1	
2	COVID-19 attributed mortality and ambient temperature: A global ecological
3	study using a two-stage regression model
4	Tapia-Muñoz, Thamara ^{1,*} ; González-Santa Cruz, Andres ² ; Clarke, Harrison ³ ; Morris, Walter ³ ;
5	Palmeiro-Silva, Yasna ³ ; Allel, Kasim ³
6	
7	¹ Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University
8	College London, United Kingdom
9	² Society and Health Research Center, Universidad Mayor, Chile
10	³ Institute for Global Health, University College London, United Kingdom
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22 23	* Corresponding author. Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, United Kingdom, Gower Street, London, WC1E 6BT. <u>thamara.munoz.20@ucl.ac.uk</u>
24	
25 26 27 28 29	Email addresses: T. Tapia-Muñoz <u>thamara.munoz.20@ucl.ac.uk</u> (https://orcid.org/0000-0001-9248-1056), A. González-Santa Cruz (<u>gonzalez.santacruz.andres@gmail.com</u>), H. Clarke (<u>harrison.clarke.19@ucl.ac.uk</u>), W. Morris (<u>walter.morris.19@ucl.ac.uk</u> ; https://orcid.org/0000-0001-6965-3518), Y. Palmeiro-Silva (<u>yasna.palmeiro.18@ucl.ac.uk</u> ; https://orcid.org/0000-0001-6664-1079), K. Allel <u>k.allel@ucl.ac.uk</u> (https://orcid.org/0000-0002-2144-7181).
30	
31	
32	

33	ABSTRACT
34	
35	Background: A negative correlation between ambient temperature and COVID-19
36	mortality has been observed. However, the World Meteorological Organization (WMO)
37	has reinforced the importance of government interventions and warned countries against
38	relaxing control measures due to warmer temperatures. Further understanding of this
39	relationship is needed to help plan vaccination campaigns opportunely.
40	Methods: Using a two-stage regression model, we conducted cross-sectional and
41	longitudinal analyses to evaluate the association between monthly ambient temperature
42	lagged by one month with the COVID-19 number of deaths and the probability of high-
43	level of COVID-19 mortality in 150 countries during time t=60, 90 and 120 days since
44	the onset. First, we computed a log-linear regression to predict the pre-COVID-19
45	respiratory disease mortality to homogenise the baseline disease burden within countries.
46	Second, we employed negative binomial and logistic regressions to analyse the linkage
47	between the ambient temperature and our outcomes, adjusting by pre-COVID-19
48	respiratory disease mortality rate, among other factors.
49	Results: The increase of one Celsius degree in ambient temperature decreases the
50	incidence of COVID-19 deaths (IRR=0.93; SE: 0.026, p-value<0.001) and the
51	probability of high-level COVID-19 mortality (OR=0.96; SE: 0.019; p-value<0.001)
52	over time. High-income countries from the northern hemisphere had lower temperatures
53	and were most affected by pre-COVID respiratory disease mortality and COVID-19
54	mortality.
55	Conclusion: This study provides a global perspective corroborating the negative
56	association between COVID-19 mortality and ambient temperature. Our longitudinal
57	findings support the statement made by the WMO. Effective, opportune, and sustained
58	reaction from countries can help capitalise on higher temperatures' protective role
59	including the timely rollout of vaccination campaigns.
60	
61 62	Keywords : COVID-19; Temperature; Environment and public health, Mortality, Government, Global health

INTRODUCTION

65

The COVID-19 pandemic caused by the rapid global spread of novel coronavirus (SARS-CoV-66 67 2) continues to harm population health at an unprecedented rate (1). Early and effective 68 containment measures significantly reduce the virus spread, protect the public, and prevent 69 capacity-constrained healthcare systems from becoming overloaded (2-4). Yet, with no effective 70 treatment or vaccine available at the onset of the pandemic, many countries resorted to different 71 public health measures to reduce the disease's spread, including closing schools and public 72 places to complete lockdowns (5). Notwithstanding, several countries have experienced a higher 73 disease burden with disproportionate numbers of cases and deaths without further consensus on the effect of temperature and seasonality on transmission and consecutive mortality (6-9). 74 75 Some studies have found a negative relationship between temperature with both -COVID-19 76 infectivity (10-16), -and the risk of death due to COVID-19 (15-19), while a cross-country 77 analysis using early released data found a modest relationship between average temperature and COVID-19 reproduction rate (20). Due to the limited evidence currently available, the World 78 79 Meteorological Organization (WMO) has reiterated the importance of government interventions 80 and warned against relaxing control measures because of higher temperatures (21). Furthermore, 81 without sufficient knowledge of infection, community engagement, public health system 82 capacity and adequate border control measures in place (22), many countries relaxed their measures going into the warmer periods in 2020 despite warnings from experts (6, 22). 83 Nowadays, with several countries with ongoing vaccination campaigns, only a few countries 84 have entirely controlled the spread of infections and disease severity (23). Further understanding 85 of temperature's role in countries with a high mortality attributable to COVID-19 may help plan 86 87 vaccination campaigns, especially before cold seasons begin.

Cross-country comparisons using COVID-19 mortality rates can be challenging and there is a 88 notable lack of global studies aiming to address these factors using a broader and comparative 89 perspective (18, 24-26). First, countries have employed different testing methods, standards to 90 report numbers, diagnostics definitions, and criteria for COVID-19 related death declaration (18, 91 26). Second, the cases onset dates are dissimilar between countries (7, 9, 26-28). Third, countries 92 93 have different individual compositions, epidemiological profiles, and public health resources that may determine the severity of COVID-19 (24, 27). Despite these shortcomings, a study carried 94 95 out by Sornette et al. (2020) analysed mortality by classifying countries according to their 96 geography. Apart from government measures taken and demographic and cultural factors, they found that climatic features such as temperature may explain the variation in mortality rates, 97 especially in western countries (19). 98 So far, all the studies have focused on the association between temperature and cumulative 99 deaths or cumulative mortality (15, 19, 29); however, little is known on the role of temperature 100 101 in the probability of countries facing high levels of COVID-19 mortality. Identifying potential factors for the likelihood of COVID-19 attributable mortality may help understand the 102 characteristics of those countries that have been more at risk and had more burden over time. 103 104 To address the knowledge gap in the current literature on the cross-country association between ambient temperature and COVID-19 attributable mortality, we developed the present study from 105 106 a global ecological perspective using a two-stage modelling approach to balance countries' 107 differences in resources and compositions. 108

109

METHODS

110 Study design and sample

111	We employed cross-sectional and longitudinal analyses to explore the association between
112	ambient temperature and COVID-19 number of deaths; and the link between ambient
113	temperature and the likelihood of high-level of COVID-19 mortality in a sample of 150
114	countries.
115	We harmonised data through a deterministic data linkage process by combining records from
116	different sources with the same three-letter ISO 3166-1 code. We extracted data from four
117	sources. For further information, see supplementary materials (section A).
118	We initially included 152 countries in the analysis for those with recorded available data for a
119	minimum of 90 days since the first confirmed case (missing rate=17.6%; N=152). Countries with
120	complete information on the independent variables were therefore kept in the analyses, resulting
121	in an analytical sample of 150 countries (see sample definition protocol in Figure A1,
122	supplementary material). We also employed Cook's distance test to analyse the most influential
123	data points within the sample (see supplementary materials, section D) (30).
174	

125 **Dependent variable**

The primary outcomes were COVID-19 number of deaths and the probability of high-126 127 level of COVID-19 mortality obtained from the Jhon Hopkins University (JHU) data repository 128 (date of access: October 31st, 2020). We counted deaths attributable to COVID-19 at different 129 points in time since the first reported case was confirmed in each country. First, we computed it at the 60th day and continued calculating period mortality using continuous 30-day intervals (i.e., 130 131 t=60, 90 and 120). We calculated mortality rate by the time after the first case was confirmed to 132 make the countries comparable while accounting for the time-lapse in COVID-19 number of deaths (31). Information on the number of daily reported cases is publicly available at Our World 133

Data (7). Afterwards, we defined mortality by dividing the number of deaths by the 2019 134 population reported for each country. Also, we categorised COVID-19 mortality rate into two 135 groups - "low to moderate level of COVID-19 mortality" (coded as 0) and "high-level of 136 COVID-19 mortality" (coded as 1). We used different cut-off points for categorisation, starting 137 from the median in each timepoint (t=60, 90 and 120) until the median plus two standard 138 139 deviations. We analysed the distribution of the unadjusted and adjusted ambient temperature Odds Ratios (ORs) when using the different definitions of a high-level of COVID-19 mortality 140 141 (HLCM). We finally selected the cut-off fulfilling the statistical convention of at least 10 events-142 per-variable (EPV) at each time point. Additionally, we examined a longitudinal model using at least 2 EPV (32, 33) (see more details at supplementary materials, section H). 143

144 Independent variables

145 1.- *The monthly temperature lag*: we calculated a monthly ambient temperature lag expressed in

146 Celsius degrees (°C) using one month lagged temperature ($t_{current} - 30$ days) according to t= 60,

147 90, and 120 days since the first confirmed case and by country (e.g., Afghanistan reached t=60 in

148 June; therefore, we used the average temperature of May). Temperature data from November

149 2019 to October 2020 were extracted from the available data on ERA5 and analysed in

150 Copernicus. The data was cropped by country using GADM version 2.8 shapefiles (34) (date of

151 access: December 1, 2020).

152 2. Probability of mortality due to respiratory diseases: Countries were balanced using the pre-

153 COVID-19 estimated probability of respiratory disease mortality. The variable was constructed

using the number of deaths attributed to respiratory diseases reported in 2017 from the Global

155 Burden of Disease Study (GBD) and country's local population size (35).

156	3. Stringency of government measures in response to the COVID-19 outbreak: The Oxford
157	COVID-19 Government Response Tracker (OxCGRT) (36) stores data on eleven indicators
158	indicating the stringency level in the government response against COVID-19. Data were
159	recorded daily by each country (date of access: October 31st, 2020). The OxCGRT index ranges
160	from 0 (no government stringency) to 100 (very strict government). We set the government
161	stringency index at t=30, 60, 90, and 120 since the first case was reported and used the variation
162	between periods (e.g., t=90, then government measure = $\Delta_{t90, t60}$). For further details, see
163	supplementary materials section A.
164	4. Countries' hemisphere: Countries were classified as belonging to the Northern or Southern
165	hemisphere based in their winter and summer seasons. Countries facing winter between
166	December and March were categorized as "Northern" countries and those in summer as
167	"Southern" countries. Rainy or dry seasons were not considered.
168	Auxiliary variables
169	We used seven variables for the first stage of our analysis (explained in the statistical analysis
170	section). These variables included the percentage of women and the disability-adjusted life year
171	(DALYs) attributed to asthma extracted from the GBD; the prevalence of obesity, and the level
172	of air pollution (pm 2.5) obtained from the World Health Organization (WHO); and the human
173	development index (HDI), population density, and the proportion of people aged 65 and older
174	extracted from the World Bank (WB). See further details on the sources in the supplementary
175	materials section A.
176	

177 Statistical analysis

178	Firstly, we used heatmaps to describe the cross-country variation in temperature and the crude
179	COVID-19 attributed mortality (logged and population-adjusted). Secondly, to avoid potential
180	biases in the analysis, we employed a two-step regression model to study the link between
181	ambient temperature and COVID-19 number of deaths, and the relationship between ambient
182	temperature and the probability of HLCM. This method is based on Heckman's approach (37-
183	39), which has been widely used in previous studies to correct non-randomly selected
184	observations and to avoid potential biases in the analysis (i.e., available countries in this study).
185	In the first stage, we balanced our sample by estimating the pre-COVID-19 probability of
186	respiratory diseases mortality to have a homogenous sample given countries' baseline
187	epidemiological characteristics, avoiding multicollinearity while maintaining relevant factors
188	previously seen as risk factors towards COVID-19. This step permits us to correct our second
189	stage models to account for specification errors. In the first stage, a log-linear transformation to
190	compute the respiratory disease mortality using robust standard errors presented the best
191	goodness-of-fit according to the R ² and Akaike Information Criterion (AIC) (see supplementary
192	materials, section B, C, and D). We explored different models by adding characteristics related to
193	respiratory disease mortality from the GBD study (35). Other variables related to respiratory
194	disease mortality were tested and discarded as predictors due to the lack of fit and
195	multicollinearity issues. Finally, we predicted the mortality rate attributed to pre-COVID-19
196	respiratory diseases as result of the first stage process (Equation 1).

198 Equation 1:

199 $Log(pre - COVID respiratory disease mortality)_c$

200

 $= \beta_0 + \beta_1 * \% Women_c + \beta_2 * \% > 65 \text{ years old}_c + \beta_3 * DALYS Asthma_c + \beta_4$

201 * Obesity prevalence_c + β_5 * Population density_c + β_6 * HDI_c + β_7 * Air Pollution_c + μ_c

 \forall country "c". This model uses a fixed time point.

203

202

204	In the second stage, we corrected the estimates for selection-bias by adding the predicted
205	probabilities from the preceding step (i.e., pre-COVID respiratory mortality) as an additional
206	independent variable. Therefore, based on Equation 2, we ran cross-sectional and longitudinal
207	negative binomial regression models for the period incidence risk of COVID-19 deaths and
208	logistic regression models for the likelihood of HLCM.
209	The timestep was fixed to the specific days (t= 60, 90, and 120) for cross-sectional models.
210	Longitudinal models included the same covariates throughout the three different time points. No
211	collinearity was present amongst our predictors and the dependent variables (see supplementary
212	materials, section G). We used Bootstraps errors with 1,000 iterations to account for sampling
213	biases.
214	

215 **Equation 2:**

Log (Y)_{ct} = β₀ + β₁ * lag of ambient temperature_c + β₂ * pre - COVID respiratory disease mortality_c + β₃
* Δ(Government measures)_{ct} + β₄ * Region + μ_{ct}
∀ country "c". "t" stands for time=60, 90, and 120 days since the onset
Y refers to "number of deaths" in negative binomial regression and "high-level of COVID-19

221 mortality" in the logistic regression analyses, respectively. Cross-section and panel data models

- 222 were used. Δ stands for variation between period t and t-1. "Region" stands for countries'
- 223 hemisphere.
- 224

225	All analyses were performed using STATA 16.1 (40), QGIS 3.6 (QGIS Geographic Information
226	System) (41), and R software 4.0.2 (42). An online repository for data management and
227	consolidation is available at <u>https://bit.ly/36IKhhJ</u> and <u>https://bit.ly/2UXAz8B</u> for data
228	visualization and examination.
229	
230	RESULTS
231	Table 1 summarises the descriptive characteristics of our sample. The COVID-19 number
232	of deaths drastically increased through the time points. COVID-19 mortality increased over time,
233	but it decelerated between t=90 and t=120. Specifically, it increased twofold in t=90 compared to
234	t=60 (Mean _{t:90} =2.56; 95% CI: 1.37-3.74) and decreased at t=120 compared to t=90
235	(Mean _{t=120} =2.05; 95% CI: 0.89-2.13). Ambient temperature increased by 1.5° C per defined time
236	(Mean _{t:60} =20.83; 95% CI: 17.13-24.54; Mean _{t:90} =22.33; 95% CI: 18.69- 25.97; Mean _{t:120} =23.78;
237	95% CI: 20.16- 27.39), whereas the index of government measures increased drastically between
238	t=0 and t=60; however, it shrank after that period.
239	Figure 1 shows the average ambient temperature by country, whereas Figure 2 depicts the
240	death rate (adjusted to the population size per 100,000 habitants) since the onset. The Figures
241	indicate that countries close to the Equator and the southern hemisphere had the highest
242	temperatures but low or medium levels in deaths on average (e.g., Australia, Democratic
243	Republic of the Congo, Ghana, Singapore). On the contrary, northerly countries faced the highest
244	number of deaths attributed to COVID-19 but the lowest average temperatures over the timespan
245	(e.g., France, Denmark, Italy, Spain, Sweden, Switzerland, the UK, and the US).
246	

Table 1. Descriptive statistics of the sample (N=150)

Country-level characteristics	MEAN	SD	IQR
-			

Women (%)	49.98	2.91	1.12
People aged 65 and older (%)	5.65	4.42	5.40
Obesity (%)	18.10	9.47	17.9
DALYs Asthma (standardized)	0.21	0.16	0.17
Low HDI ^a	53.24	7.57	13
Medium HDI ^a	74.18	3.99	5.9
High HDI ^a	88.34	4.36	7.6
Population density (population/km ²)	136.78	216.48	109.20
Low air pollution ^b	11.72	3.36	5.34
Medium air pollution ^b	21.99	3.26	5.63
High air pollution ^b	50.16	17.83	19.75
Respiratory disease mortality	0.03	0.02	0.023
Second-stage variables			
COVID-19 Deaths at t=60	366.5467	1310.381	144
COVID-19 Deaths at t=90	1279.553	4967.145	235
COVID-19 Deaths at t=120	1214.267	5293.42	346
COVID-19 Mortality at t=60	1.1.51	3.86	0.85
COVID-19 Mortality at t=90	2.56	7.37	1.16
COVID-19 Mortality at t=120	2.05	4.13	1.65
Ambient $T_{^{\circ}C}$ at t=30	17.58	10.65	17.15
Ambient T _{°C} at t=60	19.06	9.62	14.83
Ambient T _{°C} at t=90	20.57	8.43	12.90
Δ Government measures t=60/t=30	7.77	2.18	12.04
Δ Government measures t=90/t=60	-6.99	1.07	12.96
Δ Government measures t=120/t=90	-8.76	0.99	14.35

247 Notes: Δ stands for variation between two periods. SD is standard deviation, while IQR is for the Interquartile range. ^a Countries level of Human
 248 Development Index [HDI] was divided using terciles. ^b Countries level of air pollution were classified using terciles.

249

250

251 A. Prediction of the pre-COVID-19 respiratory disease mortality

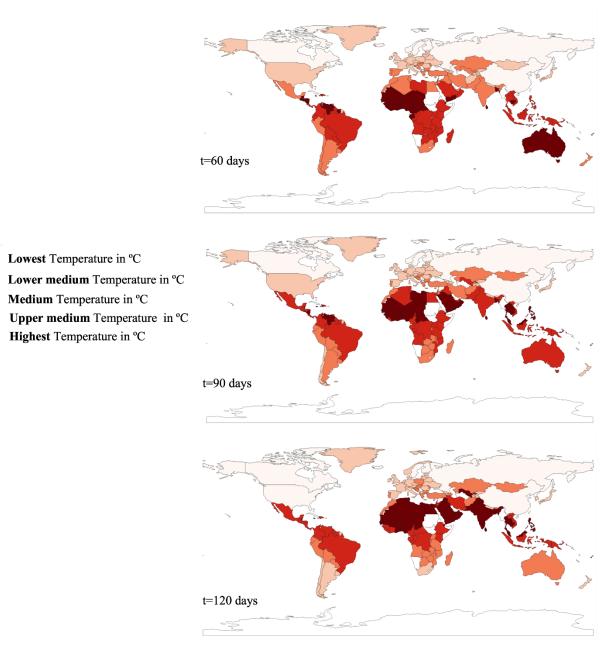
Table 2 displays the results of the first stage modelling from Equation 1 (see

supplementary material, section B for modelling diagnostics and predictors eligibility). The

254 percentage of women and people aged 65 and older, the DALYs attributed to asthma, obesity

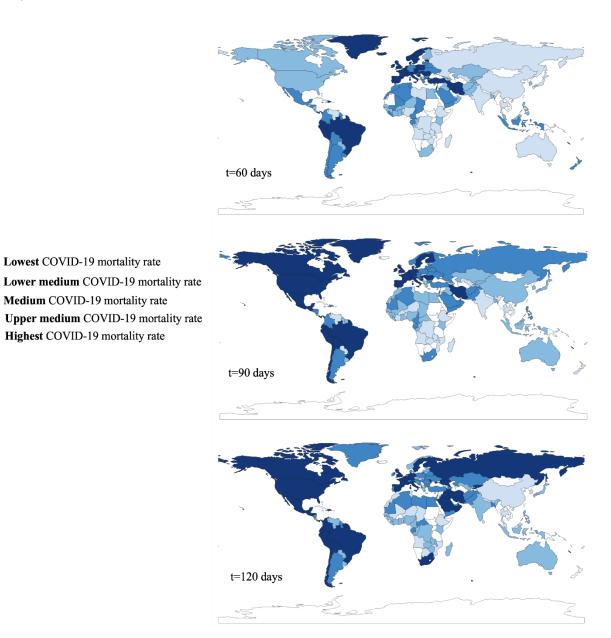
prevalence, population density, HDI, and air pollution (pm 25), accounted for 59% of the

variation of the pre-COVID-19 respiratory mortality. We predicted the adjusted pre-COVID-19


respiratory disease mortality based on Table 2 results.

Pre-COVID-19 respiratory disease mortality per 100,000 people	β	SE
Women	0.049***	0.018
People aged 65 and above	0.098***	0.020
DALYs Asthma	1.089***	0.261
Obesity prevalence	-0.014*	0.007
Population density (population/km ²)	0.000***	0.000
HDI ^a		
Medium	-0.020	0.138
High	-0.138	0.191
Air Pollution ^a		
Medium	-0.126	0.085
High	-0.208*	0.122
Constant	0.270	0.913
R ²	0.593	
AIC	172.015	

259
 Table 2. First-stage analysis: log-linear regression results (N=150 countries)


260 261 Notes. * 0.1 ** 0.05 *** 0.01. Robust standard errors were used. IL stands for inferior limit while SE standard error. a Terciles, using low groups

as the reference category.

264
 Notes: Lowest, medium, and highest groups are calculated based on each category quintile; Highest values indicate a greater temperature over the time "t" since the onset. White areas mean missing data.

Figure 2. Average COVID-19 attributed mortality per country and time (t=60, 90, 120), (N=150 countries)

269

Notes: Lowest, medium, and highest groups are calculated based on each category quintile; Highest values indicate a greater higher number of deaths attributed to COVID-19 since the onset with respect to each country's population. White areas mean missing data.

B. Cross-sectional and longitudinal analysis of temperature and COVID-19 number of 272 deaths 273

- Table 3 (section A) shows the main results of the cross-sectional multivariate analysis using 274
- negative binomial regression. Countries with higher ambient temperature had a significantly 275
- lower incidence risk ratio of COVID-19 death at t=60, t=90 and t=120. An additional 1°C from 276
- 277 the previous timestep decreased the incidence risk of COVID-19 death by 10% at t=60
- (IRR=0.90; SE: 0.036) and 8% at t=90 and t=120 (IRR_{t=90}=0.92; SE_{t=90}: 0.04; IRR_{t=120}=0.92; 278
- 279 $SE_{t=120}:0.04$). Our longitudinal analysis (section B) showed that after adjusting the model by pre-
- 280 COVID-19 respiratory mortality, the variation in government's stringency measures, countries'

hemisphere, and ambient temperature remained as a protective factor for the incidence risk of 281

death attributable to COVID-19 over time (models 6 and 7). The approach derivation and tests 282

for the main assumptions of the model are found in supplementary material, section E. 283

- 284
- Table 3. Second stage analysis: negative binomial regression results for the incidence of COVID-19 285 286 deaths.

	Model 1	(t=60)		Model	2 (t=90)		Model 3 (t=120)
	IIR	SE		IIR	SE		IIR	SE
Ambient temperature	0.902**	0.036		0.919*	0.041		0.917*	0.043
PRDM (%)	1.018	0.032		1.029	0.029		0.988	0.028
Δ Government measures ^b	1.014	0.011		1.090***	0.033		1.016	0.023
Region ^c	2.892	2.252		1.570	1.176		2.017	2.296
Constant	214.81***	382.321		1194.97***	2146.91		3308.99***	8299.39
Ln(alpha)	1.417	0.104		1.482	0.100		1.649	
Pseudo R ² :	0.0206			0.0320			0.010	
AIC:	1633.501			1806.938			614894.2	
Section B. Longitudinal n	egative binom	ial regressi	on models (N=	450)				
	Mode	14	Mod	lel 5	Mode	16	Mode	17
	IIR	SE	IIR	SE	IIR	SE	IIR	SE
Ambient temperature	0.930***	0.020	0.949**	0.029	0.932**	0.027	0.926***	0.026
PRDM (%)			1.026*	0.017	1.030*	0.018	1.032*	0.018
Δ Government measures ^c					0.976**	0.011	0.977**	0.010
Region ^c							2.207	1.094
Constant	2753.29***	1013.58	1006.26***	911.25	1322.91***	1272.83	513.005***	556.941
Chi ² (p-value):	10.44(<0	0.001)	30.24(<	(0.001)	37.55(<0	001)	44.48(<0	001)

287 Notes. * 0.1 ** 0.05 *** 0.01. IRR stands for incidence risk ratios. *PRDM stands for pre-COVID respiratory disease mortality adjusted. $^{b}\Delta$ stands for the variation in the stringency government index between timepoints. "Region stands for hemisphere of the country, "Southtern" was 288 289 290 used as reference. Sections B D use GEE population-averaged model. Bootstrap standard errors calculated with 1000 iterations were used in all models.

C. Cross-sectional and longitudinal analysis of temperature and a high-level COVID-19 mortality

We compared different definitions for "high-level of COVID-19 mortality" (HLCM) (see 293 supplementary materials, section G, for model comparisons). We used the median + 0.4 SDs to 294 analyse the countries with a HLCM because it fulfils the statistical criteria of 10 EPV in the 295 296 model. Countries' hemisphere was not added as independent variable in the models because of the low number of countries classified as being in the "Southern" area at t=60. Nevertheless, we 297 298 ran an exploratory analysis by adjusting our main models by countries' hemisphere, and it 299 showed a consistent relationship between ambient temperature and HLCM over time (supplementary materials, section H). 300 At t=60, t=90, and t=120, there were 30 (20%), 36 (2 4%) and 64 (43%) countries classified as 301 302 HLCM, respectively (see supplementary materials, section G for the list of countries). For 303 instance, Belgium, Switzerland, Spain, Luxembourg, Netherlands, Italy, the United Kingdom, 304 and Ireland had a high level of COVID-19 mortality at the three timesteps. Table 4 (section C) shows the main results of the cross-sectional multivariate analysis using the 305 logistic regression approach detailed in Equation 2. Countries with higher ambient temperature 306 307 had lower likelihood of HLCM regardless of the period. An additional 1°C from the previous timestep decreased the likelihood of HLCM by 7% at t=60 (OR=0.930; SE: 0.026) and at t=90 308 309 (OR: 0.925; SE: 0.028), and by 8% at t=120 (OR=0.915; SE: 0.031). Pre-COVID-19 respiratory 310 mortality was significantly related to a HLCM at t=60. The variation in the government's 311 stringency measures was not significantly related to HLCM. 312 Table 4 (Section D) presents the longitudinal model for COVID-19 mortality detailed in

Equation 2. The unadjusted and fully adjusted model showed a relationship between ambient

314	temperature and	the probability	of HLCM.	Model 13 s	shows the	relationship	adjusted by pre-
-----	-----------------	-----------------	----------	------------	-----------	--------------	------------------

- COVID-19-respiratory mortality, and the time point variation in government's stringency 315
- measures. Over time, an additional 1°C from the previous month decreased the likelihood of 316
- HLCM by 4% (OR_{model14}=0.96; SE: 0.019). Furthermore, between periods variation in the 317
- government stringency measures was a country protective factor for HLCM over time 318
- 319 (OR_{model14}=0.98; SE=-0.006), while pre-COVID 19-respiratory mortality was a risk factor for
- HLCM over time (OR_{model13}=1.040; SE=0.012). In sensitivity analyses we changed the threshold 320
- 321 for HLCM to the median + 2.0 SDs (EPV=2); however, similar results were found (see
- 322 supplementary material, section H).
- 323

Table 4. Second-stage analysis: logistic longitudinal regression results for high-level of COVID-19 mortality 324

Section C. Cross-sectional logistic regression models (N=150)

	Model 8 (t=60)		Model 8 (t=60)		Model 10 (t=120)	
	OR	SE	OR	SE	OR	SE
Ambient temperature	0.930**	0.026	0.925***	0.028	0.915***	0.031
PRDM (%) ^a	1.050*	0.031	1.037	0.026	1.006	0.022
Δ Government measures ^b	0.977*	0.012	0.995	0.018	0.098	0.016
Constant	0.224	0.231	0.426	0.43	3.495	3.55
Pseudo R ² :	0.19		0.18		0.16	
AIC:	130.2326		143.64		192.17	
Section D. Longitudi	inal logist	ic regr	ession mo	dels (N	=450)	
	Model	11	Model	12	Model 13	
	OR	SE	OR	SE	OR	SE
Ambient temperature	0.961**	0.019	0.985	0.021	0.964*	0.019
PRDM (%)			1.048***	0.010	1.040***	0.012
Δ Government measures ^c					0.977***	0.006
Constant	0.827	0.299	0.158***	0.087	0.257**	0.142
Chi ² (p-value):	3.95 (0.06))	43.63 (<0.0	01)	49.15 (<0.01)	

Notes. * 0.1 ** 0.05 *** 0.01. OR stands for odds ratios. ^aPRDM stands for pre-COVID respiratory disease mortality adjusted. b ∆ stands for the

325 326 327 variation in the stringency government index between timepoints. Sections B D use GEE population-averaged model. Bootstrap standard errors calculated with 1000 iterations were used in all models.

DISCUSSION

330	We analysed the association between monthly ambient temperature and COVID-19
331	mortality across countries at the beginning of the pandemic accounting for epidemiological
332	factors. We used the adjusted COVID-19 number of deaths and the high-level of COVID-19
333	mortality group of countries to understand how temperature has been related to them. We found
334	that ambient temperature was associated with the adjusted COVID-19 number of deaths and a
335	high-level of COVID-19 mortality (HLCM) using different model specifications.
336	The results of the relationship between ambient temperature and COVID-19 number of
337	deaths are in line with the observational studies that have reported a negative relationship
338	between them (15-17, 20, 43). Our results showed that this negative relationship was present
339	after 60 days since the first case confirmed. At the same time, ambient temperature was a
340	protective factor for COVID-19 deaths over time. Our results were not altered using the variation
341	in the stringency of government measures taken and countries' hemisphere. Our results
342	corroborate the WMO call that considered the previous literature as inconclusive and called for
343	further analysis on the matter (21).
344	The ambient temperature might be a protective factor against the HLCM over time.
345	Based on the dynamics of existing and previous infectious diseases, SARS-CoV-2 mortality may
346	differ according to environmental changes because seasons have factors that determine the
347	pathogen's abundance, reproduction, and survival time within the environment; therefore, the
348	community (44). Three underlying hypotheses may drive the negative association between
349	COVID-19 mortality and ambient temperature. Firstly, colder ambient temperatures could be
350	linked to changes in population behaviour; people spend more time indoors during colder

351 weather. Consequently, crowded and poorly ventilated spaces, such as urban transit systems,

could increase the viral load by the increased exposure to airborne and droplet transmitted 352 pathogens from one person to another (45, 46). Secondly, the seasonal variability of the immune 353 354 system's functions affecting the host's susceptibility to infection, such as seasonal variation of vitamin D and melatonin levels, are integral to upholding a strong immune system (47-51). Low 355 levels of these factors have been linked to significantly increased risks of viral upper respiratory 356 357 tract infections, pneumonia, severe inflammations, and thrombosis, all of which have been 358 frequently observed in patients with severe COVID-19 (52). Thirdly, co-occurrence of infections 359 may increase the severity of COVID-19 cases (53). Colder seasons increase the morbidity and 360 mortality of low respiratory tract infections and chronic respiratory diseases (46, 54).

In the longitudinal analysis, we found that the variation of the government measures was 361 significantly related to the incidence risk of COVID-19 deaths and the likelihood of HLCM. 362 Government measures, including strict lockdown, may not be sufficient to stop the spread and 363 364 reduce mortality especially considering that after t=60 they were decreased by the countries 365 observed. However, countries' effective, opportune, and sustained reaction can help capitalise on higher temperatures' protective role (2, 3, 6, 19, 20, 22, 24, 26, 27, 35, 55-57). Other important 366 factors must be considered to reduce the odds of high-level of COVID-19 mortality. These 367 368 factors include countries' economic resources, quality of care, healthcare coverage, demographic 369 distribution, air quality, population-specific underlying conditions, and the prevalence of other 370 respiratory diseases (4, 16, 19, 26). The relationship between obesity prevalence and respiratory 371 disease mortality was negative in our results, and it might be possible driven by the negative 372 relationship within countries with moderate HDI (r=-0.367). Previous literature has related obesity with increased risk of mortality (58); however, a study analysing mortality risk of 373 COVID-19 patients in ICUs found a potential obesity paradox (59). Moreover, our longitudinal 374

findings suggest that countries should improve their efforts by implementing effective preventive
measures to reduce respiratory disease mortality, which accounts for a vast disease burden in
high-income countries (HICs) (35).

378 We also found that mainly northern HICs exhibited higher mortality rates attributed to COVID-19 during the observed period (e.g., France, Italy, Spain, the UK). Some shared features are 379 380 highlighted across these countries. They have had an earlier onset of infections, a greater proportion of older people, a higher burden of disease from chronic conditions, including 381 cardiovascular diseases and pre-COVID-respiratory disease mortality, and the lowest ambient 382 383 temperatures observed since their onset. Most of these characteristics represent high-risk factors 384 for severe COVID-19 and attributed fatality rate (9, 19, 28, 60-62). Additionally, countries that reported HLCM and the greatest temperatures were mostly low-and middle-income countries 385 (LMICs) with lower HDIs (e.g., Guatemala, Honduras, Panama) or with poor government 386 387 performance in managing the pandemic (e.g., Brazil, Mexico). On the other hand, most African 388 countries reported high or medium levels in ambient temperatures and the lowest number of deaths adjusted to their population size due to having younger populations, rapid action through 389 the implementation of large-scale containment measures, low prevalence of chronic 390 391 cardiovascular conditions, favourable climate and good community health systems, and lack of 392 resources for epidemiological vigilance (63).

This article has limitations. First, we did not include other potential external variables which may impact transmission, and therefore, the number of deaths. For instance, population mobility might be related to local weather conditions, and to the stringency level derived from the government measures implemented. However, data on mobility was not widely available. Second, the existing missing data for LMICs may bias interpretations towards socioeconomic

disparities. Third, we did not use excess deaths attributed to COVID-19 nor age-standardised 398 mortality due to lack of data availability, especially for LMICs (64, 65). Further analyses should 399 400 look at both measures combined to disentangle the links between them while trying to correct, contrast, and interpolate mortality estimates, specifically in countries with insufficient or null 401 data published. Fourth, discretising a continuous variable may complicate the results, so they 402 403 must be interpreted cautiously (66, 67). Fifth, ambient temperature was an average measure for the entire country. Therefore, indoor temperatures may represent an unmeasured confounder, 404 405 while countries with high variability of ambient temperature and wide geographical areas might 406 be underrepresented. Sixth, given the complexity of the relationship examined, there were potential unassessed cofounders involved in the association between ambient temperature and 407 COVID-19 mortality (E-value coefficient.= 1.36; Inferior CI= 1.23; see supplementary materials, 408 section H) (68). 409

410 Considering these limitations, the strengths of the present study outweigh the 411 shortcomings. We attempted to eliminate endogeneity biases accounting for pre-COVID 412 characteristics. We have contrasted cross-sectional and longitudinal methods to test the linkage 413 between our variables over specific time points and over time and using two different outcomes: 414 the risk of COVID-19 deaths and the high-level of COVID-19 mortality. Using ecological data, we included a vast number of countries conducting a global analysis of the relationship between 415 416 ambient temperature and COVID-19 mortality. Previous articles have only focused on incidence 417 of deaths or continuous mortality; however, we have included high probability risk, which has 418 been often overlooked. Besides, we used COVID-19 attributed mortality ratio due to the limited testing capacity in some countries, especially in LMICs. Mortality measures may serve as an 419 420 accurate indicator for COVID-19 spread in highly impoverished countries, but also in HICs. For

instance, France, Italy, Spain, and the US have evidenced great numbers of underreported and
undetected COVID-19 cases due to the great number of tests taken during patient's
hospitalization or before death occurrence (69). Massive-scale testing to the wide population
should be implemented instead.

Finally, we decided not to include any further time to analyse mortality at the early pandemic and avoid the potential indirect effects carried by the vaccination process started at the end of 2020. Since the vaccination process began, the Oxford Coronavirus Government Response Tracker has been updated. The evidence of this report should be useful to take faster and effective decisions under similar scenarios related to MERS-CoV and SARS-CoV infections (70).

431 The present study attempts to understand the cross-country relationship between COVID-19 mortality and temperature, accounting for government containment measures to reduce its 432 433 spread. The protective role of ambient temperature on the incidence of COVID-19 deaths and the 434 probability of a high-level of COVID-19 mortality over time remained when considering the stringency level of the governments' measures to tackle the disease spread. We provided 435 436 preliminary evidence for the relationship between the lag of monthly ambient temperature and the probability of high-level of COVID-19 mortality through a global study. Our findings 437 438 support the call from the WMO to not taking government COVID-19 infectious containment 439 decisions only derived from meteorological factors (21). Conversely, the relaxation of COVID-440 19 related government measures should be based on the country's public health capacity, 441 community engagement, health system, and border control measures (6, 19, 22, 24). Moreover, a 442 reinforcement on vaccine campaigns should be in place during warmer seasons, especially in those countries where vaccination strategies are still slow and incomplete. 443

444	Contributors: TT, KA, WM, AG, and HC conceived and designed the study. TT and KA
445	conducted data analyses, interpreted the findings. TT, KA, WM, and HC prepared the main draft.
446	KA, AG and YP supported data analysis and interpretation of results and handled the data to be
447	put together. All authors critically reviewed and edited the manuscript.
448	
449	Declaration of interests: The authors declare no conflict of interests.
450	
451	Acknowledgements: All authors attest they meet the ICMJE criteria for authorship and have
452	approved the final article. We thank Amanda San Martin for their valuable support with the
453	language edition.
454	
455	Funding: No type of funding declared.
456	
457	Data availability and ethics: Data from the World Bank, the United Nations and the World Health
458	Organization are publicly available on their respective websites.
459	
460	
461	
462	
463	
464	
465	

467

REFERENCES

468	1.	Stawicki SP, Jeanmonod R, Miller AC, Paladino L, Gaieski DF, Yaffee AQ, et al. The
469	2019-2	2020 Novel Coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2) Pandemic:
470	A Jo	int American College of Academic International Medicine-World Academic Council of
471	Emer	gency Medicine Multidisciplinary COVID-19 Working Group Consensus Paper. J Glob
472		Infect Dis. 2020;12(2):47-93.
473	2.	Alfano V, Ercolano S. The Efficacy of Lockdown Against COVID-19: A Cross-Country
474		Panel Analysis. Applied Health Economics and Health Policy. 2020;18(4):509-17.
475	3.	Ghosal S, Bhattacharyya R, Majumder M. Impact of complete lockdown on total
476	infectio	on and death rates: A hierarchical cluster analysis. Diabetes Metab Syndr. 2020;14(4):707-
477		11.
478	4.	Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
479	Diseas	se 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the
480	(Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42.
481	5.	Dong L, Bouey J. Public Mental Health Crisis during COVID-19 Pandemic, China.
482		Emerging Infectious Disease journal. 2020;26(7):1616.
483	6.	Chaudhry R, Dranitsaris G, Mubashir T, Bartoszko J, Riazi S. A country level analysis
484	measur	ing the impact of government actions, country preparedness and socioeconomic factors on
485		COVID-19 mortality and related health outcomes. EClinicalMedicine. 2020;25.
486	7.	Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in
487		real time. Lancet Infect Dis. 2020;20(5):533-4.
488	8.	Anastassopoulou C, Siettos C, Russo L, Vrioni G, Tsakris A. Lessons from the
489	devasta	ating impact of the first COVID-19 wave in Italy. Pathogens and Global Health. 2021:1-3.
490	9.	Aparicio Fenoll A, Grossbard S. Later onset, fewer deaths from COVID. Pathogens and
491		Global Health. 2021;115(1):1-3.
492	10.	Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19
493		transmission in (sub)tropical cities of Brazil. Sci Total Environ. 2020;729:138862.
494	11	
495		lynamics of the COVID-19 outbreak in China. Sci Total Environ. 2020;728:138890.
496	12.	Tobías A, Molina T. Is temperature reducing the transmission of COVID-19 ? Environ
497		Res. 2020;186:109553.
498	13.	Ujiie M, Tsuzuki S, Ohmagari N. Effect of temperature on the infectivity of COVID-19.
499		Int J Infect Dis. 2020;95:301-3.
500	14.	Notari A. Temperature dependence of COVID-19 transmission. Science of The Total
501		Environment. 2021;763:144390.
502	15.	Ogaugwu C, Mogaji H, Ogaugwu E, Nebo U, Okoh H, Agbo S, et al. Effect of Weather
503		on COVID-19 Transmission and Mortality in Lagos, Nigeria. Scientifica (Cairo).
504		2020;2020:2562641.
505	16.	Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and humidity
506	on th	ne daily new cases and new deaths of COVID-19 in 166 countries. Science of The Total
507	1 7	Environment. 2020;729:139051.
508	17.	
509	amb	ient temperature and mortality of the coronavirus disease 2019 (COVID-19) in Wuhan,
510		China: a time-series analysis. BMC Public Health. 2021;21(1):117.

511	18. Docherty K, Butt J, de Boer R, Dewan P, Køber L, Maggioni A, et al. Excess deaths
512	during the Covid-19 pandemic: An international comparison. medRxiv; 2020.
513	19. Sornette D, Mearns E, Schatz M, Wu K, Darcet D. Interpreting, analysing and modelling
514	COVID-19 mortality data. Nonlinear Dynamics. 2020;101(3):1751-76.
515	20. Sera F, Armstrong B, Abbott S, Meakin S, O'Reilly K, von Borries R, et al. A cross-
516	sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across
517	26 countries. Nature Communications. 2021;12(1):5968.
518	21. Omumbo J. First Report of the WMO COVID-19 Task Team on Meteorological and Air
519	Quality (MAQ) factors affecting the COVID-19 pandemic. Copernicus Meetings; 2021.
520	22. Han E, Tan MMJ, Turk E, Sridhar D, Leung GM, Shibuya K, et al. Lessons learnt from
521	easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe.
522	Lancet. 2020;396(10261):1525-34.
523	23. Organization WH. WHO Coronavirus (COVID-19) Dashboard 2021 [Available from:
524	https://covid19.who.int/.
525	24. European Observatory on Health S, Policies, Marina K, Martin M. How comparable is
526	COVID-19 mortality across countries? Eurohealth. 2020;26(2):45-50.
527	25. Cerda Thomas R. Exceso de mortalidad durante la pandemia de COVID-19, revisión
528	narrativa. Revista médica de Chile. 2020;148:1647-51.
529	26. Balmford B, Annan JD, Hargreaves JC, Altoè M, Bateman IJ. Cross-Country
530	Comparisons of Covid-19: Policy, Politics and the Price of Life. Environmental and Resource
531	Economics. 2020;76(4):525-51.
532	27. Allel K, Tapia-Muñoz T, Morris W. Country-level factors associated with the early
533	spread of COVID-19 cases at 5, 10 and 15 days since the onset. Global Public Health.
534	2020;15(11):1589-602.
535	28. Landoni G, Maimeri N, Fedrizzi M, Fresilli S, Kuzovlev A, Likhvantsev V, et al. Why
536	are Asian countries outperforming the Western world in controlling COVID-19 pandemic?
537	Pathogens and Global Health. 2021;115(1):70-2.
538	29. Cherrie M, Clemens T, Colandrea C, Feng Z, Webb DJ, Weller RB, et al. Ultraviolet A
539	Radiation and COVID-19 Deaths in the USA with replication studies in England and Italy. Br J
540	Dermatol. 2021.
541	30. Aguinis H, Gottfredson RK, Joo H. Best-Practice Recommendations for Defining,
542	Identifying, and Handling Outliers. Organizational Research Methods. 2013;16(2):270-301.
543	31. Verma V, Vishwakarma RK, Verma A, Nath DC, Khan HTA. Time-to-Death approach
544	in revealing Chronicity and Severity of COVID-19 across the World. PloS one. 2020;15(5).
545	32. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the
546	number of events per variable in logistic regression analysis. J Clin Epidemiol.
547	1996;49(12):1373-9.
548	33. Vittinghoff E, McCulloch CE. Relaxing the Rule of Ten Events per Variable in Logistic
549	and Cox Regression. American Journal of Epidemiology. 2007;165(6):710-8.
550	34. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al. The
551	ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society.
552	2020;146(730):1999-2049.
553	35. Metrics IfH, Evaluation. Findings from the global burden of disease study 2017. Lancet.
554	2018.

555	36. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel
556	database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature
557	Human Behaviour. 2021.
558	37. Heckman JJ. The common structure of statistical models of truncation, sample selection
559	and limited dependent variables and a simple estimator for such models. Annals of economic
560	and social measurement, volume 5, number 4: NBER; 1976. p. 475-92.
561	38. Bushway S, Johnson BD, Slocum LA. Is the magic still there? The use of the Heckman
562	two-step correction for selection bias in criminology. Journal of quantitative criminology.
563	2007;23(2):151-78.
564	39. Heckman JJ. Sample selection bias as a specification error. Econometrica: Journal of the
565	econometric society. 1979:153-61.
566	40. StataCorp L. Stata data analysis and statistical Software. 2021.
567	41. Team QD. QGIS geographic information system. Open source geospatial foundation
568	project. 2021.
569	42. RStudio E. RStudio: Desarrollo integrado para R. RStudio. Recuperado el; 2020.
570	43. Majumder P, Ray PP. A systematic review and meta-analysis on correlation of weather
571	with COVID-19. Scientific Reports. 2021;11(1):10746.
572	44. Fisman DN. Seasonality of infectious diseases. Annu Rev Public Health. 2007;28:127-43.
573	45. Leclerc QJ, Fuller NM, Knight LE, Group CC-W, Funk S, Knight GM. What settings
574	have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res. 2020;5(83):83.
575	46. Fares A. Factors influencing the seasonal patterns of infectious diseases. Int J Prev Med.
576	2013;4(2):128-32.
577	47. Gronlund CJ, Sullivan KP, Kefelegn Y, Cameron L, O'Neill MS. Climate change and
578	temperature extremes: A review of heat- and cold-related morbidity and mortality concerns of
579	municipalities. Maturitas. 2018;114:54-9.
580	48. Dowell SF. Seasonal variation in host susceptibility and cycles of certain infectious
581	diseases. Emerg Infect Dis. 2001;7(3):369-74.
582	49. Srinivasan V, Spence DW, Trakht I, Pandi-Perumal SR, Cardinali DP, Maestroni GJ.
583	Immunomodulation by Melatonin: Its Significance for Seasonally Occurring Diseases.
584	Neuroimmunomodulation. 2008;15(2):93-101.
585	50. Yamshchikov AV, Desai NS, Blumberg HM, Ziegler TR, Tangpricha V. Vitamin D for
586	treatment and prevention of infectious diseases: a systematic review of randomized controlled
587	trials. Endocr Pract. 2009;15(5):438-49.
588	51. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, et al. Stability of
589	SARS-CoV-2 in different environmental conditions. The Lancet Microbe. 2020;1(1):e10.
590	52. Weir EK, Thenappan T, Bhargava M, Chen Y. Does vitamin D deficiency increase the
591	severity of COVID-19? Clin Med (Lond). 2020;20(4):e107-e8.
592	53. Nickbakhsh S, Ho A, Marques DFP, McMenamin J, Gunson RN, Murcia PR.
593	Epidemiology of Seasonal Coronaviruses: Establishing the Context for the Emergence of
594	Coronavirus Disease 2019. The Journal of Infectious Diseases. 2020;222(1):17-25.
595	54. Choe YJ, Smit MA, Mermel LA. Seasonality of respiratory viruses and bacterial
596	pathogens. Antimicrobial Resistance & Infection Control. 2019;8(1):125.
597	55. Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saisó S, Salomon JA. Mortality due
598	to low-quality health systems in the universal health coverage era: a systematic analysis of
599	amenable deaths in 137 countries. Lancet. 2018;392(10160):2203-12.

600	56. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors
601	associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6.
602	57. Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, et al. COVID-19 and
603	comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833-
604	9.
605	58. Kompaniyets L, Goodman AB, Belay B, Freedman DS, Sucosky MS, Lange SJ, et al.
606	Body mass index and risk for COVID-19-related hospitalization, intensive care unit admission,
607	invasive mechanical ventilation, and death-united states, march-december 2020. Morbidity and
608	Mortality Weekly Report. 2021;70(10):355.
609	59. Dana R, Bannay A, Bourst P, Ziegler C, Losser M-R, Gibot S, et al. Obesity and
610	mortality in critically ill COVID-19 patients with respiratory failure. International Journal of
611	Obesity. 2021.
612	60. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical
613	presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3
614	years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940-7.
615	61. Hozhabri H, Piceci Sparascio F, Sohrabi H, Mousavifar L, Roy R, Scribano D, et al. The
616	Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and
617	Forecasting. International journal of environmental research and public health.
618	2020;17(16):5648.
619	62. Sorci G, Faivre B, Morand S. Explaining among-country variation in COVID-19 case
620	fatality rate. Scientific Reports. 2020;10(1):18909.
621	63. Lawal Y. Africa's low COVID-19 mortality rate: A paradox? International Journal of
622	Infectious Diseases. 2021;102:118-22.
623	64. Feyissa GT, Tolu LB, Ezeh A. COVID-19 Death Reporting Inconsistencies and Working
624	Lessons for Low- and Middle-Income Countries: Opinion. Frontiers in Medicine. 2021;8(150).
625	65. Bethune ZA, Korinek A. Covid-19 infection externalities: Trading off lives vs.
626	livelihoods. National Bureau of Economic Research; 2020. Report No.: 0898-2937.
627	66. Peacock JL, Sauzet O, Ewings SM, Kerry SM. Dichotomising continuous data while
628	retaining statistical power using a distributional approach. Statistics in Medicine.
629	2012;31(26):3089-103.
630	67. Streiner DL. Breaking up is Hard to Do: The Heartbreak of Dichotomizing Continuous
631	Data. The Canadian Journal of Psychiatry. 2002;47(3):262-6.
632	68. Linden A, Mathur MB, VanderWeele TJ. Conducting sensitivity analysis for unmeasured
633	confounding in observational studies using E-values: The evalue package. The Stata Journal.
634	2020;20(1):162-75.
635	69. Lau H, Khosrawipour T, Kocbach P, Ichii H, Bania J, Khosrawipour V. Evaluating the
636	massive underreporting and undertesting of COVID-19 cases in multiple global epicenters.
637	Pulmonology. 2021;27(2):110-5.
638	70. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-
639	19: a brief summary and comparison of severe acute respiratory infections caused by three highly
640	pathogenic human coronaviruses. Respiratory Research. 2020;21(1):224.