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Abstract— IoT ecosystems consist of a range of smart devices
that generated a plethora of Radio Frequency (RF) transmissions.
This provides an attractive opportunity to exploit already-existing
signals for various sensing applications such as e-Healthcare, se-
curity and smart home. In this paper, we present Passive IoT Radar
(PIoTR), a system that passively uses RF transmissions from IoT
devices for human monitoring. PIoTR is designed based on passive
radar technology, with a generic architecture to utilize various
signal sources including the WiFi signal and wireless energy at
the Industrial, Scientific and Medical (ISM) band. PIoTR calculates
the phase shifts caused by human motions and generates Doppler
spectrogram as the representative. To verify the proposed concepts
and test in a more realistic environment, we evaluate PIoTR with four commercial IoT devices for home use. Depending
on the effective signal and power strength, PIoTR performs two modes: coarse sensing and fine-grained sensing.
Experimental results show that PIoTR can achieve an average of 91% in occupancy detection (coarse sensing) and 91.3%
in activity recognition (fine-grained sensing).

Index Terms— Wireless Sensing Sensor, IoT devices, Gesture Recognition, Occupancy Detection

I. INTRODUCTION

Human activity capturing and behavior modeling in resi-
dential environments draw increasing attention in communities
because of its significant importance in healthcare [1], smart
education [2] and human-machine interaction [3]. Occupancy
detection and activity recognition are two essential tasks in
these areas, particularly for their invaluable information in both
long-term and short-time tasks. Compared with the traditional
sensors like wearables [4], cameras [5], body sensor network
[6], infrared imaging spectrometers [7], RF sensors are an
emerging technology solution in the space. The reason is,
in part, due to its unobtrusive characteristics and ubiquitous
nature which can lead to the large coverage area and flexible
deployments. Additionally, unlike camera systems, wireless
signals are not able to generate images which alleviates many
privacy concerns.

The fundamental concept of RF sensing is that when a
person moves, the motion of his body will affect the com-
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munication channel in terms of signal attenuation, frequency
shift, and propagation paths. As a result, the time-varying com-
munication channel is influenced by the physical movements
and therefore can be used for monitoring purposes [8]. On
the other hand, as a new technology, IoT network is designed
to interconnect with various sensors, devices and applications
[9], [10]. With the deep learning (DL) successful applications
in the fields of image classification [7], RF transmissions in
IoT networks show a great opportunity for passive sensing
applications. However, there is still no mature solution to use
these signals effectively.

One feasible approach is known as the Channel State Infor-
mation (CSI) system. As a by-product of the WiFi network
[8], CSI is used to estimate the quality of communication
channels to facilitate reliable data transmissions [11]. The
communication channel can be affected by the moving object
which changes the CSI and can be potentially used for cate-
gorizing the object’s activity [12], indoor localization [13] and
occupancy detection [14]. CSI systems are designed to work
for a specific WiFi standard, for example, the popular Intel
5300 WiFi card [15] is designed for 802.11n only. However,
IoT networks will be designed to use multiple communica-
tion standards such as Zigbee, Bluetooth, etc [16], to fulfill
requirements in energy-saving, distance and throughput. The
development cost of a CSI system that is compatible with
all these different standards could therefore be prohibitive. In
addition, CSI systems require high data throughput associated
with active use of the wireless network in order to provide
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sufficient sensing performance [12], [17] which will not only
interrupt the communication channel in IoT network but also
drain more power from IoT devices [10].

On the other hand, Passive Radar (PR) systems also offer
a number of advantages for sensing within an IoT network.
PR systems do not transmit any signal but instead, use the
third party signal source as an illuminator of opportunity.
It has a long history in airborne detection and maritime
surveillance [18] which exploits existing FM radio, television
and DVB-T signals. These PR systems typically make use of
relative narrowband signals for detecting large targets at long
distances. Passive WiFi Radar (PWR) research has attracted
lots of attention in recent years owing to the increased de-
mand in near-field sensing applications. In work [19], authors
demonstrate the feasibility of tracking drones, whilst work [20]
counts the pedestrians in urban traffic scenarios. PWR systems
have also been used in human presence detection [21] and
activity recognition [22]. However, these PWR systems cannot
be directly applied to IoT networks as the mechanisms of
signal broadcast from IoT devices are rather different from that
of a WiFi router. Also, variations in bandwidth, signal strength
and data rate can significantly affect the sensing performance
of PR systems.

The overview of purposed wireless sensing in IoT environ-
ment is demonstrated in the Figure in abstract. The physi-
cal configurations for PIoTR involve several pairs of WiFi-
enabled IoT devices to be deployed in different places. These
devices can be powered by Radio Frequency Energy Har-
vesting (RFEH) technique which deliveries energy wirelessly
for sensors with a battery-less design. In such circumstances,
PIoTR is designed with two modes to fully make use of
RF signals from IoT devices. Firstly, coarse sensing mode
uses the sparse WiFi signal for occupancy detection/room-
level localization. To improve the sensitivity and increase
the coverage area, multiple IoT devices are considered. In
fine-grained sensing mode, the strong RFEH signal has been
captured for high accuracy activity recognition not only in
Line-of-Sight (LoS) but also in Through-The-Wall (TTW).
PIoTR draws on classical PR techniques and adapts for IoT
devices with different configurations depending on the signal
strength, number of sources, etc.

Comparing to previous works [17], [22]–[24], the following
contributions are made by this paper:

• Different from the above works on RF sensing, we use
the uncontrolled transmission signals from commercial
IoT devices as the source. This is more challenging than
those specifically modified transmitters.

• Multiple IoT devices have been tested including Amazon
Alexa, Google Nest Cam, and a RFEH transmitter. Based
on the communication mechanism of these devices signal
processing methods optimized for different frame rates
were selected.

• The performance of PIoTR is supported by several ex-
periments with acceptable results. PIoTR achieves 91%
accuracy in room occupancy detection with sparse IoT
signal and more than 99% with a continuous signal.
The average accuracy in activity recognition also reaches
91.3%.

The rest of this article is organized as follows. Section II
introduces the IoT devices that used in this paper; Section
III presents the signal processing and system implementation;
Section IV presents the experimental results; discussions and
conclusions are in Section V and VI.

II. RELATED WORKS

In this section, RF sensing techniques that have been applied
to IoT devices are discussed, including the CSI system which
works with WiFi systems, and PR systems which can work
with multiple signal sources.

A. Channel State Information System

At the physical layer of wireless communications, CSI is
useful information for environmental perception. It measures
the changes in wireless signal due to the static and dynamic
objects in terms of time, frequency and spatial domain. The
different application requires specific signal processing and
classification/estimation algorithms.

Device-free activity recognition is one of the applications
by CSI systems. An early work [25] uses Short-Time Fourier
Transform (STFT) to convert the CSI measurement into
Doppler spectrogram. It works at a high frame rate at 2500Hz
and achieves 89% accuracy. However, this system only works
on a pre-defined path and a pre-defined walking direction.
Thus training is required for every new environment.

Another work [26] demonstrates a CSI system that contains
three receiving channels at different angles and runs at a frame
rate of 1,500Hz. The system claims a recognition accuracy
of 96% and quantifies the relationship between CSI variation
and human movement speed to eliminate the effect of the
environment.

Fall detection is another important field for smart health.
Work [27] develops a CSI system that is able to automatically
detect falls from other activities. It calculates the power
profile in time-frequency domain by exploiting the phase and
amplitude changes in CSI measurements. This system works
at a frame rate of 100Hz, however its performance is affected
by the environment and user-antenna location.

CSI-based Breathing detection has been shown in [28], with
a low frame rate of 20Hz. This system exams the user’s
location and body orientation based on the Fresnel model in an
ellipse shape. However, its monitoring area is limited within
the middle area between the transmitter and receiver.

More recently, a WiFi-enabled IoT system [29] was de-
signed for occupant activity sensing. This system collects
fine-grained CSI measurements and uploads them to a cloud
server for processing. The system shows an accuracy of
96.8% in occupancy detection and 90% for six-class activity
recognition. However, the system is built based on two WiFi
routers with a frame rate of 500Hz which can not represent
the actual situation of IoT network.

As discussed above, CSI system is a by-product of WiFi
network. Theoretically, it should work with the IoT devices
that communicate via WiFi networks. However, it would be
with a high cost to design a network card that is compatible
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with all the major WiFi standards, also those non-WiFi net-
works. In addition, CSI system normally requires a high frame
rate for sufficient detection [25], [26], which are around 1000-
2500Hz. This frame rate is very high and conflicts with some
IoT devices which have a limited battery or energy-efficient
design.

B. Passive Radar System

PR systems, with different mechanisms as CSI systems,
have also been widely used for short-range RF sensing. The
fundamental principle of PR system is to use the signal from a
third-party transmitter and measure the time/phase difference
between the signal arriving directly at the transmitter and
the signal arriving via reflection from the object of interest.
Different from CSI system, PR system does not have the
acknowledgment about the preamble signal. It calculates the
range (bistatic distance) and Doppler (bistatic velocity) infor-
mation.

An early work utilizes WiFi transmissions with PR is
described in [30]. It presents the feasibility detect a person at
a stand-off distance (12m) with a WiFi router under Through-
The-Wall (TTW) scenario. However, the system needs a chan-
nel which directly attached to the WiFi router for perfect signal
reconstruction.

Recently, PR system based on SDR platforms becomes
more popular due to their flexibility in deployment and fast
development. Work [31] presents a prototype base on the SDR
platform with real-time ability by using a pipeline design
for multi-core processing. The system has shown several
preliminary results such as TTW activity recognition and
finger gesture recognition. It is based on a classical passive
radar configuration and assumes that the reference channel is
stable, which may to ideal in real-world.

Our previous work [24] has demonstrated the possibility to
use PR system for multiple detection purposes. The system
can perform vital sign detection and activity recognition by
adjusting the Doppler resolution. This is achieved by extracting
the micro-Doppler as the representative for the chest motion
and from torso and limbs. However, the system still requires
a high frame rate for sufficient detection.

On the other hand, signals from Bluetooth Low Energy
(BLE), in unlicensed 2.4Ghz frequency band, have also been
studied for indoor localization. System [32] uses a finger-
printing technique to passive track the personnel’s location
depending on the variation in Received Signal Strength (RSS).
50Hz of BLE beacon signal was set with a total of 19
BLE transmitters to cover an area of 750m2. This system
configuration is similar to an IoT network which includes
multiple signal sources. However, the fingerprinting technique
just like RSS data is highly sensitive to the surrounding
environment and requires a considerable calibration process
when the background is changed.

Note that, above works have made some changes to the
WiFi/BLE AP to enable a high frame/beacon rate. Also, works
[24], [30], [31] attached an antenna to the WiFi router which
assumes the transmitted signal can be perfectly reconstructed.
However, such configurations are hard to apply in real-world
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Fig. 1: An example of baseband signal from home IoT network
(a) WiFi signal including Alexa and Google Cam and (b)
RFEH signal, mini plot shows the zoom-in view

scenarios due to bandwidth is scarce in a communication
network. Also, these systems are set up with active radar-like
geometry that transmitter and receiver are on the same side,
are too optimal to be real.

III. PRELIMINARY INVESTIGATIONS OF IOT DEVICES

In this section, we investigate the communication mecha-
nism of three popular IoT devices and explore their potential
in RF sensing. Different from previous works, we select three
commercial IoT products as the illumination sources without
any specific modification. These devices have been widely
used in residential and domestic applications for communi-
cation and wireless energy. Multiple WiFi connected devices
can increase the frame rate to improve detection performance,
however, their effective signals depend on the amount of in-
ternet usage. In comparison, a RFEH transmitter, aims reliable
energy delivery [33], has also been used which outputs a
powerful and constant signal as the comparison for IoT-based
devices. The communication mechanisms of these devices are
discussed as below:

• WiFi router provides a gateway to the internet for other
devices. WiFi router constantly broadcasts beacon signals
to announce its presence which is normally fixed at 10Hz
[22]. It can achieve high frame rates when there are
is internet usage [12], [34]. The maximum transmission
power of a router is 100mW.

• Amazon Echo is a cloud-based voice service that pro-
vides human-machine interaction through its virtual as-
sistant Alexa i.e answering questions and playing music.
It is observed that during idle status, the Echo is in
constant contact with WiFi router at a very low frame
rate frequency of around 0.1Hz. This rate increases when
the device is active (for example playing music or radio),
which reaches roughly 1-2Hz.

• Google Nest Cam provides remote monitoring, it uploads
video data to a cloud server to be viewed by the user. Our
initial observations indicate that it has a constant upload
rate at around 10Hz, providing a constant WiFi signal to
be used for RF sensing.

• RFEH transmitter [35] delivers wireless energy to
surrounding IoT devices that are not equipped with a
battery. It operates at the 915MHz ISM band, with a
maximum output power of 1W. Therefore, this powerful
and consistent signal can be used for fine-grained sensing
by PIoTR. Its protocol for communications is to employ
Direct Sequence Spread Spectrum (DSSS) modulation.
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Fig. 2: Overview of the system

An example of baseband signal from a home IoT network is
shown in Fig 1(a) WiFi signal and (b) RFEH signal. As it can
be seen, the frame rate is very low even there are two WiFi
devices are operating at same frequency band. As a result, the
sparse WiFi signal is not sufficient for fine-grained sensing
tasks like activity recognition. Additionally, each device has
different signal strength due to its location and output power.
On the other hand, RF signal from a RFEH transmitter is with
significantly higher power and is more consistent than the WiFi
network. There are only small-time gaps among packages (as
shown in the mini figure), and with very small fluctuation in
signal strength. This provides a unique solution for RF sensing.

IV. SYSTEM DESIGN & SIGNAL PROCESSING

A. System Overview
The overall block diagram of PIoTR is presented in Fig

2. It contains mainly three parts: RF front-end which samples
the wireless signal, signal processing which generates Doppler
information and classifiers which are implemented for different
tasks.

An important task is that the system should be able to handle
different frequency bands, such as the 2.4GHz in WiFi and
915MHz in EH. This capability sets it apart from CSI-based
systems [29], [34] which only applies to WiFi standards.

For this reason, we built the system on a Software Defined
Radio (SDR) platform which can adapt its operational fre-
quency as required. The front-end hardware contains two NI
USRP-2921 [36], each equipped with a tunable RF receiver to
acquire the wireless signal. Two directional antennas are used.
The collected raw data is then transferred to a computing unit
(a laptop in this work) through Ethernet.

To make full use of the available signal sources, PIoTR
system has two sensing modes: sparse sensing which uses low-
duty cycle WiFi signals from Amazon Alexa and the Google
Nest Cam for coarse occupancy detection; and fine-grained
sensing which uses strong RFEH signals for a more chal-
lenging task like activity recognition. In coarse sensing, tasks

like occupancy detection and room-level localization, Doppler
strength is calculated as representative of the human pres-
ence. In fine-grained sensing, tasks like activity recognition
and event classification, require advanced signal processing
and classifiers to achieve sufficient performance. The signal
processing for generating the Doppler spectrogram has been
designed with a low-complexity design [22], which can be
processed in real-time within LabVIEW. Classifiers due to
their high computational complexity are implemented off-line
processing. PIoTR first select sensing mode depending on the
effective signal, then perform signal processing accordingly.

One of the challenges is to handle the wireless signal
with unknown modulation methods, such as OFDM in WiFi
signal and DSSS in RFEH signal. It would be time-consumed
to implement a specific filter for each signal. Therefore,
we employ the generic cross-ambiguity function [34] which
correlates the wireless signal in time domain rather than calcu-
lating channel impulse response with pilot signal in frequency
domain, as implemented in CSI-based sensing systems [8].
This method has been broadly applied to multiple types of
signal sources in passive radar [18], [19]. Such an approach
would enable the PIoTR system to compatible with different
types of signal sources or standards without demodulation,
consequently, reduces the system complexity and hardware
cost.

B. Coarse Sensing: Room Occupancy Detection

Occupancy detection provides invaluable information for
smart health, as it generates knowledge about the resident’s
life patterns, especially those who need long-term monitoring
or care. Classical CSI-based methods [25], [29], [34] require
high frame rates (1500Hz-2500Hz) which occupy significant
bandwidth for an IoT network. In comparison, our PIoTR
system is designed to work with low frame rates for both
IoT devices and WiFi APs (as shown in Fig 1(a)). Occupancy
detection is presented as an example of coarse sensing.

In its operation, a PR system requires a minimum of two
coherent receivers; one termed the (reference) channel, and the
other termed the (surveillance) channel. The reference antenna
is directed towards the transmitter (signal source) to obtain a
copy of the original signal, whilst the surveillance antenna is
towards the areas of interest. However, due to the multiple
signal sources in IoT network, it is not a feasible solution to
recreate the transmitted signal from each individual device.
Thus, we replace the concept of surveillance and reference
channel, with the idea to compare range and Doppler variation
between two channels. In this work, Cross Ambiguity Function
(CAF) has been used to correlate the signal from two channels
in order to generate range-Doppler plots. Let the wireless
signal received at two channels as Y1(t) and Y2(t), the CAF
surface can be calculated as:

CAF (τ, fd) =
M−1∑
i=0

∫ Ti

0

Y1(t− τ1,i)e
j2πfd1,i t

Y ∗
2 (t− τ2,i)e

j2πfd2,i tdt

(1)
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Fig. 3: Comparison of (a) raw and (b) denoised Doppler
strength
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Fig. 4: Doppler strength for (a) an empty room, (b) one person
resting on a bed (reading on tablet) and (c) one person in living
room (normal activity)

where, τ1,i and τ2,i represents the time delay received from i-
th IoT device at channel 1 and 2, fd1,i and fd2,i represent
the Doppler shift received from i-th IoT device for total
M devices. Ti is the integration time, and ∗ denotes the
complex conjugate. This equation calculates the range/Doppler
difference among channels. It cannot accurately calculate the
range/Doppler profile from moving targets due to having
no reference signal available. However, this output can still
though be used to infer the occupancy of a room. To en-
able real-time processing to generate Doppler spectrograms,
a pipeline structure and batch processing have been imple-
mented. Details of this structure is followed by the suggestion
from [24].

Afterwards, Doppler profiles from each individual CAF
surface are collected and combined to generate a time-varied
Doppler spectrogram. One limitation of this approach is that
only coarse Doppler information can be extracted, which will
result in high levels of noise and sidelobes. We attribute this
effect to both poor correlations with multiple sparse WiFi
signals and interference from imbalanced signal strength.

Thus, we further extract the Doppler strength Ds from spec-
trogram D as the indicator for occupancy. Doppler strength is
calculated as:

Ds(t) =

Nb/2∑
fd=−Nb/2

D(fd, t) (2)

where Nb is the number of Doppler bins which defines the
maximum detectable velocity. Once the Doppler strength has
been calculated, it is leveraged for classification. However, it
is observed that this data has intrinsic noise and filters in time
domain are required for good classification performance.

1) Outlier Removal: The correlation in Eq 1 has high levels
of noise due to the sparse WiFi signal (as shown in Fig
1(a)). A number of outliers span the entire dataset with

considerably high amplitudes that need to be detected and
removed. We utilize a threshold approach estimated by K-
means algorithm to guarantee the quality of Doppler strength
at each time index and maintain a fixed interval between
successive measurements.

2) Smoothing: Our initial measurements have revealed that
the transmission power from IoT devices is time-varying. To
deal with it, we use a Savitzky–Golay (SG) filter to smooth
the data. The cleaned Doppler strength D̂s is calculated as:

D̂s =

1/2Ms∑
i=−1/2Ms

C(i)Ds(t) (3)

where C(i) is the coefficients and Ms denotes the SG window
length which was fixed at 1s in this work. The output value
is smoothed at the central point of i = 0. The comparison of
raw and denoised Doppler strength data is shown in Fig 3.

Afterwards, we present measurements in three different sce-
narios: (a) an empty room, (b) one person resting on a bed, and
(c) one person spending time in a living room as shown in Fig
4. For the empty room, the Doppler strength is observed to be
very stable and with a low value due to no Doppler (activity)
being detected in the room. The Doppler strength becomes
much stronger in (c) with significant variation when the subject
was carrying out everyday activities in the living room like
cooking and cleaning. In comparison, Doppler strength in (b)
is weaker with much less variation when the subject remained
relatively stationary whilst reading in a bedroom. There are
still considerable variations when compared to the empty room
in (a). Based on these observed differences we hypothesise that
occupancy detection is achievable using PIoTR by exploiting
the variations in Doppler power.

The extracted Doppler strength is considered as time-series
data. Based on this fact, we used the Long Short-Term Mem-
ory (LSTM) network [37] as the classifier. The structure of
LSTM net allows it can learn the temporal dynamic behavior
that has been applied in many radar applications with great
success [38]. In this work, we built a two-layer bidirectional
stacked LSTM net, which is designed to effectively learn the
data temporal correlation forwards and backwards. Afterwards
the data is reshaped into a form of (N,L,Hin), where N
refers to the number of data, L means the length of data
and Hin is the number of input features at each time step.
Furthermore, we set the hidden size, Houtm of LSTM to 32,
which means features at each time step will be projected to the
32 dimensions. Therefore, the output from the net has a shape
of (N,L, 2∗Hout). Herein, due to the bidirectional feature, the
outputs at each time step is the concatenation of forwards and
backwards learning results so that there is the doubled hidden
size above. For the classification task, we only used the output
from the final time step which has a shape of (N, 1, 2∗Hout).
Finally, these extracted features are fed into a three-layer fully-
connected network to predict the class of each data. During
the training phase, we used the SGD optimizer with 0.001
learning rate and 0.9 momentum. The objective function used
is Cross Entropy loss. Moreover, we set the batch size to be
32.

Authorized licensed use limited to: University College London. Downloaded on December 12,2021 at 13:48:46 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3134895, IEEE Sensors
Journal

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

C. Fine-Grained Sensing: Activity Recognition
Human activity recognition is an important topic in human-

machine interface for a wide range of applications such as
remote detection and behavior analysis. As discussed above,
human activity can be captured by wireless signals and char-
acterized by time-domain features. The powerful RFEH signal
is naturally compatible with this topic.

Different from WiFi network, RFEH transmitter is consid-
ered a single source in fine-grained sensing. Therefore, the
transmitted signal is needed as a reference to extract relative
time delay and Doppler shift from the reflected signal. For
this reason, the concept of surveillance and reference channel
is adopted for fine-grained sensing, where surveillance channel
collects the reflected signal from personnel and reference
channel records the original transmitted RFEH signal. Let the
signal from surveillance channel as Ssur(t) and from reference
channel as Sref (t), the CAF can be calculated as:

CAF (τ, fd) =

∫ Ti

0

Ssur(t)S
∗
ref (t− τ)ej2πfdtdt (4)

where CAF (τ, fd) is a 2D surface contains range τ and
Doppler fd information.

The surveillance channel receives reflected signal which
contains Doppler shifted target echoes as well as contributions
from surrounding clutter. Thermal noise in the receiver is
also present. The expression for surveillance channel can be
expressed as:

Ssur(t) = Sdsi(t) + Sclutter(t) + Star(t) + n(t) (5)

where Sdsi represents the direct signal interference, Sclutter
represents the reflected signal from static clutter, Star rep-
resents the signal from dynamic objects and thermal noise
is n(t). Eq 4 may break down if the power from Sdsi is
much stronger than the Star. This is a common case in real
environment where the direct signal is stronger than reflected
signal. As a result, the desired Doppler pulse from dynamic
objects may be buried by the Doppler pulse due to direct
signal. For this reason, it is necessary to remove this unwanted
direct signal from the CAF surface.

In this work, the CLEAN algorithm introduced by [20] has
been adopted. It uses a similar approach to the CAF processing
but only correlates the signal from reference channel. This
generates a self-CAF surface that contains the Doppler pulse
created by the direct signal. By suppressing the self-CAF
surface from Eq 4, the buried Doppler pulse is revealed.
Let CAF k(τ̂ , f̂d) represents the cleaned CAF surface at kth
iteration, it can be written as:

CAF k(τ̂ , f̂d) = CAF k−1(τ, fd) − αkCAFself (τ − Tk, fd)
(6)

where αk is the maximum absolute value of CAF k(τ, fd),
Tk is the phase shift factor and refers to αk. The phase
of CAF k(τ̂ , f̂d) is shifted through a multiplication with a
complex phasor ej∆φ, where ∆φ is the phase difference
between CAF k(τ̂ , f̂d) and Doppler pulse along zero bins.
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Fig. 5: Doppler spectrograms for six human activities, (a) walk
away, (b) jump, (c) run, (d) sit, (e) stand and (f) turn

In the final step, like coarse sensing, a noise reduction is
required to remove the unexpected pulses due to incorrect
correlation which occurs periodically and to improve the pulse-
to-background ratio. The Constant False Alarm Rate (CFAR)
method has been adopted which calculates a threshold map-
ping based on the moving average of the cleaned CAF surface.
As suggested by [39], this threshold is obtained by estimating
the power of noise during a period of static background.
Doppler pulses that are lower than the threshold mapping
are considered as noise, otherwise they are considered as
being part of an ’activity’ and are be included in the Doppler
spectrogram.

Fig 5 shows Doppler spectrograms captured from six activ-
ities, including walking, jumping, running, sitting, standing,
and body turning. As can be seen, each activity results in
differing micro Doppler signatures which manifest in both the
positive and negative Doppler regions as well as temporally.
These variations provide rich information corresponding to the
velocity and direction of the dynamic objects and therefore
can be used for fine-grained activity recognition. For example,
running has more Doppler shift components than walking
which is attributed to faster periodic torso speeds. Jumping has
a Doppler signature in both the positive and negative domain
owing to the upward and downward motion of the body. Sitting
and standing have opposite Doppler signatures for different
body directions, while body turning has a distinctive shape as
part of its signature.

Afterwards, Doppler spectrograms were passed to a VGG16
network [40] to be further classified. The size of input data
(a Doppler spectrogram) is (100, 40, 1). Therefore, to make
our input data fit the network, we modified the original input
channel number of the first convolutional layer from 3 to be 1.
Then the number of neurons in the fully-connected layers of
VGG16 are also correspondingly changed with an epoch time
of 300. During the training phase, we used SGD optimizer
with 0.0005 learning rate and 0.9 momentum. The batch size
is set to be 32 and the loss function we used is Cross Entropy
loss.

D. Interference from Frame Rate
Frame rate is an important factor that affects the sensitivity

of PIoTR. It defines the mode to choose between coarse
sensing or fine-grained sensing. Here we measure the effect
of frame rate on the PNR between the dominant Doppler peak
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Fig. 7: Experiment layout in a one-bedroom flat, ch1 and ch2
represent channel 1 and 2, and L1 and L2 represent layout 1
and layout 2

and rest of the spectrogram. This Doppler peak is calculated
using the self-ambiguity function, which correlates with the
signal itself. Higher PNR means better quality Doppler spec-
trograms. The PNR versus frame rate is shown in Fig 6. The
baseline is when WiFi router in idle mode where only beacon
signals are broadcast at a frequency of 10Hz. Adding other IoT
devices, such as one Amazon Alexa and one Google Cam,
can increase the frame rate to 50Hz. However, the PNR is
still not enough for fine-grained sensing at this frame rate.
Therefore, coarse sensing is enabled within the WiFi network.
PNR becomes much sufficient and stable after 200Hz of frame
rate. A small improvement can be seen at 2000Hz frame rate
from RFEH transmitter. The trade-off between PNR and frame
rate is therefore estimated at around 200Hz for the optimized
detection performance. Frame rate below 200Hz will be used
for coarse sensing, and above 200Hz could be used for fine-
grained sensing. Note that, parameters like data rate, frame
size and bandwidth can also affect the frame rate in WiFi
network.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to show
the performance of PIoTR for both occupancy detection and
activity recognition.

TABLE I: System parameters associated with the coarse and
fine-grained sensing modes

Coarse sensing Fine-grained sensing
Signal source WiFi router/Amazon

Alexa/Google Cam
RFEH transmitter

Number of sources multiple (three de-
vices in this work)

single

Frame rate 25-30Hz >2000Hz
Output power <100mW (varied de-

pending on device)
<1W

Carrier frequency 2.4GHz 915MHz
Bandwidth 20MHz 20MHz
Iteration time (Ti) 1 second 1 second
Number of Doppler
bins (Nb)

40 100

Application occupancy detection activity recognition
Antenna directional (14dB) directional (8dB)

A. Experiment Setup
The experiment layout is shown in Fig 7 in a one-bedroom

flat, consists of a living room and a bedroom. To test the
PIoTR in both LoS and TTW conditions, two system layouts
were tested. Channels in layout 1 were located in the two
corners of the living room and channels in layout 2 were
located in two corners of the bedroom. An Amazon Alexa was
located in bedroom and playing music whilst a Google Nest
cam was located in living room and configured to recording
video. The WiFi router was located on the opposite side of
the living room near the sofa. These three devices combined
can be considered as a simple IoT network. Moreover, a
RFEH transmitter was located in the bottom-left corner of
the living room. This is to cover the entire flat for RFEH
transmitter delivers wireless energy to IoT sensors. The frame
rate in coarse sensing is about 25-30Hz, whereas in fine-
grained sensing is about 3kHz. Note that, all devices used in
this work were in normal operation order which did not include
any specific configuration in firmware or hardware. For clarify,
Table I summarizes the system parameters for PIoTR.

Total four volunteers (three male and one female) were
involved, including six classes in occupancy detection and six
classes in activity recognition.

B. Coarse Sensing: Occupancy Detection
Dataset for coarse sensing includes 360 minutes continuous

measurement as 6 classes x 30 minutes each measurement
x 2 layouts. Volunteers were asked to keep active to best
stimulate as dynamic objects. This includes ’rapid’ activities
like walking, as well as slow activities like reading and
working in front of a computer.

For all measurements, we split the long Doppler strength
data into short samples with a duration of 30 seconds. This
gives total 720 samples in coarse sensing. The focus is to
decide whether there are people occupancy within 30 seconds.
All classifications follow: 80% samples for training and 20%
samples for testing. A five-fold cross validation was applied.
Three metrics were calculated to evaluate the accuracy of
occupancy detection as follows:

• Overall Accuracy (OA) = correct detected samples / total
samples
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Fig. 9: Receiver Operating Characteristic (ROC) curve for
occupancy detection (a) living room and (b) bedroom.

• Occupied Detection Accuracy (ODA) = correct detected
occupied samples / true total occupied samples

• Unoccupied Detection Accuracy (UDA) = correct de-
tected unoccupied samples / true total unoccupied sam-
ples

1) Room-level Localization: In the following test, we exam
the feasibility of PIoTR for room-level localization. In this test,
we mixed the samples from two layouts. The confusion matrix
for six classes is shown in Fig 8. The best performance cases
are class 5 and 6; both are the single person class and reach
an accuracy of 83.3% and 92.3%. These results suggest that
PIoTR can deliver high accuracy in the detection of individual
person. In comparison, the worst performance occurs for class
3 at only 54.5% with many samples misclassified into class 4.
This is due to the activity model from multiple people being
more complex than that for a single person. We also provide
ROC curves of occupancy detection from two rooms, which
are shown in Fig 9. Overall, gain in true positive rate is greater
than 90%, while Area Under Curve (AUC) of living room is
slightly better than bedroom. This is because the WiFi router
was located in living room and gave better opportunistic for
illumination.

2) Single & Multiple People Occupancy Detection: In this
test, we compare the performance of occupancy detection for
single and multiple people by two layouts. Fig 10 shows the
measurement metrics. Single person has OA at around 88%,
whereas multiple people have OA at around 90%. ODA and
UDA of multiple people are also better than that in single
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Fig. 10: Performance of occupancy detection for single (S)
and multiple (M) people
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Fig. 11: Performance of occupancy detection in living room
and bedroom

person. These results demonstrate that occupancy detection for
multiple people is slightly better than that for single person.
The reason is due to multiple people have a larger combined
radar cross section which is more likely to be detected. It
is also observed that all ODAs are better than UDA. This
indicates PIoTR trend to make false alarms in unoccupied
room. Visually inspecting the data, these noise in Doppler
may introduced by imperfect correlation in CAF and power
imbalance.

3) LoS & TTW Occupancy Detection: In this test, perfor-
mance for LoS and TTW scenarios are calculated separately
by two layouts. The measurement metrics are shown in Fig 11.
The overall detection performance in LoS is generally better
than that in TTW as expected. Also, layout 1 has slightly
better accuracy than layout 2. We attribute this to the location
of the WiFi router (in living room). Since WiFi router is a
more stable signal source when compared to IoT devices that
largely depend on internet usage. In contrast, only one device
was in bedroom which lower PIoTR’s accuracy.

C. Fine-Grained Sensing: Activity Recognition

Fine-grained sensing was verified with 6 different activities
as indicated in Fig 5. PIoTR was tested following the config-
uration in Fig 7, where the RFEH transmitter was located at
the left-bottom corner. A total of 480 samples were collected
from four people, each with a window length of 4 seconds. We
randomly select 80% of the dataset for training and used the
remaining 20% for testing. Three metrics, precision (positive
predictive value), recall (sensitivity) and F1 (weighted average
of precision and recall) were calculated to assess the accuracy
of occupancy detection as follows:

• precision = TP / (TP+FP)
• recall = TP / (TP+FN)
• F1 = 2 × (precision × recall) / (precision + recall)

where, TP, FP, and FN represent true positive, false positive,
and false negative, respectively.
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Fig. 12: Confusion matrix of activity recognition
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Fig. 13: ROC curves for each activities.

1) Overall Recognition Accuracy: Fig 12 presents the confu-
sion matrix of activity recognition showing an overall accuracy
of 91.3%. As the figure shows, the best performing activities
are walking and jumping, which both reach 97% accuracy.
This is due to their relative unique Doppler signatures that are
easier to distinguish by the classifier. The running, sitting and
standing activities all achieved an accuracy around 90%. The
worst performing activity was the body turning, which gave
just over 80% accuracy. There are several misclassifications
amongst the sitting, standing, and turning activities. The reason
is believed due to their similar activity duration and weak
Doppler signature. For example, walking and running both
have higher velocity than the rest which makes them very easy
to distinguish. In comparison, sitting, standing and turning
have much weaker and shorter Doppler signatures as shown in
Fig 6. ROC curves for each activity are shown in Fig 13. Due
to higher accuracy, most AUC values in activity recognition are
above 0.97 with exception of turn which is 0.92. The results
are consistent with our analysis on Fig 12.

2) Recognition Accuracy in LoS and TTW: In this test, sam-
ples from the LoS and TTW are trained and tested separately.
The overall values of the precision, recall and F1 results are
shown in Fig 15. As expected, LoS has better accuracy than
TTW in both layouts, with the highest values in precision,
recall and F1. Benefited from the high transmit power from the
RFEH device, there is only a slightly downgraded performance
under TTW condition. TTW in layout 1 has the worst perfor-
mance, this is because the RFEH signal penetrated the wall
twice (outward and reflection), which had been significantly
attenuated.

precision recall F1
0.8

0.85

0.9

0.95

1

L1.LoS

L1.TTW

L2.LoS

L2.TTW

Fig. 14: Precision, Recall, and F1 results for activity recogni-
tion in living room and bedroom
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Fig. 15: Precision, Recall, and F1 results for inter-person
recognition

TABLE II: Performance Comparison in different Locations

Testing lo-
cation

LoS in liv-
ing room

TTW in
bedroom

LoS in a
lab

TTW in an
individual
room

Distance to
transmitter

5m 8m 6m 6m

Dataset size 240 240 180 220
Precision 96.2% 86.8% 94.7% 84.3%
Recall 96.9% 86.3% 93.5% 82.1%
F1 96.6% 86.4% 94.1% 83.2%

3) Recognition Accuracy of Inter-Person: Here, we evalu-
ate recognition accuracy between people by testing samples
from one volunteer and training samples from the other two
volunteers. This test is more realistic as in many scenarios,
the classifier does not have a sample from unknown subjects
and has to rely on the pre-trained classifier. The classification
results are shown in Fig 15. As the figure shows, classification
performance is similar for all four people at around 80%.
This downgrade in accuracy is due to the differences in
Doppler signature between training and testing volunteers.
Nevertheless, the system can still deliver good accuracy to
recognize activities from a new user base on the previous
training from known samples.

4) Recognition Accuracy in Different Locations: Finally, we
further verified the performance of PIoTR in different loca-
tions including: a LoS scenario in a lab (7m×6m) and a
TTW scenario in an individual room (4.3m×4.6m). The same
activities were carried out in both experiments and a RFEH
transmitter was used as the signal source. The classification
process for each dataset was same as described above. Table II
presents the details of two experiments and their classification
results, together with that information from Fig 14. In general,
LoS gives better performance than the TTW as the result
of a stronger direct signal. Classification accuracy in LoS
can achieve more than 92%, while in TTW can achieve
around 83%. Additionally, these results demonstrate PIoTR
can deliver stable performance in different scenarios.
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Fig. 16: Doppler spectrogram of (a) single person walking,
(b) two people walking, and corresponding Doppler strength
in (c) and (d), respectively.

TABLE III: Occupancy detection by fine-grained sensing

flat living room bedroom
OA 99.6% 99.7% 99.5%
ODA 99.7% 100.0% 99.4%
UDA 99.5% 99.4% 99.6%

D. Fine-Grained Sensing for Occupancy Detection
On the other hand, fine-grained sensing can be easily

applied for occupancy detection. Fig 16 presents the Doppler
spectrogram captured by walking from (a) single person and
(b) two people walking, and corresponding Doppler strength.
There are obvious differences in Doppler signatures between
the two spectrograms. A single person shows a simple Doppler
signature with a single trajectory, whereas two people have
more a complicated Doppler signature as a combination of
two trajectories. Afterwards, same strategy has been applied
for occupancy detection.

Dataset in Section IV-C jointly with an empty room mea-
surement had been used to test fine-grained sensing in occu-
pancy detection, the performance is shown in Table III. Benefit
by the powerful RFEH signal, the detection rate of OA, ODA
and UDA are exceptional, where all of them are above 99%.
Thanks to high frame rate in RFEH transmitter, fine-grained
sensing generates much better Doppler features than coarse
sensing and therefore with better performance.

VI. DISCUSSIONS

A. System Comparison
Compare with the state-of-the-art WiFi CSI systems like

TW-See [12], Wideep [13] and CsiGAN [34] which are bi-
products of communication technique, PIoTR has different
mechanisms. Firstly, PIoTR is designed with passive radar
technique which is compatible with different types of signal
sources [18], not limited to WiFi signal. Consequently, PIoTR
is more suitable for IoT network which is embedded with
various communication protocols [16]. Additionally, PIoTR
generates Doppler information which does not affect by the
background scatter. This means no background calibration is
required which simplifies the system design. Moreover, CSI
systems [12], [34] generally need to trigger high frame rate for

sufficient detection which is not practical in real applications.
In comparison, PIoTR does not interference the air travel
in the communication channel since it passively uses the
RF signal and has no direct control on the signal source.
This is more suitable to the IoT network in terms of energy
efficiency, bandwidth usage and system design [10]. However,
PIoTR’s ’passive’ approach also means its performance is
not guaranteed but depends on the frame rate (effective WiFi
signal) in IoT network. A stable signal source, like RFEH
transmitter, is therefore essential for PIoTR.

B. Stationary Person Detection

The key principle of PIoTR is to detect Doppler shifts
resulting from moving objects, however this may not apply
to stationary person who may be resting, reading, watching
television, etc. Consequently, PIoTR may not perform well
when the object is in stationary or with very low veloc-
ity. Additionally, without background scanning, extraction of
stationary person from the static background has not been
fully explored with signal from IoT devices. One feasible
solution is to perform breathing detection as the replacement
of occupancy detection. Chest movements, during inhalation
and exhalation, can be potentially used as a proxy measure for
detection of breathing and has been demonstrated for short
distances [24]. However, breathing detection that can cover
the entire area of the flat and under TTW scenario remains a
challenge for the current system. This will require a high-
level of sensitivity to detect micro-Doppler variations at a
considerable distance and also need to deal with surrounding
static background objects.

C. Multi-Person Activity Recognition

While we have tested activity recognition for a single user,
the more interesting and also challenging problem is the case
where multiple people are in the environment. Considering the
walking trajectories shown in Fig 16(b), it can be considered
as a combination of Doppler spectrograms from two people.
A separation process is needed to achieve activity recognition
for multi-person. One solution is to use multiple receivers to
separate the signals due to two distinct mobile objects with the
concepts of MIMO radar. This might also help to distinguish
the occupancy of people in different room. Our PIoTR can be
easily extended to support the MIMO function by deploying
multiple SDR devices for more receiving channels. For now,
we leave multi-person recognition as the future work.

VII. CONCLUSIONS

In this paper, we present PIoTR, a passive IoT-based RF
sensing system for occupancy detection and activity recogni-
tion. PIoTR is designed with passive radar technique which
is not specific to a particular communication protocol. As a
result, it can work with different signal sources like WiFi and
EH. Unlike other CSI works which use off-the-shelf network
cards, we evaluate PIoTR with real transmissions from com-
mercial IoT devices. Experimental results show that, with low
frame rate, PIoTR can be used for occupancy detection with
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an average accuracy of 90%. Whilst, with a high frame rate,
PIoTR can achieve 91.3% accuracy in activity recognition and
more than 99% in occupancy detection.

Potential works include the study of the feasibility of other
short-range signal sources like NFC, Bluetooth. They could be
used for near-field sensing like finger gesture and vital sign
detection. Also, studies on extended topics like multi-person
recognition, distinguishing animals and humans and control
of computational complexity are essential to further deploy
PIoTR as a practical system.
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