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CUTTING EDGE. CREDIT DERIVATIVES

Committee on Banking Supervision capital require-
ments known as Basel 2.5 and III – and their legal 

implementations such as the European Capital Requirements Direc-
tive (CRD IV) and more recently by the US Federal Reserve Board 
– set out specific capital charges for counterparty default risk and 
credit valuation adjustment (CVA) variation. The rules laid out by 
the committee allow for banks to reduce these charges by taking 
positions in appropriate credit default swaps (CDSs) and dealers are 
looking to mitigate the charge (see Thompson & Dahinden, 2013).

This use of CDSs, above their use for default protection, should 
have an effect on their prices. Some believe this contributes to a 
kind of feedback loop – a ‘doom loop’ in the more colourful ver-
nacular – whereby uncollateralised exposures prompt banks to 
buy protection, and hence spreads to widen, which in turn cause 
the exposures to grow, and so on. But few attempts have been 
made at quantifying this phenomenon (see Cameron, 2012, and 
Carver, 2011). Avoiding this loop is one reason proposed for local 
Basel III exemptions in CRD IV.

This article aims to address this, by incorporating capital miti-
gation into CDS prices. This is done by directly considering a 
third leg in the instrument, aside from the premium and default 
protection legs: the capital relief leg. The fair spread is affected, 
seemingly substantially, by the consideration of CDSs’ role in 
capital mitigation. Plausible model parameters applied to vanilla 
interest rate swap trades suggest it may account for as much as 
half the spread once capital relief is included.

Capital charges are implemented by local regulators using a 
two-tier model, according to whether a given bank has permis-
sion to use an internal model method (IMM) or not. The effect 
on the charge – and hence CDS spreads – of the two methods is 
partly through a scaling factor dependent on asset correlations – 
internal paarmeters for IMM banks, regulator proscribed other-
wise. In high-correlation – stressed – scenarios, IMM banks may 
in fact be losing out to their less sophisticated competitors when it 
comes to cost of capital.

In theory, making strong assumptions such as complete markets 
and zero CDS-bond basis, CDSs can be replicated by shorting the 
underlying name’s bonds and using a risk-free cash account (Carr, 
2005). If capital relief really were priced in by a protection seller, 
there would be no buyers since the product could be replicated. 

In practice, these assumptions do not hold. Basel III itself rec-
ognises the basis, for instance, and requires it to be modelled, and 
so capital relief can be priced in. When they do, there is no longer 
a unique clearing price, as each bank’s capital calculation and 
consumption and relief will be different. This is a first attempt at 
what we expect to be a broader theme in pricing theory – includ-
ing the effects of the capital costs, and relief, of buyers and sellers. 
Capital consumption is not just an internal question, and we can 
expect it to cause differential pricing in future. It also challenges 
the use in Basel III of CDS spreads to derive market-implied 

default probabilities, without considering the effect that using 
these very CDSs to hedge it will have.

CDSs with capital relief
We consider a bank buying a CDS on some reference entity to 
provide capital relief for the Basel 2.5 default risk and Basel III 
CVA charge. To handle its own counterparty risk (see Brigo & 
Capponi, 2010) the trade is perfectly collateralised, and the coun-
terparty and reference entity are assumed to have zero default cor-
relation. Together these mean that the capital charge for the CDS 
trade itself can be considered negligible. 

The fair CDS spread sets the premiums equal to default protec-
tion plus capital relief:

 PremLeg = ProtLeg + ReliefLeg Reg bank( ),entity,AC( ) (1)

The premium and protection legs depend on the recovery, rec, while 
the capital relief leg depends on both the default reference entity and 
the protection-buying bank regulatory status Reg(). This is either on 
an IMM basis, if the bank’s regulator has approved, or according to 
a standardised formula, possibly depending on asset class (AC). For 
example, under the current exposure methodology (CEM) set per-
centages are specified for the exposure at default (EAD) for interest 
rate, foreign exchange, equities, precious metals and other commod-
ity trades (see table A). There is no explicit dependence on the buy-
er’s deals with the reference entity because that is implicitly included 
in the choice of the CDS notional, tenor, etc. But portfolio effects in 
Basel III CVA value-at-risk capital calculation are included.

Equation (1) uses survival probabilities on all three legs because 
capital relief is only valuable while the reference entity has not 
defaulted. For an IMM bank, the CDS rate is used in both the 
premium leg and the relief leg because CVA VAR uses observed 
CDS spreads (not capital-adjusted CDS spreads). So IMM banks 
are, for this item, at a relative disadvantage to banks on standard-
ised approaches whose CVA VAR formula does not use observed 
CDS spreads.

We now expand each leg in equation (1):

  

PremLega,b c( ) = cE D 0,ξ( ) ξ −Tβ ξ( )−1( ) I Ta<ξ<Tb{ }
⎡
⎣

⎤
⎦

+ cE D 0,Ti( )τi I ξ≥Ti{ }⎡
⎣

⎤
⎦i=a+1

b
∑

= c P 0,t( ) t −Tβ t( )−1( )Q ξ ∈ t,t + dt[ ]( )Ta

Tb∫

+c P 0,Ti( )τi
i=a+1

b
∑ Q ξ ≥ Ti( )

 

(2)

  

ProtLega,b LGD( ) = E I Ta<ξ≤Tb{ }D 0,ξ( )LGD⎡
⎣

⎤
⎦

= LGD P 0,t( )Q ξ ∈ t,t + dt[ ]( )Ta

Tb∫  

(3)

Pricing CDSs’ capital relief
Positions in credit default swaps (CDSs) are eligible instruments to reduce some Basel III capital 
requirements. The value of this benefit should be reflected in the price. Chris Kenyon and Andrew Green 
incorporate this into a pricing model for CDSs, and show it may account for more than half the spread
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where a, b are protection limit times for the CDS; x is the default 
time; b(x) is the number of next coupon payment after time x; c 
is the CDS spread; D(0, t) is the stochastic risk-free discount fac-
tor from zero to t; Dcap(0, t) is the stochastic capital discount fac-
tor from zero to t; P(0, t) is the risk-free zero-coupon bond with 
maturity t; Pcap(0, t) is the capital zero-coupon bond with matu-
rity t; Krelief(t, cI{IMM}) is the capital relief from unit notional of 
CDS protection at time t; H(., t) is the instantaneous cost of capi-
tal at t; ti is the year fraction for ith premium payment; and Q(.) 
are the survival probabilities at time zero.

Equations (2) and (3) are standard (Brigo & Mercurio, 2006) 
under the assumptions given above, while equation (4) is new to 
capture the capital relief obtained from CDS contracts. Depend-
ing on the circumstances, it is possible that not all the capital 
relief is priced in. We assume zero transaction costs, for example, 
for changing levels of capital.

The fair CDS spread from equations (1), (2), (3) and (4) is:
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where LGD = 1 – rec is the loss given default. For CDS buyers with 
IMM approval, equation (5) has the fair CDS spread appearing on 
both sides of the equation as it is used in the CVA capital charge. 
Equation (5) then requires a non-linear numerical solution.

Capital pricing
For simplicity, we start from the point of view of a non-IMM 
bank and consider only credit risk capital. This leads to a default 
capital cost (DCC) and a CVA capital cost (CVC). We do not 
include market risk or operation risk, etc. Where there are ambi-
guities in the Basel documents, we use UK regulations for details. 
We go into depth on the derivation of the regulatory equations 
for the CVA capital charge to understand the portfolio effects on 
a non-IMM bank, and how an IMM bank’s portfolio characteris-
tics can result in different capital charges.

Basel III specifies the capital required at any given date. How-
ever, the cost of capital for a trade is the lifetime capital cost, not 
the cost of the trade-date capital requirement. We consider all 
capital costs in terms of lifetime cost. Of course, this lifetime 
depends on the lifetimes of the counterparties. We take the point 
of view that the bank (or trader) considers costs as a going con-
cern and so uses counterparty default time as the end of the trade 
if this occurs prior to maturity. It would be possible to include 
own-default time, funding, etc, in future work.
n CVA capital charge. We start from the standardised CVA risk 
capital charge in paragraph 104 of Basel Committee (2011), not-
ing that this is not a risk-weighted asset but capital directly:
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where h is the one-year risk horizon in units of years, that is, h = 1; 
wi is the risk weight of the ith counterparty based on external rating 
(or equivalent); EADi is the EAD of counterparty i, discounted at a 
5% rate including effective maturity; Bi is the notional of pur-
chased single-name CDS hedges, discounted as above; Bind is the 
notional of purchased index CDS hedges, discounted as above; wind 
is the risk weight of index hedge using one of seven weights using 
the average index spread, and wi that of the single-name hedge; Mi 
is the effective maturity of transactions with counterparty i (for 
non-IMM this is notional weighted average, and is not capped at 
five years); Mi

hedge is the maturity of hedge instrument with notional 
Bi; and Mind is the maturity of index hedge ind (see Pykhtin, 2012).

Equation (6) can be reproduced from two sources: first, a 99% 
one-sided standard normal distribution with mean zero gives the 
2.33 factor; second, there is an assumption that all counterparties 
have a correlation of 25%. Taking equation (6) with no hedging, 
we have:
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where we have written si = wiMiEADi and assumed all the si are 
equal. Now consider the variance V(n, r) of n random variables 
with mutual correlation r:
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Hence equation (6) assumes r = 1/4, after making similar 
assumptions about si for the n random variables. As n increases, 
the proportionality factor for K quickly converges to 1/2 = √1

_
/4
_  

as
 

n2 soon dominates n.
We can now ask how CVA VAR capital depends on the portfo-

lio distribution.
n Portfolio effects. If a bank is under the standardised CVA risk 
capital charge, equation (6) holds. This makes strong assumptions 
about portfolio correlation, which can be seen by comparing 
equations (7) and (8). We can look at the capital effect of portfo-

A. CEM potential future exposure notional add-
on dependency on maturity and asset class under 
paragraph 92 of Basel Committee (2006)
Maturity IR FX/gold Equities PM OC

Less than one year 0.0% 1.0% 6% 7% 10%

One to five years 0.5% 5.0% 8% 7% 12%

Greater than five years 1.5% 7.5% 10% 8% 15%

Note: PM = precious metals other than gold; OC = other commodities, for example, West Texas 
Intermediate oil
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lio size, homogeneity and correlation using equation (8).
Figure 1 shows how the proportionality factor for K in equa-

tion (6), √V
_
(n
_

,
_
 

_
r

_
)
_
 from equation (8), depends on n and r. Portfo-

lios with higher r will be charged lower capital with the standard-
ised formula than if their actual CVA correlation was used. Figure 
1 shows a homogeneous portfolio, that is, when all counterparty 
exposures are identically distributed normal random variables. 
The regulatory value r = 0.25 of the mutual correlation of these 
normal distributions means that each counterparty’s capital effect 
is close to half its stand-alone effect.

To investigate the effect on the proportionality factor K of the 
distribution of counterparty exposure sizes, we assume that this 
distribution is lognormal and alter its parameters. We keep the 
average size, as measured by the average s, or SwiMiEADi, con-
stant and alter the dispersion parameter sD of the portfolio distri-
bution D of exposures:

 D ~ eµD−σD
2 /2+σDN  

where N is a standard normal distribution, and set mD = 0 arbi-
trarily. Individual counterparty sizes are taken as quantiles of the 
distribution D. Since the counterparties are now not of equal size, 
the exact equivalence with r = 0.25 no longer holds. 

Figure 2 shows how the proportionality factor in the standard-
ised CVA VAR capital charge converges as the number of coun-
terparties n increases. With a range of dispersions of the counter-
party sizes, sD = 0.5, 1.0, 1.5, we see that the proportionality 
factor converges to around 1/2 for reasonable numbers of coun-
terparties, that is, around 1,000. The dispersion parameter of sD 
= 1.5 gives a long tail of counterparty sizes, and the other cases 
model more concentrated portfolios of counterparty sizes.

Figure 3 compares the standardised CVA VAR proportionality 
factor for n = 1,000 and sets of counterparties with differing cor-
relations from the uniform case. The standardised calculation is 
conservative for correlations up to about 50% and not thereafter. 
This range of K between benign and high-correlation crisis sce-
narios is captured by the fact that IMM banks must use the sum 
of stressed and non-stressed capital charges. So non-IMM banks 
may actually have the advantage here. We assume for simplicity 
that the sum of the stressed and non-stressed parameters’ effects is 
the same as the non-IMM K factor.
n Default capital charge. The Basel III default risk charge is 
mostly unchanged from Basel 2.5 (Basel Committee, 2006).

The effective maturity, M, is capped at five years. An IMM 
bank multiplies the EAD of a netting set by a constant factor α, 
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2 A range of lognormal counterparty wiMiEADi distributions
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while a non-IMM bank using the CEM uses add-ons based on 
notionals. The one-year default probability, PD, is floored at 3 
basis points and is calculated on a historical basis, according to 
default experience, mapping to external data, and statistical 
default models taking account of at least five years.

CDS examples
We now consider examples to gauge the proportion of the CDS 
spread that is paying for capital relief and not default protection 
using equation (5). We use the relation that the CVA on a trade is 
equal to the cost of a corresponding contingent CDS contract. In 
general, CVA on swaps can be recursive depending on close-out 
conventions (Burgard & Kjaer, 2011). We consider the non-recur-
sive version for simplicity.

For our IMM examples, to get the dependence on market observed 
CDS spread into the calculations that are based on the standardised 
CVA capital charge formula, we scale the weight w by the ratio of the 
observed-implied to calculated-implied default probabilities at M.
n Interest rate swap. As a basic financial instrument, we pick an 
at-the-money vanilla euro interest rate swap (IRS). The key thing 
we need to calculate is the EAD as this feeds into all the capital 
calculations, as well as the usual CVA.

Assuming for simplicity that default is independent of interest 
rates, the expected exposure at any future time S discounted to the 
present is given by the corresponding swaption price. Practically we 
use prices of collateralised swaptions, which have the same effect of 
creating prices independent of counterparty risk. We use the inverse 
risk-free discount factor to S to get the forward premium, which is 
the expected future exposure. Practically we could obtain forward 
premiums directly from the market, but for examples we use a swap-
tion implied volatility surface with data from Bloomberg.

Note that risk factors dynamics behind EAD profiles for DCC 
must pass historical backtesting. The underlying risk factors are 
explicitly permitted to be calibrated to either market-implied or 
historical data. For a detailed discussion, see chapter 11 of Kenyon 
& Stamm (2012).

Figure 4 shows the expected EAD profiles for a receiver IRS 
with and without CEM add-ons that are linked to notionals and 
to remaining maturities. With current low interest rates, the add-
ons are significant fractions of the profiles.

Figure 5 shows the fair CDS spreads for default only, CEM 

capital calculation and IMM capital calculation. The jaggedness 
of the CEM calculation derives directly from the changes in add-
on with increasing swap maturity – one year and below there is 
no add-on. It is also a function of the current low interest rate 
regime, so the add-on appears large. Table B provides the param-
eters for the example, based on typical bank minimum capital 
requirements, and discounting at its cost of capital, as is natural 
from a corporate finance perspective.
n Comparisons. Table C shows the division of observed CDS 
spreads, on a stand-alone basis, into default protection, Basel 2.5 
default capital and Basel III CVA capital, for five-year IRSs. 
Results for both non-IMM and IMM banks are shown. The part 
of the CDS spread attributable to default protection is less than 
half, and this holds across a range of ratings, or equivalently 
observed CDS spreads. This proportion is lower than in earlier 
examples because there are higher weightings and the S&P long-
term default probability increases quickly as rating decreases.

Table C is constructed by solving for a hazard rate such that the 
CDS price including Basel 2.5 and Basel III capital relief is at par. 
For the non-IMM case, this can be simply done using equation 
(5). For CDS buyers with IMM approval, equation (5) has the 
fair CDS spread appearing on both sides of the equation because 
the CDS spread is also used in the CVA capital charge. We used a 
non-linear solver to get the appropriate spreads in that case.

Table D includes the effect of the scaling factor K, which 
depends on the protection buyer’s counterparties. Figure 2 shows 
that this quickly converges to 0.5 so we use that value. We see 
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5 Fair CDS spreads: IMM versus standardised

B. Parameters for IRS examples
Parameter Value Source/motivation

Alpha s 1.3 Middle of range

Hazard rate 0.0156 Five-year observed CEM CDS is 0.02

Recovery rate 0.40 Typical

Historical default probability 0.0024 Global BBB from S&P

Cost of capital 0.10 Choice

Minimum capital 0.10 Typical

Discounting Cost of capital Choice

Note: the hazard rate makes the five-year observed CDS rate 2% assuming capital is priced in and 
this is calculated by CEM. The 2% is chosen to roughly line up with Markit BBB five-year generic 
CDS spreads (see Vazza et al, 2011)
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that there is a significant reduction in the part due to Basel III 
capital relief as expected and now the default protection part of 
the CDS spread is closer to half.

Conclusion
Under Basel III, and previously under Basel 2.5, CDSs provide capi-
tal relief. If capital relief is priced into CDS prices, then a new model 
is required to price CDSs and derive market-implied default proba-
bilities. We have presented a CDS model that addresses these require-
ments, now with three legs: premium, protection and capital relief. 
We do not know how much capital relief is actually priced in. This 
will be determined by market expectations of when regulations will 
come into force, which exceptions will be present, market incom-
pleteness (replication costs) and competition between CDS sellers. 
Since the market is incomplete (for example, CDS bond basis, diffi-
culties of bond shorting, etc), pricing in capital relief is possible.

All banks measure capital use, and collateralised CDSs con-
sume minimal capital. Nonetheless, the capital relief they afford 
to protection buyers can markedly affect CDS pricing. It is not 
enough to simply measure the capital consumption of a trade to 
understand the effect of capital on the trade price.

We have shown that capital relief pricing has a potentially sig-
nificant effect on CDS spreads, easily reaching 50% of the observed 
CDS spread. Both the IMM status of the CDS buyer and the asset 
class that the CDS buyer is obtaining capital relief on have major 
effects, especially for shorter maturities. Portfolio effects are rela-
tively easy to include for non-IMM banks because the proportion-

ality factor K quickly asymptotes to 0.5 and this is robust against 
different counterparty size concentrations. Institutions on the sys-
temically important banks list (Financial Stability Board, 2012) 
may see different prices because they have higher minimum capital 
requirements and this is known to their counterparties.

Unlike our non-IMM bank calculations, our IMM-approved 
bank calculations are approximate in many ways and should be 
taken cautiously. Including the observed CDS spread in the stand-
ardised CVA calculation via default probability ratio is an approxi-
mation. Detailed IMM analysis is an area for future investigation.

For simplicity, we assumed that counterparty default is inde-
pendent of interest rates, that is, neglecting wrong-way (and right-
way) risk. Moving to a model including a dependence mechanism 
is straightforward using simulation.

Our model including capital relief can be used to obtain bounds 
on market-implied hazard rates and adjust observed CDS spreads for 
capital relief. Given the potential ambiguity of CDS interpretation 
between default and capital, their direct regulatory use in Basel III 
for CVA VAR capital may need reassessment. We see this article as 
the first in a new wave of pricing where capital effects are included 
directly, as opposed to simply calculating capital consumption. n
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C. Breakdown of observed CDS spreads for five-year IRSs 
into default protection and capital relief (DCC and CVC)

Parameters CEM IMM

CDS 
bp

Rec 
%

S&P 
bp

wi 
%

Defa-
ult %

DCC 
%

CVC 
%

Defa-
ult %

DCC 
%

CVC 
%

A 90 38 8 0.8 27 42 31 38 36 26

BBB 130 38 24 1 18 55 27 29 48 23

BB 290 37 90 2 29 47 25 38 42 20

B 510 36 448 3 34 45 21 41 41 18

CCC 1,170 33 2,600 10 33 36 32 37 35 28

Note: calculation is on a stand-alone basis, that is, not including the scaling K for the number of 
counterparties of the protection buyer and their distribution. Observed CDS spreads are generic 
from Markit. Five-year chosen as liquid CDS point. OC and rates capital relief are very close at this 
maturity (only), so only rates results are shown

D. Non-IMM (CEM) versus IMM (approximate) including 
the scaling factor K = 0.5 (see figure 2) for the portfolio 
effect that the protection buyer sees because of their 
counterparties

CEM IMM

Rating Default % DCC % CVC % Default % DCC % CVC %

A 32 50 18 44 41 15

BBB 21 64 16 33 54 13

BB 33 53 14 42 47 11

B 38 50 12 45 45 10

CCC 39 42 19 43 41 16

Note: parameters as in table C
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