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Abstract 

 

Ecosystems are subjected to a wide range of stressors, many of which are anthropogenic in 

origin. However, far from being impacted by isolated threats, these ecosystems are affected 

by multiple co-occurring stressors. Currently, there is little understanding of how, or whether, 

these stressors interact to affect individuals, populations, or communities. Indeed, studies 

vary in whether they find co-occurring stressors to interact in an additive, antagonistic, or 

synergistic manner. However, attempts to determine general ecological covariables which 

may explain these disparate findings have so far failed to do so. Here, I use meta-analytical 

and theoretical approaches to better understand how stressors can be expected to interact, 

with a particular emphasis on freshwater ecosystems. Firstly, I simulate food chains which are 

subjected to co-occurring stressors and compare these results to the findings of the largest 

multiple stressor meta-analysis, here focusing on freshwater densities. Both approaches 

illustrate that null (i.e., additive) classifications dominate for individual interactions; although, 

overall stressors interact to affect density in an antagonistic manner. Secondly, I analyse the 

statistical tools frequently used to classify multiple stressor interactions. I illustrate that many 

results which are ascribed ecological importance instead arise due to statistical artefacts of 

these tools. In turn, I highlight that many experimental designs, commonplace to multiple 

stressor ecology, lack the statistical power necessary to detect the interactions of co-

occurring stressors. Thirdly, I collate and analyse the datasets of seven aquatic multiple 

stressor meta-analyses under a single consistent framework. I illustrate that the current 

absence of generalities from multiple stressor meta-analyses primarily arises due to 

methodological, not ecological, variation. In turn, removing methodological differences 

results in generalities becoming apparent. Finally, I collate the findings of the above chapters 

and outline the potential implications for multiple stressor ecology. In doing so, I explore 

current challenges facing the field alongside future directions. 
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Impact statement 

 

Given that multiple stressors affect nearly all ecosystems, it is imperative that the interactions 

of these stressors are understood. However, there is currently limited knowledge of stressor 

interactions, with similar studies often finding highly disparate results. Accordingly, there is 

an absence of consistent generalities apparent across multiple stressor ecology. This has 

ramifications both for the field and the insights which multiple stressor ecology can provide 

to allied disciplines (e.g., conservation science). 

This thesis utilises a range of different approaches to provide novel insights into the 

interactions of co-occurring stressors. Ultimately, all of the chapters of this thesis seek to 

answer the question of how stressors interact. Here, I implement various empirical, 

theoretical, and analytical approaches to address this question, often from new perspectives. 

Indeed, I consider how ecological, experimental, and methodological properties may 

influence the conclusions researchers reach regarding interacting stressors. Overall, the 

findings of this thesis have implications for experimental designs, analytical choices, and the 

interpretation of any results. In turn, such findings may also be subsequently considered by 

conservationists, as understanding how stressors interact is crucial when implementing 

management actions. 

Each of the chapters of this thesis substantially builds on existing research. For example, 

Chapter Two (recently published in Global Change Biology) combines meta-analytical and 

theoretical approaches to better understand stressor interactions. In doing so, I highlight the 

value of implementing ecological theory within multiple stressor ecology, a currently under-

utilised approach. Likewise, Chapter Three is the first substantial exploration of the statistical 

tools frequently used to classify stressor interactions. In doing so, I illustrate that the design 

of many (if not most) experiments within multiple stressor ecology is inadequate when 

seeking to determine whether, or how, stressors interact. Finally, Chapter Four is the first 

analysis in which the results of different multiple stressor meta-analyses are compared. This 

analysis has revealed that methodology, not ecology, is likely responsible for the absence of 

generalities within multiple stressor ecology. As such, this chapter has wide-ranging 

consequences for the field of multiple stressor ecology. Indeed, I illustrate that an advanced 



Benjamin Joshua Burgess ς Doctoral thesis 

 5 

ecological understanding of multiple stressor interactions can only be gained once analytical 

methods are understood and correctly implemented. 
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Thesis outline 

 

Chapter One - Introduction 

This chapter provides background information on the current understanding of how stressors 

interact to affect ecosystems. Literature gaps and questions in the field of multiple stressor 

ecology are highlighted alongside the aims of this thesis. This chapter is primarily general or 

freshwater-centric in its focus.  

 

Chapter Two - Classifying ecosystem stressor interactions: Theory highlights the data 

limitations of the additive null model and the difficulty in revealing ecological surprises 

In this chapter, I combine theoretical ecology with a large-scale freshwater meta-analysis to 

better understand multiple stressor interactions and determine whether general insights 

could be determined from across these different approaches. This work was conducted in 

collaboration with David Murrell, Drew Purves, and Georgina Mace. The study was conceived 

by myself and DM; I conducted the analysis and wrote the first draft. All collaborators 

contributed to the editing of this chapter and manuscript. Work from this chapter has been 

presented at various conferences including multiple British Ecological Society (BES) 

conferences and BES Aquatic Special Interest Group meetings. This chapter has been recently 

published in Global Change Biology and in subsequent chapters may be referred to as Burgess 

et al., (2021). 

 

Chapter Three - Multiple stressor null models frequently fail to detect interactions due to low 

statistical power 

In this chapter, I examine the additive and multiplicative null models from a statistical 

perspective, determining how the results of these approaches may vary under experimentally 

relevant conditions (e.g., sample sizes). This work was conducted in collaboration with DM 

and Michelle Jackson (University of Oxford). Myself and DM conceived the idea for this project 
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and designed methods. I conducted the analysis and wrote the chapter with input from DM 

and MJ. 

 

Chapter Four - Methodological variation obscures generalities across multiple stressor meta-

analyses 

In this chapter I analyse the influence which differing methods have upon the conclusions of 

seven multiple stressor meta-analyses. In doing so, I attempt to outline whether this source 

of variation is responsible for the absence of generalities to emerge from these studies. This 

work was primarily conducted in collaboration with DM, MJ, and Charlie Loewen, with DP and 

GM additionally providing advice. Data for this analyses was also provided by MJ, Kristy 

Kroeker, Ben Halpern, Rachel Przeslawski, Ben Harvey, and Kristina Lange. This study was 

conceived by myself, DM, and MJ. I conducted all analyses following discussions with DM, MJ, 

and CL. I wrote this chapter with input from DM.  

 

Chapter Five - Discussion 

This chapter collates the findings of this thesis and evaluates the contribution it makes to 

multiple stressor ecology. Furthermore, this chapter outlines future directions for the field 

and current obstacles that must be overcome. 
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Chapter One ς Introduction 

 

Humans have altered both ecological and environmental systems over many hundreds of 

years (Lewis & Maslin, 2015), leading to wide-spread impacts to ecosystems across the globe 

(Dirzo et al., 2014). However, following a recent intensification of anthropogenic activities, 

ecosystems are subjected to a plethora of different stressors (Best, 2019; Brook et al., 2008; 

Halpern et al., 2015). Stressors (sensu drivers, factors, or threats) are external drivers that can 

affect both biodiversity and ecosystem functioning (Orr et al., 2020). Although stressors may 

occur due to natural processes, they are frequently anthropogenic in origin (Beauchesne et 

al., 2021). Furthermore, the impacts of these stressors can be severe. Indeed, 

anthropogenically induced climate change is likely responsible for increasing the extent of 

forest fires (Abatzoglou & Williams, 2016), while ocean acidification has been shown to enable 

coral reefs to be dominated by macroalgae (Enochs et al., 2015). Similarly, water abstraction 

has resulted in the shrinking of the freshwater Aral Sea (Dudgeon, 2019), while mass mortality 

events are occurring, across realms, at an increased frequency as a consequence of a variety 

of stressors (Fey et al., 2015). However, since the 1990s there has been an appreciation that 

not only do stressors damage nature (e.g., natural habitat intactness) but also the goods and 

services which ecosystems provide (Mace, 2014). These services are essential, including crop 

pollination (Rader et al., 2014) and the provisioning of food rŜǎƻǳǊŎŜǎ ό.ŜǊƴƘŀǊŘǘ ϧ hΩ/ƻƴƴƻǊΣ 

2021). 

²ƘƛƭŜ ŎƻǾŜǊƛƴƎ нΦо҈ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ǎǳǊŦŀŎŜ ό[ŜƘƴŜǊ ϧ 5öll, 2004) and containing 

approximately one third of all vertebrate species (Tickner et al., 2020), freshwater ecosystems 

are some of the most threatened on the planet (He et al., 2019). On average, freshwater 

species have experienced a decline in population abundances greater than those of species 

in either the terrestrial or marine realms (Reid et al., 2019; Sala et al., 2000; WWF, 2020). 

Furthermore, population abundances of freshwater megafauna have declined by up to 99% 

in some regions (He et al., 2019). As such, freshwater ecosystems are subjected to a wide 

range of anthropogenically induced stressors (Dudgeon et al., 2006; Reid et al., 2019). 

Examples of such threats include global stressors such as climate change (Heino et al., 2009; 

Knouft & Ficklin, 2017), and more localised stressors including pollution (Malaj et al., 2014; 
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Woodward et al., 2012), non-native species (Erǃs et al., 2020; Gallardo et al., 2016), habitat 

alteration (Grill et al., 2019; Reidy Liermann et al., 2012) or infectious diseases (Fisher & 

Garner, 2020; Johnson & Paull, 2011). Indeed, stressors are capable of affecting all levels of 

ecological organisation, from organisms through to ecosystems and their functioning (Li et 

al., 2020; Woodward et al., 2010). Similarly, stressors may act through differing physiological 

pathways (Segner et al., 2014), though knowledge of mechanisms through which stressors act 

is often limited (Spears et al., 2021). Whilst the majority of research has, to date, focussed on 

ǘƘŜ ŜŦŦŜŎǘǎ ƻŦ ƛƴŘƛǾƛŘǳŀƭ ǎǘǊŜǎǎƻǊǎ όWŀŎƪǎƻƴ Ŝǘ ŀƭΦΣ нлнмΤ hΩ.ǊƛŜƴ Ŝǘ ŀƭΦΣ нлмфύΣ ƛǘ ƛǎ ƛƴŎǊŜŀǎƛƴƎƭȅ 

evident that aquatic ecosystems are predominately acted upon by multiple co-occurring 

stressors (Ormerod et al., 2010; Halpern et al., 2015; Reid et al., 2019). Indeed, 50% of 

European surface freshwater bodies are affected by multiple stressors (EEA, 2018); though 

these stressors may induce either a positive or negative effect upon a species (Kroeker et al., 

2017). For instance, nutrient enrichment (i.e., eutrophication) may increase the biomass of 

algae (i.e., a beneficial effect for algal species) (Wurtsbaugh et al., 2019), though this algal 

bloom may subsequently increase the mortality of other species (e.g., fishes) through a 

reduction in oxygen levels (i.e., a detrimental effect for non-algal species) (Anderson, 2009; 

Breitburg et al., 2018). 

The presence of multiple stressors gives rise to a number of serious issues. Firstly, how do 

ecosystems respond to the presence of multiple stressors? For instance, can the effect of two 

co-ƻŎŎǳǊǊƛƴƎ ǎǘǊŜǎǎƻǊǎ ƻƴ ŀ ǎǇŜŎƛŜǎΩ ŘŜƴǎƛǘȅ ǎƛƳǇƭȅ ōŜ ŎŀƭŎǳƭŀǘŜŘ ōȅ ǎǳƳƳƛƴƎ ǘƘŜ ŜŦŦŜŎts of 

each stressor individually? The assumption of additivity regarding stressor effects has been 

widely adopted, with any subsequently observed deviation from additivity being termed an 

ΨŜŎƻƭƻƎƛŎŀƭ ǎǳǊǇǊƛǎŜΩ όǎŜƴǎǳ tŀƛƴŜ Ŝǘ ŀƭΦΣ мффуύΦ IƻǿŜǾŜǊΣ ǘƘŜǊŜ ƛǎ growing evidence that such 

ecological surprises are more widespread than previously thought (Jackson et al., 2016), with 

such ecological surprises capable of manifesting in three different ways (Figure 1.1). Firstly, 

the effects of multiple stressors can be greater than anticipated under the assumption of 

additivity (hence termed the additive null model), with a synergistic interaction occurring 

between stressors. Secondly, the combined effect of co-occurring stressors can be less than 

anticipated by the additive null model, with an antagonistic interaction occurring between 

stressors. Finally, there may be instances where the observed effect of multiple stressors is 

of a different polarity to the expected effect under the additive null model (e.g., the additive 
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null model predicts that the combined effect of two stressors will have a negative effect on a 

population, but the observed effect of the co-occurring stressors is instead positive). In such 

a situation, a reversal interaction is occurring between the stressors. Where the assumption 

of additivity is met, this is referred to as a null interaction (although this may be referred to 

as an additive interaction elsewhere, e.g., Jackson et al., 2016; Orr et al., 2020). 

 

Figure 1.1: Graphical illustration of interaction classifications for the response metric of survival. The 

white bar denotes the survival rate of a given species under control conditions (i.e., absence of 

stressors). The dark red (red) bar denotes the survival rate of the given species under the stressor of 

temperature (heavy metals), with arrows illustrating the relative change in survival from that under 

control conditions. Orange bars illustrate examples of the four different interaction classifications: null 

(i.e., additive), synergistic, antagonistic, and reversal interactions.  

 

Given the potential for stressors to combine in numerous different ways, there are many 

questions regarding multiple stressor interactions that are important to answer. For instance, 

how often can we expect the additive null model predictions to be met? How frequently do 

ecological surprises occur? Are some interaction classifications more prevalent than others? 

Accordingly, with freshwater ecosystems, there has been an increasing quantity of research 



Benjamin Joshua Burgess ς Doctoral thesis 

 17 

which seeks to address these questions. Such freshwater research may be empirical, seeking 

to determine how a particular combination of stressors affects a specific system (e.g., Juvigny-

Khenafou et al., 2021, Richardson et al., 2019); theoretical, using fundamental ecology to 

attempt to explain stressor interactions (e.g., Belarde & Railsback, 2016; Galic et al., 2018); or 

meta-analytical, attempting to find generalities in stressor interactions across multiple 

different experiments (e.g., Bancroft et al., 2008, Jackson et al., 2016). Indeed, such 

generalities are important to determine as they may allow for the prediction of stressor 

interactions which cannot be (or are not) measured. However, to date, the focus of multiple 

stressor research has primarily been on determining how stressors interact; although there is 

an increasing appreciation for the need to understand why stressors may interact in a given 

way.  

One of the main implications of multiple stressor research, is its potential to aid in the 

conservation or management of ecosystems affected by co-occurring stressors. Indeed, an 

understanding of stressor interactions can inform management practitioners when to 

implement any conservation measures (Côté et al., 2016; Kath et al., 2018). Furthermore, it 

has previously been shown that a failure to consider how stressors interact can lead to 

management actions having a limited, negligible, or even detrimental impact on the 

ecosystems they are intended to conserve (Brown et al., 2013). However, at present, there 

have been no studies which have used knowledge of how stressors interact to successfully 

remediate two, or more, co-occurring stressors in a freshwater ecosystem (Spears et al., 

2021). As such, despite potential benefits for conservation, predicting multiple stressor 

interactions is distinctly complex (Hodgson & Halpern, 2019), which potentially prevents 

management planning from incorporating knowledge of stressor interactions. Ultimately, 

understanding how multiple co-occurring stressors interact represents one of the grand 

challenges currently facing ecologists (Fleishman et al., 2011; Hodgson et al., 2017). 

 

1.1  Stressor effects across organisation levels 

While the overall aim of multiple stressor research may be to determine how co-occurring 

stressors interact to affect ecosystems, it is nevertheless important to consider the effects 

which an individual stressor is capable of inducing. Importantly, it has also been suggested 
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that the manner in which stressors interact is in part due to the ecological mechanisms which 

the individual stressors affect (e.g., Galic et al., 2018). As such, stressors are capable of 

affecting individuals, populations, or even entire communities (Jackson et al., 2016). 

However, these differing levels of ecological organisation are not affected in isolation 

(Woodward et al., 2010), with effects at one organisation level capable of transitioning to 

other levels. Firstly, stressors predominately act at the individual level (Maltby, 1999; Schäfer 

& Piggott, 2018), with stressor impacts at this level broadly able to be grouped into 

behavioural, physical, and physiological effects. Behavioural impacts include changes to anti-

predator behaviours (e.g., Johansen et al., 2017), while physical effects may include body size 

alterations (e.g., Shrimpton et al., 2007; Yvon-Durocher et al., 2011) or an increased likelihood 

of developmental abnormalities (e.g., Reeves et al., 2010). In contrast physiological impacts 

include changes in metabolic rate (Jackson et al., 2021) or disruption to the endocrine system 

(Besson et al., 2020; Roccuzzo et al., 2021). 

Species populations are similarly able to be affected by stressors, with these effects 

manifesting in a myriad of different ways. At the population level, perhaps some of the most 

commonly observed stressor impacts are changes in the abundance, or density, of a species 

(e.g., Mebane et al., 2017). Indeed, the relative declines in the abundances of many species 

due to climate change and other stressors are now well known (WWF, 2020). Furthermore, 

stressors are capable of affecting many response metrics at the population level. As such, 

population survival (Bancroft et al., 2008), reproduction (e.g., Muyssen et al., 2010) or growth 

rates (Seifert et al., 2020) may likewise be affected by stressors; although a change in one 

response metric (e.g., density) does not preclude a change in another (e.g., survival) from 

occurring. Stressors are similarly capable of impacting communities (Bruder et al., 2019). Such 

effects may be declines in the species richness of community (e.g., Kratina et al., 2012) or 

alterations to the interactions between species (e.g., feeding rates; Shears & Ross, 2010). 

Stressors are also capable of affecting other community level metrics such as biomass (e.g., 

Zhao et al., 2013). As such, it may be assumed that declines in individual species biomasses, 

or abundances, will be mirrored at the community level. However, compensatory effects 

between individual species may mean that a decline in the biomass of one species may be 

offset by an increase in the biomass of another (Ives & Cardinale, 2004). For example, 

Christensen et al. (2006) found that freshwater zooplankton community biomass increased in 
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the presence of stressors, though this increase in biomass was driven by a single stress-

tolerant species, whereas all other zooplankton species experienced biomass declines.  

As alluded to above, it is likewise important to note that a single stressor is capable of inducing 

multiple different effects, either directly or indirectly, across multiple different organisation 

levels. For example, following the metabolic theory of ecology (Brown et al., 2004), an 

ƛƴŎǊŜŀǎŜ ƛƴ ǘŜƳǇŜǊŀǘǳǊŜ Ƴŀȅ ƴƻǘ ƻƴƭȅ ŀŦŦŜŎǘ ŀƴ ƛƴŘƛǾƛŘǳŀƭΩǎ ƳŜǘŀōƻƭƛŎ ǊŀǘŜ όDƛƭƭƻƻƭȅ Ŝǘ ŀƭΦΣ 

нллмύΣ ōǳǘ ǎƛƳƛƭŀǊƭȅ ƛƴŘǳŎŜ ŎƘŀƴƎŜǎ ƛƴ ŀ ǎǇŜŎƛŜǎΩ ƎŜƴŜǊŀǘion time (a population level response 

metric) (Gillooly, 2000; Jackson et al., 2021). Furthermore, different stressors are capable of 

affecting the same response metrics, albeit through contrasting ecological mechanisms. For 

example, sertraline (a pharmaceutical product) may increase the mortality rate of species X. 

In contrast, cadmium may have no direct effect on species X, but instead greatly increases the 

mortality of species Y, which species X predates upon. Overall, both stressors result in declines 

iƴ ǎǇŜŎƛŜǎ ·Ωǎ ŀōǳƴŘŀƴŎŜ ŜƛǘƘŜǊ ŘƛǊŜŎǘƭȅ through an increased mortality rate, or indirectly 

through an absence of available food resources. As such, what is the expectation for the 

combined effect of these stressors on species X if they act simultaneously? Under the additive 

null model, we would expect the overall effect on the abundance of species X to be equal to 

the sum of the effects of the individual stressors in isolation. However, this may not 

necessarily be the case. It could be that sertraline reduces the abundance of species X, which 

in turn means that there are fewer individuals competing for fewer food resources (i.e., 

reduced intra-specific competition). In such a scenario, sertraline may lessen the effect of 

ŎŀŘƳƛǳƳ ƻƴ ǎǇŜŎƛŜǎ ·Ωǎ ŀōǳƴŘŀƴŎŜΣ ǊŜǎulting in an antagonistic interaction occurring. As 

such, species interactions have been viewed as having a crucial role in determining the effects 

of stressors, and their interactions, within communities (Bruder et al. 2019; Seibold et al., 

2018). 

The ecological phenomena outlined here are merely examples of the wide-range of processes 

that occur within any ecosystem; however, they illustrate the complexity of these systems 

and the plethora of direct, and indirect, effects that a stressor is capable of having. Further 

complexity arises from the effects of stressors at the cellular level (Sinclair et al., 2009; 

Sokolova, 2021), with there being calls for toxicology to be better incorporated within 

multiple stressor ecology (Orr et al., 2020). However, cellular approaches to understanding 

stressor interactions requires detailed knowledge of the physiological mechanisms which 
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stressors affect; although for the vast majority of stressors and organisms, this information is 

simply not known (Spears et al., 2021).  

 

1.2  Current approaches in multiple stressor ecology 

Of the empirical, meta-analytical, and theoretical approaches to investigate multiple stressor 

interactions, the latter perhaps represents the most underutilised approach within 

freshwater ecosystems. Theoretical approaches to understanding multiple stressor impacts 

have instead been more widely implemented in general (e.g., Fronhofer et al., 2018; Sentis et 

al., 2021; Thompson et al., 2018a) or marine environments (e.g., Beauchesne et al., 2021; 

Brown et al., 2013; Fu et al., 2018). To date, most theoretical freshwater studies consider 

ǎƛƴƎƭŜ ǎǘǊŜǎǎƻǊ ŜŦŦŜŎǘǎ όŜΦƎΦΣ IŀǊǾŜȅ Ŝǘ ŀƭΦΣ нлмуΤ hΩDƻǊƳŀƴ Ŝǘ ŀƭΦΣ нлмтΤ нлмфύΣ ǿƛǘƘ ǊŜƭŀǘƛǾŜƭȅ 

few freshwater studies implementing theoretical ecology to understand the impacts of 

multiple stressors. Furthermore, those freshwater theoretical studies which do consider 

multiple stressors often implement disparate models and address wide-ranging hypotheses 

making direct comparisons between them difficult. For example, Belarde & Railsback (2016) 

use ecological theory to investigate the effects of habitat alteration and a non-native species 

on the growth and survival of a freshwater piscivorous fish. Overall, Belarde & Railsback 

(2016) conclude that while stressor interactions predominately matched null model 

predictions, environmental factors had a substantial impact on the prevalence of antagonistic 

interactions. In contrast, Galic et al. (2018) implement a theoretical model of freshwater 

amphipods and leaf litter (see Galic et al., 2017) to determine how co-occurring stressors 

interact to affect various ecosystem properties. Within these simulations, the observed 

interaction was found to be dependent on both the response variable and the modes of action 

of both stressors (Galic et al., 2018). As such, there is limited scope to draw comparisons 

across theoretical, freshwater, multiple stressor studies. However, there is substantial 

potential for this freshwater theoretical ecology to expand and fill an obvious gap in the 

multiple stressor literature. 

To date, empirical multiple stressor research in freshwater systems has predominately 

focussed on microcosm, or mesocosm, studies (e.g., Archer et al., 2020; Cambronero et al., 

2018; Richardson et al., 2019), although there are empirical studies considering multiple 
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stressors effects at greater geographic scales (e.g., Birk et al., 2020; Ryo et al., 2018). Such an 

approach builds upon the use of mesocosms in single stressor experiments (see Stewart et 

al., 2013); but within a multiple stressor context, experiments are usually conducted in a 

factorial design, with treatments for i) control conditions, ii) only the first stressor present, iii) 

only the second stressor present, and iv) both stressors present. The benefit of this approach 

is that the effect of co-occurring stressors can be compared to a null model prediction (e.g., 

the additive null model) given that a response metric (e.g., biomass or survival) can be 

measured under all four treatment conditions. However, this experimental approach is not 

without limitations, and may be resource intensive (Boyd et al., 2018). Indeed, decisions 

regarding the number of stressors and the number of replicates per treatment are required. 

For example, a fully factorial design with two stressors and four replicates would require 16 

experimental units (e.g., mesocosms). However, if a fully factorial design is implemented with 

three or four stressors (each with four replicates) then 32 or 64 experimental units would be 

required respectively. Such increases in the required numbers of experimental units are even 

more stark if multiple intensities of each stressor are required. As such, as found by several 

meta-analyses (e.g., Gomez Isaza et al., 2020; Seifert et al., 2020) the majority of multiple 

stressor experiments frequently have low (i.e., less than five) numbers of replicates per 

treatment, potentially to navigate some of the limitations surrounding experimental design. 

Accordingly, resource considerations may limit the scope of any experiments, particularly 

where large, or specialist, experimental units are required. However, as with the results of 

theoretical studies, the findings of multiple stressor experiments are likewise divergent. 

Conclusions may differ between experiments (or potentially even within a single experiment) 

as functionally, or taxonomically, similar organisms may respond to co-occurring stressors in 

disparate ways (e.g., Christensen et al., 2006; Piggott et al., 2012). As such, simple qualitative 

comparisons between experiments are often difficult to reliably make. Instead, other 

analytical approaches are needed to draw general conclusions from across multiple stressor 

experiments (e.g., meta-analyses). 

Meta-analyses are an area of multiple stressor research which are becoming increasingly 

prevalent, particularly those exclusively, or partially, considering stressor interactions in 

freshwater environments (Figure 1.2). In brief, meta-analyses collate data from multiple 

experiments which are then aggregated and analysed to determine a single aggregated metric 
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(see Gurevitch et al., 2018). For multiple stressor meta-analyses, null models (e.g., the 

additive null model) can again be implemented, being used to classify interactions both for 

individual experiments, and the overall aggregated metric. In total, there have been six meta-

analyses (published before 2021) exclusively considering multiple stressors in freshwater 

environments; although Lange et al. (2018) expands upon the dataset first used by Matthaei 

& Lange (2016). The conclusions of these meta-analyses can greatly differ, with no 

generalities apparent for the frequency of interaction classifications for individual 

experiments or the overall interaction classification assigned to the aggregated metric. For 

individual experiments, antagonistic (Jackson et al., 2016) and null (Lange et al., 2018) 

interactions have separately been found to dominate, while roughly equal frequencies of 

antagonistic, synergistic, and null interactions have also been reported (Gomez Isaza et al., 

2020). For the interaction classification of the aggregated metric, meta-analyses have likewise 

diverged and reported an overall interaction class of null (Egea-Serrano et al., 2012), 

antagonistic (Jackson et al., 2016; Lange et al., 2018), or synergistic (Bancroft et al., 2008) 

interactions. The disparate results across multiple stressor meta-analyses are unexpected, 

with it anticipated that the results should align to a far greater degree. At present, the absence 

of generalities across multiple stressor meta-analyses (for all realms) is unexplained, with 

ecological rationale failing to explain these disparities (Côté et al., 2016). Indeed, ecological 

variables such as response metric, organisation level, or feeding group have all been 

suggested as being important, or unimportant, covariables in explaining multiple stressor 

interactions, with there being no consistency across meta-analyses (Côté et al., 2016). As 

such, an explanation for the absence of any generalities in multiple stressor meta-analyses 

remains undetermined but is urgently required.  
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Figure 1.2: Timeline of different meta-analyses (published before 2021) which solely, or partially, 

ŎƻƴǎƛŘŜǊ ǘƘŜ ŜŦŦŜŎǘǎ ƻŦ ƳǳƭǘƛǇƭŜ ǎǘǊŜǎǎƻǊǎ ƛƴ ǘƘŜ ŦǊŜǎƘǿŀǘŜǊ ǊŜŀƭƳΣ ƭŀōŜƭƭŜŘ ΨCǊŜǎƘǿŀǘŜǊΩ ŀƴŘ ΨaǳƭǘƛǇƭŜ 

wŜŀƭƳΩ Ǌespectively. Key denotes the different study organisms and response metrics each meta-

analysis considers. Silhouettes from phylopic.org  

 

1.3 Furthering understanding of stressor interactions 

Despite being a relatively new field, there has been a surge in the number of multiple stressor 

papers (both overall and those considering freshwater environments) recently published 

(Figure 1.3). However, questions remain as to what is required in order to better understand 

multiple stressor interactions. From one perspective the answer is obvious, with a greater 

quantity of empirical data being required. For instance, this can take the form of testing new 

combinations of stressors against previously unconsidered ecological communities or the 

replication of previous experiments. However, alongside an increased quantity of data, other 

developments are nonetheless required. For example, multiple stressor ecology requires an 

increased understanding, and appreciation, of the statistical methods commonly 

implemented, alongside a greater emphasis on the development of ecological theory. These 

necessary developments, alongside others, are discussed below.  
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Figure 1.3: Number of studies published by year (up to, and including, 2020) which consider the effects 

of multiple stressors. Searches were conducted in Web of Science, with separate searches conducted 

for all multiple stressor papers (including freshwater studies) (grey line), and those which were specific 

to the freshwater realm (blue line). Search terms were based on those of Orr et al. (2020) (Appendix 

One).  

 

Within multiple stressor ecology, the additive and multiplicative null models (see Folt et al., 

1999; Sih et al., 1998; Soluk & Collins, 1988), are the most commonly used approaches for 

classifying stressor interactions. Indeed, although these two null models are widely 

implemented, there is relatively little knowledge of their statistical properties. For instance, 

both Folt et al. (1999) and Sih et al. (1998) describe (using verbal arguments) how the additive 

null model may be biased towards reporting antagonistic interactions given that it can make 

ecologically unfeasible predictions (e.g., a mortality rate of over 100%). However, there have 

been no attempts to determine whether other sources of bias are occurring within either the 

additive or multiplicative null models. As such, it may be that these null models are being 

widely-implemented and interpreted without an appreciation of the nuances or limitations 
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of these approaches. Furthermore, the results of studies, or meta-analyses, which implement 

these contrasting null models are often compared (e.g., Côté et al., 2016), yet these null 

models employ differing underlying assumptions and as such may not be directly comparable. 

Indeed, there is definitely a need to determine the conditions under which we can expect the 

results of these two null models to align or differ, with only Stephens et al. (2013) 

implementing both null models on the same dataset. For example, an interaction may be 

assigned an antagonistic interaction classification by the multiplicative null model, but a 

synergistic interaction classification by the additive null model. Ultimately, it is important to 

determine whether there is a statistical, in addition to ecological, rationale for implementing 

one null model over the other. 

As described above, the additive and multiplicative null models are the most widely adopted 

approaches when considering stressor interactions. Many studies determine, and classify, 

interactions through the calculation of effect sizes which correspond to the additive (e.g., 

Gurevitch et al., 2000) and multiplicative (e.g., Lajeunesse, 2011) null models (approaches 

that are subsequently built on throughout this thesis). Furthermore, while not necessarily 

widely appreciated (Schäfer & Piggott, 2018), these null models may also be implemented 

through analysis of variance or generalised linear models (e.g., Birk et al., 2020). However, 

alongside the widely-implemented additive and multiplicative null models, an increasing 

number of null models are being developed. Recently presented null models include the 

compositional null model (Thompson et al., 2018b) and the Rescaled Bliss Independence 

Model (Tekin et al., 2020). However, it is currently unclear when, or whether, such novel 

approaches should be implemented. Furthermore, there are currently no, or limited, 

comparisons to the established null model approaches. For instance, Tekin et al. (2020) 

compare the Rescaled Bliss Independence Model to analysis of variance, but not more 

commonplace additive or multiplicative null model approaches. Similarly, Thompson et al. 

(2018b) compare the compositional null model to versions of both the additive and 

multiplicative null models, though potential issues with this novel null model have been 

highlighted (see Orr et al., 2021a). Ultimately, it is unclear whether these new methods 

represent an upgrade on the existing null model approaches. As outlined above, a thorough 

understanding of the existing null model approaches (including their benefits and limitations) 
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is required. Such an understanding would hence allow novel null models to be benchmarked 

against the established methods. 

As with most ecological disciplines, multiple stressor ecology faces data limitations. Indeed, 

there are limitations surrounding both the number of studies considering a specific question 

and the quantity of data generated by any given experiment. As discussed above, most 

multiple stressor experiments have limited numbers of replicates per treatment as a way of 

mitigating resource limitations. However, there is little (if any) knowledge of the statistical 

implications of limited sample sizes upon the ability of the null models to detect non-null 

interactions (i.e., ecological surprises). For instance, should we expect an experiment with ten 

replicates per treatment to be better able to detect an interaction than an experiment with 

three replicates per treatment? If so, what is the relative benefit in increasing sample sizes 

from three to ten replicates per treatment? Or, alternatively, what sample size provides the 

best trade-off between statistical power and resource management? In many cases, decisions 

on sample sizes are simply based on heuristic rationale, with little consideration of the 

statistical implications of such a decision. Indeed, it may be that current experimental designs 

are only able to determine whether a non-null interaction is occurring if the interaction is 

exceptionally strong. As such, understanding the implications of an experimental design, in 

relation to the implemented null model, will be required in order for multiple stressor ecology 

to fully interpret existing results.  

As described above, one of the pressing questions facing multiple stressor research is: Why 

do multiple stressor meta-analyses fail to determine consistent generalities? Indeed, this 

question applies to all multiple stressor meta-analyses not just those solely considering 

freshwater stressor interactions. As discussed previously, explanations for the absence of any 

consistent generalities have almost entirely focussed on ecological rationale for this disparity 

(see Côté et al., 2016). However, given this has so far failed to provide any explanation, it may 

be that other factors are instead responsible. One such factor could be the different methods 

employed by meta-analyses (see Hungate et al., 2009). Some methodological differences, 

such as whether a meta-analysis implements an additive or multiplicative null model, are 

easily apparent. However, there may also be a broader suite of subtler methodological 

differences which are driving these disparities yet are currently overlooked. For instance, 

there are various different iterations of both the additive (e.g., Darling & Côté, 2008; 
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Hillebrand, 2002; Siviter et al., 2021; Zhou et al., 2016) and multiplicative (e.g., Gomez Isaza 

et al., 2020; Harvey et al., 2013) null models, though how these different null model variants 

may affect any meta-analytical results is currently unknown. 

Within multiple stressor ecology, theoretical and empirical analyses are seldom conducted in 

tandem. However, it is possible for theoretical ecology to generate expectations, regarding 

the effects of stressor interactions, which could then be sought to be proved, or disproved, 

by empirical analyses. For instance, theoretical ecology has generated predictions regarding 

how stressor interactions, in a given system, are dependent on stressor modes of action and 

measured response variables (Galic et al., 2018) or how conservation effectiveness can be 

determined by stressor interactions (Brown et al., 2013). Such examples illustrate the 

potential for theory to help inform and direct empirical analyses; although, inversely, 

empirical analyses could also generate predictions which are then tested by ecological theory. 

Either way, a greater emphasis on a combined empirical and theoretical approach may further 

multiple stressor ecology by allowing ecological observations to be contrasted against a 

potentially mechanistic understanding of stressor interactions. 

 

1.4 Thesis aims 

The research outlined within this thesis centres on several core aims. These aims are stated 

below, before being described in the following section. 

i. Determine whether ecological surprises (i.e., antagonistic, reversal, and synergistic 

interactions) are more prevalent than currently expected. 

ii. Determine whether ecology, or methodology, are responsible for the conclusions of 

previous multiple stressor research. 

iii. Determine the causes responsible for the absence of consistent generalities across 

multiple stressor meta-analyses. 

iv. Determine what covariables (e.g., feeding group or response metric) are important in 

determining how stressors interact in aquatic ecosystems. 
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1.5 Thesis outline 

In this thesis, I focus upon null model approaches to understand the interactions of stressors. 

While alternative approaches have been suggested (e.g., De Laender, 2018; Spears et al., 

2021), these null models remain the most popular choice for classifying the interactions of 

multiple stressors with there similarly being established statistical methods for their 

implementation (e.g., Gurevitch et al., 2000; Lajeunesse, 2011). However, despite their 

popularity, these null models are not necessarily well understood, an issue which I attempt 

to remedy.  

In Chapter Two, I combine theoretical and meta-analytical approaches to better understand 

how multiple stressors can interact to affect freshwater ecosystems at higher levels of 

ecological organisation. Simulations of food chains are used to determine how both the 

frequency of individual interaction classifications and overall meta-analytical metrics vary 

under ecologically relevant conditions. These findings are then compared to the results of a 

large-scale meta-analysis focussing on the effects of multiple stressors, on biomasses or 

densities, in freshwater environments. In Chapter Three, I address the limited understanding 

of the additive and multiplicative null models. Here, I build on the methods of Chapter Two, 

determining how these null models respond to ecologically relevant levels of observation 

error and sample sizes, and determining the conditions under which the results of these null 

models align or differ. I similarly determine whether some results, frequently reported by 

multiple stressor studies, are indeed due to ecology or are simply artefacts of these statistical 

tools. Penultimately, in Chapter Four, I address the issue identified by Côté et al. (2016) of 

why multiple stressor meta-analyses have so far failed to determine consistent generalities. 

Here, I focus on methodological explanations for these disparities, building upon the findings 

of the previous chapters. In doing so I collate, correct, and reanalyse datasets from seven 

published multiple stressor meta-analyses using a single consistent statistical framework. I 

determine whether the contrasting implementation of null models, across meta-analyses, is 

responsible for these differences that have often been attributed to underlying ecological 

variation. Finally, in Chapter Five, I collate the findings from each of the above chapters and 

examine the key messages from across this thesis. In doing so, I summarize current issues 

within the field of multiple stressor ecology and outline potential avenues for future research. 
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Chapter Two ς Classifying ecosystem stressor interactions: Theory highlights 

the data limitations of the additive null model and the difficulty in revealing 

ecological surprises 

 

2.1 Abstract 

Understanding how multiple co-occurring environmental stressors combine to affect 

biodiversity and ecosystem services is an on-going grand challenge for ecology. Currently, 

progress has been made through accumulating large numbers of smaller-scale empirical 

studies that are then investigated by meta-analyses to detect general patterns. There is 

particular interest in detecting, uƴŘŜǊǎǘŀƴŘƛƴƎΣ ŀƴŘ ǇǊŜŘƛŎǘƛƴƎ ΨŜŎƻƭƻƎƛŎŀƭ ǎǳǊǇǊƛǎŜǎΩ ǿƘŜǊŜ 

stressors interact in a non-additive (e.g., antagonistic or synergistic) manner, but so far few 

general results have emerged. However, the ability of the statistical tools to recover non-

additive interactions in the face of data uncertainty is unstudied, so crucially, we do not know 

how well the empirical results reflect the true stressor interactions. Here, we investigate the 

performance of the commonly implemented additive null model. A meta-analysis of a large 

(545 interactions) empirical dataset for the effects of pairs of stressors on freshwater 

communities reveals additive interactions dominate individual studies, whereas pooling the 

data leads to an antagonistic summary interaction class. However, analyses of simulated data 

from food chain models, where the underlying interactions are known, suggest both sets of 

results may be due to observation error within the data. Specifically, we show that the 

additive null model is highly sensitive to observation error, with non-additive interactions 

being reliably detected at only unrealistically low levels of data uncertainty. Similarly, 

plausible levels of observation error lead to meta-analyses reporting antagonistic summary 

interaction classifications even when synergies co-dominate. Therefore, while our empirical 

results broadly agree with those of previous freshwater meta-analyses, we conclude these 

patterns may be driven by statistical sampling rather than any ecological mechanisms. Further 

investigation of candidate null models used to define stressor-pair interactions is essential, 

and once any artefacts are accounted for, the so-ŎŀƭƭŜŘ ΨŜŎƻƭƻƎƛŎŀƭ ǎǳǊǇǊƛǎŜǎΩ Ƴŀȅ ōŜ ƳƻǊŜ 

frequent than was previously assumed. 
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2.2  Introduction 

Ecological communities are being subjected to a wide variety of external stressors (Halpern 

et al., 2015) that act across terrestrial, freshwater, and marine biomes and threaten 

ecosystems and their services (Scheffers et al., 2016). These stressors, also termed drivers, 

factors, or perturbations (Orr et al., 2020), are frequently anthropogenic in origin (Vörösmarty 

et al., 2010; Geldmann et al., 2014), but are capable of being abiotic or biotic (Przeslawski et 

al., 2015), and are able to act at the local to global scales (Ban et al., 2014; França et al., 2020). 

While individual stressors (e.g., climate change, habitat alteration, or pollution) are 

themselves capable of inducing changes in biodiversity or ecosystems and their services (Dirzo 

et al., 2014; Tittensor et al., 2014; Newbold et al., 2015), ecosystems are frequently, if not 

predominately, acted upon by multiple stressors simultaneously (Crain et al., 2008). Despite 

the negative connotations surrounding the term stressor, stressors are capable of inducing 

effects that are either beneficial or detrimental to the affected ecosystem (Kroeker et al., 

2017). One of the grand challenges facing ecologists is to be able to detect, understand, and 

predict how these different types of ecosystem stressors interact to affect biodiversity and 

ecosystem services (Hodgson & Halpern, 2019); although the challenge is more difficult since 

the observed interactions can substantially deviate from what is anticipated (Christensen et 

al., 2006). Ultimately, knowledge of how stressors interact is important in guiding 

conservation and management initiatives, and in helping to prevent remediation measures 

from being ineffective, or even potentially harming those ecosystems they are intended to 

preserve (Brown et al., 2013; Côté et al., 2016). 

Aquatic ecosystems and communities are particularly threatened by multiple stressors (Birk 

et al., 2020). For instance, Halpern et al. (2008) describe how every marine area is subjected 

to human influence, with 41% of these areas being impacted by multiple stressors. Moreover, 

freshwaters represent some of the most at-risk ecosystems and are frequently exposed to a 

wide range of stressors (Hecky et al., 2010; Ormerod et al., 2010; Woodward et al., 2010; He 

et al., 2019), with freshwater biodiversity declining at rates exceeding even those of the most 

impacted terrestrial ecosystems (Sala et al., 2000), and potentially endangering vital 

ecosystem services (Malaj et al., 2014). While stressors often interact to impact freshwater 

ecosystems (Birk et al., 2020), their presence in freshwater ecosystems is not a new 

phenomenon, with some freshwater bodies having been subjected to stressors for several 
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centuries (Dudgeon et al., 2006). However, the stressors that freshwater systems are 

currently facing has expanded, with the introduction of novel stressors, such as 

nanomaterials, while existing ones are continuing to have severe impacts (Reid et al., 2019). 

The cumulative impact of multiple stressors has been identified as one of the most pressing 

and emerging threats to freshwater biodiversity, but despite this, our current understanding 

of both how stressors interact, and the severity of their effects, is poor (Reid et al., 2019).  

The term ecological surprise (sensu Paine et al., 1998) is often used to describe the changes 

in a biological response variable that contrast those anticipated when multiple stressors 

interact (e.g., Christensen et al., 2006; Jackson et al., 2016). Although an ecological surprise 

may be defined as an interaction that is either greater than, or less than, the expected 

magnitude from a null model, particular focus has been on interactions of stressors which 

interact synergistically; i.e., where the combined effect is greater than the sum of the 

individual effects. Synergistic interactions of multiple stressors are important to document, 

firstly due to their potential to have a dramatic effect on ecological communities, and 

secondly because the presence of a synergistic interaction means management strategies can 

potentially have a large effect by mitigating against just one of the interacting stressors 

(Brown et al., 2013; Côté et al., 2016; Haller-Bull & Bode, 2019). Because of their potential 

impact there has been a great deal of effort in recording the frequency of synergy in stressors 

across different ecosystems and communities (Côté et al., 2016). However, there is always a 

danger that an emphasis on their importance could lead to over-estimating the frequency of 

synergisms or other forms of ecological surprise (e.g., antagonisms) within the multiple 

stressor literature and, as highlighted by Côté et al. (2016), there is little evidence to suggest 

that stressors predominately interact in a synergistic manner. A pertinent question which has 

yet to be addressed is whether ecological surprises should be expected, or whether the 

prevalence of these interactions are skewed in some way by reporting biases, statistical 

sampling, or both. 

There is relatively little ecological theory that generates expectations of when and how often 

the cumulative effects of pairs of stressors should be synergistic, or indeed any other type of 

interaction. This is in contrast to other ecological interactions, such as the effects of multiple 

predators on prey density and biomass, where a much richer body of theoretical knowledge 

has been used to generate a number of hypotheses for testing (Sih et al., 1998; Schmitz, 
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2007). Instead, progress on ecosystem stressor interactions has been made largely by meta-

analyses across a number of experiments, realms, trophic levels, measured traits, taxonomic 

groups, and stressor types (e.g., Crain et al., 2008; Darling and Côté, 2008; Wu et al., 2011; 

Jackson et al., 2016). Within ecosystem stressor research, the most popular approach is to 

use the additive null model where the stressor interaction is predicted to be simply the sum 

of their individual effects (e.g., Crain et al., 2008; Darling & Côté, 2008; Strain et al., 2014; 

Jackson et al., 2016), although the multiplicative null model, the log-transformed version of 

the additive model, is also relatively common (e.g., Bancroft et al., 2008; Gruner et al., 2008; 

Harvey et al., 2013; Rosenblatt & Schmitz, 2014). These null models classify interactions as 

either being null (i.e., the additive or multiplicative effect of interacting stressors), synergisms 

(i.e., greater than the null), or antagonisms (i.e., less than the null). While distinctions are 

increasingly being made for various forms of antagonistic interactions in this simple scheme 

(e.g., Jackson et al., 2016), there exists a range of other classification schemes (Orr et al., 

2020), and these have been implemented across a number of studies (e.g., Travers-Trolet et 

al., 2014; Piggott et al., 2015). The profusion of null models can make it difficult to generalise 

results across differeƴǘ ǎǘǳŘƛŜǎΦ ! ΨǎȅƴŜǊƎƛǎǘƛŎΩ ƻǊ ΨŀƴǘŀƎƻƴƛǎǘƛŎΩ ƛƴǘŜǊŀŎǘƛƻƴ Ƴŀȅ ƘŀǾŜ 

contrasting definitions depending on the scheme being used leading to the same interactions 

being labelled differently under contrasting schemes; hence the biological and statistical 

interpretation is therefore dependent on the null model being applied. One way round this 

issue is to pool published data together to harness increased statistical power and conduct a 

meta-analysis to search for generalities under a particular null model (examples listed in Côté 

et al., 2016). However, despite their potential, these meta-analyses have to date not 

identified any general covariates capable of explaining the broad patterns of multiple stressor 

interactions, meaning we still lack general predictions of the consequences of multiple 

stressors (Côté et al., 2016). 

Given the lack of consistent generalities from empirical studies, the development of ecological 

theory within multiple stressor research may represent an approach capable of providing 

novel insights. Some theory has been developed for particular case studies (e.g., Brown et al., 

2013; Galic et al., 2018), but only a few studies (e.g., Haller-Bull & Bode, 2019) have so far 

investigated more general insights. Of primary interest is the generation of theory which can 

provide a mechanistic underpinning to the field, and potentially allow for an increased 
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understanding of multiple stressor interactions, compared to that provided solely by a null 

model approach (De Laender, 2018). However, theory could also be used to better 

understand the results obtained from the null model approach to empirical classification of 

stressor interactions. In particular, we know of no study that has investigated how robust the 

null models are to noisy data (i.e., sampling uncertainty and/or process variation); yet 

understanding this is important before we can draw strong conclusions from the empirical 

analyses. This knowledge is also important for evaluating the relative performances of the 

profusion of null models, and is therefore something which may help guide the end-user to 

decide which null model may be both appropriate and likely to yield important results in the 

face of what is often noisy and/or limited data. 

Here, we begin to close these gaps in understanding by testing for the prevalence of non-

additive effects of co-occurring pairs of stressors in freshwater ecosystems. We first develop 

classical community ecology models based on Lotka-Volterra consumer-resource dynamics in 

order to simulate data from biologically simple food webs impacted by pairs of stressors. This 

ǇǊƻǾƛŘŜǎ ǳǎ ǿƛǘƘ ΩŘŀǘŀΩ ǿƘŜǊŜ ǿŜ ƪƴƻǿ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ ǎǘǊŜǎǎƻǊ-pair interactions. We then use 

this simulated data to investigate the ability of the additive null model to recover interactions 

under a range of different levels of data uncertainty which we model as observation error. 

With a better understanding of the statistical null model we then review the experimental 

literature to compile and analyse the largest (in terms of the number of interactions) dataset 

for the effects of co-occurring stressor interactions on the biomasses and densities of 

freshwater organisms. In particular, we ask whether ecological surprises are common in 

freshwater stressor interactions. The simulation experiments allow considerable insights into 

our empirical analyses and help prevent over-interpretation of our results.  

 

2.3  Methods 

Theoretical models 

In order to provide a better understanding of the empirical results that follow, we built food 

chain models based on the classical Lotka-Volterra consumer resource equations (Heath et 

al., 2014). We chose these models since we believe stressors may act directly on population- 

and trophic-level patterns, but also indirectly via trophic cascades (e.g., a species may be 
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indirectly affected if its primary resource is directly affected by a stressor). This approach is 

also broadly in line with our empirical data which focuses on population and community-level 

metrics as the responses to stressor treatments (see below). To increase the robustness of 

our conclusions we considered two forms of the model; one where (within trophic level) 

density dependence affects the death rates of each trophic level, and the other where 

consumer uptake is density regulated (Table 2.1). Both these scenarios were analysed by 

Heath et al. (2014) to investigate the roles of different types of density dependence on trophic 

cascades (see details therein). In both models the basal level of the chain describes the 

dynamics of a key nutrient that limits the productivity of the food chain, and we assumed 

ƴǳǘǊƛŜƴǘǎ ŀǊŜ ŀŘŘŜŘ ŀǘ ŀ Ŏƻƴǎǘŀƴǘ ǊŀǘŜΣ ˖ όIŜŀǘƘ Ŝǘ ŀƭΦΣ нлмпύΦ 9ŀŎƘ ǎǳōǎŜǉǳŜƴǘ Ŝǉǳŀǘƛƻƴ ǘhen 

describes a different type of consumer. The first level is wholly dependent on the nutrients 

and may represent a primary producer such as an algal species that requires a key mineral 

such as silica. The second level consumes the first trophic level and is in turn consumed by a 

third trophic level, and so on until the apex consumer is reached. In the density dependence 

model (Equation 2.1; Table 2.1), the consumer (trophic level i) exploits the resource (trophic 

level i ς 1) with a constant consumption/attack rate, ‌, and the conversion efficiency 

parameter, ‐, determines the proportion of the consumed resource that is converted into 

new consumers (Heath et al., 2014). Under density dependence, the consumer is self-

regulated by the intraspecific density dependence parameter ‗, which leads to an increase 

in death rate as the consumer density increases (Heath et al., 2014). In contrast, the consumer 

uptake regulation model (Equation 2.2; Table 2.1), assumes the effect of increasing 

consumers is to slow down the consumption of the resource, perhaps due to increased 

interference (Heath et al., 2014). In this case, the parameter ʉ, determines the consumer 

density at which the maximum per capita uptake rate is halved, defined as the density 

ὼ 1/ʉ (Heath et al., 2014). 
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Table 2.1: Equations used to establish theoretical food-chains. The equations, sets, and a brief 

description of the equivalent ecological trophic level are shown.  

 Equation Type Equation Description 

2.1.1 Density 

Dependence 

Ὠὼ

Ὠὸ
 ‌‐ὼ ὼ ὼ‏   ‗ὼ 

Change in density of Apex 

Consumer (ὼ) 

2.1.2 Density 

Dependence 

Ὠὼ

Ὠὸ
 ‌‐ὼ ὼ ‌ ὼὼ ὼ‏   ‗ὼ 

Change in density of Non-

Apex Consumer (ὼ) 

2.1.3 Density 

Dependence 

Ὠὼ

Ὠὸ
 ‫ ‌ὼὼ 

Change in density of 

Nutrients (ὼ) 

 

2.2.1 Consumer  

Uptake 

Regulation 

Ὠὼ

Ὠὸ
 
‌‐ὼ ὼ

ρ  ʉὼ
 ὼ‏ 

Change in density of Apex 

Consumer (ὼ) 

2.2.2 Consumer  

Uptake 

Regulation 

Ὠὼ

Ὠὸ
 
‌‐ὼ ὼ

ρ  ʉὼ

‌ ὼὼ

ρ  ʉ ὼ
 ὼ‏ 

Change in density of Non-

Apex Consumer (ὼ) 

2.2.3 Consumer  

Uptake 

Regulation 

Ὠὼ

Ὠὸ
 ‫

‌ὼὼ

ρ  ʉὼ
 Change in density of 

Nutrients (ὼ) 

 

Using these equations, we established food-chains comprising either three, four, or five 

trophic levels, and the equation for each trophic level models how the biomass or density 

changed over time. For simplicity we assumed all key parameters (nutrient inpǳǘ ˖Τ 

consumption rates ‌; conversion efficiencies ‐; uptake regulators ʉȠ density independent 

 ȟ and dependent death rates ‗, for trophic level i) do not vary over time, and we investigated‏

the effect of stressors on equilibrium biomasses/densities. The models also ignore spatial 

structure in the community, which also remain closed to immigration from outside apart from 

the constant input of the nutrient. Hence these models represent the simplest form of 

community dynamics that can be used to investigate the effects of multiple stressors as well 

as the manner in which they interact.  

Stressors to the food chains were modelled by changing the values for parameters and 

comparing the resultant equilibrium densities across all trophic levels to the equilibria for a 
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set of baseline parameter values. Equations 2.1 and 2.2 are not mechanistic models for 

specific stressors (e.g., pollution, temperature) but instead capture the net effect of stressors 

on the ecological processes of the food web species. For simplicity, we assumed each stressor 

had either a positive or negative effect on one model parameter (i.e., ̟Σ ‌, ‐, or ‏), and we 

investigated how pairs of stressors interact to affect community densities. The baseline 

parameters were drawn from uniform distributions with ranges given in Table 2.2. Therefore, 

for a given food chain, the baseline parameters for all trophic levels were independently 

sampled from the distribution of values given in Table 2.2. Similarly, the processes 

(parameters) affected by each stressor were randomly selected from the possible candidates, 

and the intensity of its effect on the baseline rate was drawn from a uniform distribution with 

the ranges shown in Table 2.2. The baseline parameter set therefore represented the control 

community, and as in experimental studies that employ the factorial design approach (e.g., 

Matthaei et al., 2010; Davis et al., 2018), we manipulated our model communities by 

investigating the effect of each stressor acting alone, as well as the stressors acting in 

combination. From these cases, we then computed the type of stressor interaction and how 

they combined to alter the community densities (see below for definitions of how stressor 

interactions are computed). We therefore chose one trophic level at random from the entire 

food chain, excluding the nutrient level. We focused on this population/trophic level and 

mirrored it in our selection of empirical data (see below). This also means the species or 

trophic levels under scrutiny were not always directly affected by the stressor but could be 

affected solely due to a trophic cascade effect. It is also important to note that a stressor 

could have led to either an increase or a decrease in parameter value relative to the baseline; 

and that multiple stressors could have acted on the same, or a different trophic level. We 

chose to model the scenario where each stressor affected only one parameter (and therefore 

one biological process); hence within our model communities, stressors did not interact at 

the parameter level. However, relaxing this assumption to allow two stressors to affect a 

single process (parameter) did not alter our results (Appendix Two).  
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Table 2.2: Explanation of the different parameters within Equations 2.1 and 2.2, with the mechanism 

they reflect, alongside the minimum and maximum values for the ranges of baseline parameter values. 

Parameter values were drawn from a uniform distribution U~(a, b) with lower limit, a, and upper limit, 

b, with the limits differing between the baseline and stressed parameters. The method for determining 

stressed parameter values is detailed in Appendix Two. 

Parameter Ecological Mechanism Baseline Value Range Stressed Value Range 

 h

 

The rate at which a trophic level 

predates upon the trophic level 

directly below. 

bh = U~(0.25, 0.75)         

 

 

U~(0.01, 0.99) 

 

 ʁ

 

The efficiency at which a trophic level 

can transform consumed matter into 

new individuals. 

bʁ = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

 

 ɻ

 

The density independent mortality 

rate of a trophic level. 

bɻ = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

 

 ̟

 

The constant rate at which a resource 

(ὼ) is input into the food chain. 

b̟ = U~(25, 75) U~(1, 99) 

 

˂  The density dependent mortality rate 

of a trophic level. 

 ˂b = U~(0.00625, 0.025) The parameter was not 

under selection for 

alteration by a stressor 

 ˄ A limit to the uptake rate of a 

consumer through a trait-mediated 

response, that may be behavioural or 

otherwise. 

 ˄b = U~(0.05, 0.15)  The parameter was not 

under selection for 

alteration by a stressor 

 

Overall, 1,320,000 different combinations, of equations, food-chain lengths, stressor pairs, 

and randomly selected baseline values were generated. Equilibrium densities, for each of 

these combinations, were calculated using Mathematica 10.4 (Wolfram Research, Inc., 2016). 

We only considered cases where the equilibria were all stable, and feasible (i.e., all densities 

were positive), and only equilibrium densities for trophic levels x1 and above were included 

in the stressor interaction results (i.e., we excluded the nutrient level from our stressor 

interaction analyses). Stability was assessed by determining the Jacobian matrix for each 

community and calculating the corresponding eigenvalues. For every community, all 

eigenvalues had a negative real part with the equilibria being point attractors. 
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Across all 1,320,000 combinations, 79.9% of the parameter sets resulted in the determination 

of equilibrium densities that were both stable and feasible, with the discarded 20.1% of 

parameter sets resulting in at least one biologically unfeasible density. From the full set of 

stable and feasible communities, we randomly selected 360,000 theoretical interactions, and 

for each community we randomly selected a single trophic level for the focus of our 

estimation of the stressor interaction. All subsequent analyses of the theoretical data were 

performed on this group of 360,000 theoretical interactions. This subsetting was required as 

there was a negative relationship between the number of trophic levels and the likelihood of 

the community being both stable and feasible, which biased the full dataset towards 

communities with only three trophic levels. The final 360,000 stressor interactions were 

selected with weighted probabilities to ensure approximately one third (i.e., ~120,000) were 

from each of the three food chain lengths, and that each model (Table 2.1) was also 

approximately equally represented. 

Unlike the empirical studies used in the meta-analyses below, the food chain models are 

purely deterministic, meaning that there are no random fluctuations around the equilibrium 

densities. In effect, for any given pair of stressors, there is no uncertainty (observation error) 

in the theoretical data. Clearly, this differs from the empirical data where observation error 

leads to an estimate of the densities/biomasses under investigation in the control and 

treatment replicate communities, and this observation error may lead to some stressor 

interactions being misclassified. For a better comparison with the empirical data, and to test 

the robustness of the additive null model to observation error, we modelled observation error 

by taking the 360,000 theoretical interactions from our original analyses and then multiplying 

the density of each trophic level by a random number drawn from a Gaussian distribution 

with a mean of 1.00 and standard deviation of „. This process was repeated between three 

and six times for each treatment, analogous to the number of replicates per treatment found 

in our empirical data (see below). Thus, larger values for „ led to larger deviations around the 

equilibrium biomasses, and therefore a larger observation error, with an increased likelihood 

that the stressor interaction was misclassified. Standard deviations, „, were from one of 50 

different levels, ranging from 1x10-6 to 5x10-1, in consistent logarithmic increments (e.g., 8x10-

6, 9x10-6, 1x10-5, 2x10-5, etc.). The interpretation of „ is straightforward, as we would expect 

99.7% of all observations to fall within σ„Ωǎ ƻŦ ǘƘŜ ΨǘǊǳŜΩ ǎǘǊŜǎǎƻǊ ŜŦŦŜŎǘ όƛΦŜΦΣ ǘƘŜ 
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biomass/density in the absence of any observation error). Appendix Two details a complete 

overview of how observation error was incorporated into the theoretical data.  

 

Collation of empirical data 

Through Web of Science we searched the primary scientific literature, for papers published 

before 1st January 2019, which investigated the impacts of multiple stressors on freshwater 

communities. In order to be incorporated, papers needed to report results where there was 

a factorial design, namely: (i) a control (without stressors); (ii) each stressor acting 

individually; and (iii) the stressors acting simultaneously. We required papers to report the 

mean value of the response, the number of replicates, and standard deviation or standard 

error for each treatment in the factorial design; failure to report any of this information led 

to the study being excluded from our analysis. Additionally, papers were required to report 

at least one of the following untransformed metrics: biomass, abundance, density, or 

chlorophyll-a of one or more groups of organisms within the stressed community. Hence, and 

in line with our trophic models, the focus of our effort was directed towards studies that 

report the effects of stressors acting at the population and community levels. Papers often 

reported the impacts of stressors on multiple different groups of organisms within a 

community; when this occurred, the responses of all different groups of organisms were 

included within the overall dataset. The different groups of organisms could comprise: 

populations of a single species (e.g., Daphnia pulex); a group of organisms within the same 

feeding guild (e.g., herbivores); a group of taxonomically similar organisms (e.g., taxa within 

the genera Ephemeroptera, Plecoptera, and Trichoptera); or a group of similar organisms 

(e.g., macroinvertebrates or algae). To be included within our dataset, papers had to 

investigate communities comprising a minimum of two different groups of organisms. Studies 

investigated a wide range of different stressors, although these were subsequently grouped 

into broader stressor categories, such as temperature, contamination, and habitat alteration.  

Previous analyses have frequently focused on collating data for only the greatest single 

intensity of a stressor (e.g., Jackson et al., 2016). In contrast, where studies reported the 

responses of communities to multiple intensities of different stressors, data for all of the 

different intensities were collated. All interactions considering the different intensities of 
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stressors were included in the overall dataset, although covariation in data due to repeated 

experiments across different stressor intensities was accounted for in the final meta-analyses 

(see section below).  

Some studies reported multiple different response metrics for the same group of organisms, 

included the same species within multiple different groups, or reported data for the same 

experiment over multiple different time points. Accordingly, in order to reduce the 

correlation/covariance within the overall dataset, these interactions were removed from our 

analyses. For instance, where the effects of stressor interactions on multiple different traits 

were reported, those considering density as the biological response metric were prioritised 

over abundances, which were in turn prioritised over biomasses, or those considering 

chlorophyll-a, respectively. Similarly, where papers reported data for stressor interactions 

over multiple different time points, only the final time point was used as this best matched 

our equilibrium assumption for the theoretical models. 

Appendix Two gives a complete overview of the different search terms used to find studies, 

the method used to determine whether the data for a study could be collated, the processes 

for extracting and collating the data, and the process for removing interactions to prevent 

covariance. 

 

The determination of effect sizes and the classification of interactions 

Across both the theoretical and empirical datasets, we used the same method to determine 

the classification of an interaction, using the factorial form of the ŜŦŦŜŎǘ ǎƛȊŜ ƳŜǘǊƛŎΣ IŜŘƎŜǎΩ 

d όDǳǊŜǾƛǘŎƘ Ŝǘ ŀƭΦΣ нлллύΦ IŜŘƎŜǎΩ d is frequently used to investigate the impacts of multiple 

stressors as it estimates the standardised mean difference between the means of stressed 

and control samples and is unbiased by small sample sizes (Hedges & Olkin, 1985). It is 

calculated by comparing the effect of the interaction on ecological communities to the sum 

of effects of the stressors acting individually; namely, an additive null model. In line with 

current methods, we inverted the sign of the interactions when the expected effect of the 

additive null model was negative (Jackson et al., 2016; Piggott et al., 2015). This method 

allowed for interaction effect sizes to be compared regardless of their directionality. We 

therefore focused on the classification of the interaction as opposed to the absolute 
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magnitude/polarity of the effects. Appendix Two gives a complete breakdown of the 

Ŝǉǳŀǘƛƻƴǎ ǳǎŜŘ ŦƻǊ ŎŀƭŎǳƭŀǘƛƴƎ IŜŘƎŜǎΩ d.  

hƴŎŜ IŜŘƎŜǎΩ d for a given interaction of stressors was calculated, we then classified the 

interaction into one of four types as illustrated in Figure 2.1 and following the convention of 

Jackson et al. (2016). In brief, the four interaction classifications were: (i) Additive, where the 

effect of the additive null model was statistically indistinguishable from the effect of observed 

interaction; (ii) Synergistic, where the observed interaction effect was greater than the effect 

of the additive null model; (iii) Antagonistic, where the observed interaction effect was less 

than the effect of the additive null model, but both effects had the same polarity; and (iv) 

Reversal, where the observed interaction effect was less than the effect of the additive null 

model, but the observed and expected effects had contrasting polarities. The distinction 

between antagonistic and reversal interactions is relatively recent (e.g., Travers-Trolet et al., 

2014; Jackson et al., 2016), with most research still continuing to use the appellation of 

antagonistic to refer to both antagonistic and reversal interactions (e.g., Velasco et al., 2019; 

Gomez Isaza et al., 2020). 
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Figure 2.1: Graphical depiction of interaction types using population density as a response metric. 

White and grey bars denote densities under control and single stressors, respectively. The black bar 

denotes the additive (Add.) interaction classification (i.e., the sum of the effects for the individual 

stressors shown by the black arrows). The yellow bar denotes a synergistic (Syn.) interaction 

classification (i.e., a decrease in population density greater than the additive effect). The green bar 

denotes an antagonistic (Ant.) interaction classification (i.e., a decrease in population density less than 

the additive effect). The purple bar denotes a reversal (Rev.) interaction classification (i.e., a change in 

population density in the opposite direction to that of the additive effect). 

 

Lƴ ƻǳǊ ƳŜǘƘƻŘΣ ƛŦ IŜŘƎŜǎΩ d was positive, the interaction was classed as synergistic, and if 

negative, the interaction was classed as either an antagonistic or reversal interaction, 

although this could only be determined by comparing the effect of the additive null model to 

ǘƘŜ ƻōǎŜǊǾŜŘ ŜŦŦŜŎǘ όŀǎ ƻǳǘƭƛƴŜŘ ŀōƻǾŜύΦ 9ŀŎƘ ǾŀƭǳŜ ƻŦ IŜŘƎŜǎΩ d had corresponding 95% 

confidence intervals; if these confidence intervals incorporated 0, then an interaction was 

deemed to be additive. The classification scheme outlined above is one of a number of 

possible choices (e.g., Crain et al., 2008; Jackson et al., 2016), and Appendix Two details a 

comparison of how these different schemes contrast each other.  
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Vote-counting  

Following the classification of all interactions, we implemented a vote-counting method to 

determine the relative proportions of the interaction classes across both the theoretical and 

empirical datasets. To consider the effect of different strengths of observation error on the 

ŀōƛƭƛǘȅ ǘƻ ŘŜǘŜŎǘ ǘƘŜ ΨǘǊǳŜΩ ǎǘǊŜǎǎƻǊ ƛƴǘŜǊŀŎǘƛƻƴ ƛƴ ǘƘŜ ƳƻŘŜƭƭŜŘ ŘŀǘŀΣ ǿŜ ŎƻƳǇǳǘŜŘ ǘƘŜ 

frequency of interaction types for each level of observation error investigated. 

 

Summary effect sizes  

Alongside the vote-counting method, we calculated summary effect sizes across both the 

theoretical and empirical datasets. The calculation of summary effect sizes represents one of 

the key components that defines a formal meta-analysis (Koricheva & Gurevitch, 2014), 

allowing for the collation of the individual effect sizes of multiple independent experiments 

or studies and determining a single summary effect. Pooling the data in this way increases the 

statistical power of our analyses, and therefore leads to a greater probability of correctly 

rejecting the null hypothesis that stressor interactions are additive. Meta-analyses and 

summary effect sizes are both useful and well-established within the field of multiple 

stressors (e.g., Crain et al., 2008; Jackson et al., 2016; Seifert et al., 2020), and give higher 

weightings to individual effect sizes with lower uncertainties (i.e., lower variances) which lead 

to more precise estimates of the overall summary effect size (Koricheva & Gurevitch, 2014).  

For the empirical analysis, summary effect sizes were determined by using a weighted random 

effect model and implemented in the metafor package (Viechtbauer, 2010) in R. Random 

effects were specified as being the identity (ID) of the study group of organisms nested within 

the ID for study. The random effects were specified in order to account for both within- and 

between-study variation contained within the empirical dataset. Additionally, some empirical 

studies considered multiple intensities of one or more stressors, and as such, calculations of 

the interaction class for each intensity of stressor used the same control. To account for any 

covariance between the different intensities of a single stressor, we incorporated covariance-

variance matrices within the meta-analytical models. For the empirical dataset, mixed effect 

models were also conducted with the fixed effects of stressor pair or organism group, 

alongside the previously described random effects (see Appendix Two). The summary effect 
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size for the theoretical dataset was also determined using a similar process. However, due to 

computational limitations caused by the number of interactions under analysis (360,000 

interactions at each level of observation error), fixed effect models for the theoretical data 

were fitted using the lm function. The models applied to both the theoretical and empirical 

datasets are explained in further detail within Appendix Two. While we detail the results of 

both the vote-counting and summary effect size methods, our results primarily focus on 

summary effect sizes, in line with recommendations for meta-analyses (Gurevitch et al., 

2018). 

The overall effect from a meta-analysis needs to be checked for consistency among effect 

sizes, termed as heterogeneity (Nakagawa et al., 2017). We used the I2 statistic, which is 

bounded between 0% and 100%, with 25%, 50%, and 75% being suggested as levels for, low, 

medium, and high heterogeneity, respectively (Higgins et al., 2003). Ecological meta-analyses 

often report high levels of heterogeneity (Senior et al., 2016), perhaps due to the variation in 

study organisms common to the questions being addressed, and we may have expected a 

high value here due to both range of study organism and range of stressor type. To explore 

the potential causes of heterogeneity within the empirical meta-analysis, we conducted 

separate meta-analyses on a sub-group of the dataset, a similar process to running a meta-

regression (Nakagawa et al., 2017), using organism group (i.e., producer or consumer) as the 

categorical moderator to explore heterogeneity (see Appendix Two). We also considered 

publication bias (see Appendix Two); although it should be noted that common tests for 

publication bias within meta-analyses can be limited by high heterogeneity (Nakagawa et al., 

2017).  

 

2.4 Results 

Stressor interactions within theoretical data 

We found no strong difference between the classification of stressor interactions from either 

form of food chain model (Table 2.1), or between the different lengths (three, four, five 

trophic levels) of food chains (see Appendix Two), showing that the frequencies of interaction 

classifications were robust to these details of the models. For the entire theoretical dataset 

of 360,000 stressor interactions (comprising both Consumer Uptake Regulation and Density 
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Dependence Equations, and across food chains of three, four and five levels) without 

observation error, antagonistic and synergistic interactions were the most frequently 

assigned (0.483 and 0.480, respectively), followed by reversal (0.0288), and finally additive 

ƛƴǘŜǊŀŎǘƛƻƴǎ όлΦллурсύΦ ¢ƘŜǎŜ ŦǊŜǉǳŜƴŎƛŜǎ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘŜǊŀŎǘƛƻƴǎ ŀǎ ŎƭŀǎǎƛŦƛŜŘ ōȅ ǘƘŜ 

additive null model, under no data uncertainty. However, the ability of the additive null model 

to recover these interaction frequencies is very sensitive to observation error. Increasing 

observation error led to more interactions being classified as additive (the null model) and at 

higher levels additive interactions were clearly dominant (Figure 2.2a). This pattern could be 

generated if our theoretical interactions only weakly deviated from additivity, but checks 

confirmed that this was not the case, and that over 50% of interactions deviated from 

additivity by more than 5% (see Appendix Two). 
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Figure 2.2: The effect of observation error (̀) on the stressor interaction categorisation, and summary 

meta-analytic effect sizes in the theoretical data. a) Frequency of the different interaction classes for 

the 360,000 theoretical stressor interactions at each level of observation error: Dotted black line 

denotes additive interactions; green short-dashed line indicates antagonistic interactions; yellow long-

dashed line denotes synergistic interactions; and purple line indicates reversal interactions. b) 

Summary effect sizes for the 360,000 theoretical stressor interactions, at each level of observation 

error - Black line denotes summary effect sizes; and red lines denote 95% confidence intervals. c) The 

ratio of positive to negative summary effect sizes at each level of observation error. 
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The summary effect size, and summary interaction class as generated from the meta-

analytical framework also showed high sensitivity to observation error, although in these 

analyses the outcome was rather different (Figure 2.2b). For low levels of observation error, 

the 95% confidence intervals of the summary effect size overlapped zero, indicative of an 

additive summary interaction class. This occurred because the frequency and magnitudes of 

synergistic (positive effect size) and antagonistic/reversal (negative effect sizes) interactions 

were approximately equal for low observation error (Figure 2.2a), effectively cancelling one 

another out, and the large confidence intervals were caused by the underlying large variance 

in effect sizes (See Appendix Two). However, with increasing observation error, the summary 

effect sizes became increasingly more negative, and confidence intervals for these summary 

effect sizes did not overlap zero, indicating an antagonistic/reversal summary interaction 

class. This result may seem surprising since, similar to the case of individual interactions 

(Figure 2.2a), we may expect increased observation error to lead to summary effects with 

ƭŀǊƎŜǊ ŎƻƴŦƛŘŜƴŎŜ ƛƴǘŜǊǾŀƭǎ ǘƘŀǘ ƻǾŜǊƭŀǇǇŜŘ ȊŜǊƻΦ LƴǎǘŜŀŘΣ ǿŜ ŦƻǳƴŘ ǘƘŀǘΣ ŀƭǘƘƻǳƎƘ ǘƘŜ ΨǘǊǳŜΩ 

stressor interactions (i.e., in the absence of observation error) were roughly equally divided 

between synergy and antagonism, the summary effect became increasingly more negative as 

observation error increased, indicating observation error affected synergistic and 

antagonistic interactions asymmetrically. Further inspection showed an increase in the 

proportion of negative effect sizes as observation error increased (Figure 2.2c), with this being 

mirrored by a decreasing summary effect size (Figure 2.2b). Although not so obvious due to 

the dominance of additive interactions, a similar trend could be observed in the frequencies 

of interaction classes at higher observation errors, with synergistic interactions heading 

towards 0 frequency faster than antagonistic interactions (Figure 2.2a). Hence, analyses of 

our model results with varying levels of observation error suggested synergies in pairs of 

ecosystem stressors may be under-reported in many empirical studies. 

 

Theoretical expectations 

In summary, our theoretical analyses led us to conclude that at biologically plausible levels of 

observation error (i.e., >0.01), we should expect (i) the empirical data to be dominated by 

additive interactions for individual interactions (Figure 2.2a), but (ii) in contrast the summary 

effect sizes computed across a large body of such studies may indicate a dominant role for 
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antagonistic, or reversal, interactions. Both of these results may occur even if, as in our 

ǎƛƳǳƭŀǘŜŘ ŘŀǘŀΣ ǎȅƴŜǊƎƛŜǎ ŀǊŜ ŎƻƳƳƻƴ ŦƻǊ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘŜǊŀŎǘƛƻƴ ŎƭŀǎǎƛŦications.  

 

Stressor interactions within freshwater empirical data 

Our literature search within the Web of Science yielded 1805 papers that met our search 

criteria, 58 of which met our criteria for inclusion. They included 545 interactions summarised 

in Figure 2.3 to illustrate the frequency of different interaction classifications and the overall 

summary effect sizes and interaction classes. Additive interactions were the most frequent 

(0.829), followed by antagonistic (0.0991), reversal (0.0477), and finally synergistic (0.0239) 

interactions (Figure 2.3a). Additionally, the summary effect size for the entire dataset was 

negative with 95% confidence intervals that did not overlap zero (-0.632 ± 0.260), indicative 

of an antagonistic/reversal summary interaction class (Figure 2.3b). 
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Figure 2.3: Comparisons of the analyses of the freshwater stressor interaction dataset (545 

interactions) with the full theoretical stressor interaction dataset for different levels of observation 

error,  ̀ (given in parentheses on the x-axis). Comparisons are for: a) proportions of the different 

interaction classes; and b) summary effect sizes for the empirical and theoretical dataset. Figure 2.3a; 

white circles denote additive interactions, green squares denote antagonistic interactions, yellow 

diamonds denote synergistic interactions, purple triangles denote reversal interactions. Figure 2.3b; 

closed circles denote significant summary effect sizes (i.e., 95% confidence intervals do not overlap 

zero), and open circles denote non-significant summary effect sizes (i.e., 95% confidence intervals 

overlap zero). 
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Our meta-analysis showed medium-level heterogeneity (I2 = 48.5%) although this was 

considerably lower than the mean heterogeneity (I2 = 91.7%) found in an analysis of previous 

ecological meta-analyses (Senior et al., 2016). Furthermore, two additional meta-analyses 

were conducted on sub-groups of the empirical dataset, with the categorical moderator of 

organism group used to explore this heterogeneity (Nakagawa et al., 2017). However, these 

additional meta-analyses failed to uncover any source of this heterogeneity, with the meta-

analysis for consumers reporting medium-level heterogeneity (I2 = 42.5%) and the producer 

meta-analysis reporting high-level heterogeneity (I2 = 67.7%) (see Appendix Two).  

 

Comparison of empirical and theoretical interaction classifications 

Overall, we found close agreement between our theoretical models with biologically 

reasonable levels of observation error and the freshwater empirical data (Figure 2.3). Vote-

counting results highlight how individual interactions tended to return an additive 

classification in the empirical dataset, and that this is expected in the theoretical data when 

estimates of metrics used to classify the interactions are mostly within 10% of the true value 

(Figure 2.3a). Similarly, summary effect sizes were negative in the simulated data under even 

a very small level of observation error (Figure 2.3b) despite synergies and antagonisms co-

ŘƻƳƛƴŀǘƛƴƎ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘŜǊŀŎǘƛƻƴs. This implies the summary effect size reported in the 

empirical data for freshwater communities (Figure 2.3b) may not necessarily be 

ǊŜǇǊŜǎŜƴǘŀǘƛǾŜ ƻŦ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ ΨǘǊǳŜΩ ǎǘǊŜǎǎƻǊ ƛƴǘŜǊŀŎǘƛƻƴǎΦ  

 

2.5  Discussion 

There has been much interest in understanding and cataloguing the joint effects of stressors 

on ecological communities and ecosystems (Côté et al., 2016; Schäfer & Piggott, 2018; 

Thompson et al., 2018b), but to date there has been relatively little guidance from ecological 

theory. Similarly, we know of no demonstration of the abilities of the statistical tools used for 

classifying interactions to recover known interactions in the face of data uncertainty. Here, 

our aim was to test the statistical tools used to define stressor interactions using data 

simulated from ecological theory in order to gain a deeper understanding of a freshwater 
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dataset. Our empirical analyses generate two main results: (1) vote-counting analyses suggest 

additive interactions to be by far the most dominant stressor interaction types in freshwater 

community experiments (Figure 2.3a); but (2) our meta-analysis shows antagonism to be the 

summary interaction class (Figure 2.3b). However, the analyses of the simulated data suggest 

both results should be expected under plausible levels of observation error (i.e., >0.01) in the 

data (Figure 2.3), and that only under unrealistically low levels of precision should we expect 

ǘƻ ǊŜŎƻǾŜǊ ǘƘŜ ΨǘǊǳŜΩ ǎǘǊŜǎǎƻǊ-pair interactions in either individual studies or meta-analyses 

(Figure 2.2). We believe that once these statistical aspects are considered, the so-called 

ΨŜŎƻƭƻƎƛŎŀƭ ǎǳǊǇǊƛǎŜǎΩ όsensu Paine et al., 1998) may in fact be more prevalent in both our 

freshwater dataset, and more widely.  

 

Null model sensitivity to observation error 

The choice of the null model is hotly debated within ecological stressor research (Schäfer & 

Piggott, 2018), and it has been argued that null models should be able to accurately predict 

the combined effects of stressors (Orr et al., 2020). Our results (Figure 2.2) are the first 

attempt to quantify the degree of accuracy for the most commonly used null model, and we 

conclude that for all but the very lowest levels of observation error it is difficult to correctly 

reject the additive null interaction (Figure 2.2a). In other words, we find weak statistical 

power to recover the underlying stressor-pair interactions. On this basis, and given that most 

experiments have low sample sizes (we report a mean of 3.83 with a maximum of 16 per 

treatment in our empirical data), we consider it premature to conclude that most stressor 

interactions are truly additive in the freshwater data we collected. Instead, we should be 

careful to conclude that in the majority of cases we do not have sufficient evidence to reject 

the null (additive) interaction. However, it means that we should take notice whenever a non-

null interaction is returned by the additive null model, since only strong non-additive effects 

are likely to be detected (see Appendix Two). 

Perhaps more surprising is our finding that meta-analyses using the additive null model report 

antagonism as the summary interaction classification when observation error is non-

negligible, despite synergies co-dominating in our simulation data (Figure 2.2b). A naïve 

expectation would be for increased observation error to lead to summary effect sizes centred 
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around zero with large confidence intervals making it difficult to rule out an additive summary 

interaction in our simulation data. Smaller confidence intervals at higher levels of observation 

error are easily explained by the effect sizes becoming more similar due to the high variances 

of the response metrics (Appendix Two). Additionally, it is clear that observation error has an 

asymmetric effect on antagonisms and synergies, with this leading to a shift towards negative 

effect sizes dominating the distribution of simulated effect sizes (Figure 2.2c). Hence, 

although the return of an antagonistic summary interaction for our empirical dataset is 

mirrored in previous analyses of freshwater stressor experiments (Jackson et al., 2016; Lange 

et al., 2018), we cannot conclude that this is strong evidence for the dominance of antagonism 

in freshwater ecosystems. The simulation data therefore adds valuable interpretation of our 

empirical data that would otherwise be missed, and in so-doing highlights the importance of 

benchmarking statistical tools against data with known attributes.  

The high sensitivity to estimation uncertainty may be key reasons why stressor synergies are 

not as often reported as may be expected (Darling and Côté, 2008; Côté et al., 2016), although 

other reasons may also contribute, and we can also not rule out that the empirical results do 

truly reflect the underlying interactions. However, we believe our finding of high sensitivity 

to observation error in the null model is more general than either our theoretical results, or 

our freshwater dataset, and we suggest future studies should investigate other null models 

for their robustness to observation error and sample sizes. Such analyses would build on 

previous descriptions of the null models (e.g., Sih et al., 1998; Folt et al., 1999; Sih et al., 2004) 

and would be particularly useful if analyses considered the effect of sample size on statistical 

power, as this will help guide future empirical studies to improve the detection rate of non-

null stressor interactions.  

 

Theoretical expectations for interaction frequencies 

Our food chain models imply that, given adequate sample sizes (see above), we should expect 

synergistic and antagonistic interactions to co-dominate at the population and trophic levels, 

whereas additive interactions and reversals should be relatively rare. It may well be the case 

that our models are not good descriptors of the data we analyse; certainly, we ignore much 

important detail that is likely a feature in the data, such as spatial structure and temporal 
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variation in parameters caused by external perturbations not linked to the stressors, and 

more complex food web structure involving omnivory or parasitism. Unfortunately, the null 

model sensitivity to observation error implies we do not yet have the tools with which to 

discern the relative abilities of different theoretical models to capture the empirical data. 

However, our key theoretical finding for the relative rarity of additive interactions appears to 

be echoed in the few other theoretical studies on stressor interactions in ecological 

communities (e.g., Travers-Trolet et al., 2014; Thompson et al., 2018a; Haller-Bull & Bode, 

2019). This agreement is despite a variety of key differences in the model assumptions. In 

particular, Haller-Bull and Bode (2019) focused on populations rather than multispecies 

communities, but found dominant roles for synergistic and antagonistic interactions, with 

additive interactions occurring most frequently for stressors affecting the carrying capacity. 

Similar to our model, Thompson et al. (2018a) also focused on multispecies communities, but 

they assumed biological interactions were constant, whereas we allow interactions 

(consumption and conversion rates) to be modified by stressors, an assumption that seems 

likely to be met on a regular basis. For example, stressors have been shown to influence 

resource competition (Kroeker et al., 2013); susceptibility to parasitism in oysters (Lenihan et 

al., 1999); and modify the flow of energy through aquatic food webs by inducing changes in 

trophic links (Schrama et al., 2017). Despite this difference, Thompson et al. (2018a) found 

additive interactions were most prominent when species facilitated each other (i.e., positive 

species interactions), but that synergy or antagonism in combined stressor effects on species 

richness or community biomass were more common when species interactions are negative 

(competition or resource use).  

The apparent rarity of additive interactions in all of these models may appear at odds with 

the possible interpretation that two stressors acting on different species within a community 

could lead to an additive joint effect (Jackson et al., 2016). However, feedbacks in the food 

web, like those found in our models, mean that even if a species is unaffected directly by a 

stressor, it is highly likely that top-down or bottom-up effects will lead to indirect interactions 

for many species, and as a result, additive interactions are extremely unlikely in the absence 

of uncertainty (e.g., observation error). Indeed, we anticipate that additive interactions may 

only truly occur in scenarios where species in different and very weakly interacting sub-

communities are affected by different stressors, or, as found by Thompson et al. (2018a), 
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where species interactions are predominantly positive. We believe there will be an increasing 

role of theory in generating hypotheses for the ways in which stressors interact (De Laender, 

2018), and the most progress will be made when the theory is developed so it can be directly 

compared against empirical data, much as we have done here. 

 

Mechanistic understanding of multiple stressors 

In this study, we sought to address the question of how multiple stressors interact. This 

approach, when applied across both theoretical and empirical datasets can allow us to discern 

what may be expected across the interactions of multiple stressors. Future research may seek 

to address the question of why multiple stressors interact in the manner that they do. 

Undoubtedly, these two questions are entwinned, with the answers to each of these 

questions highly likely to be dependent on the other. However, while the use of null models 

is essential in determining the combined effect of multiple stressors (Thompson et al., 2018b), 

the adoption of a mechanistic approach to investigating multiple stressors may provide novel 

insights which address these joint questions (De Laender, 2018; Schäfer & Piggott, 2018). For 

instance, a mechanistic understanding may allow for responses such as co-tolerance or co-

susceptibility (Todgham & Stillman, 2013) to stressors to be more thoroughly understood 

from an ecological perspective. Ultimately, as our results imply, such an understanding is 

likely to require a large amount of empirical data to fully understand; however, there is ample 

scope for theoretical ecology to help fill this gap in our collective understanding of multiple 

stressors, and to generate specific hypotheses to be tested. Similarly, a mechanistic 

understanding of multiple stressor interactions would prove invaluable when mitigating the 

effects of stressors or implementing conservation initiatives.  

 

Future developments 

Our analysis represents a novel approach combining both theoretical and empirical methods. 

While this analysis provides a solid foundation, there are several aspects that could be 

adjusted in future research. Firstly, there is a clear need to better understand the limitations 

and data requirements of the null models (e.g., Gurevitch et al., 2000; Lajeunesse, 2011; 
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Thompson et al., 2018b) that are used to classify stressor interactions. Such knowledge would 

be very useful in guiding experimental design that would maximise the probability of 

uncovering non-null stressor interactions and would therefore provide a better 

understanding of their true prevalence. Knowing how many data points are required before 

we can realistically hope to detect a particular type of pattern, in this case a stressor 

interaction type of a given strength, is a critical component of experimental design. Moreover, 

our work has also uncovered some hitherto undescribed biases that lead to meta-analyses 

potentially over-emphasising antagonisms, and it is important to investigate other null 

models for this feature as well as looking for methods to reduce this bias. Secondly, the 

theoretical communities manipulated here combine multiple populations each on a separate 

trophic level. While this builds upon similar research conducted on a single population (Brown 

et al., 2013; Haller-Bull & Bode, 2019), there is scope for this approach to be expanded to 

consider more complex communities, for instance with multiple populations on a single 

trophic level (e.g., Thompson et al., 2018a). Finally, the manner in which stressors interact at 

the parameter or process level can occur in numerous ways, for instance either additively or 

multiplicatively (Haller-Bull & Bode, 2019). However, whether a process or parameter is 

impacted in an additive or multiplicative manner, will cause a stressed parameter value to 

change by differing degrees, with this in turn potentially resulting in contrasting frequencies 

of interaction classifications at the population level. Accordingly, the manner in which a 

process or parameter (e.g., feeding rate, mortality) is impacted may be determined by the 

individual stressors; for instance, if two simultaneously acting stressors are entirely 

independent of one another then their effect on an ecological process may be additive 

(Haller-Bull & Bode, 2019). Consequently, allowing stressors to impact the same process 

undoubtedly represents an area for expansion, particularly when considering how impacts at 

the parameter level affect population level properties. 

 

Conclusions 

Determining the ways multiple stressors interact is key when attempting to mitigate their 

effects, with the class of the observed interaction potentially outlining whether the removal 

of a stressor will have a beneficial, limited, or detrimental impact to an ecosystem (Brown et 

al., 2013; Côté et al., 2016). Our results show the value of developing a theoretical framework 
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which can aid in the interpretation of environmental stressor interactions, and we hope more 

general theory that makes specific predictions based on ecological mechanisms (e.g., De 

Laender, 2018; Fu et al., 2018; Thompson et al., 2018a) will be developed and tested in future. 

However, our results also highlight the urgent need to better understand the strengths and 

limitations of the null models that are used to classify the cumulative effects of community 

stressors, and we also believe a unified approach to the meta-analyses of individual studies 

will increase our understanding of how environmental stressors combine. 
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Chapter Three ς Multiple stressor null models frequently fail to detect 

interactions due to low statistical power 

 

3.1 Abstract  

Ecosystems across the globe are being impacted by multiple anthropogenic drivers. One 

pressing question facing ecologists is understanding how these multiple stressors interact to 

impact ecosystems. Predominately, studies have investigated the interactions of stressors 

using null models, with the additive and multiplicative null models being those most widely 

applied. Such approaches classify interactions as being synergistic, antagonistic, reversal, or 

null. Despite their wide-spread use, there has been no thorough analysis of these null models, 

nor a systematic test of the robustness of their results to sample size or sampling error in the 

estimates of stressor effects. Using simulated food web models, we demonstrate that the 

additive and multiplicative null models are not directly comparable, illustrated by the null 

models assigning over a third of all interactions different classifications. We highlight that 

both null models have weak power to correctly classify interactions at commonly 

implemented sample sizes (i.e., Җ6 replicates), unless data uncertainty is unrealistically low; 

hence the majority of interactions are assigned a null classification given they are 

indistinguishable from the implemented null model. Using mathematical approximations and 

simulations, we demonstrate that increasing sample size increases the power to detect the 

true interactions; however, power only slowly increases with sample size. We demonstrate 

that for common experimental sample sizes, only exceptionally large effect sizes are able to 

be assigned a non-null classification. Ultimately, our results may aid researchers in the design 

of their experiments, and the subsequent interpretation of their results. Overall, our results 

show no clear statistical advantage of using one null model over the other, although we 

conclude that it is not possible nor even meaningful to compare interaction types under 

different null models. Furthermore, the low statistical power of commonly used null models 

means we are likely missing many synergistic and antagonistic stressor interactions. 
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3.2 Introduction 

Globally, ecosystems are being impacted by a plethora of external anthropogenic stressors 

(sensu disturbances, drivers, factors, or pressures) (Blowes et al., 2019; Christensen et al., 

2006), with such stressors encompassing a wide range of environmental or biotic changes 

including land-use change, invasive species, climate change, and pollution (Brook et al., 2008; 

Dirzo et al., 2014; Hillebrand et al., 2020; Jackson et al., 2020). As such, an individual stressor 

is capable of having impacts upon biodiversity, species abundances, and ecosystem services 

(Newbold et al., 2015; Sala et al., 2020; Tittensor et al., 2014; Vinebrooke et al., 2004), with 

ecosystems within freshwater, marine, and terrestrial realms all at risk (Beaumelle et al., 

нлнмΤ hΩIŀǊŀ Ŝǘ ŀƭΦΣ нлнмΤ wŜƛŘ Ŝǘ ŀƭΦΣ нлмфύΦ !ƭǘƘƻǳƎƘ ŜŎƻǎȅǎǘŜms are frequently subjected to 

multiple stressors, understanding how these concurrently acting stressors interact is difficult, 

with the combined effects of these stressors frequently unknown (Hodgson & Halpern, 2019). 

Accordingly, understanding, predicting, and mitigating the effects of multiple interacting 

stressors upon various ecosystem properties represents one of the major, yet urgent, 

challenges to be confronted by ecologists and conservationists (Côté et al., 2016; Jackson et 

al., 2021; Lindenmayer et al., 2020).  

At present, the inferred effects of multiple interacting stressors are predominately 

determined through the implementation of null models (De Laender, 2018), where the 

observed response is compared to an expectation that the stressors are non-interacting. Of 

these null models, the additive null model (Gurevitch et al., 2000) is the most widely applied 

(e.g., Crain et al., 2008; Jackson et al., 2016) and suggests that the overall effect of the multiple 

interacting stressors is equal to the sum of the effects of the stressors acting individually. 

While it has been previously assumed that the majority of interactions are able to be 

explained by the additive null model, there is growing evidence that substantial numbers of 

stressor interactions have effects different to those predicted by the additive null model (Côté 

et al., 2016). Increasingly, studies are illustrating the prevalence of interactions with effects 

that are: i) greater than anticipated by the additive null model (synergistic interactions); ii) 

less than predicted by the additive null model (antagonistic interactions); iii) opposite to that 

suggested by the additive null model (reversal interactions). Frequently, these non-additive 

interactions are considered to be ecological surprises (sensu Paine et al., 1998), namely that 
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they deviate from the expectation of the additive null model. Comparisons of the different 

interaction classes are illustrated by Figure 3.1. 

 

 

 

Figure 3.1: Comparison of the additive and multiplicative null models, illustrating the conditions under 

which the different interaction classifications are observed. Individual Stressors: Grey bars represent 

the change in a measured response due to a given stressor (Stressor 1 or Stressor 2). Null Model 

Expectations: Yellow bar represents the expected response under an additive null model; Purple bar 

represents the expected response under a multiplicative null model. Interaction Class: Arrows denote 

how an interaction would be classified for a given observed response. Blue arrows denote synergistic 
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interactions; Pink arrows denote antagonistic interactions; Orange arrows denote reversal 

interactions. For the additive and multiplicative null models, a null interaction is shown by the purple 

and yellow lines respectively. When comparing between the additive and multiplicative null models, 

the black line denotes the range of observed responses where the additive and multiplicative null 

models classify interactions differently (i.e., the interaction class is null model dependent). Whether an 

interaction class varies between null models, or not, is inherently explainable by the underlying algebra 

of the null models (see Appendix Three). a) Both Stressor 1 and Stressor 2 act upon the response in the 

same direction. b) Stressor 1 and Stressor 2 act upon the response in contrasting directions. 

 

While the majority of studies currently apply the additive null model there is a growing body 

of literature suggesting alternative null models (e.g., Tekin et al., 2020; Thompson et al., 

2018b) that may potentially be more appropriate when investigating the impacts of multiple 

stressors (Dey & Koops, 2021; Schäfer & Piggott, 2018). Frequently, this argument centres on 

the parsimonious nature of the additive null model which limits, or even prevents, any 

mechanistic insight into how stressors interact; with there similarly being calls for multiple 

stressor research to focus on the mechanisms underpinning stressor interactions (Orr et al., 

2020; Schäfer & Piggott, 2018). Accordingly, the multiplicative null model (Hawkes & Sullivan, 

2001; Lajeunesse, 2011) is the alternative which is most widely discussed (see Folt et al., 1999; 

Morris et al., 2007; Sih et al., 1998) and implemented (e.g., Gomez Isaza et al., 2020; Harvey 

et al., 2013). The simplest description of the multiplicative null model is that it represents the 

logarithmic form of the additive null model. However, this numeric transformation results in 

differences between the two null models including the fundamental assumptions 

underpinning each approach (Schäfer & Piggott, 2018). Given these assumptions, it has been 

suggested that the multiplicative null model may better reflect biological and ecological 

systems (Kerkhoff & Enquist, 2009), with this being particularly pertinent when certain 

responses are considered (e.g., mortality or survival) (Fournier et al., 2006). Furthermore, 

while interactions under the multiplicative null model are capable of varying from the 

expected effect in a similar manner to the additive null model, the classification assigned to 

any given interaction (i.e., synergistic, antagonistic, or reversal interactions) may also differ 

between the two null models (Figure 3.1). For instance, an interaction classed as being 

antagonistic by the additive null model may be deemed as being a synergistic interaction by 

the multiplicative null model.  
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Ultimately, the differences between the two null models, outlined above, result in several 

important ramifications. Firstly, when individual studies implement differing null models, 

direct comparisons of these studies are decidedly difficult; indeed, as a result of the 

contrasting assumptions underpinning each null model, the hypotheses they test are 

different. Secondly, where the conservation or management of a particular ecosystem is 

based on the results of a specific null model a different course of action may have been 

adopted if an alternative null model was used. Furthermore, there are potential 

consequences to incorrectly determining the interaction classification with conservation 

strategies being rendered ineffective or even detrimental (Brown et al., 2013; Côté et al., 

2016), and it is therefore imperative to understand how the additive and multiplicative null 

models inherently relate to one another. 

When planning an experiment, one fundamental criterion that ecologists should consider is 

whether an experimental design is capable of detecting a biologically important effect (Steidl 

et al., 1997). For the above null models, such prospective power analyses necessitate 

knowledge of the sample sizes required to detect an effect of a given strength against a 

backdrop of data uncertainty. In the particular case of stressor interactions, the aim of all null 

model tests is to uncover an effect that shows a departure from the null hypothesis (i.e., 

observing an antagonistic, reversal, or synergistic interaction). Accordingly, there is a need to 

understand how each of the three constituent components of the null model calculations 

(treatment means, treatment uncertainty, and sample sizes) can influence the results of these 

null models. However, we are not aware of any previous analysis which attempts to 

understand the role of each of these components, with this meaning that there is currently 

minimal guidance for ecological experiments. Indeed, there is currently a distinct lack of 

knowledge regarding how experimental design, or ecologically relevant levels of uncertainty 

can impact the results of these null models, or even the conditions under which results differ 

between the additive and multiplicative null models. Without knowledge on the attributes or 

statistical power of these null models it can be very hard to make robust conclusions from the 

results of model tests, or design experiments that are likely to yield results that reflect the 

underlying effects of the stressors on the biological system of concern. As examples, two 

recent multiple stressor meta-analyses (Gomez Isaza et al., 2020; Seifert et al., 2020) included 

no experiments with more than six replicates per treatment, while a third (Burgess et al., 
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2021) found <1% of experiments used more than eight replicates per treatment. Currently 

there is no understanding of how these samples sizes might impact the power of either null 

model.  

Here, we focus on closing these gaps in knowledge about the additive and multiplicative null 

models for stressor interactions, outlining the role that treatment means, treatment 

uncertainty, and sample sizes play in determining model results. To this aim, we simulate data 

using an ecological model that has been shown to produce plausible distributions of 

interaction types (Burgess et al., 2021), whilst allowing for full control over the sample sizes 

and level of observation (measurement) error in the data. Using this simulated data, where 

ǿŜ ƪƴƻǿ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘŜǊŀŎǘƛƻƴ ǘȅǇŜ όƛΦŜΦΣ ǘƘŀǘ ƛƴŦŜǊǊŜŘ ƛƴ ǘƘŜ ŀōǎŜƴce of observation or 

sampling error), we are able to address the following questions:  

Question one: What are the conditions under which the additive and multiplicative null models 

agree, and disagree, and can we define these conditions from the model formulae? 

Question two: To what degree does treatment uncertainty (in the form of observation error) 

ǊŜŘǳŎŜ ǘƘŜ ŀōƛƭƛǘȅ ƻŦ ōƻǘƘ ǘƘŜ ŀŘŘƛǘƛǾŜ ŀƴŘ ƳǳƭǘƛǇƭƛŎŀǘƛǾŜ ƴǳƭƭ ƳƻŘŜƭǎ ǘƻ ŎƻǊǊŜŎǘƭȅ ƛƴŦŜǊ ǘƘŜ ΨǘǊǳŜΩ 

interaction classification? 

Question three: What is the relationship between the power to correctly reject the null models 

and sample size, and are current ranges of sample sizes adequate to detect most non-null 

interactions?  

 

3.3 Methods 

Additive null model 

Within multiple stressor research the form of the additive null model most commonly 

implemented is the factorial iteration of the null model, (namely IŜŘƎŜǎΩ Ř), outlined by 

Gurevitch et al., (2000). IŜŘƎŜǎΩ Ř, (henceforth referred to as the additive null model), is an 

estimate of the standardised mean difference between the means of the control and 

treatment samples, but also has the benefit of being unbiased by small sample sizes (Hedges 

& Olkin, 1985). The additive null model is calculated by comparing the effect of the stressors 

acting separately to the effect of the stressors acting simultaneously. Within our analysis we 
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also implement this form of the null model (Equation 3.1). The calculation of the additive null 

model depends on three variables, (namely the mean response value (XX), the number of 

replicate measurements (NX), and the standard deviation around the mean (SDX)), with each 

of these variables being taken under the four different treatments, (Control (C), Stressor A 

only (A), Stressor B only (B), Stressors A & B (I)). The calculation of the additive effect size, 

(ESAdd), is shown by Equation 3.1.1, with the algebraic notation used as described above. The 

pooled sampling standard deviation is denoted by s, (Equation 3.1.2); while J(m) (Equation 

3.1.3) is the small sample bias correction factor, often used where there is a small number of 

replicates per interaction (Borenstein et al., 2009). For each additive effect size a 

corresponding variance, (VAdd), standard error, (SEAdd), and confidence intervals, (CIAdd), are 

calculated by Equations 3.1.4 ς 3.1.6. Here, we set the significance level to 0.05 (Zh κн = 1.96), 

hence 95% confidence intervals are calculated. 
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Multiplicative null model 

We implement the form of the multiplicative null model detailed by Lajeunesse (2011). 

Despite a somewhat similar appearance to the additive null model, the multiplicative null 

model applies a logarithmic transformation to the measured response values (Equation 3.2.1) 

and again incorporates measurements of the same variables for all four treatments used in 

the additive null model (notation used is the same as above). The multiplicative effect size, 

(ESMul), is calculated by Equation 3.2.1; while the corresponding variance, (VMul), standard 

error, (SEMul), and confidence intervals, (CIMul), are determined using 3.2.2 ς 3.2.4. As above, 
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we set the significance level to 0.05 (Zh κн = 1.96), hence 95% confidence intervals are 

calculated. 

σȢςȢρ                                                                                     ὉὛ    ÌÎὢ  ÌÎὢ ÌÎὢ  ÌÎὢ  

σȢςȢς                                                                 ὠ    
ὛὈ

ὢ Ͻὔ

ὛὈ

ὢ Ͻὔ

ὛὈ

ὢ Ͻὔ

ὛὈ

ὢ Ͻὔ
 

σȢςȢσ                                                                                                                                              ὛὉ    ὠ  

σȢςȢτ                                                                                                                                    ὅὍ    ὤȾ ϽὛὉ  

 

Interaction classifications 

When using either the additive or multiplicative null models, individual interactions are able 

to be classified into one of four classes depending upon both effect sizes (Equations 3.1.1, 

3.2.1) and corresponding confidence intervals (Equations 3.1.6, 3.2.4). Using the naming 

conventions of (Orr et al., 2020), the classifications are: null, antagonistic, synergistic, or 

reversal interactions (Figure 3.1). An interaction was classed as null, regardless of whether 

the effect size was positive or negative, if the 95% confidence intervals for that interaction 

overlapped zero. Interactions were classed as synergistic if the effect size was positive and 

the 95% confidence intervals for that interaction did not overlap zero. Interactions were 

classed as antagonistic or reversal interactions, if the effect size was negative, and the 95% 

confidence intervals did not overlap zero. Furthermore, for an interaction to be classed as 

antagonistic, the expected and observed interaction effects had to both act in the same 

direction (e.g., for an additive interaction: XI ς XC > 0 & XA + XB ς 2XC > 0). In contrast, for an 

interaction to be classed as reversal, the expected and observed interaction effects had to 

both act in differing directions (e.g., for an additive interaction: XI ς XC < 0 & XA + XB ς 2XC > 0). 

Finally, it is important to note that a null interaction classification does not necessarily mean 

that stressors interact in an additive or multiplicative manner. A null classification denotes 

interactions where it was not possible to reject the null hypothesis (i.e., null model), not that 

the additive, or multiplicative, null model was accepted. The method for classifying 

interactions is explored more in Appendix Three. 
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Theoretical framework 

Described below is an overview of the framework used to simulate interaction data for our 

analyses. For full details, including formulae and details of distributions, refer to Appendix 

Three. 

Throughout our analysis we implement a theoretical framework (Burgess et al., 2021) to 

generate population densities analogous to those from empirical experiments. The 

theoretical framework is based upon Lotka-Volterra consumer-resource equations (Heath et 

al., 2014), enabling us to establish food chains of three, four, or five trophic levels and 

determine the densities of populations at equilibrium. Regardless of the length of food chain 

considered, the models contain three distinct types of trophic level. These levels are: i) basal 

trophic level, equivalent to a pool of a limiting nutrient; ii) consumer trophic level, which only 

predates the trophic level directly below, and is only predated upon by the trophic level 

directly above; iii) apex consumer trophic level, which only predates on the trophic level 

directly below, but is not predated upon itself. Both Heath et al., (2014) and Burgess et al., 

(2021) outline these models to a greater degree with additional detailing found there. 

In brief, the food-chain models (and therefore population densities) are governed by the 

densities of the trophic levels and five key parameters; namely attack rate, ;h conversion 

efficiency, ʁ ; density independent mortality rate, ɻ; density dependent mortality rate ˂; and 

the basal (i.e., nutrient) input rate ̟. The attack rate, hi, denotes the rate at which trophic 

level i feeds upon a resource (trophic level i-1). The conversion efficiency, ʁ i, represents the 

proportion of the consumed resource that is converted into new consumers within trophic 

level i. The density independent mortality rate, ɻi, represents the background rate at which 

the density of trophic level i is reduced with each model time-step. The density dependent 

mortality rate, ˂ i, increases the mortality rate of a trophic level with increasing population 

density. Finally, the basal input rate, ,̟ represents the constant rate at which the basal trophic 

level increases in density. 

We aim to investigate how stressors interact to impact the equilibrium densities of trophic 

levels within a theoretical food chain. As with empirical studies of multiple stressor 

interactions, our theoretical framework similarly employs a factorial experimental design. For 

the control treatment, the values of each of the above parameters (for each trophic level) are 
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drawn from pre-determined uniform distributions. Each of these parameters were randomly 

drawn across all trophic levels; hence for example, the value for the conversion efficiency 

parameter at trophic level i is unlikely to be the same as that for trophic level j. Following the 

method used by Burgess et al., (2021) we assume that all the previously described key 

parameters do not vary over time, with the intention of this framework to explore how 

stressors impact equilibrium densities. 

Subsequently, within our theoretical framework, food chains are subjected to stressors by 

altering the value for a single parameter (e.g., ʰΣ ʶΣ ʵΣ ƻǊ ˖ύ ŦƻǊ ŀ ǎƛƴƎƭŜ ǘǊƻǇƘƛŎ ƭŜǾŜƭΣ ŀƴŘ 

keeping all other parameters constant under control values. Within these simulations, all 

parameters are equally likely to be selected to be stressed, although a single parameter is 

only ever impacted by one stressor (i.e., two stressors cannot act on the same parameter). 

For the interaction treatment of our experimental design, all parameters were under control 

conditions, except for those which were stressed in the individual treatments which were 

instead assigned their stressed values. Accordingly, for each of the four treatments we 

calculate the equilibrium densities of each trophic level within the food chain, and we use 

these densities as our treatment means to classify the stressor interactions using the null 

models (Equations 3.1 and 3.2, Interaction classifications section). When determining how 

stressors interact to impact populations, we randomly chose one trophic level from the entire 

theoretical food chain, (with the exception of the basal/nutrient trophic level which was never 

selected). Accordingly, our subsequent analysis is centred on individual trophic levels rather 

than entire communities; however, this approach means that the trophic level investigated 

was not always directly impacted by a given stressor but was able to be indirectly impacted 

through cascading effects. 

Implementing the above approach, a dataset comprising of 100,000 interactions was collated. 

These interactions represented approximately equal numbers of equilibrium densities for 

populations from the three different lengths of food chain. The calculation of the equilibrium 

densities for each food chain, across each of the four treatments, was conducted using 

Mathematica v10.4 (Wolfram Research Inc., 2016). In line with the method of Burgess et al., 

(2021), the equilibrium densities of all 100,000 interactions were both stable and greater than 

zero. These 100,000 interactions form the basis for each of subsequent analyses, detailed 

below. 
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Treatment means, treatment uncertainty, and sample sizes 

Question one centres around understanding the additive and multiplicative null models under 

idealised conditions (e.g., in the complete absence of uncertainty, or with infinite sample 

sizes). Such an analysis provides the clearest indication of how the null models differ from 

one another, based solely upon the 100,000 treatment means described above, allowing the 

ΨǘǊǳŜΩ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ƻŦ ŀƴȅ ƛƴǘŜǊŀŎǘƛƻƴ ǘƻ ōŜ ŘŜǘŜǊƳƛƴŜŘΦ !ŎŎƻǊŘƛƴƎƭȅΣ ŀ ŦƻŎǳǎ ǳǇƻƴ ǘǊŜŀǘƳŜƴǘ 

means allows the conditions under which the results of the null models agree or disagree to 

be better understood. 

Given that the food chain models are solved to a given equilibria, there is an absence of 

uncertainty at this stage. To mirror empirical experiments, we modelled treatment 

uncertainty, in the form of observation error for the equilibrium densities recorded at each 

treatment in each of the 100,000 interactions. In brief, we follow the method of Burgess et 

al., (2021), with each equilibrium density being multiplied by a number drawn from a Gaussian 

distribution with a mean of 1.00 and a standard deviation ,̀ with this process being repeated 

four times per treatment; with the number of replicates used here mirroring those frequently 

used within empirical experiments. Smaller values of  ̀will result in a tighter distribution of 

observed mean densities around the true population mean compared to larger values of .̀ 

Our approach allows for an intuitive understanding of ,̀ as we can expect 99.7% of all 

observed treatment densities to fall within 3̀  of the true value. We use 250 levels of ,̀ hence 

referred to as levels of observation error, ranging from 1.0x10-3 to 2.5x10-1 (see Appendix 

Three for more details). We then compute the probability of assigning the true interaction 

classification to each interaction under every level of observation error, thereby investigating 

the ability of each null model to correctly classify interactions in the face of uncertainty 

(Question two).  

To address Question three and investigate the role which sample size plays in the 

determination of interaction classifications, a similar method was employed as for treatment 

uncertainty (see Appendix Three). For three levels of observation error (0.001, 0.01, 0.1) the 

number of replicates per treatment was varied between three and 100, and for each 

combination of sample size and observation error, we computed the frequency of 

ƛƴǘŜǊŀŎǘƛƻƴǎ ǘƘŀǘ ǿŜǊŜ ŀǎǎƛƎƴŜŘ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘŜǊŀŎǘƛƻƴ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ŦƻǊ ŜŀŎƘ ƴǳƭƭ ƳƻŘŜƭ όǎŜŜ 

Treatment means). As such, this analysis provides a form of power analysis quantifying how 
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increases in sample size may improve the ability of empirical experiments to detect significant 

interactions. 

 

3.4 Results 

Question one: What are the conditions under which the additive and multiplicative null models 

agree, and disagree, and can we define these conditions from the model formulae? 

Despite testing differing hypotheses, both the additive and multiplicative null models report 

similar frequencies of the different interaction classifications in the absence of any variation. 

Both null models report that antagonistic interactions are the most prevalent (additive 0.493; 

multiplicative 0.519), followed by a slightly reduced number of synergistic interactions (0.485; 

0.462), minimal frequencies of reversal interactions (0.023; 0.020), and a complete absence 

of null interactions (0.000; 0.000). 

The frequencies of the interactions reported suggest a high degree of alignment between 

both null models. However, when considering how individual interactions are classified by 

both null models, it is evident that substantial differences exist (Table 3.1). While the majority 

of interactions are assigned the same classification, over one third of interactions (33.6%) are 

assigned classifications which are null model dependent. This difference is predominately 

explained by interactions being assigned a synergistic classification by one null model and an 

antagonistic class by the other.  

 

Table 3.1: Proportions of interactions classed differently, or the same, across additive and 

multiplicative null models. Shaded boxes indicated the proportion of interactions where both null 

models agree. 

 Additive Null Model 

Synergistic Antagonistic Reversal Null 

Multiplicative  

Null Model 

Synergistic 0.299 0.158 0.005 0.000 

Antagonistic 0.181 0.328 0.010 0.000 

Reversal 0.005 0.007 0.007 0.000 

Null 0.000 0.000 0.000 0.000 
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Question two: To what degree does treatment uncertainty (in the form of observation error) 

reduce the ability of both the additive and multiplicative null models ǘƻ ŎƻǊǊŜŎǘƭȅ ƛƴŦŜǊ ǘƘŜ ΨǘǊǳŜΩ 

interaction classification? 

As shown by Figure 3.2, both null models are sensitive to data uncertainty in the form of 

observation error. The frequency of null interactions rapidly increases accounting for over 

50% of all interactions for both null models by ̀~0.005 (i.e., when nearly all sampled 

treatment means are within 1.5% of the true values). Hence even at small levels of 

observation error both the additive and multiplicative null models are frequently unable to 

be correctly rejected. Accordingly, under the levels of observation error considered here, it is 

expected that the majority of interactions would be assigned a null interaction class. Indeed, 

as shown for both the additive (Figure 3.2a) and multiplicative (Figure 3.2b) null models, the 

frequencies of synergistic and antagonistic interactions rapidly decline with increasing levels 

of observation error. However, the frequency of reversal interactions is relatively constant, 

regardless of the level of observation error.  
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Figure 3.2: The effect of observation error on the frequency of interaction classifications, showing how 

the proportions differed from those in the absence of observation error, using an additive null model 

(a) and multiplicative null model (b). Proportions of the different interaction classes are for the 100,000 

simulated interactions at each level of observation error. Pink line indicates null interactions. Orange 

line denotes reversal interactions. Blue line indicates synergistic interactions. Red line denotes 

antagonistic interactions.  

 

Question three: What is the relationship between the power to correctly reject the null models 

and sample size, and are current ranges of sample sizes adequate to detect most non-null 

interactions?  

As shown by Figure 3.3, increasing sample size leads to a higher rate of correctly rejecting 

both the additive and multiplicative null models (i.e., an increase in the true positive rate). 

However, even for lŀǊƎŜ ǎŀƳǇƭŜ ǎƛȊŜǎΣ ƛǘ Ŏŀƴ ōŜ ŘƛŦŦƛŎǳƭǘ ǘƻ ŘŜǘŜŎǘ ǘƘŜ ΨǘǊǳŜΩ ƛƴǘeraction if 

observation error is anything other than minimal. Moreover, at lower levels of observation 

error (i.e., 0.001 or 0.01) the multiplicative null model is correctly rejected more frequently 
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than the additive null model; however, the additive null model is correctly rejected, more 

frequently, for the highest level (0.1) of observation error. Our results suggest that increasing 

those sample sizes frequently observed in multiple stressor studies, will result either null 

model being correctly rejected more frequently.  

 

 

Figure 3.3: Frequency of interactions that are correctly classified (i.e., true positive rate) for a range of 

different treatment replicates. Three different levels of observation error are considered (0.001, 0.01, 

0.1), with these being indicated by longdashed, dashed, and dotted lines respectively. Yellow lines 

denote use of an additive null model, purple lines denote use of a multiplicative null model. 

 

By combining and rearranging Equations 3.1.1 ς 3.1.6, it is possible to express the additive 

effect size as a function of sample size (Inequality 3.1). This inequality shows that for a given 

sample size, there is a minimum additive effect size value which must be exceeded in order 

for the interaction to be significantly different to the null model (i.e., critical effect size; see 

Lakens, 2021), and therefore be correctly classified as being non-null.  


