DVA for assets

Debit valuation adjustments are becoming well understood for derivatives and liabilities – but can affect the asset side of the balance sheet too. Specifically, assets such as so-called goodwill depend on the creditworthiness of the firm. Chris Kenyon and Richard Kenyon model this relationship and show how it can be hedged.

The effect of own-default on liabilities and derivatives flows through the debit valuation adjustment (DVA) has been widely discussed in pricing literature (Burgard & Kjaer, 2011, Brigo, 2011, Cesari et al, 2010, Pallavicini, Perini & Brigo, 2011, and Crépey, 2012). However, the effect of own-default on assets has yet to attract similar attention (Kenyon & Stamm, 2012, being an exception), although it is clear that default will affect any asset that depends on company existence or performance.

We provide a hedging strategy for pricing DVA on assets, extending Burgard & Kjaer (2011), and consider an example, so-called goodwill, in depth. We calibrate our model to seven US banks over the crisis period of mid-2007 to 2011 and show how their reported profits would have changed if DVA on this asset, as well as liabilities, had been included. This effect is highly significant for at least four of the seven banks.

Financial Accounting Standard (FAS) 157 requires US banks to reflect their own potential non-performance, which includes creditworthiness, in the fair value of their liabilities (Financial Accounting Standards Board, 2010). However, creditworthiness has effects on balance-sheet items beyond liabilities. This can be observed by their change in value upon default of the company holding them. This may appear surprising, but it is clear that any asset that relies on the company being a going concern will exhibit this behaviour, for example, goodwill, brand values, etc. In fact, goodwill can be written down prior to default, and thus have a major effect on balance sheets even for going concerns. We include this in our model and calibration, and demonstrate how FAS 157 can be applied to the asset side of the balance sheet as well as the liability side. We do not propose a change in how goodwill is derived (Ramanna & Watts, 2010). Instead, we propose an adjustment that is applied subsequently to reflect creditworthiness effects.

Hedging DVA on assets

We take the view that own-assets can be sensitive to own-stock price levels as well as own-default. We can model, for example, progressive writedowns on a bank’s goodwill as its stock price decreases. We modify Burgard & Kjaer (2011) in that we have no risky counterparty, and extend it in that the own-asset (the bank stock) $S(0)$ jumps to zero on bank default. Like Burgard & Kjaer (2011), we assume that a risk-free bond can be purchased. So under the historical measure we have:

$$
\begin{align*}
\frac{dP(t)}{P(t)} &= r dt \\
\frac{dP_b(t)}{P_b(t)} &= \gamma dt - dJ_b \\
\frac{dS(t)}{S(t)} &= \mu dt + \sigma dW - dJ_b
\end{align*}
$$

where $P_b(t)$ are the price of risk-free and risky bonds respectively; r, γ are the corresponding risk-free and risky interest rates; W is a Brownian driving process; J_b is the jump-to-default process of the bank; and S is the stock of the bank. Note that the only jump in S-value comes on bank default. There are no market-based jumps in S-value. We could use a non-zero recovery on the bank’s issued bonds, but we assume zero recovery for computational convenience, as in Burgard & Kjaer (2011).

Let V be the value of an asset that depends on the bank’s own stock and existence. If the bank defaults at t, then:

$$
V(t, S) = M^*(t, S) + R_b M^-(t, S)
$$

where M is the value of the own-asset at default. We keep this value general for now, allowing positive and negative values. This enables us to model either hedging the asset or hedging the loss on the asset upon default, which will be important later.

Our setup is simpler than that of Burgard & Kjaer (2011) in that we only need to consider own-default. However, we include a risky underlying, $S(t)$, which has consequences. The value $V(t)$ of the hedging portfolio $\Pi(t)$ can be written in terms of the price processes P_i of its components:

$$
V(t) = \Pi(t) = \delta(t) P_0(t) + \alpha_0(t) P_0(t) + P_b(t)
$$

where $\delta(t)$ is the quantity of stock held, $\alpha_0(t)$ is risky bond holdings, and $P_b(t)$ is the price of the cash. We require the portfolio to be self-financing, so (bearing in mind Brigo et al, 2012) we have the following gain ζ processes:

$$
\begin{align*}
\frac{d\zeta_0}{\zeta_0} &= (\gamma - q) S dt \\
\frac{d\zeta_b}{\zeta_b} &= \gamma dt - P_b dt + P_0 dJ_b \\
\frac{d\zeta_1}{\zeta_1} &= \gamma dt + P_b dJ_b
\end{align*}
$$

Note that all gain processes are functions of t – not t, $\gamma(t)$ is the dividend yield on $S(t)$ and $q(t)$ is the financing cost. As in Burgard & Kjaer (2011), we assume we can put $S(t)$ into repo and we also assume it closes flat on default. Equally we assume zero recovery for the stock lender when we are short selling. If the cash position is positive, risk-free investment yields r, whereas negative cash costs the funding rate f_r. We can set the funding rate to the yield of an issued bond with recovery R_p, so $r_f = r + (1 - R_p) \lambda$. The price processes P_i are:

$$
\begin{align*}
P_0 &= 0; \\
P_b &= P_0; \\
P_b &= \zeta
\end{align*}
$$

The stock price process is zero except exactly at the instant of default but this portfolio cannot be bought, with no trading at
the default time τ. Note that the dividend processes D_t are not individually zero:

$$
\begin{align*}
\frac{dD_t}{D_t} &= dB_t - \alpha D_t dt, \\
\frac{dD_t}{D_t^2} &= dS_t + (\gamma - q) S_t dt, \\
\frac{dD_t}{D_t^3} &= d\sigma S_t dt
\end{align*}
$$

Self-financing requires that $V_t = V_t^0$ and replication requires that $V_t^0 = V_t$. Considering V_t we have:

$$
\frac{dV_t}{V_t} = \delta_t dt + \alpha_t S_t dJ_t
$$

Applying Itô’s lemma to V_t, we have:

$$
\begin{align*}
\frac{dV_t}{V_t} &= \delta_t dt + \alpha_t S_t dJ_t + \left(\frac{1}{2} \sigma_t^2 S_t^2 \theta_{\gamma,S} \Delta \tilde{V}_t\right) dt \\
&= \left(\frac{1}{2} \sigma_t^2 S_t^2 \theta_{\gamma,S} \Delta \tilde{V}_t\right) dt
\end{align*}
$$

Notice that the jump term in dS leads to one additional term within the last bracket. Positive \tilde{V} means long δ-risk so α_t will be positive or zero.

Removing all risks by equating the dS and dJ_t coefficients within equations (2) and (3) which are equal:

$$
\begin{align*}
\delta_t &= \alpha_t, \\
\alpha_t &= \left(S_t \frac{1}{2} \sigma_t^2 S_t^2 \theta_{\gamma,S} \Delta \tilde{V}_t\right) dt
\end{align*}
$$

then \tilde{V} satisfies the partial differential equation (PDE):

$$
\begin{align*}
\partial_t \tilde{V} + \mathcal{A} \tilde{V} - r \tilde{V} &= s_F \left(\tilde{V} + \Delta \tilde{V} + \theta_{\gamma,S} \Delta \tilde{V}^*\right) - \lambda_b \left(\Delta \tilde{V} + \theta_{\gamma,S} \Delta \tilde{V}^*\right) \\
&= \lambda_b \left(\tilde{V} + s_F \left(M^* + R_b M^* + \theta_{\gamma,S} \Delta \tilde{V}^*\right)\right)
\end{align*}
$$

Example asset: goodwill

Introduction to the asset. Goodwill is an asset on the balance sheet that is reported quarterly. In our examples, we consider seven large US banks. Five are chosen for size and the other two as representative pure investment banks. These banks have significant levels of goodwill on their balance sheets as compared with quarterly profits (see figure 1).

Goodwill, as defined in FAS 350-20, is created when a company is bought for more than the book value of net assets acquired and liabilities assumed. The carrying value of goodwill must be regularly reviewed (at least annually, in a two-step procedure)\(^1\), and can only stay at the same level or be impaired, that is, decrease

\(^1\) The first step is to see whether it is more likely than not (\(\geq 50\%\) likely) that the carrying value exceeds the fair value (FASB updates 2011-08, 2012-02)
We consider three models of goodwill value, two inspired by accounting and one from tax. First examine figure 2, where we show relative equity prices from mid-2007 on the left, and relative goodwill value (considering only write-downs) versus maximum stock price drop on the right. Despite significant stock price drops, three of the seven banks considered wrote down less than 10% of their goodwill. Thus we propose the following three models:

- **Constant** – the dollar value of goodwill never changes.
- **Progressive** – as the stock price drops, goodwill is gradually written off.
- **Amortising** – goodwill is amortised linearly over a fixed number of years.

The last model is inspired by USC Title 26 A.1.B.VI Section 197, mentioned above. In general, we would use a combination of constant and progressive since, for example, bank C did not write down 50% of goodwill despite a 90%-plus drop in stock price.

DVA on goodwill. We define DVA on goodwill as the expected loss from default or degradation of the company. Degradation is measured by decline in stock price. Our hedging methodology above includes both possibilities. Typically there is no recovery on goodwill as it represents part of going concern value.

Goodwill is not a tradable asset in the normal sense used in mathematical finance. As a thought experiment, consider the simplified case that goodwill has a constant dollar value up to the default of the company. No self-financing portfolio could duplicate this value as it always decreases in a risk-neutral measure.
A. Calibration for goodwill as sets of binary cash-or-nothing American options

<table>
<thead>
<tr>
<th>BAC</th>
<th>WFC</th>
<th>JPM</th>
<th>C</th>
<th>CDP</th>
<th>MS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>loss</td>
<td>b</td>
<td>loss</td>
<td>b</td>
<td>loss</td>
<td>b</td>
</tr>
<tr>
<td>49</td>
<td>0.1</td>
<td>40</td>
<td>2.5</td>
<td>90</td>
<td>0.1</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>18.5</td>
<td>55</td>
<td>1.5</td>
<td>13</td>
<td>28.7</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
<td>5</td>
<td>7.6</td>
<td>41</td>
<td>6.3</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>23</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: when the barrier \(b \), as a percentage of mid-2007 stock price, is hit, the percentage goodwill loss occurs

(with positive interest rates) as we consider longer horizons. Furthermore, goodwill generates no cashflows, even when written down, but has a non-zero value today.

Although goodwill itself is not a tradable asset, DVA on goodwill is a tradable asset, at least in the sense that we can hedge it. We will be precise later, but for now we continue the thought experiment.

Suppose we buy a zero-recovery credit default swap (CDS) on some company with notional equal to the goodwill, very long maturity (sufficiently high that the probability of default is close to unity), zero upfront cost and a given periodic premium payment. We can hedge this using a zero-recovery bond from the company, and a risk-free bank account (Carr, 2005). This CDS perfectly compensates us for the loss of value on default of the company (assuming no counterparty risk on the CDS itself). This works because unit notional CDSs have a payoff that pays the notional immediately or not is not highly significant.

- **Progressive model.** Goodwill is written off progressively as the equity price declines, considering the minimum stock price reached. We want to hedge these losses, that is, this DVA on Goodwill.

- **Calibration.** In general, the precise relationship between equity price declines and goodwill write-off is one for internal analysts to answer as they are the ones calculating the value of goodwill. However, looking back historically we can recover the calibration curves that internal analysts would have calculated.

Figure 2 shows the monotonic decline in goodwill with the minimum stock price reached at the end of the quarter. Note that this model leaves open the possibility that the writedown occurs with a delay after the barrier is reached when the stock price hits its minimum. This can occur, but there is typically just one big drop in the period, so we leave this detail out of the modelling, as a straightforward extension to a delayed cashflow. The calibration set of barriers and losses is shown in table A.

- **Hedging.** This consists of instruments that give positive cashflows when the stock price reaches successive barriers, so we can write DVA on goodwill in terms of a series of American-style binary cash-or-nothing options \(V_t \). Practically, we have captured aspects of a structural model of approach-to-default with these barriers as opposed to reduced form.

The hedges are bought options and hence always positive-valued. Since we do not want counterparty risk on the options, we assume that they are collateralised and hence \(s_0 = 0 \). Unlike the constant case, on default these options pay the loss amounts \(l \) since the stock price will have breached the respective barrier. Thus we have a similar PDE but with different boundary conditions:

\[
\partial_t \hat{V}_t + \hat{A}_t \hat{V}_t - r \hat{V}_t = \lambda \hat{V}_t - \lambda_0 l_t
\]

provided \(S \geq b \), where \((b, l)\) is the (barrier, loss) pair.

We can evaluate equation (10) as an integral over standard one-touch options with rebates for not touching with different maturities, since default is independent of stock price. A one-touch option is not a free boundary problem, so the PDE we have can be used with suitable boundary conditions (see Wilmott, 2006, 9.7 for details). We choose the rebates to be \(l \lambda e^{-r T} \) for maturity \(T \),
thus capturing the payout at default when the stock price goes to zero, provided the barrier has not previously been reached.

The no-hit rebate at T of R option price $R_{noH}(T, R)$ is known:

$$R_{noH}(T, R) = Re^{-rT} - R(S, h)\zeta P_d(h^2 / S, h) + C_d(S, h)$$

where C_d, P_d are digital call and put options and $\zeta = \frac{1}{2} - \frac{(r - \gamma)/\sigma^2}{2}$. Hence the DVA on goodwill under the progressive model is:

$$\sum_{i} \hat{\bar{V}}_i = \sum_{i} \int_{0}^{T} \left(\text{OneTouch}(h_i, S) + R_{noH}(S, t)\lambda e^{-\lambda s}ds\right)$$

It is beyond the scope of this article to – from the outside – estimate future calibrations for goodwill. However, making the assumption that internal teams could create a good calibration, we can use the historical data to reproduce it after the fact (see figure 2 and table A). Thus we can calculate their DVA on goodwill throughout the crisis period, as would have been reported.

Results

- **Constant and progressive models.** We calibrate the progressive model using historical data from mid-2007 to end-2011 on seven US banks (see table A and the right panel of figure 2). Stock implied volatility is from Bloomberg using at-the-money volatility at the longest consistently available quote, 18 months. We use the five-year CDS spread as representative together with the five-year swap rate for discounting. The goodwill that was not lost over this period we assign to the constant model.

Figure 3 shows the effect on reported quarterly profits of including changes in DVA on goodwill. The two investment banks (GS and MS) see little effect on their reported profits. This is because they have little goodwill relative to their profits and it was little affected by writedowns over the crisis period. One major bank (C) showed initially large effects, which were later much reduced. This is because it wrote off a significant fraction of goodwill over the crisis and subsequently was only affected by CDS changes. The remaining four major banks show volatile effects over the crisis period. This reflects their large amounts of goodwill, the crisis and in some cases changes resulting from acquisitions.

- **Amortising model.** The left panel of figure 4 shows the value of future goodwill for the amortising model, which is inspired by tax considerations. The staircase effect from paying tax yearly is evident. There is a strong dependence on the length of the amortisation period, which can be set by law.

The DVA on tax credits from goodwill amortisation is shown in the right panel of figure 4. There is a relatively small range of values for a wide range of amortising lengths, 10–20 years. The amortisation range is important in that it shows that the results are robust against deferment of the use of the tax credits. This potentially captures the case where the credits can only be used one-third to half the time. If there are no net profits over a long continuous period, then the tax credits may not be used. However, such cases are probably already captured by the default probability.

Conclusion

DVA on liabilities and derivatives is well established (Burgard & Kjaer, 2011, Brigo, 2011, Cesari et al, 2010), even to the extent of
proscriptive accounting rules in some jurisdictions, for example, FAS 157. DVA on assets, as far as we are aware, has had only limited attention (Kenyon & Stamm, 2012). We have presented a concrete example of an asset whose value is dependent on the default of its owner, namely goodwill, and shown how the potential value lost on default can be hedged using an extension of Burgard & Kjaer (2011). Calibrating our models to seven US banks over the crisis, we have shown that the effect of changes in DVA on assets can have significant effects on reported profits.

This work complements existing studies on valuation adjustments to do with creditworthiness, collateral and funding (Burgard & Kjaer, 2011, Brigo, 2011, Cesari et al, 2010, Brigo et al, 2011, Pallavicini, Perini & Brigo, 2011, Crépey, 2012, and Brigo et al, 2012). We note that DVA is specifically excluded from regulatory capital (Basel Committee on Banking Supervision, 2012) but is no less a trading reality. DVA hedging by proxy has been suggested in the Wall Street Journal. This works for spread changes but not default events. For example, imagine if Morgan Stanley had used CDSs on Lehman. Technically, as in Burgard & Kjaer (2011) and pointed out by Kenyon & Stamm (2012, sections 8.3.2 and 8.3.3), the key to analytic tractability is the use of repo accounts for financing. Without this, analytic tractability is limited.

As well as the accounting point of view of our constant and proscriptive models, we consider potential losses, and their hedging, relating to a tax point of view with our amortising model. We hope this will widen the debate over the scope and application of DVA.

Banks have reported large changes in profits from the effects of their own creditworthiness on liabilities. Our investigation suggests that including creditworthiness on assets can make the picture even more volatile. In balance sheet — and hedging — terms, this volatility is real.

Chris Kenyon is a director in the quantitative research — CVA/FVA area at Lloyds Banking Group in London. Richard Kenyon is a senior lecturer in accounting at Northampton Business School. They would like to acknowledge stimulating discussions with David Southern. All errors and opinions remain their own. The views expressed are those of the authors only. Email: chris.kenyon@lloydsbanking.com, richard.kenyon@northampton.ac.uk

References
Basel Committee on Banking Supervision, 2012
Regulatory treatment of valuation adjustments to derivative liabilities: final rule issued by the Basel Committee
Press release, available at www.bis.org/pr/p120725b.htm

Brigo D, 2011
Counterparty risk FAQ: credit VaR, PFE, CVA, DVA, closeout, netting, collateral, re-hypothecation, WWR, Basel, funding, CCDS and margin lending
Available at http://ssrn.com/abstract=1955204

Brigo D, C Buescu, A Pallavicini and Q Liu, 2012
Illustrating a problem in the self-financing condition in two 2010–2011 papers on funding, collateral and discounting
Available at http://ssrn.com/abstract=2103121

Brigo D, A Capponi, A Pallavicini and V Papathanodorou, 2011
Collateral margining in arbitrage-free counterparty valuation adjustment including re-hypothecation and netting
Available at http://ssrn.com/abstract=1969114

Burgard C and M Kjaer, 2011
Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs
Journal of Credit Risk, 7, pages 75–93

Carr P, 2005
Replicating a defaultable bond
Bloomberg/NYU Courant Institute

Cesari G, J Aquilina, N Charpillon, Z Filipovic, G Lee and I Manda, 2010
Modelling, pricing, and hedging counterparty credit exposure: a technical guide
Springer Finance, London

Crépey S, 2012
Bilateral counterparty risk under funding constraints part II: CVA
Mathematical Finance doi: 10.1111/j.1467-2994.2012.00505.x

Financial Accounting Standards Board, 2010
Statement of financial accounting standards no. 157 fair value measurements
New York

Kenyon C and R Stamm, 2012
Discounting, Libor, CVA and funding: interest rate and credit pricing
Palgrave Macmillan

Pallavicini A, D Perini and D Brigo, 2011
Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation
Available at http://ssrn.com/abstract=1969114

Ramanna K and R Watts, 2010
Evidence on the use of unverifiable estimates in required goodwill impairment
Working paper 09-106, Harvard Business School Accounting & Management Unit

Wilmott P, 2006
Paul Wilmott on quantitative finance
Second edition, part one, Wiley

Left panel: expected future values of potential tax credits from goodwill as percentage of initial value under amortising model. Straight line amortisation over $n_a=10$, 15, 20 years is displayed. Right panel: the DVA on these expected future tax credits from goodwill amortisation for a range of CDS spreads, with hazard rates calculated assuming 40% recovery, and flat 5% discount curve.

4 DVA on expected future goodwill

<table>
<thead>
<tr>
<th>T (years)</th>
<th>Expected future goodwill at T: amortising</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
</tr>
<tr>
<td>10</td>
<td>40%</td>
</tr>
<tr>
<td>15</td>
<td>60%</td>
</tr>
<tr>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDS spread (bp)</th>
<th>DVA on goodwill (% of initial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
</tr>
<tr>
<td>600</td>
<td>30</td>
</tr>
</tbody>
</table>