us to find the proportion of hyperelliptic curves

(of a given genus) which have a K-rational point.

5.1 The Condition
Lemma 5.1.1. Let C : y2 = f(x) be a hyperelliptic curve with tame reduction

over a local field K and let C be a regular snc model of C. Suppose that the

residue field of K has size q > 2(g(C)2 − 1). Then any smooth component Γ

of the special fibre which is fixed by Frobenius has a smooth k-rational point.

Proof. Assume f has odd degree, since the even case is dealt with similarly.
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Note that any smooth component fixed by Frobenius must be defined over

k. The Hasse-Weil bound then states that |#Γ(k)− (q + 1)| ≤ 2g(Γ)
√
q, and

hence Γ(k) is non-empty if q > 2(g(Γ)2 − 1). Since g(Γ) ≤ g(C), we are done

if C is a smooth model.

Now assume C is a semistable model. If Γ is genus 0 then it has k-points,

so assume it has positive genus and comes from a principal cluster s. Let I be

the number of intersection points of other components. Then Γ has a smooth

k-rational point if q − I > 2(g(Γ)2 − 1), and hence it has a smooth k-point

if 2g(C)2 − I > 2g(Γ)2. Suppose s = R is odd, and that s has ss children

of size 1, so proper odd children and se proper even children. Then by [19,

Theorem 8.5], I = so + 2se and 2g(Γ) + 1 = so + ss. We also know that

2g(C) + 1 = deg(f) ≥ ss + 2se + 3so. Putting these together the result follows,

and similarly if s is even or s 6= R

Now assume C has tame reduction. A similar argument works using [22,

Theorem 7.12,7.18], noting that since Γ is a smooth component it has es = 1

and its only intersection points are loops or linking chains to other principal

components.

Proposition 5.1.2. Let X/K be a curve over a field K with residue field k of

size q > 2(g(C)2 − 1) and let X be a regular snc model of X. Then X has a

K-rational point if and only if Xk has a component of multiplicity 1 which is

fixed by Frobenius and has a k-rational point.

Proof. By [29, Corollary 9.1.32] there is a reduction map red : X(K)→Xk(k)

landing in the smooth locus of Xk, which is onto since K is henselian. There-

fore X(K) is empty if and only if smooth locus of Xk(k) is empty. Since the

smooth locus of Xk(k) consists of points lying on components of multiplicity

1 fixed by Frobenius, the result follows.

Theorem 5.1.3. Let C be a hyperelliptic curve with tame reduction over a

local field K and let C be the minimal snc model of C. If R is principal, then

Ck has a component of multiplicity 1 fixed by Frobenius precisely if at least one

of the follow occurs:
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(i) there is a principal cluster s fixed by Gal(K/K) with es = 1, and if in

addition s is übereven, the character εs is trivial on Gal(K/K);

(ii) there is a principal cluster s fixed by Gal(K/K) (and εs trivial if s

übereven) with es > 1 and at least one of the following:

(a) s = R and either R is odd or R is even and εR is the trivial

character,

(b) s has a stable child of size 1 or g(s) = 0, s is not übereven and s

has no proper stable odd child,

(c) s has no stable proper child, λs ∈ Z, vK(cs) is even and either

g(s) > 0 or s is übereven,

(d) the children of size 1 of s are fixed by Gal(K/K);

(iii) there is a pair of principal clusters s′ < s, both fixed by Gal(K/K), either

with s′ odd and [−λs − δs′/2,−λs] ∩ Z 6= ∅, or s′ even, the character εs′

trivial on Gal(K/K) and [−ds′ ,−ds] ∩ Z 6= ∅;

(iv) there is a twin t fixed by Gal(K/K) and either:

(a) the character εt is trivial and [−dt,−dP (t)] ∩ Z 6= ∅,

(b) the character εt is trivial on inertia, εt(Frob) = −1, dt ∈ Z and

νt ∈ 2Z or,

(c) the character εt is non-trivial on inertia and vK(ct) even;

If R is not principal, then Ck has a component of multiplicity 1 fixed by Frobe-

nius in the additional following cases:

(v) there is a cotwin s < t fixed by Gal(K/K) and either:

(a) the character εt is trivial and [−ds,−dt] ∩ Z 6= ∅,

(b) the character εt is trivial on inertia, εt(Frob) = −1, dt ∈ Z and

νt ∈ 2Z or,

(c) the character εt is non-trivial on inertia and trivial on Frobenius;
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(vi) the top cluster R = s1 t s2 is not principal and either:

(a) s1 is odd, fixed by Gal(K/K) and [−λR − δs1/2,−λR] ∩ Z 6= ∅,

(b) s1 is odd, fixed by inertia but not Frobenius and dR ∈ Z,

(c) s1 is odd, inertia swaps s1 and s2 and εR(Frob) = 1,

(d) s1 is even, fixed by Gal(K/K), εs1 is trivial and [−ds1 ,−dR]∩Z 6= ∅,

(e) s1 is even, fixed by inertia but not Frobenius, εs1 is trivial and dR ∈

Z,

(f) s1 is even, inertia swaps s1 and s2, εs1 is trivial and εR(Frob) = 1.

Proof. For brevity, call components of multiplicity 1 which are fixed by Frobe-

nius good. If C has a good component, it must either by a principal compo-

nent of part of a chain of rational curves. We investigate these cases sepa-

rately, beginning with principal components. The principal components are

parametrised by principal clusters1, and by Theorem 4.1.18 a good component

must come from a principal cluster s fixed by Galois. In addition, s must have

es = 1, i.e. ds ∈ Z and νs ∈ 2Z, and if s is übereven, the character εs must be

trivial. In all these cases we do indeed have a good component. This is case

(i).

We are left to find the cases where there is a good component in a chain

of rational curves. Chains of rational curves appear in several flavours: linking

chains between principal components, loops from a principal component to

itself, and tails (including the crosses of crossed tails). A principal cluster s

fixed by Galois with es > 1 contributes tails to the special fibre. If s = R

then the ∞-tails will have a good component if R is odd or if R is even

and the character εR is trivial by the first three rows of the first table in

Theorem 4.1.19, noting that εR(Frob) swaps the ∞-tails if and only if it is

−1 by Theorem 4.1.21. If s is a general principal cluster then a (0, 0)-tail will

always have a good component. An (xs = 0)-tail will have a good component

1Except in crossed tails but these always have even multiplicity.
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so long as λs ∈ Z and vK(cs) — the former ensures that there are two (xs = 0)-

tails by Theorem 4.1.11 and the latter that they are fixed by Frobenius, by

Theorem 6.3.3. A (ys = 0)-tail will have a good component if and only if the

singletons of s are fixed by Galois. This is case (ii).

Suppose L is a linking chain arising from a pair of orbits X ′ < X. By The-

orem 4.1.19, the lowest common multiple of multiplicities of the components of

L is |X ′|, so X = s, X ′ = s′ must be clusters fixed by Galois. If s′ is odd then

L has a good component if and only if [−λs− δs′/2,−λs]∩Z 6= ∅. See Remark

2.5.15 for more details. If s′ is even then L has a good component if and only

if εs′ is trivial and [−ds′ ,−ds] ∩ Z 6= ∅. This is because σ ∈ Gal(K/K) swaps

the two linking chains connecting Γs,L and Γs′,L if and only if εs′(σ) = −1 This

is case (iii).

Now suppose L is a loop arising from an orbit of twins. By the same

argument as above, this must in fact arise from a twin t fixed by Galois with εt

trivial on inertia. If εt is further trivial on Frobenius then L will have a good

component if and only if it has a component of multiplicity 1, which occurs

precisely when [−dt,−dP (t)] ∩ Z 6= ∅. If εt(Frob) = −1 then Frobenius inverts

the loop, but there can still be a component fixed by Frobenius if L is a loop

of odd length. This happens precisely when dt is an integer.

If T is instead a crossed tail, it must arise from a twin t fixed by Galois

with εt non-trivial on inertia. In this case, the crosses of T have multiplicity

1, and by Theorem 6.3.3 they are fixed by Frobenius if and only if vK(ct) is

even. This and the previous paragraph is case (iv).

Cases (v) and (vi), where R is a non-principal cluster, are dealt with

similarly.

Corollary 5.1.4. Let C be a hyperelliptic curve with tame reduction over a

local field K with residue field k of characteristic p > 2. Suppose that |k| = q

is such that q > 2(g(C)2 − 1). Then C has a K-rational point in precisely the

cases described in Theorem 5.1.3.
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Proof. By Lemma 5.1.1, any smooth components of the special fibre fixed by

Frobenius have a k-point. By Theorem 5.1.3, a smooth component fixed by

Frobenius exists and hence by Proposition 5.1.2 C has a K-rational point.

5.2 Examples
We give some examples to illustrate our theorem. All curves are over Qp, with

p > 5 so that all multiplicity 1 components of the special fibre which are fixed

by Frobenius have points.

Example 5.2.1. Let C : y2 = (x4 − p17)(x3 − p2). We immediately observe

that R is principal, odd and eR > 1, so C must have a K-rational point by

condition (ii)(a).

Example 5.2.2. Let C : y2 = p(x6 − p2). The cluster picture of C consists

of a unique principal cluster s of depth 1/2. Therefore, es > 1 and condition

(i) is not satisfied. Conditions (iii)-(vi) are clearly not satisfied, so we are left

to check condition (ii). The character εR(σ) = (−1)vK(cf ) for σ a generator of

inertia, and in this case vK(cf ) = 1 and so εR is non-trivial and (ii)(a) is not

satisfied. Since s has no stable singleton, it has no (0, 0)-tail by Theorem 4.1.19

and λs 6∈ Z so it has a unique xs = 0-tail. Therefore (ii)(b) and (c) are not

satisfied. Galois acts non trivially on the singletons of s, and so finally (ii)(d)

is not satisfied. Therefore C has no K-rational point. Indeed, the minimal snc

model of C, shown below, has no component of multiplicity 1 and so certainly

C cannot have a K-rational point.

1
2

R 6

4
2 33

2

Figure 5.1: Cluster picture and minimal snc model of C : y2 = p(x6 − p2).

Example 5.2.3. Let C : y2 = p((x− 1)2 + p2)((x− ζ3)2 + p2)((x− ζ2
3 )2 + p2),

with p ≡ −1 mod 3 and ζ3 a fixed cube root of unity. The cluster pic-

ture of C is shown below. There is a unique principal cluster R, which is
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übereven. However, eR = 2 and εR(σ) = (−1)vK(cf ) = −1 for σ a generator of

Gal(Qp(
√

2)/Qp) and so εR is non-trivial. Therefore condition (i) and (ii) are

not satisfied. Since there is only 1 principal cluster (iii) is not satisfied. There-

fore we are left to check (iv). But the three twins are permuted by Frobenius

and hence (iv) is not satisfied. Therefore C has no K-rational points. This

can also be seen from looking at the minimal snc model — the components of

multiplicity 1 are the crosses of the three crossed tails. But the crossed tails

are permuted by Frobenius as the corresponding clusters are, so there is no

component of multiplicity 1 fixed by Frobenius.

1

t1

1

t2

1

t3

0

R
2

2
2

2
2

2
2

Figure 5.2: Cluster picture and minimal snc model of C : y2 = p((x− 1)2 +

p2)((x− ζ3)2 + p2)((x− ζ2
3 )2 + p2).

Example 5.2.4. Let C : y2 = p(x3− p2)((x− 1)3− p2). This is a hyperelliptic

curve of Namikawa-Ueno type II∗ − II∗ − α. The two principal clusters s1

and s2 have esi = 6 and so (i) does not apply. Quick inspection reveals that

(ii)-(v) don’t either. Continuing, we see that the top cluster R = s1t s2 is not

principal and s1 is odd and fixed by Galois. However, [−λR − δs1/2,−λR] =

[−11/6,−3/2] which does not contain an integer. Therefore condition (vi) does

not give us a K-rational point, and therefore C cannot have any K-rational

points. This can also be seen from the minimal snc model as there is no

component of multiplicity 1.
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2
3

s1

2
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s2

0

R
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4
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Figure 5.3: Cluster picture and minimal snc model of C : y2 = p(x3−p2)((x−

1)3 − p2).



Chapter 6

Models of Bihyperelliptic Curves

We now shift our attention towards bihyperelliptic curves, curves with maps to

two distinct hyperelliptic curves. Such curves arise naturally when studying

the parity conjecture. The results of this section can also be found in [21].

We define a generalisation of cluster pictures, the chromatic cluster pic-

ture, which we associate to a bihyperelliptic curve Y . We then show that this

combinatorial object is sufficient to determine the dual graph with genera of

the special fibre of the minimal regular model Y min of Y in the case where Y

has semistable reduction. We do this by giving an explicit description of the

dual graph in terms of the chromatic cluster picture.

Our description of Y min
k is very much in the spirit of Theorem 2.4.11 —

to a cluster s we associate 1, 2 or 4 components of the special fibre, and the

components of s and s′ are linked by a chain of P1s if s′ is a child of s (or vice

versa). The length of this chain is determined by δs′ . In Theorem 6.3.3, we

also give the action of Frobenius on the the dual graph of Y min
k .

In chromatic cluster pictures, red roots will be represented by spheres ,

blue roots by hexagons and purple roots by diamonds . Red clusters will

be denoted with dotted lines, blue clusters by dashed lines, purple cluster by

dot-dash lines and black clusters by solid lines. Sometimes, we will need an

empty cluster, which will look like this: .
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6.1 Bihyperelliptic Curves
Let us begin by defining bihyperelliptic curves: they are smooth projective

curves with maps to two distinct hyperelliptic curves, all defined over the

same base field.

Definition 6.1.1. Let C1 : y2
1 = f1(x) = c1f̃1(x) and C2 : y2

2 = f2(x) = c2f̃2(x)

be hyperelliptic curves, given by their affine models and with f̃i monic. Then

Ch : y2
h = fh(x) = chf̃h(x) is their composite curve, where the set of roots

of fh is the roots of f1f2 of multiplicity 1 and ch = c1c2. The curve Y , the

normalisation of the projective closure of y2
1 = f1(x)

y2
2 = f2(x)

 ,

is a bihyperelliptic curve. The curves fit into a tower:

Y

C1 Ch C2

P1

such that Y/P1 is a Galois cover with Galois group C2 × C2.

Remark 6.1.2. A perhaps more suitable notion of a bihyperelliptic curve

would be any curve Y which has a degree 2 map to a hyperelliptic curve C,

directly mirroring the definition for bielliptic curves. However, the cover Y/P1

is not necessarily Galois in this case. Since we require this for our purposes,

we shall restrict to the case given in Definition 6.1.1.

Example 6.1.3. Suppose y2
1 = 2(x − 1)(x2 − p4) and y2

2 = (x − 1)(x2 + p4).

Then y2
h = 2(x2 − p4)(x2 + p4) is their composite curve.

6.2 Chromatic Cluster Pictures
The combinatorial objects we will use to calculate the semistable model will be

chromatic cluster pictures. A chromatic cluster picture is similar to a cluster
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picture, but instead of one polynomial we take the roots of two polynomials f1

and f2, and we colour the roots red and blue to indicate whether they are roots

of f1 or f2, or purple if the root belongs to both. In this way, the chromatic

cluster picture contains the information of the cluster pictures associated to

f1, f2 and fh, their composite curve defined above.

Definition 6.2.1. A chromatic cluster picture Σχ is a cluster picture Σ on a

set R with a colouring function c : R −→ {red, blue, purple}, assigning to

each root a colour.

This induces a colouring on the remaining clusters as follows:

(i) clusters with an odd number of blue children and an even number of red

children (resp. an odd number of red children and an even number of

blue children) are coloured blue (resp. red),

(ii) clusters with an odd number of blue children and an odd number of red

children are coloured purple,

(iii) all other clusters are coloured black.

where purple children are included in both the set of red and blue clusters.

Blue, red and purple clusters are called chromatic clusters.

Clusters with purple children, or clusters with both blue and red children

have polychromatic children, whereas clusters whose only chromatic children

are red or blue have monochromatic children.

We define the red (resp. blue) cluster picture Σ1 (resp. Σ2) associated to

Σχ to be the subset of Σ where the only clusters of size 1 are the red (resp.

blue) ones. We forget the colouring on the rest of the clusters.

Lemma 6.2.2. Let s ∈ Σ be a cluster with no purple roots. If s is odd then s

is red or blue, and if s is even then s is purple or black. Furthermore, purple

clusters are odd in Σ1 (i.e., they have odd size when we count only red children)

and Σ2 and even in Σ, red clusters are odd in Σ1 and Σ and even in Σ2, blue

clusters are odd in Σ2 and Σ and even in Σ1, and finally black clusters are

even in all of Σ1,Σ2 and Σ.
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Proof. This follows by induction on the size of the cluster, noting that it is

trivially true for singletons.

Remark 6.2.3. The red and blue cluster pictures aren’t cluster pictures (or

chromatic cluster pictures) in the conventional sense — they are cluster pic-

tures with some additional p-adic disks. They can have “empty” clusters which

contain no roots, or clusters which only contain another cluster and nothing

else. However, they give rise to the same admissible collection of discs, in the

sense of [19, Definition 3.4], as Σh. By admissible collection of disks we mean a

non-empty collection D of disks of integer radius and centre in OK (an integral

disk) such that there is a maximal element with respect to inclusion and if

D1 ⊆ D2 are both in D then every integral disk D1 ⊆ D ⊆ D2 is also in D.

Therefore we can apply the results of [19] to them.

We will be interested in the chromatic cluster pictures of bihyperelliptic

curves. In other words, if Y : {y2
1 = f1, y

2
2 = f2} is a bihyperelliptic curve,

then its chromatic cluster picture arises from colouring the roots of f1 red, the

roots of f2 blue, the roots arising from both purple and the rest of the clusters

according to the rules (ii) - (iv).

Example 6.2.4. Below (left) is the chromatic cluster picture of Y : {y2
1 =

(x−pn)(x2−1), y2
2 = (x+pn)(x2−2)}. On the right is the red cluster picture,

which is equivalent to the blue cluster picture.

n
s

0

R

n
s

0

R

The cluster s ∈ Σχ contains both an odd number of red children and an

odd number of blue children (one of each), and hence is purple. The cluster

R ∈ Σχ contains three red children (since the purple child counts as a red and

a blue child) and three blue children and hence is also purple.

The red and blue clusters are equivalent, and in both the “cluster” s is a p-

adic disk containing a single root. This wouldn’t be a cluster in a conventional

cluster picture.
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Example 6.2.5. From left to right, we have the chromatic, red and blue

cluster pictures of Y : {y2
1 = (x2− pn)(x− 1), y2

2 = x3− 2}. The cluster s ∈ Σχ

has an even number of both red and blue children and hence is black. On the

other hand, R has an odd number of both red and blue children and hence is

coloured purple. Note that in the blue cluster picture s is an empty cluster

(i.e. it is a p-adic disk which contains no roots).

n/2
s

0

R

n/2
s

0

R

n/2
s

0

R

Example 6.2.6. From left to right, the chromatic, red, and blue cluster

picture of the bihyperelliptic curve Y : {y2
1 = (x3 − p9)(x3 − 2), y2

2 =

(x4 − p20)(x3 − 1)}. In the red cluster picture s1 is an empty cluster, and

in the blue cluster picture s2 has a unique child. Neither of these are tradi-

tionally clusters.

2

s1

3

s2

0

R

2

s1

3

s2

0

R

2

s1

3

s2

0

R

The following is an important definition, the clusters which will contribute

principal components to the semistable model.

Definition 6.2.7. Let s be a cluster. Then s is chromatically principal if

|s| ≥ 3, except in the following cases:

(i) s = R = s1 t s2, with s1 and s2 of the same colour, or one of s1 or s2 a

singleton or a twin,

(ii) s = R has a unique proper child s′ of size 2g(Ch) such that either s′ is

purple or s and s′ are both black.

We can characterise this as follows:

Lemma 6.2.8. A cluster s is chromatically principal if and only if it is prin-

cipal in at least one of Σ1,Σ2,Σh.
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Proof. If s 6= R this is clear as its size in Σχ is the same as its size in Σh.

Therefore, suppose s = R. Suppose s = s1ts2 with s1 and s2 the same colour.

Then s1 and s2 have the same parity in each of Σ1,Σ2,Σh by Lemma 6.2.2,

noting that purple roots do not have an effect since they contribute to the size

of s1 and s2 in each of the cluster pictures. If s has a unique proper child of

size 2g(Ch) then Σ1 has a child of size 2g(C1), and similarly for Σ2 and Σh.

The other direction can be checked similarly (for example, if s = s1 t s2 with

s1, s2 principal of different colours, then s1 and s2 will have opposite parities

in at least one of Σ1, Σ2 or Σh).

We must update our definition of cotwin to exclude a case which cannot

happen for classic cluster pictures:

Definition 6.2.9. A cluster s is a cotwin if it has a child s′ of size 2g(Ch)

whose complement isn’t a twin, unless s is purple and s′ is black.

We finish the section with a definition which will be needed in stating our

main theorem.

Definition 6.2.10. The chromatic genus gχ(s) of a principal cluster s is de-

fined as follows. If s is polychromatic then gχ(s) = |sχ| − 3 when s is the top

cluster and f1 and f2 both have even degree, or the top clusterR = s
⊔
s′ is not

principal, s is even and f1 and f2 both have even degree; and gχ(s) = |sχ| − 2

otherwise. If s has monochromatic children or is übereven then gχ(s) = g(s).

Definition 6.2.11. If s is a cluster then sχ is the set of chromatic children of

s. If s, s′ are two proper clusters then σ(s, s′) = −1 in the following cases:

(i) s and s′ each have monochromatic children of opposite colours,

(ii) s is black übereven and s′ is black with monochromatic, blue children;

and 1 otherwise. The chromatic
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6.3 Statement of Results

6.3.1 The Theorem

The rough idea of the theorem is that principal clusters give rise to components

in the special fibre, and components of s are linked to the components of the

children of s. The number of components and linking chains, as well as the

lengths of the linking chains, are determined by the properties of the clusters.

Theorem 6.3.1. Let K be a local field of odd residue characteristic and let

C1 : y2
1 = f1(x) and C2 : y2

2 = f2(x) be two distinct hyperelliptic curves over

K which are double covers of the same P1 : y = x. Let Y be the bihyperelliptic

curve arising from C1 and C2, such that Y has semistable reduction and all

the depths in the chromatic cluster picture of Y are integers. Then the dual

graph of Y min
k is entirely determined by the chromatic cluster picture of Y .

In particular, each principal cluster s contributes vertices of genus gχ(s) to

the dual graph of Y min
k . If s is not übereven: 1 vertex vs if s has polychromatic

children and 2 vertices v+
s , v

−
s if s has monochromatic children; and if übereven:

2 vertices v+
s , v

−
s if s has chromatic children and 4 vertices v+,+

s , v+,−
s , v−,+s , v−,−s

if s has no chromatic children.

These are linked by edges as follows:

Name From To Length Condition

L+
s′ v+

s vσs′ 1
2
δs′ s′ < s both principal, s′ chromatic

L−s′ v−s v−σs′

L+,+
s′ v+,+

s v+,+
s′

δs′ s′ < s both principal, s′ black
L+,−
s′ v+,−

s v+,−
s′

L−,+s′ v−,+s v−,+s′

L−,−s′ v−,−s v−,−s′

Lt v+
s v−s δt t < s, t chromatic twin, s principal

L+
t v+,+

s vσ,−σs
2δt t < s, t black twin, s principal

L−t v−,−s v−σ,σs

where σ = σ(s, s′); v±,+s = v±,−s = v±s if s is non-übereven with monochro-
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matic red children; v+,±
s = v−,±s = v±s if s is non-übereven with has monochro-

matic blue children; v±,±s = v+
s , v±,∓s = v−s if s is übereven with chromatic

children; and v+
s = v−s = vs if s is non-übereven with polychromatic children.

Moreover, if R is not principal1, then there are the following additional

edges:

Name From To Length Condition

Lt v+
s v−s δs s < t, t cotwin, s purple

L+
t v+,+

s vσ,−σs
2δs s < t, t cotwin, s black

L−t v−,−s v−σ,σs

L+
s,s′ v+

s v+
s′ 1

2
(δs + δs′)

R = s t s′, s, s′ both principal,

L−s,s′ v−s v−s′ same chromatic colour

L+,+
s,s′ v+,+

s v+,+
s′

δs + δs′
L+,−
s,s′ v+,−

s v+,−
s′ R = s t s′, s, s′ both principal,

L−,+s,s′ v−,+s v−,+s′ black

L−,−s,s′ v−,−s v−,−s′

Lt v+
s v−s δs + δt R = stt, s principal, t twin, both

purple

L+
t v+,+

s vσ,−σs
2(δs + δt)

R = s t t, s principal, t twin,

L−t v−,−s v−σ,σs both black

Remark 6.3.2. Possibly after a totally ramified extension, we can still think

of proper, not principal clusters as contributing components to the special

fibre. However, these components may not be principal. In other words,

they contribute components isomorphic to P1 which intersects the rest of the

special fibre in precisely two places. So for example, a loop Lt arising from a

chromatic twin can be thought of as a component vt with two linking chains

L+
t , L

−
t to vP (t) of length 1

2
δt (i.e., the linking chains arising in the first two

1Recall that if R is purple and has a unique proper child s′ of size 2g(Ch) which is black,

then R is principal and doesn’t fall in this category.
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rows of the first table). We have chosen not to state our theorems in this way

since the component vt sometimes only appears in the minimal regular model

after a totally ramified extension (and has multiplicity 2 otherwise), but for

the purposes of our proof we will usually take this point of view. That is, we

will go to a totally ramified extension, treat all proper clusters as if they give

us components, and then use Lemma 2.1.20 to move between totally ramified

extensions.

Theorem 6.3.3. Denote the Frobenius automorphism by Frob. It acts on

Y min
k in the following way:

(i) Frob(Γ±s ) = Γ
±εs,i(Frob)

Frob(s) for s with chromatic children, i ∈ {1, 2, h} with

s ∈ Σi übereven,

(ii) Frob(Γ±,±s ) = Γ
±εs,2(Frob),±εs,1(Frob)

Frob(s) for s übereven with no chromatic chil-

dren,

(iii) Frob(L±s ) = Γ
±εs,i(Frob)

Frob(s) for s chromatic, i ∈ {1, 2, h} with with s ∈ Σi

even,

(iv) Frob(L±,±s ) = L
±εs,2(Frob),±εs,1(Frob)

Frob(s) for s black,

(v) Frob(Lt) = εt,h(Frob)LFrob(t) for t a chromatic twin, where −L denotes

L with the opposite orientation,

(vi) Frob(L±t ) = εt,j(Frob)L
±εt,i(Frob)

Frob(t) for t a black twin, i, j ∈ {1, 2} such that

t is empty in Σi and i 6= j.

where Γ±,±s is the component corresponding to the vertex v±,±s from Theorem

6.3.1.

Remark 6.3.4. For simplicity of proof, we have added the technical condition

that the depth of all clusters are integers, even though there exist semistable

curves with clusters of half integer depth (for example, any bihyperelliptic

curve where C1 is the elliptic curve given by y2
1 = (x2 − p3)(x− 1)). However,

this is only a very mild restriction, since this condition can always be attained
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by going to the ramified extension of K of degree 2. The dual graph of Yk over

K is then the same as the dual graph of Yk over K(
√
π), except the lengths

of all linking chains are halved (see Lemma 2.1.20).

6.3.2 Examples

We present three examples to illustrate our theorem.

Example 6.3.5. Let C1 : y2
1 = (x− pn)(x2− 1) and C2 : y2

2 = (x+ pn)(x2− 2)

be elliptic curves, with composite curve Ch : y2
h = (x2 − p2n)(x2 − 1)(x2 − 2)

and associated bielliptic curve Y . The chromatic cluster picture of Y and the

dual graph of Y min
k are below.

n
s

0

R

vR3n

The top clusterR of size 6 is not übereven and has polychromatic children

and so contributes one component of genus 3. The twin s is purple and has

depth n and so contributes a single loop of length n from the component of

genus 3 to itself. In order to understand the Frobenius automorphism φ, we

note that the twin s is only even in Σh, not Σ1 or Σ2, so the action of Frobenius

φ on the loop is φ(Ls) = εs,h(φ)Ls. We can calculate εs,h =
(

2
p

)
and so the

loop is inverted if and only if 2 is not a quadratic residue mod p.

Example 6.3.6. Let C1 : y2
1 = (x2 − p2n)(x− 1) and C2 : y2

2 = x3 − 2 be two

elliptic curves with composite curve Ch : y2
h = (x2 − pn)(x − 1)(x3 − 2) and

associated bielliptic curve Y . The chromatic cluster picture of Y and the dual

graph of Y min
k are below.

n
s

0

R

vR2

2n

2n

The top cluster R is not übereven and has polychromatic children so

contributes one component of genus 2. The twin is black and has depth n
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so contributes two loops of length 2n. Frobenius, φ acts on the loops of s as

Frob(L±s ) = εs,1L
±εs,2(φ)
s , since s is empty in Σ2. We can calculate εs,1(Frob) =(

−1
p

)
and εs,2 =

(
−2
p

)
, and so the action of Frobenius swaps the loops if −2

is not a quadratic residue mod p, and the loops are inverted if −1 is not a

quadratic residue mod p.

Example 6.3.7. Let C1 : y2
1 = (x2−p2n)(x−1) and C2 : y2

2 = (x−pn)(x2−2)

be two elliptic curves and Ch : y2
h = (x+ pn)(x− 1)(x2− 2) by their composite

curve. Let Y be their associated bihyperelliptic. The chromatic cluster picture

of Y and the dual graph of Y min
k are below.

n
s

0

R

vR2n

The twin s is chromatic and so contributes a single loop on the component

of its parent. The cluster R is principal with polychromatic children and so

contributes a single cluster of genus 2.

Example 6.3.8. Let C1 : y2
1 = ((x + p2)2 − p14)(x − 2 + p3) and C2 : y2

2 =

((x− p2)2 − p12)(x− 2− p3) be hyperelliptic curves over K and let Y be their

associated bihyperelliptic curve. The chromatic cluster picture of Y consists

of the übereven top cluster R with chromatic children, the übereven cluster s

with no chromatic children, and three twins t1, t2 and t3, the first two black

with monochromatic children and the latter chromatic with polychromatic

children. Note that R is principal despite being the disjoint union of two

clusters as its two children are purple and black. The most subtle part of

theorem is illustrated here: that the components arising from R, and the loops

arising from t1 and t2 link to different pairs of Γ+,+
s ,Γ+,−

s ,Γ−,+s and Γ−,−s ; for

example, Γ+
R links to Γ+,+

s and Γ−,−s , whereas L+
t1 links to Γ+,+

s and Γ+,−
s . This

is because R is übereven with chromatic children whereas t1 is not übereven

with monochromatic (red) children.

Remark 6.3.9. The above is an example of a curve whose minimal regular

model has a special fibre with a non-planar dual graph (its dual graph is a
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5

t1

4

t2

2

s

3

t3

0

R

Γ−RΓ+
R

Γ
+,+
s Γ

−,−
s Γ

+,−
s Γ

−,+
s

Lt3

L+
t1

L+
t2

L−t1

L−t2

K3,3). It is in fact an example of minimal genus, since the special fibre is

totally degenerate (all of the components have genus 0).

6.4 Proof
The strategy of proof will be as follows: let X be the minimal model of P1

which separates the branch points of the map Y → P1. We construct such

a model from Σh following the techniques of [19, Sections 3-4]. Normalising

X in the function field K(Y ) gives a regular model Y of Y , which results

in a semistable model Y min after blowing down components of multiplicity

greater than 1. We also obtain models C1, Ch, C2 of C1, Ch and C2 respectively

by normalising in the appropriate function fields. The special fibres of these

intermediate models are computed using the result of [19, Sections 5-6].

Notation 6.4.1. There are many cases where we shall wish to refer to some

object associated to a cluster s for each of the curves P1, C1, C2, Ch and Y . For

example, we may wish to refer to the components arising from s. In this case,

the component(s) in Yk will appear without subscript: Γs, and those in Xk

(resp. C1,k, Ch,k, C2,k) will be denoted Γs,P1 (resp. Γs,1,Γs,h,Γs,2).

Remark 6.4.2. The models C1, C2 and Ch are not necessarily minimal models,

as they come from the red (resp. blue resp. chromatic) cluster picture of Y -

the admissible collection of disks arising from these is not in general the same

as that arising from the cluster picture of C1 (resp. C2, Ch).

Lemma 6.4.3. Let Y/K be a bihyperelliptic curve with semistable reduction.

Then Y , the normalisation of X in K(Y ), is a proper regular model of Y .



6.4. Proof 130

Proof. The normalisation of X in K(Y ) is isomorphic to the normalisation

of C1 in K(Y ), so it is sufficient to prove that the latter is a proper regular

model of Y . Let ϕ1 : C1 → P1 be the canonical double cover and write

D = (ϕ−1
1 (f2)) =

∑
miΓi, the divisor of (the pullback of) f2 on C1. By [43,

Lemma 2.1], it is sufficient to prove that

(i) ϕ−1
1 (f2) is not a square as a rational function on C1,

(ii) any two Γi for which mi is odd do not intersect and,

(iii) any Γi for which mi is odd is regular.

Since C2 is a hyperelliptic curve, ϕ−1
1 (f2) is not a square as a rational function

on C1. Furthermore, the horizontal components of D do not intersect since X

was chosen such that the roots of f2 specialise to distinct point of Xk. We are

left to consider the vertical components of D. Note that any vertical compo-

nent of odd multiplicity must arise as the preimage of some E ∈ (f2)vert which

appears with odd multiplicity. The component E has either one or two preim-

ages in C1. In the first case, the preimage Γ is regular by [19, Theorem 5.2].

Since E does not intersect any other component of (f2) of odd multiplicity,

Γ cannot intersect a component of D. In the second case, the two compo-

nents are still regular and do not intersect each other, and cannot intersect

any other component D as E does not intersect any other component of (f2)

of odd multiplicity.

Proposition 6.4.4. Let Y be a semistable bihyperelliptic curve as in Theorem

6.3.1 and Y the model obtained by normalising. Let Y min be the minimal

regular model of Y . Then each principal cluster s contributes the following

components to Y min
k : if not übereven, 1 component Γs if s has polychromatic

children and 2 components Γ+
s ,Γ

−
s if s has monochromatic children; and if

übereven: 2 components Γ+
s ,Γ

−
s if s has chromatic children and 4 components

Γ+,+
s ,Γ+,−

s ,Γ−,+s ,Γ−,−s if s has no chromatic children.

Proof. Consider a principal cluster s and its corresponding component Γs,P1

in the model of P1. If s is not übereven, then Γs,P1 lifts to one component
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Γs,h in Ch and so lifts to either one or two components in Yk. Suppose s has

polychromatic children. Then s has one corresponding component Γs,1 ∈ C1,

and Γs,1 contains branch points of the morphism Y → C1 (corresponding to

the blue children of s), and hence must lift to a single component in Yk. If s

has monochromatic (e.g. red) children then it has two components in either

C1 or C2 (in this case C2), and hence must have two associated components in

Y .

If s is übereven, then it has two components in Ch so lifts to either two or

four in Yk. If s has chromatic (e.g. red) children then it has a single component

in either C1 or C2 (in this case C1), so can only lift to two components in Yk.

If s has no chromatic children, then it has two corresponding components in

each of C1, C2 and Ch. Since C2 × C2 acts on the components of Yk arising

from s, and their images are the Γ±s,i under the quotient of the three non trivial

subgroups of C2 × C2, there must be four components corresponding to s in

Yk.

Since s is principal, it is principal in one of Σ1,Σ2 or Σh, say Σ1. Then

by Theorem 2.4.11, any component Γs,1 ∈ C1 arising from s either has positive

genus, or intersects at least three other components. Therefore the same can

be said for any Γ ∈ Yk arising from s. We cannot blow such components down,

and hence the same components appear in Y min
k .

Proposition 6.4.5. Let Y,Y min be as in Proposition 6.4.4, and let s′ < s be

principal clusters of Y . Then the components of s and s′ in Yk are linked by

two chains if s′ is chromatic and four otherwise, as described in the statement

of Theorem 6.3.1. Furthermore, if t < s is a twin or s < t a cotwin then there

is one loop if the child is chromatic and two loops if the child is black, and if

R = st s′ is not principal then the components of s and s′ are linked as in the

statement of Theorem 6.3.1.

Proof. Assume that we are in the case where s′ < s are both principal, since

the other cases are checked similarly using Remark 6.3.2. It is clear that com-

ponents have linking chains to the components corresponding to their parents,
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since this is the case for the model of P1. Therefore, we have to calculate how

many linking chains there are (2 or 4) and precisely which components are

linked to which others. The lengths of the linking chains is proved separately

in Lemma 6.4.6.

Suppose that s′ < s with s′ chromatic. Then there are several cases for

the different children s′ can have. If s′ is red, then Γs,1 and Γs′,1 are linked

by one chain and Γ±s,2 and Γ±s′,2 are linked by two chains. Similarly if s′ is

blue (swapping 1 and 2). In either case, Γ±s and Γ±s′ are linked by two chains.

Similarly if s′ is purple then Γs,h and Γs′,h are linked by two chains but Γs,1

and Γs′,1 are linked by one chain so we get two linking chains upstairs.

Now suppose that s′ is black. Then Γ±s′,1 has two linking chains up to the

components of its parent, as does Γs′,2, so by a similar argument to Proposition

6.4.4 the components of s′ have four linking chains up to the components of

s. Therefore the number of linking chains is correct. We must check that the

correct components are linked.

This is done on a case by case basis. First assume s, s′ are not übereven. If

s has polychromatic children then it only has one component and everything is

correct up to relabelling. Similarly if s′ has polychromatic children. So assume

both s and s′ have monochromatic children. If they have monochromatic

children of the same colour (say red), their components are linked as in the

tower of models in Figure 6.1

If s and s′ have monochromatic children of different colours (e.g. s red

and s′ blue), then their components are linked as in the tower of models in

Figure 6.2.

If s or s′ is übereven, the different cases can be checked similarly.

Lemma 6.4.6. Let Y,Y min be as in Proposition 6.4.4, and let s′ < s be two

principal clusters. Then any linking chain Ls′ arising from this pair has length
1
2
δs′ if s′ is chromatic and δs′ otherwise. If t < s is a twin or s < t a cotwin

then any loop arising from t has length δt if the child is chromatic, and 2δt
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Γ+
s Γ+

s′

Γ−s Γ−s′

Γs,1 Γs′,1 Γs,h Γs′,h
Γ+
s,2 Γ+

s′,2

Γ−s,2 Γ−s′,2

Γs,P1 Γs,P1

Figure 6.1: Tower of models when s and s′ have monochromatic children of

the same colour.

Γ+
s Γ+

s′

Γ−s Γ−s′

Γs,1

Γ+
s′,1

Γ−s′,1
Γs,h Γs′,h

Γ+
s,2 Γs′,2

Γ−s,2

Γs,P1 Γs,P1

Figure 6.2: Tower of models when s and s′ have monochromatic children of

different colours.

otherwise. If R = s t s′ is not principal, then any length of a linking chain

arising from s and s′ has length as described in Theorem 6.3.1.

Proof. Possibly after a finite extension L/Kur, the map Y → P1 extends to a

map of models Y →X by [31, Theorem 2.3]. Furthermore, this map induces

a harmonic morphism of augmented Z-graphs, in the sense of [1, Section 2]

(see also Sections 5,8) on the dual graphs of Y and X . The length of an

edge between two vertices in an augmented Z-graph is the thickness of the

intersection point of the components the vertices represent. Therefore the

distance between two vertices of degree ≥ 3 is exactly the length of the linking
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chain between them.

If s′ < s are principal, the lemma follows, noting that a linking chain from

a chromatic cluster to its parent has two preimages in Y ′ (so the length halves),

but a linking chain from a black cluster to its parent has four preimages so the

length stays the same.

If t < s is a chromatic twin then (possibly after a field extension), we can

think of the loop Lt as consisting of a component Γt, the unique lift of Γt,P1

with two linking chains to Γs. Since t is chromatic, by the argument above

the linking chains will both have length 1
2
δt and hence the total loop will have

length δt. A similar argument is made if t is a black twin, or if R = s t s′ is

not principal.

Proposition 6.4.7. Let Y,Y min be as in Proposition 6.4.4 and let s be a

principal cluster of Y . Then the components associated to s have genus gχ(s).

Proof. Let s be a principal cluster. First suppose s is not übereven and has

polychromatic children. In this case there is a unique component Γs arising

from s. This is then a direct application of Riemann-Hurwitz. The children of

s correspond to points on the component Γs,P1 as in [19, Definition 3.7], and

by Proposition 6.4.5 the points arising from chromatic children are precisely

the non-infinity branch points of Γs → Γs,P1 . In addition, there is an extra

branch point at infinity, unless s is the top cluster and f1 and f2 both have

even degree, or the top cluster R = s
⊔
s′ is not principal, s is even and f1 and

f2 both have even degree.

If s is not übereven and has monochromatic children, then the components

Γ+
s and Γ−s are each isomorphic to Γs,h and so have genus g(s). The same is

true if s is übereven and has chromatic children, except with Γs,1 if s has red

children and Γs,2 if blue. If s is übereven with no chromatic children then its

4 components must have genus 0 = g(s) as well.

Theorem 6.4.8. Denote the Frobenius automorphism by Frob. It acts on the

dual graph of Y min
k in the following way:
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(i) Frob(Γ±s ) = Γ
±εs,i(Frob)

Frob(s) for s with chromatic children, i ∈ {1, 2, h} with

s ∈ Σi übereven,

(ii) Frob(Γ±,±s ) = Γ
±εs,2(Frob),±εs,1(Frob)

Frob(s) for s übereven with no chromatic chil-

dren,

(iii) Frob(L±s ) = Γ
±εs,i(Frob)

Frob(s) for s chromatic, i ∈ {1, 2, h} with with s ∈ Σi

even,

(iv) Frob(L±,±s ) = L
±εs,2(Frob),±εs,1(Frob)

Frob(s) for s black,

(v) Frob(Lt) = εt,h(Frob)LFrob(t) for t a chromatic twin, where −L denotes

L with the opposite orientation,

(vi) Frob(L±t ) = εt,j(Frob)L
±εt,i(Frob)

Frob(t) for t a black twin, i, j ∈ {1, 2} such that

t is empty in Σi and i 6= j.

Proof. By Proposition 6.4.4, the components we must blow down to obtain

Y min
k from Yk are all in linking chains, so it is sufficient to calculate the action

of Frobenius on Yk as the action on the shortened linking chains is the same

as the originals. The action of Frobenius commutes with the quotient maps,

so we can deduce the action of Frobenius on the components of Yk from the

corresponding action of Frobenius on C1, C2 and Ch, which is known by Theorem

2.4.11. First we focus on clusters. For a principal cluster s, the set Es = {Γ±,±s }

is mapped to EFrob(s) = {Γ±,±φ(s)} by Frobenius, since Frobenius maps the images

of Es to the images of EFrob(s) in C1, C2 and Ch. It remains to show which

component of Es is mapped to which of EFrob(s).

If s is a principal cluster with polychromatic children then Es consists

of one component and hence there is nothing to verify. If s is a principal

cluster with monochromatic, red children (so therefore s ∈ Σ2 is even) then

there are two components Γ+
s ,Γ

−
s corresponding to s, which are the lifts of

two components Γ+
s,2,Γ

−
s,2 ∈ C2,k. Therefore Frob acts on Γ±s as it does on

Γ±s,2. But by Theorem 2.4.11, Frob(Γ±s,2) = Γ
±ε2(Frob)
φ(s),2 , and so Frob(Γ±s ) =
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Γ
±ε2(Frob)
Frob(s) . Similarly if s has monochromatic, blue children or is übereven with

polychromatic children.

Now suppose that s is an übereven cluster with no chromatic children.

In this case there are two components arising from s in Ci,k for i = 1, 2, Γ+
s,i

and Γ−s,i. Consider i = 1. In C1, the action of Frobenius is Frob(Γ±s,1) =

Γ
±ε1(Frob)
Frob(s),1 . The component Γ+

s,1 lifts to the components Γ+,+
s and Γ−,+s and

so the set {Γ+,±
s ,Γ−,±s } is mapped to {Γ+,±ε1Frob

s ,Γ−,±ε1Frob
s }. The same ar-

gument for i = 2 implies that the set {Γ±,+s ,Γ±,−s } is mapped to the set

{Γ±ε2(Frob),+
s ,Γ

±ε2(Frob),−
s }. Combining these gives the action of Frobenius.

For linking chains between components of principal clusters s′ < s, the

action on the whole linking chain is determined by the action on any component

in the linking chain. Suppose D is a p-adic disk with s′ < D < s. If s′

is chromatic (i.e., case (iii)) then ΓD,P1 has two preimages in Y and these

are permuted like the principal components in (i). If s′ is black (case (iv)),

then ΓD,P1 has four preimages in Yk and these are permuted like the principal

components in case (ii).

Loops associated to twins and linking chains between s and s′ when R =

s t s′ are not principal can be dealt with using Remark 6.3.2, as in proofs in

the rest of the section.



Bibliography

[1] Omid Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff. Lift-

ing harmonic morphisms I: metrized complexes and Berkovich skeleta.

Research in the Mathematical Sciences, 2(1):1–67, 2015.

[2] Kai Arzdorf and Stefan Wewers. Another proof of the semistable reduction

theorem. arXiv preprint arXiv:1211.4624, 2012.

[3] Matthew Baker, Sam Payne, and Joseph Rabinoff. On the structure of

non-archimedean analytic curves. Tropical and non-Archimedean geome-

try, 605:93–121, 2013.

[4] Vladimir G Berkovich. Spectral theory and analytic geometry over non-

Archimedean fields. Number 33. American Mathematical Soc., 1990.

[5] Alex J. Best, L. Alexander Betts, Matthew Bisatt, Raymond van Bommel,

Vladimir Dokchitser, Omri Faraggi, Sabrina Kunzweiler, Céline Maistret,

Adam Morgan, Simone Muselli, and Sarah Nowell. A user’s guide to the

local arithmetic of hyperelliptic curves. Bulletin of the London Mathe-

matical Society, to appear.

[6] L. Alexander Betts. On the computation of Tamagawa numbers and

Néron component groups of Jacobians of semistable hyperelliptic curves.

Journal of Number Theory, to appear.

[7] L. Alexander Betts and Vladimir Dokchitser. Variation of tamagawa num-

bers of semistable abelian varieties in field extensions. Mathematical Pro-

ceedings of the Cambridge Philosophical Society, 166(3):487–521, 2019.



Bibliography 138

[8] Manjul Bhargava, John Cremona, and Tom Fisher. The proportion of

genus one curves over â.,defined by a binary quartic that everywhere lo-

cally have a point. International Journal of Number Theory, 17(4):903–

923, May 2021.

[9] Matthew Bisatt. Clusters, inertia, and root numbers. arXiv preprint

arXiv:1902.08981, 2019.

[10] Irene Bouw, Nirvana Coppola, Pınar Kılıçer, Sabrina Kunzweiler,

Elisa Lorenzo García, and Anna Somoza. Reduction type of genus-3

curves in a special stratum of their moduli space. Women in Numbers

Europe III: Research Directions in Number Theory, to appear.

[11] Irene I Bouw and Stefan Wewers. Computing L-functions and semistable

reduction of superelliptic curves. Glasgow Mathematical Journal,

59(1):77–108, 2017.

[12] Brian Conrad, Bas Edixhoven, and William Stein. J_1(P) has connected

fibers. Doc. Math, 8:331–408, 2003.

[13] J. E. Cremona and M. Sadek. Local and global densities for Weierstrass

models of elliptic curves. arXiv preprint arXiv:2003.08454, 2020.

[14] Pierre Deligne and David Mumford. The irreducibility of the space of

curves of given genus. Publications Mathématiques de l’IHES, 36:75–109,

1969.

[15] Tim Dokchitser. Models of curves over DVRs. Duke Math. J, to appear.

[16] Tim Dokchitser and Vladimir Dokchitser. Parity of ranks for elliptic curves

with a cyclic isogeny. Journal of Number Theory, 128(3):662–679, 2008.

[17] Tim Dokchitser and Vladimir Dokchitser. Root numbers and parity of

ranks of elliptic curves. Journal für die reine und angewandte Mathematik

(Crelles Journal), 2011, 06 2009.



Bibliography 139

[18] Tim Dokchitser and Vladimir Dokchitser. Quotients of hyperelliptic

curves and étale cohomology. The Quarterly Journal of Mathematics,

69(2):747–768, 2018.

[19] Tim Dokchitser, Vladimir Dokchitser, Céline Maistret, and Adam Mor-

gan. Arithmetic of hyperelliptic curves over local fields. arXiv preprint

arXiv:1808.02936, 2018.

[20] Vladimir Dokchitser and Celine Maistret. Parity conjecture for abelian

surfaces. arXiv preprint arXiv:1911.04626, 2020.

[21] Omri Faraggi. Models of bihyperelliptic curves. arXiv preprint

arXiv:2103.09730, 2021.

[22] Omri Faraggi and Sarah Nowell. Models of hyperelliptic curves with tame

potentially semistable reduction. Transactions of the London Mathemat-

ical Society, 7(1):49–95, 2020.

[23] Lars Halvard Halle. Stable reduction of curves and tame ramification.

Mathematische Zeitschrift, 265(3):529–550, 2010.

[24] Kunihiko Kodaira. On the structure of compact complex analytic surfaces,

I. American Journal of Mathematics, 86(4):751–798, 1964.

[25] Sabrina Kunzweiler. Differential forms on hyperelliptic curves with

semistable reduction. Research in Number Theory, 6, 06 2020.

[26] Reynald Lercier, Qing Liu, Elisa Lorenzo García, and Christophe Ritzen-

thaler. Reduction type of smooth quartics. Algebra and Number Theory,

to appear.

[27] Joseph Lipman. Desingularization of two-dimensional schemes. Annals of

Mathematics, 107(2):151–207, 1978.

[28] Qing Liu. Modeles minimaux des courbes de genre deux. J. reine angew.

Math, 453:137–164, 1994.



Bibliography 140

[29] Qing Liu. Algebraic Geometry and Arithmetic Curves. Oxford Graduate

Texts in Mathematics (0-19-961947-6). Oxford University Press, 2006.

[30] Qing Liu. Stable reduction of finite covers of curves. Compositio Mathe-

matica, 142(1):101–118, 2006.

[31] Qing Liu and Dino Lorenzini. Models of curves and finite covers. Com-

positio Mathematica, 118(1):61–102, 1999.

[32] Dino Lorenzini. Dual graphs of degenerating curves. Mathematische An-

nalen, 287(1):135–150, 1990.

[33] Dino Lorenzini. Models of curves and wild ramification. Pure and Applied

Mathematics Quarterly, 6(1):41–82, 2010.

[34] Dino Lorenzini. Wild models of curves. Algebra & Number Theory,

8(2):331–367, 2014.

[35] Celine Maistret, Tim Dokchitser, Vladimir Dokchitser, and Adam Mor-

gan. Semistable types of hyperelliptic curves, pages 73–136. Contemporary

Mathematics. American Mathematical Society, United States, January

2019.

[36] J.S. Milne. Arithmetic Duality Theorems. BookSurge, LLC, second edi-

tion, 2006.

[37] Simone Muselli. Models and integral differentials of hyperelliptic curves.

arXiv preprint arXiv:2003.01830, 2020.

[38] Yukihiko Namikawa and Kenji Ueno. The complete classification of fibres

in pencils of curves of genus two. manuscripta mathematica, 9(2):143–186,

Jun 1973.

[39] André Néron. Modeles minimaux des variétés abéliennes sur les corps

locaux et globaux. Publications Mathématiques de l’IHÉS, 21:5–128, 1964.



Bibliography 141

[40] Julian Rüth. Models of curves and valuations. PhD thesis, Universität

Ulm, 2015.

[41] Julian Rüth and Stefan Wewers. Semistable reduction of superelliptic

curves of degree p.

[42] Joseph H. Silverman. Advanced Topics in the Arithmetic of Elliptic

Curves. Graduate Texts in Mathematics. Springer New York, 2013.

[43] Padmavathi Srinivasan. Conductors and minimal discriminants of hy-

perelliptic curves with rational Weierstrass points. arXiv preprint

arXiv:1508.05172, 2015.

[44] John Tate. Algorithm for determining the type of a singular fiber in an

elliptic pencil. In Modular functions of one variable IV, pages 33–52.

Springer, 1975.

[45] Raymond van Bommel. Numerical verification of the Birch and

Swinnerton-Dyer conjecture for hyperelliptic curves of higher genus over

Z up to squares. Experimental Mathematics, 0(0):1–8, 2019.

[46] Raymond van Bommel. Efficient computation of BSD invariants in genus

2. arXiv preprint arXiv:2002.04667, 2020.

[47] Eckart Viehweg. Invarianten der degenerierten Fasern in lokalen Familien

von Kurven. PhD thesis, Universität Mannheim, 1975.


	Introduction
	Models
	Hyperelliptic Curves and Cluster Pictures
	Results of Thesis
	Structure of Thesis
	Notation

	Preliminaries
	Models
	Cluster Pictures
	Tame Quotients
	Semistable Hyperelliptic Curves
	Models via Newton Polygons

	Toy Hyperelliptic Curves
	Potentially Good Reduction
	Curves with Two Clusters

	Hyperelliptic Curves with Tame Reduction
	Structure of Special Fibre
	The Proof

	Local Solubility
	The Condition
	Examples

	Models of Bihyperelliptic Curves
	Bihyperelliptic Curves
	Chromatic Cluster Pictures
	Statement of Results
	Proof


