Characterisation of a multi-channel multiplexed EMG recording
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trically-controlled prostheses: Bluetooth resolution, 2 kS/s, variable gain, 500 Hz bandwidth).
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 Bone anchor conduit conveys EMG signals E[ ng BPF @ = ¢ + ADG2188 multiplexers (2 ADC channels per MUX, 8 X 8 array,
from implanted electrodes [1]. § e BPF @ | 1 uA quiescent supply); reconfigure a 6-pole electrode array.
» In vivo selection of electrode configurations ©®_ — 1 _ «onmoler | » Balanced differential analogue bandpass filters (30 — 800 Hz, 9
would improve signal-to-noise ratio (SNR) of [ §ML3JX§ BPF @ T components per ADC channel); maximise SNR.
EMG recordings [2]; optimal electrode config- "o [ BPF @ * MSP430FR2433 micro-controller (126 uA/MHz; SPI and I°C
urations are not known before implantation. L rc ! Interface; 4 X4 mm), communicates with the ADC, the MUX
Fig 1: CAPLLel system: frontend MUXs; — gnd transmits the digital output to a laptop.
The CAPITel system: analogne BPFs; 6 channel ADC.
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» Implantable EMG amplifier with a novel multi- [ Wi Fig 2: (far left) Schematic; (lef?)
slexed frontend. i “ (FH double sided PCB layout (19.33 x
» In vivo selection of monopolar, bipolar or = 14.37 mm area, red ontline), to be
tripolar configurations. [ T pactkaged in an implantable,
- Designed using commercially available com- || hermetically sealed ceramic housing
ponents for use in animal models.

» After further research design will be imple-
mented as an ASIC.

Characterisation

System performance for bipolar configurations.

Fig 3: Input impedance and phase (Wayne Kerr 65008 7mpe-

Input impedance (figure 3) dance analyser; 20 Hz — 100 kHz range; 1 mA drive current). D ISCUSSION
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impedance ~2.3 kQ [2]). 1 BT i e —Zren  —Onen |, Proof-of-concept achieved using standard PCB
« Z. ... frontend impedance to ground (inclu- | e 2 gt =] | 20 & commercially available components.
ding MUX, BPF & ADC); average of 12 mea- = | . - — 7
surements between electrode connection "ot : «:  Frontend components decrease the system
pairs; one of the pair connected to ground. ) | o performance below that of the ADS1298,
o Zomaroue iMpedance of the MUX; single e e nowever such a payoif should not deter
measurement between 2 electrode inputs " . e i " " researchers from utilising encapsulated PCBs
short-circuited through the MUX. Fig 4: Mean frequency response across 6 ADC channels (sine- (0 deyelop mplantable prototypes as th? char-
. . acterised system meets the design criteria.
Frequency response (figure 4) wave test signal aniplitudes: DM 11 m1”, ;s CM 338 ml”,,).

Frequency response & signal-to-noise ratio

CAPITel EMG recordings showed lower signal

 Balanced bipolar sine-wave test-bench: 1 Hz ol — e , _ .
— 10 kHz; Audacity DAW station; UR22mKkI| / guality compared with BIOPAC recordings,
Steinberg  audio  interface;  step-down il nonetheless the signals appeared suitable for
transformer; 6 X ADC gain. | myoelectric control applications.
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* DM input: approximates expected EMG ol - An implantable version of CAPITel (once en-
« CM Input: as large as possible (limited by R A —ower —se) T capsulated), should improve SNR & reduce
test-bench). | - 10° 10 e 10° o' jmplant-prosthesis connection complexity.
* SNR baseline noise: RMS voltage with input requency (fz)
terminals shorted to reference. . Raw EMG . FFT
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In vivo EMG recordings

. _ W Fig 5: (above) CAPITel and BIOPAC EMG
Figure 5 shows CAPITel EMG recordings s (abore . . . References
] _ 1 BIOPAC MP150 - recordings captured during walking from implant-
compare against commercial & ‘ ed epimysial electrodes (left) in an ovine model, in 1. Tjulkins et al., In: BioMedEng18, 2018, p. 396.
recordings (EMG100C bioamplifiers, 100 Hz — combination with a bone-anchor conduit (right) 2. Al-Ajam et al., IEEE T Bio-Med Eng, 2013; 60(6):1654-1650.
500 Hz bandpass 1000 X gain ? kS/S) using a , o . 3. Mentink et al., In: 21_st IFESS Annual Conf. Proc., 2017.
. ! ! : S smplanted trans-tibially. CAPITel recordings were 4. de Jager et al., In: BioMedEng18: 2018, p. 367.
purpose-built switch arrangement [5] to realise SO sostprocessed (2nd order Butternorth BPF: 10 5. Lancashire et al., In: BioMedEng18; 2018, p. 397.

the same configurations. 5N Hy - 500 Hz) for direct comparison.
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