UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning

Alexander, N; Alexander, DC; Barkhof, F; Denaxas, S; (2021) Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning. BMC Medical Informatics and Decision Making , 21 , Article 343. 10.1186/s12911-021-01693-6. Green open access

[thumbnail of s12911-021-01693-6.pdf]
Preview
Text
s12911-021-01693-6.pdf - Published Version

Download (1MB) | Preview

Abstract

BACKGROUND: Alzheimer's disease (AD) is a highly heterogeneous disease with diverse trajectories and outcomes observed in clinical populations. Understanding this heterogeneity can enable better treatment, prognosis and disease management. Studies to date have mainly used imaging or cognition data and have been limited in terms of data breadth and sample size. Here we examine the clinical heterogeneity of Alzheimer's disease patients using electronic health records (EHR) to identify and characterise disease subgroups using multiple clustering methods, identifying clusters which are clinically actionable. METHODS: We identified AD patients in primary care EHR from the Clinical Practice Research Datalink (CPRD) using a previously validated rule-based phenotyping algorithm. We extracted and included a range of comorbidities, symptoms and demographic features as patient features. We evaluated four different clustering methods (k-means, kernel k-means, affinity propagation and latent class analysis) to cluster Alzheimer's disease patients. We compared clusters on clinically relevant outcomes and evaluated each method using measures of cluster structure, stability, efficiency of outcome prediction and replicability in external data sets. RESULTS: We identified 7,913 AD patients, with a mean age of 82 and 66.2% female. We included 21 features in our analysis. We observed 5, 2, 5 and 6 clusters in k-means, kernel k-means, affinity propagation and latent class analysis respectively. K-means was found to produce the most consistent results based on four evaluative measures. We discovered a consistent cluster found in three of the four methods composed of predominantly female, younger disease onset (43% between ages 42-73) diagnosed with depression and anxiety, with a quicker rate of progression compared to the average across other clusters. CONCLUSION: Each clustering approach produced substantially different clusters and K-Means performed the best out of the four methods based on the four evaluative criteria. However, the consistent appearance of one particular cluster across three of the four methods potentially suggests the presence of a distinct disease subtype that merits further exploration. Our study underlines the variability of the results obtained from different clustering approaches and the importance of systematically evaluating different approaches for identifying disease subtypes in complex EHR.

Type: Article
Title: Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s12911-021-01693-6
Publisher version: https://doi.org/10.1186/s12911-021-01693-6
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Keywords: Alzheimer's disease, Clustering, EHR, K-means, Subtyping
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics > Clinical Epidemiology
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10140486
Downloads since deposit
66Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item