Characterisation of a multi-channel multiplexed EMG recording system: towards realising variable electrode configurations

K. de Jager¹, M. Mentink^{1,2}, H. Lancashire³, Y Al-Ajam⁴, S. Taylor¹, A. Vanhoestenberghe¹.

¹ Aspire CREATe, Research Department of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK.

² UREST Ltd., 4 th floor, 18 St Cross Street, EC1N 8UN, London, UK.

³ Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, London, UK.

⁴ Institute of Biomedical Engineering, University College London, Royal National Orthopaedic Hospital, HA7 4LP, Stanmore, UK.

Introduction

First steps towards osseointegrated myoelectrically-controlled prostheses:

- Bone anchor conduit conveys EMG signals from implanted electrodes [1].
- In vivo selection of electrode configurations would improve signal-to-noise ratio (SNR) of EMG recordings [2]; optimal electrode configurations are not known before implantation.

Methods

- ADS1298 ADC biopotential amplifier core (6 channels, 16-bit resolution, 2 kS/s, variable gain, 500 Hz bandwidth).
- ADG2188 multiplexers (2 ADC channels per MUX, 8 × 8 array, 1 μ A quiescent supply); reconfigure a 6-pole electrode array.
- Balanced differential analogue bandpass filters (30 800 Hz, 9 components per ADC channel); maximise SNR.
- MSP430FR2433 micro-controller (126 μA/MHz; SPI and I²C interface; 4 × 4 mm); communicates with the ADC, the MUX

The **CAPITeI** system:

- Control of Active Prostheses using Implantable Telemetry [3,4].
- Implantable EMG amplifier with a novel multiplexed frontend.
- In vivo selection of monopolar, bipolar or tripolar configurations.
- Designed using commercially available components for use in animal models.
- After further research design will be implemented as an ASIC.

Characterisation

System performance for bipolar configurations.

Input impedance (figure 3)

- Required to be > 1 M Ω (epimysial electrode impedance ~2.3 k Ω [2]).
- Z_{mean}: frontend impedance to ground (including MUX, BPF & ADC); average of 12 measurements between electrode connection pairs; one of the pair connected to ground.
- Z_{short-circuit}: impedance of the MUX; single measurement between 2 electrode inputs short-circuited through the MUX.

Fig 1: CAPITel system: frontend MUXs; analogue BPFs; 6 channel ADC.

and transmits the digital output to a laptop.

Fig 2: (far left) Schematic; (left) double sided PCB layout (19.33 x 14.37 mm area, red outline), to be packaged in an implantable, hermetically sealed ceramic housing (below).

Fig 3: Input impedance and phase (Wayne Kerr 6500B impedance analyser; 20 H_Z – 100 kHz range; 1 mA drive current).

Discussion

Implantable

electronics

Proof-of-concept achieved using standard PCB & commercially available components.

Frontend components decrease the system performance below that of the ADS1298, however such a payoff should not deter researchers from utilising encapsulated PCBs to develop implantable prototypes as the characterised system meets the design criteria.

Frequency response (figure 4)

- Balanced bipolar sine-wave test-bench: 1 Hz

 10 kHz; Audacity DAW station; UR22mkII
 Steinberg audio interface; step-down transformer; 6 × ADC gain.
- DM input: approximates expected EMG
- CM input: as large as possible (limited by test-bench).
- SNR baseline noise: RMS voltage with input terminals shorted to reference.

Parameter	Design Critera	Experimental Outcomes
Recording channels	6	6 ADCs
Sampling frequency	> 1 kHz	2 kHz
Input impedance (Z _{mean})	> 1 MΩ	$5.8\pm0.3~\mathrm{M}\Omega$
Bandwidth	30 – 800 Hz	20 – 500 Hz
Gain (passband)	0 – 40 dB	$6.8 \pm 0.1 dB$
CMRR (passband)	40 dB	$49.0 \pm 1.9 dB$
SNR	> 30 dB	$51.4 \pm 0.2 \text{ dB}$
-		

Fig 4: Mean frequency response across 6 ADC channels (sinewave test signal amplitudes: DM 11 mV_{pp} ; CM 338 mV_{pp}).

CAPITel EMG recordings showed lower signal quality compared with BIOPAC recordings, nonetheless the signals appeared suitable for myoelectric control applications.

An implantable version of CAPITel (once encapsulated), should improve SNR & reduce implant-prosthesis connection complexity.

Power consumption $| < 100 \text{ mW} | 44 - 61.6 \text{ mW}^a$

^a10 $\Omega \pm 1\%$ resistor in series with the supply line: 5.5 V supply, 8 mA when idle, 11.2 mA during data transmission

In vivo EMG recordings

Figure 5 shows CAPITel EMG recordings compared against commercial BIOPAC MP150 recordings (EMG100C bioamplifiers, 100 Hz – 500 Hz bandpass, 1000 × gain, 2 kS/s) using a purpose-built switch arrangement [5] to realise the same configurations.

Fig 5: (above) CAPITel and BIOPAC EMG recordings captured during walking from implanted epimysial electrodes (left) in an ovine model, in combination with a bone-anchor conduit (right) implanted trans-tibially. CAPITel recordings were post-processed (2nd order Butterworth BPF; 10 Hz - 500 Hz) for direct comparison.

References

Tjulkins et al., In: BioMedEng18, 2018, p. 396.
 Al-Ajam et al., *IEEE T Bio-Med Eng*, 2013; 60(6):1654-1659.
 Mentink et al., In: 21st IFESS Annual Conf. Proc., 2017.
 de Jager et al., In: BioMedEng18; 2018, p. 367.
 Lancashire et al., In: BioMedEng18; 2018, p. 397.

Acknowledgements

U

Thanks to the Restoration & Function Trust (RAFT, UK), the Therapeutic Acceleration Support (TAS) Fund and the Wellcome Trust [grant number 106574/Z/14/Z] for financial support.

