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Abstract 

 

Ecosystems are subjected to a wide range of stressors, many of which are anthropogenic in 

origin. However, far from being impacted by isolated threats, these ecosystems are affected 

by multiple co-occurring stressors. Currently, there is little understanding of how, or whether, 

these stressors interact to affect individuals, populations, or communities. Indeed, studies 

vary in whether they find co-occurring stressors to interact in an additive, antagonistic, or 

synergistic manner. However, attempts to determine general ecological covariables which 

may explain these disparate findings have so far failed to do so. Here, I use meta-analytical 

and theoretical approaches to better understand how stressors can be expected to interact, 

with a particular emphasis on freshwater ecosystems. Firstly, I simulate food chains which are 

subjected to co-occurring stressors and compare these results to the findings of the largest 

multiple stressor meta-analysis, here focusing on freshwater densities. Both approaches 

illustrate that null (i.e., additive) classifications dominate for individual interactions; although, 

overall stressors interact to affect density in an antagonistic manner. Secondly, I analyse the 

statistical tools frequently used to classify multiple stressor interactions. I illustrate that many 

results which are ascribed ecological importance instead arise due to statistical artefacts of 

these tools. In turn, I highlight that many experimental designs, commonplace to multiple 

stressor ecology, lack the statistical power necessary to detect the interactions of co-

occurring stressors. Thirdly, I collate and analyse the datasets of seven aquatic multiple 

stressor meta-analyses under a single consistent framework. I illustrate that the current 

absence of generalities from multiple stressor meta-analyses primarily arises due to 

methodological, not ecological, variation. In turn, removing methodological differences 

results in generalities becoming apparent. Finally, I collate the findings of the above chapters 

and outline the potential implications for multiple stressor ecology. In doing so, I explore 

current challenges facing the field alongside future directions. 
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Impact statement 

 

Given that multiple stressors affect nearly all ecosystems, it is imperative that the interactions 

of these stressors are understood. However, there is currently limited knowledge of stressor 

interactions, with similar studies often finding highly disparate results. Accordingly, there is 

an absence of consistent generalities apparent across multiple stressor ecology. This has 

ramifications both for the field and the insights which multiple stressor ecology can provide 

to allied disciplines (e.g., conservation science). 

This thesis utilises a range of different approaches to provide novel insights into the 

interactions of co-occurring stressors. Ultimately, all of the chapters of this thesis seek to 

answer the question of how stressors interact. Here, I implement various empirical, 

theoretical, and analytical approaches to address this question, often from new perspectives. 

Indeed, I consider how ecological, experimental, and methodological properties may 

influence the conclusions researchers reach regarding interacting stressors. Overall, the 

findings of this thesis have implications for experimental designs, analytical choices, and the 

interpretation of any results. In turn, such findings may also be subsequently considered by 

conservationists, as understanding how stressors interact is crucial when implementing 

management actions. 

Each of the chapters of this thesis substantially builds on existing research. For example, 

Chapter Two (recently published in Global Change Biology) combines meta-analytical and 

theoretical approaches to better understand stressor interactions. In doing so, I highlight the 

value of implementing ecological theory within multiple stressor ecology, a currently under-

utilised approach. Likewise, Chapter Three is the first substantial exploration of the statistical 

tools frequently used to classify stressor interactions. In doing so, I illustrate that the design 

of many (if not most) experiments within multiple stressor ecology is inadequate when 

seeking to determine whether, or how, stressors interact. Finally, Chapter Four is the first 

analysis in which the results of different multiple stressor meta-analyses are compared. This 

analysis has revealed that methodology, not ecology, is likely responsible for the absence of 

generalities within multiple stressor ecology. As such, this chapter has wide-ranging 

consequences for the field of multiple stressor ecology. Indeed, I illustrate that an advanced 
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ecological understanding of multiple stressor interactions can only be gained once analytical 

methods are understood and correctly implemented. 
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Thesis outline 

 

Chapter One - Introduction 

This chapter provides background information on the current understanding of how stressors 

interact to affect ecosystems. Literature gaps and questions in the field of multiple stressor 

ecology are highlighted alongside the aims of this thesis. This chapter is primarily general or 

freshwater-centric in its focus.  

 

Chapter Two - Classifying ecosystem stressor interactions: Theory highlights the data 

limitations of the additive null model and the difficulty in revealing ecological surprises 

In this chapter, I combine theoretical ecology with a large-scale freshwater meta-analysis to 

better understand multiple stressor interactions and determine whether general insights 

could be determined from across these different approaches. This work was conducted in 

collaboration with David Murrell, Drew Purves, and Georgina Mace. The study was conceived 

by myself and DM; I conducted the analysis and wrote the first draft. All collaborators 

contributed to the editing of this chapter and manuscript. Work from this chapter has been 

presented at various conferences including multiple British Ecological Society (BES) 

conferences and BES Aquatic Special Interest Group meetings. This chapter has been recently 

published in Global Change Biology and in subsequent chapters may be referred to as Burgess 

et al., (2021). 

 

Chapter Three - Multiple stressor null models frequently fail to detect interactions due to low 

statistical power 

In this chapter, I examine the additive and multiplicative null models from a statistical 

perspective, determining how the results of these approaches may vary under experimentally 

relevant conditions (e.g., sample sizes). This work was conducted in collaboration with DM 

and Michelle Jackson (University of Oxford). Myself and DM conceived the idea for this project 
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and designed methods. I conducted the analysis and wrote the chapter with input from DM 

and MJ. 

 

Chapter Four - Methodological variation obscures generalities across multiple stressor meta-

analyses 

In this chapter I analyse the influence which differing methods have upon the conclusions of 

seven multiple stressor meta-analyses. In doing so, I attempt to outline whether this source 

of variation is responsible for the absence of generalities to emerge from these studies. This 

work was primarily conducted in collaboration with DM, MJ, and Charlie Loewen, with DP and 

GM additionally providing advice. Data for this analyses was also provided by MJ, Kristy 

Kroeker, Ben Halpern, Rachel Przeslawski, Ben Harvey, and Kristina Lange. This study was 

conceived by myself, DM, and MJ. I conducted all analyses following discussions with DM, MJ, 

and CL. I wrote this chapter with input from DM.  

 

Chapter Five - Discussion 

This chapter collates the findings of this thesis and evaluates the contribution it makes to 

multiple stressor ecology. Furthermore, this chapter outlines future directions for the field 

and current obstacles that must be overcome. 
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Chapter One – Introduction 

 

Humans have altered both ecological and environmental systems over many hundreds of 

years (Lewis & Maslin, 2015), leading to wide-spread impacts to ecosystems across the globe 

(Dirzo et al., 2014). However, following a recent intensification of anthropogenic activities, 

ecosystems are subjected to a plethora of different stressors (Best, 2019; Brook et al., 2008; 

Halpern et al., 2015). Stressors (sensu drivers, factors, or threats) are external drivers that can 

affect both biodiversity and ecosystem functioning (Orr et al., 2020). Although stressors may 

occur due to natural processes, they are frequently anthropogenic in origin (Beauchesne et 

al., 2021). Furthermore, the impacts of these stressors can be severe. Indeed, 

anthropogenically induced climate change is likely responsible for increasing the extent of 

forest fires (Abatzoglou & Williams, 2016), while ocean acidification has been shown to enable 

coral reefs to be dominated by macroalgae (Enochs et al., 2015). Similarly, water abstraction 

has resulted in the shrinking of the freshwater Aral Sea (Dudgeon, 2019), while mass mortality 

events are occurring, across realms, at an increased frequency as a consequence of a variety 

of stressors (Fey et al., 2015). However, since the 1990s there has been an appreciation that 

not only do stressors damage nature (e.g., natural habitat intactness) but also the goods and 

services which ecosystems provide (Mace, 2014). These services are essential, including crop 

pollination (Rader et al., 2014) and the provisioning of food resources (Bernhardt & O’Connor, 

2021). 

While covering 2.3% of the Earth’s surface (Lehner & Döll, 2004) and containing 

approximately one third of all vertebrate species (Tickner et al., 2020), freshwater ecosystems 

are some of the most threatened on the planet (He et al., 2019). On average, freshwater 

species have experienced a decline in population abundances greater than those of species 

in either the terrestrial or marine realms (Reid et al., 2019; Sala et al., 2000; WWF, 2020). 

Furthermore, population abundances of freshwater megafauna have declined by up to 99% 

in some regions (He et al., 2019). As such, freshwater ecosystems are subjected to a wide 

range of anthropogenically induced stressors (Dudgeon et al., 2006; Reid et al., 2019). 

Examples of such threats include global stressors such as climate change (Heino et al., 2009; 

Knouft & Ficklin, 2017), and more localised stressors including pollution (Malaj et al., 2014; 
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Woodward et al., 2012), non-native species (Erős et al., 2020; Gallardo et al., 2016), habitat 

alteration (Grill et al., 2019; Reidy Liermann et al., 2012) or infectious diseases (Fisher & 

Garner, 2020; Johnson & Paull, 2011). Indeed, stressors are capable of affecting all levels of 

ecological organisation, from organisms through to ecosystems and their functioning (Li et 

al., 2020; Woodward et al., 2010). Similarly, stressors may act through differing physiological 

pathways (Segner et al., 2014), though knowledge of mechanisms through which stressors act 

is often limited (Spears et al., 2021). Whilst the majority of research has, to date, focussed on 

the effects of individual stressors (Jackson et al., 2021; O’Brien et al., 2019), it is increasingly 

evident that aquatic ecosystems are predominately acted upon by multiple co-occurring 

stressors (Ormerod et al., 2010; Halpern et al., 2015; Reid et al., 2019). Indeed, 50% of 

European surface freshwater bodies are affected by multiple stressors (EEA, 2018); though 

these stressors may induce either a positive or negative effect upon a species (Kroeker et al., 

2017). For instance, nutrient enrichment (i.e., eutrophication) may increase the biomass of 

algae (i.e., a beneficial effect for algal species) (Wurtsbaugh et al., 2019), though this algal 

bloom may subsequently increase the mortality of other species (e.g., fishes) through a 

reduction in oxygen levels (i.e., a detrimental effect for non-algal species) (Anderson, 2009; 

Breitburg et al., 2018). 

The presence of multiple stressors gives rise to a number of serious issues. Firstly, how do 

ecosystems respond to the presence of multiple stressors? For instance, can the effect of two 

co-occurring stressors on a species’ density simply be calculated by summing the effects of 

each stressor individually? The assumption of additivity regarding stressor effects has been 

widely adopted, with any subsequently observed deviation from additivity being termed an 

‘ecological surprise’ (sensu Paine et al., 1998). However, there is growing evidence that such 

ecological surprises are more widespread than previously thought (Jackson et al., 2016), with 

such ecological surprises capable of manifesting in three different ways (Figure 1.1). Firstly, 

the effects of multiple stressors can be greater than anticipated under the assumption of 

additivity (hence termed the additive null model), with a synergistic interaction occurring 

between stressors. Secondly, the combined effect of co-occurring stressors can be less than 

anticipated by the additive null model, with an antagonistic interaction occurring between 

stressors. Finally, there may be instances where the observed effect of multiple stressors is 

of a different polarity to the expected effect under the additive null model (e.g., the additive 
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null model predicts that the combined effect of two stressors will have a negative effect on a 

population, but the observed effect of the co-occurring stressors is instead positive). In such 

a situation, a reversal interaction is occurring between the stressors. Where the assumption 

of additivity is met, this is referred to as a null interaction (although this may be referred to 

as an additive interaction elsewhere, e.g., Jackson et al., 2016; Orr et al., 2020). 

 

Figure 1.1: Graphical illustration of interaction classifications for the response metric of survival. The 

white bar denotes the survival rate of a given species under control conditions (i.e., absence of 

stressors). The dark red (red) bar denotes the survival rate of the given species under the stressor of 

temperature (heavy metals), with arrows illustrating the relative change in survival from that under 

control conditions. Orange bars illustrate examples of the four different interaction classifications: null 

(i.e., additive), synergistic, antagonistic, and reversal interactions.  

 

Given the potential for stressors to combine in numerous different ways, there are many 

questions regarding multiple stressor interactions that are important to answer. For instance, 

how often can we expect the additive null model predictions to be met? How frequently do 

ecological surprises occur? Are some interaction classifications more prevalent than others? 

Accordingly, with freshwater ecosystems, there has been an increasing quantity of research 
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which seeks to address these questions. Such freshwater research may be empirical, seeking 

to determine how a particular combination of stressors affects a specific system (e.g., Juvigny-

Khenafou et al., 2021, Richardson et al., 2019); theoretical, using fundamental ecology to 

attempt to explain stressor interactions (e.g., Belarde & Railsback, 2016; Galic et al., 2018); or 

meta-analytical, attempting to find generalities in stressor interactions across multiple 

different experiments (e.g., Bancroft et al., 2008, Jackson et al., 2016). Indeed, such 

generalities are important to determine as they may allow for the prediction of stressor 

interactions which cannot be (or are not) measured. However, to date, the focus of multiple 

stressor research has primarily been on determining how stressors interact; although there is 

an increasing appreciation for the need to understand why stressors may interact in a given 

way.  

One of the main implications of multiple stressor research, is its potential to aid in the 

conservation or management of ecosystems affected by co-occurring stressors. Indeed, an 

understanding of stressor interactions can inform management practitioners when to 

implement any conservation measures (Côté et al., 2016; Kath et al., 2018). Furthermore, it 

has previously been shown that a failure to consider how stressors interact can lead to 

management actions having a limited, negligible, or even detrimental impact on the 

ecosystems they are intended to conserve (Brown et al., 2013). However, at present, there 

have been no studies which have used knowledge of how stressors interact to successfully 

remediate two, or more, co-occurring stressors in a freshwater ecosystem (Spears et al., 

2021). As such, despite potential benefits for conservation, predicting multiple stressor 

interactions is distinctly complex (Hodgson & Halpern, 2019), which potentially prevents 

management planning from incorporating knowledge of stressor interactions. Ultimately, 

understanding how multiple co-occurring stressors interact represents one of the grand 

challenges currently facing ecologists (Fleishman et al., 2011; Hodgson et al., 2017). 

 

1.1  Stressor effects across organisation levels 

While the overall aim of multiple stressor research may be to determine how co-occurring 

stressors interact to affect ecosystems, it is nevertheless important to consider the effects 

which an individual stressor is capable of inducing. Importantly, it has also been suggested 
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that the manner in which stressors interact is in part due to the ecological mechanisms which 

the individual stressors affect (e.g., Galic et al., 2018). As such, stressors are capable of 

affecting individuals, populations, or even entire communities (Jackson et al., 2016). 

However, these differing levels of ecological organisation are not affected in isolation 

(Woodward et al., 2010), with effects at one organisation level capable of transitioning to 

other levels. Firstly, stressors predominately act at the individual level (Maltby, 1999; Schäfer 

& Piggott, 2018), with stressor impacts at this level broadly able to be grouped into 

behavioural, physical, and physiological effects. Behavioural impacts include changes to anti-

predator behaviours (e.g., Johansen et al., 2017), while physical effects may include body size 

alterations (e.g., Shrimpton et al., 2007; Yvon-Durocher et al., 2011) or an increased likelihood 

of developmental abnormalities (e.g., Reeves et al., 2010). In contrast physiological impacts 

include changes in metabolic rate (Jackson et al., 2021) or disruption to the endocrine system 

(Besson et al., 2020; Roccuzzo et al., 2021). 

Species populations are similarly able to be affected by stressors, with these effects 

manifesting in a myriad of different ways. At the population level, perhaps some of the most 

commonly observed stressor impacts are changes in the abundance, or density, of a species 

(e.g., Mebane et al., 2017). Indeed, the relative declines in the abundances of many species 

due to climate change and other stressors are now well known (WWF, 2020). Furthermore, 

stressors are capable of affecting many response metrics at the population level. As such, 

population survival (Bancroft et al., 2008), reproduction (e.g., Muyssen et al., 2010) or growth 

rates (Seifert et al., 2020) may likewise be affected by stressors; although a change in one 

response metric (e.g., density) does not preclude a change in another (e.g., survival) from 

occurring. Stressors are similarly capable of impacting communities (Bruder et al., 2019). Such 

effects may be declines in the species richness of community (e.g., Kratina et al., 2012) or 

alterations to the interactions between species (e.g., feeding rates; Shears & Ross, 2010). 

Stressors are also capable of affecting other community level metrics such as biomass (e.g., 

Zhao et al., 2013). As such, it may be assumed that declines in individual species biomasses, 

or abundances, will be mirrored at the community level. However, compensatory effects 

between individual species may mean that a decline in the biomass of one species may be 

offset by an increase in the biomass of another (Ives & Cardinale, 2004). For example, 

Christensen et al. (2006) found that freshwater zooplankton community biomass increased in 
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the presence of stressors, though this increase in biomass was driven by a single stress-

tolerant species, whereas all other zooplankton species experienced biomass declines.  

As alluded to above, it is likewise important to note that a single stressor is capable of inducing 

multiple different effects, either directly or indirectly, across multiple different organisation 

levels. For example, following the metabolic theory of ecology (Brown et al., 2004), an 

increase in temperature may not only affect an individual’s metabolic rate (Gillooly et al., 

2001), but similarly induce changes in a species’ generation time (a population level response 

metric) (Gillooly, 2000; Jackson et al., 2021). Furthermore, different stressors are capable of 

affecting the same response metrics, albeit through contrasting ecological mechanisms. For 

example, sertraline (a pharmaceutical product) may increase the mortality rate of species X. 

In contrast, cadmium may have no direct effect on species X, but instead greatly increases the 

mortality of species Y, which species X predates upon. Overall, both stressors result in declines 

in species X’s abundance either directly through an increased mortality rate, or indirectly 

through an absence of available food resources. As such, what is the expectation for the 

combined effect of these stressors on species X if they act simultaneously? Under the additive 

null model, we would expect the overall effect on the abundance of species X to be equal to 

the sum of the effects of the individual stressors in isolation. However, this may not 

necessarily be the case. It could be that sertraline reduces the abundance of species X, which 

in turn means that there are fewer individuals competing for fewer food resources (i.e., 

reduced intra-specific competition). In such a scenario, sertraline may lessen the effect of 

cadmium on species X’s abundance, resulting in an antagonistic interaction occurring. As 

such, species interactions have been viewed as having a crucial role in determining the effects 

of stressors, and their interactions, within communities (Bruder et al. 2019; Seibold et al., 

2018). 

The ecological phenomena outlined here are merely examples of the wide-range of processes 

that occur within any ecosystem; however, they illustrate the complexity of these systems 

and the plethora of direct, and indirect, effects that a stressor is capable of having. Further 

complexity arises from the effects of stressors at the cellular level (Sinclair et al., 2009; 

Sokolova, 2021), with there being calls for toxicology to be better incorporated within 

multiple stressor ecology (Orr et al., 2020). However, cellular approaches to understanding 

stressor interactions requires detailed knowledge of the physiological mechanisms which 
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stressors affect; although for the vast majority of stressors and organisms, this information is 

simply not known (Spears et al., 2021).  

 

1.2  Current approaches in multiple stressor ecology 

Of the empirical, meta-analytical, and theoretical approaches to investigate multiple stressor 

interactions, the latter perhaps represents the most underutilised approach within 

freshwater ecosystems. Theoretical approaches to understanding multiple stressor impacts 

have instead been more widely implemented in general (e.g., Fronhofer et al., 2018; Sentis et 

al., 2021; Thompson et al., 2018a) or marine environments (e.g., Beauchesne et al., 2021; 

Brown et al., 2013; Fu et al., 2018). To date, most theoretical freshwater studies consider 

single stressor effects (e.g., Harvey et al., 2018; O’Gorman et al., 2017; 2019), with relatively 

few freshwater studies implementing theoretical ecology to understand the impacts of 

multiple stressors. Furthermore, those freshwater theoretical studies which do consider 

multiple stressors often implement disparate models and address wide-ranging hypotheses 

making direct comparisons between them difficult. For example, Belarde & Railsback (2016) 

use ecological theory to investigate the effects of habitat alteration and a non-native species 

on the growth and survival of a freshwater piscivorous fish. Overall, Belarde & Railsback 

(2016) conclude that while stressor interactions predominately matched null model 

predictions, environmental factors had a substantial impact on the prevalence of antagonistic 

interactions. In contrast, Galic et al. (2018) implement a theoretical model of freshwater 

amphipods and leaf litter (see Galic et al., 2017) to determine how co-occurring stressors 

interact to affect various ecosystem properties. Within these simulations, the observed 

interaction was found to be dependent on both the response variable and the modes of action 

of both stressors (Galic et al., 2018). As such, there is limited scope to draw comparisons 

across theoretical, freshwater, multiple stressor studies. However, there is substantial 

potential for this freshwater theoretical ecology to expand and fill an obvious gap in the 

multiple stressor literature. 

To date, empirical multiple stressor research in freshwater systems has predominately 

focussed on microcosm, or mesocosm, studies (e.g., Archer et al., 2020; Cambronero et al., 

2018; Richardson et al., 2019), although there are empirical studies considering multiple 
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stressors effects at greater geographic scales (e.g., Birk et al., 2020; Ryo et al., 2018). Such an 

approach builds upon the use of mesocosms in single stressor experiments (see Stewart et 

al., 2013); but within a multiple stressor context, experiments are usually conducted in a 

factorial design, with treatments for i) control conditions, ii) only the first stressor present, iii) 

only the second stressor present, and iv) both stressors present. The benefit of this approach 

is that the effect of co-occurring stressors can be compared to a null model prediction (e.g., 

the additive null model) given that a response metric (e.g., biomass or survival) can be 

measured under all four treatment conditions. However, this experimental approach is not 

without limitations, and may be resource intensive (Boyd et al., 2018). Indeed, decisions 

regarding the number of stressors and the number of replicates per treatment are required. 

For example, a fully factorial design with two stressors and four replicates would require 16 

experimental units (e.g., mesocosms). However, if a fully factorial design is implemented with 

three or four stressors (each with four replicates) then 32 or 64 experimental units would be 

required respectively. Such increases in the required numbers of experimental units are even 

more stark if multiple intensities of each stressor are required. As such, as found by several 

meta-analyses (e.g., Gomez Isaza et al., 2020; Seifert et al., 2020) the majority of multiple 

stressor experiments frequently have low (i.e., less than five) numbers of replicates per 

treatment, potentially to navigate some of the limitations surrounding experimental design. 

Accordingly, resource considerations may limit the scope of any experiments, particularly 

where large, or specialist, experimental units are required. However, as with the results of 

theoretical studies, the findings of multiple stressor experiments are likewise divergent. 

Conclusions may differ between experiments (or potentially even within a single experiment) 

as functionally, or taxonomically, similar organisms may respond to co-occurring stressors in 

disparate ways (e.g., Christensen et al., 2006; Piggott et al., 2012). As such, simple qualitative 

comparisons between experiments are often difficult to reliably make. Instead, other 

analytical approaches are needed to draw general conclusions from across multiple stressor 

experiments (e.g., meta-analyses). 

Meta-analyses are an area of multiple stressor research which are becoming increasingly 

prevalent, particularly those exclusively, or partially, considering stressor interactions in 

freshwater environments (Figure 1.2). In brief, meta-analyses collate data from multiple 

experiments which are then aggregated and analysed to determine a single aggregated metric 
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(see Gurevitch et al., 2018). For multiple stressor meta-analyses, null models (e.g., the 

additive null model) can again be implemented, being used to classify interactions both for 

individual experiments, and the overall aggregated metric. In total, there have been six meta-

analyses (published before 2021) exclusively considering multiple stressors in freshwater 

environments; although Lange et al. (2018) expands upon the dataset first used by Matthaei 

& Lange (2016). The conclusions of these meta-analyses can greatly differ, with no 

generalities apparent for the frequency of interaction classifications for individual 

experiments or the overall interaction classification assigned to the aggregated metric. For 

individual experiments, antagonistic (Jackson et al., 2016) and null (Lange et al., 2018) 

interactions have separately been found to dominate, while roughly equal frequencies of 

antagonistic, synergistic, and null interactions have also been reported (Gomez Isaza et al., 

2020). For the interaction classification of the aggregated metric, meta-analyses have likewise 

diverged and reported an overall interaction class of null (Egea-Serrano et al., 2012), 

antagonistic (Jackson et al., 2016; Lange et al., 2018), or synergistic (Bancroft et al., 2008) 

interactions. The disparate results across multiple stressor meta-analyses are unexpected, 

with it anticipated that the results should align to a far greater degree. At present, the absence 

of generalities across multiple stressor meta-analyses (for all realms) is unexplained, with 

ecological rationale failing to explain these disparities (Côté et al., 2016). Indeed, ecological 

variables such as response metric, organisation level, or feeding group have all been 

suggested as being important, or unimportant, covariables in explaining multiple stressor 

interactions, with there being no consistency across meta-analyses (Côté et al., 2016). As 

such, an explanation for the absence of any generalities in multiple stressor meta-analyses 

remains undetermined but is urgently required.  
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Figure 1.2: Timeline of different meta-analyses (published before 2021) which solely, or partially, 

consider the effects of multiple stressors in the freshwater realm, labelled ‘Freshwater’ and ‘Multiple 

Realm’ respectively. Key denotes the different study organisms and response metrics each meta-

analysis considers. Silhouettes from phylopic.org  

 

1.3 Furthering understanding of stressor interactions 

Despite being a relatively new field, there has been a surge in the number of multiple stressor 

papers (both overall and those considering freshwater environments) recently published 

(Figure 1.3). However, questions remain as to what is required in order to better understand 

multiple stressor interactions. From one perspective the answer is obvious, with a greater 

quantity of empirical data being required. For instance, this can take the form of testing new 

combinations of stressors against previously unconsidered ecological communities or the 

replication of previous experiments. However, alongside an increased quantity of data, other 

developments are nonetheless required. For example, multiple stressor ecology requires an 

increased understanding, and appreciation, of the statistical methods commonly 

implemented, alongside a greater emphasis on the development of ecological theory. These 

necessary developments, alongside others, are discussed below.  
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Figure 1.3: Number of studies published by year (up to, and including, 2020) which consider the effects 

of multiple stressors. Searches were conducted in Web of Science, with separate searches conducted 

for all multiple stressor papers (including freshwater studies) (grey line), and those which were specific 

to the freshwater realm (blue line). Search terms were based on those of Orr et al. (2020) (Appendix 

One).  

 

Within multiple stressor ecology, the additive and multiplicative null models (see Folt et al., 

1999; Sih et al., 1998; Soluk & Collins, 1988), are the most commonly used approaches for 

classifying stressor interactions. Indeed, although these two null models are widely 

implemented, there is relatively little knowledge of their statistical properties. For instance, 

both Folt et al. (1999) and Sih et al. (1998) describe (using verbal arguments) how the additive 

null model may be biased towards reporting antagonistic interactions given that it can make 

ecologically unfeasible predictions (e.g., a mortality rate of over 100%). However, there have 

been no attempts to determine whether other sources of bias are occurring within either the 

additive or multiplicative null models. As such, it may be that these null models are being 

widely-implemented and interpreted without an appreciation of the nuances or limitations 
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of these approaches. Furthermore, the results of studies, or meta-analyses, which implement 

these contrasting null models are often compared (e.g., Côté et al., 2016), yet these null 

models employ differing underlying assumptions and as such may not be directly comparable. 

Indeed, there is definitely a need to determine the conditions under which we can expect the 

results of these two null models to align or differ, with only Stephens et al. (2013) 

implementing both null models on the same dataset. For example, an interaction may be 

assigned an antagonistic interaction classification by the multiplicative null model, but a 

synergistic interaction classification by the additive null model. Ultimately, it is important to 

determine whether there is a statistical, in addition to ecological, rationale for implementing 

one null model over the other. 

As described above, the additive and multiplicative null models are the most widely adopted 

approaches when considering stressor interactions. Many studies determine, and classify, 

interactions through the calculation of effect sizes which correspond to the additive (e.g., 

Gurevitch et al., 2000) and multiplicative (e.g., Lajeunesse, 2011) null models (approaches 

that are subsequently built on throughout this thesis). Furthermore, while not necessarily 

widely appreciated (Schäfer & Piggott, 2018), these null models may also be implemented 

through analysis of variance or generalised linear models (e.g., Birk et al., 2020). However, 

alongside the widely-implemented additive and multiplicative null models, an increasing 

number of null models are being developed. Recently presented null models include the 

compositional null model (Thompson et al., 2018b) and the Rescaled Bliss Independence 

Model (Tekin et al., 2020). However, it is currently unclear when, or whether, such novel 

approaches should be implemented. Furthermore, there are currently no, or limited, 

comparisons to the established null model approaches. For instance, Tekin et al. (2020) 

compare the Rescaled Bliss Independence Model to analysis of variance, but not more 

commonplace additive or multiplicative null model approaches. Similarly, Thompson et al. 

(2018b) compare the compositional null model to versions of both the additive and 

multiplicative null models, though potential issues with this novel null model have been 

highlighted (see Orr et al., 2021a). Ultimately, it is unclear whether these new methods 

represent an upgrade on the existing null model approaches. As outlined above, a thorough 

understanding of the existing null model approaches (including their benefits and limitations) 
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is required. Such an understanding would hence allow novel null models to be benchmarked 

against the established methods. 

As with most ecological disciplines, multiple stressor ecology faces data limitations. Indeed, 

there are limitations surrounding both the number of studies considering a specific question 

and the quantity of data generated by any given experiment. As discussed above, most 

multiple stressor experiments have limited numbers of replicates per treatment as a way of 

mitigating resource limitations. However, there is little (if any) knowledge of the statistical 

implications of limited sample sizes upon the ability of the null models to detect non-null 

interactions (i.e., ecological surprises). For instance, should we expect an experiment with ten 

replicates per treatment to be better able to detect an interaction than an experiment with 

three replicates per treatment? If so, what is the relative benefit in increasing sample sizes 

from three to ten replicates per treatment? Or, alternatively, what sample size provides the 

best trade-off between statistical power and resource management? In many cases, decisions 

on sample sizes are simply based on heuristic rationale, with little consideration of the 

statistical implications of such a decision. Indeed, it may be that current experimental designs 

are only able to determine whether a non-null interaction is occurring if the interaction is 

exceptionally strong. As such, understanding the implications of an experimental design, in 

relation to the implemented null model, will be required in order for multiple stressor ecology 

to fully interpret existing results.  

As described above, one of the pressing questions facing multiple stressor research is: Why 

do multiple stressor meta-analyses fail to determine consistent generalities? Indeed, this 

question applies to all multiple stressor meta-analyses not just those solely considering 

freshwater stressor interactions. As discussed previously, explanations for the absence of any 

consistent generalities have almost entirely focussed on ecological rationale for this disparity 

(see Côté et al., 2016). However, given this has so far failed to provide any explanation, it may 

be that other factors are instead responsible. One such factor could be the different methods 

employed by meta-analyses (see Hungate et al., 2009). Some methodological differences, 

such as whether a meta-analysis implements an additive or multiplicative null model, are 

easily apparent. However, there may also be a broader suite of subtler methodological 

differences which are driving these disparities yet are currently overlooked. For instance, 

there are various different iterations of both the additive (e.g., Darling & Côté, 2008; 
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Hillebrand, 2002; Siviter et al., 2021; Zhou et al., 2016) and multiplicative (e.g., Gomez Isaza 

et al., 2020; Harvey et al., 2013) null models, though how these different null model variants 

may affect any meta-analytical results is currently unknown. 

Within multiple stressor ecology, theoretical and empirical analyses are seldom conducted in 

tandem. However, it is possible for theoretical ecology to generate expectations, regarding 

the effects of stressor interactions, which could then be sought to be proved, or disproved, 

by empirical analyses. For instance, theoretical ecology has generated predictions regarding 

how stressor interactions, in a given system, are dependent on stressor modes of action and 

measured response variables (Galic et al., 2018) or how conservation effectiveness can be 

determined by stressor interactions (Brown et al., 2013). Such examples illustrate the 

potential for theory to help inform and direct empirical analyses; although, inversely, 

empirical analyses could also generate predictions which are then tested by ecological theory. 

Either way, a greater emphasis on a combined empirical and theoretical approach may further 

multiple stressor ecology by allowing ecological observations to be contrasted against a 

potentially mechanistic understanding of stressor interactions. 

 

1.4 Thesis aims 

The research outlined within this thesis centres on several core aims. These aims are stated 

below, before being described in the following section. 

i. Determine whether ecological surprises (i.e., antagonistic, reversal, and synergistic 

interactions) are more prevalent than currently expected. 

ii. Determine whether ecology, or methodology, are responsible for the conclusions of 

previous multiple stressor research. 

iii. Determine the causes responsible for the absence of consistent generalities across 

multiple stressor meta-analyses. 

iv. Determine what covariables (e.g., feeding group or response metric) are important in 

determining how stressors interact in aquatic ecosystems. 
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1.5 Thesis outline 

In this thesis, I focus upon null model approaches to understand the interactions of stressors. 

While alternative approaches have been suggested (e.g., De Laender, 2018; Spears et al., 

2021), these null models remain the most popular choice for classifying the interactions of 

multiple stressors with there similarly being established statistical methods for their 

implementation (e.g., Gurevitch et al., 2000; Lajeunesse, 2011). However, despite their 

popularity, these null models are not necessarily well understood, an issue which I attempt 

to remedy.  

In Chapter Two, I combine theoretical and meta-analytical approaches to better understand 

how multiple stressors can interact to affect freshwater ecosystems at higher levels of 

ecological organisation. Simulations of food chains are used to determine how both the 

frequency of individual interaction classifications and overall meta-analytical metrics vary 

under ecologically relevant conditions. These findings are then compared to the results of a 

large-scale meta-analysis focussing on the effects of multiple stressors, on biomasses or 

densities, in freshwater environments. In Chapter Three, I address the limited understanding 

of the additive and multiplicative null models. Here, I build on the methods of Chapter Two, 

determining how these null models respond to ecologically relevant levels of observation 

error and sample sizes, and determining the conditions under which the results of these null 

models align or differ. I similarly determine whether some results, frequently reported by 

multiple stressor studies, are indeed due to ecology or are simply artefacts of these statistical 

tools. Penultimately, in Chapter Four, I address the issue identified by Côté et al. (2016) of 

why multiple stressor meta-analyses have so far failed to determine consistent generalities. 

Here, I focus on methodological explanations for these disparities, building upon the findings 

of the previous chapters. In doing so I collate, correct, and reanalyse datasets from seven 

published multiple stressor meta-analyses using a single consistent statistical framework. I 

determine whether the contrasting implementation of null models, across meta-analyses, is 

responsible for these differences that have often been attributed to underlying ecological 

variation. Finally, in Chapter Five, I collate the findings from each of the above chapters and 

examine the key messages from across this thesis. In doing so, I summarize current issues 

within the field of multiple stressor ecology and outline potential avenues for future research. 
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Chapter Two – Classifying ecosystem stressor interactions: Theory highlights 

the data limitations of the additive null model and the difficulty in revealing 

ecological surprises 

 

2.1 Abstract 

Understanding how multiple co-occurring environmental stressors combine to affect 

biodiversity and ecosystem services is an on-going grand challenge for ecology. Currently, 

progress has been made through accumulating large numbers of smaller-scale empirical 

studies that are then investigated by meta-analyses to detect general patterns. There is 

particular interest in detecting, understanding, and predicting ‘ecological surprises’ where 

stressors interact in a non-additive (e.g., antagonistic or synergistic) manner, but so far few 

general results have emerged. However, the ability of the statistical tools to recover non-

additive interactions in the face of data uncertainty is unstudied, so crucially, we do not know 

how well the empirical results reflect the true stressor interactions. Here, we investigate the 

performance of the commonly implemented additive null model. A meta-analysis of a large 

(545 interactions) empirical dataset for the effects of pairs of stressors on freshwater 

communities reveals additive interactions dominate individual studies, whereas pooling the 

data leads to an antagonistic summary interaction class. However, analyses of simulated data 

from food chain models, where the underlying interactions are known, suggest both sets of 

results may be due to observation error within the data. Specifically, we show that the 

additive null model is highly sensitive to observation error, with non-additive interactions 

being reliably detected at only unrealistically low levels of data uncertainty. Similarly, 

plausible levels of observation error lead to meta-analyses reporting antagonistic summary 

interaction classifications even when synergies co-dominate. Therefore, while our empirical 

results broadly agree with those of previous freshwater meta-analyses, we conclude these 

patterns may be driven by statistical sampling rather than any ecological mechanisms. Further 

investigation of candidate null models used to define stressor-pair interactions is essential, 

and once any artefacts are accounted for, the so-called ‘ecological surprises’ may be more 

frequent than was previously assumed. 
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2.2  Introduction 

Ecological communities are being subjected to a wide variety of external stressors (Halpern 

et al., 2015) that act across terrestrial, freshwater, and marine biomes and threaten 

ecosystems and their services (Scheffers et al., 2016). These stressors, also termed drivers, 

factors, or perturbations (Orr et al., 2020), are frequently anthropogenic in origin (Vörösmarty 

et al., 2010; Geldmann et al., 2014), but are capable of being abiotic or biotic (Przeslawski et 

al., 2015), and are able to act at the local to global scales (Ban et al., 2014; França et al., 2020). 

While individual stressors (e.g., climate change, habitat alteration, or pollution) are 

themselves capable of inducing changes in biodiversity or ecosystems and their services (Dirzo 

et al., 2014; Tittensor et al., 2014; Newbold et al., 2015), ecosystems are frequently, if not 

predominately, acted upon by multiple stressors simultaneously (Crain et al., 2008). Despite 

the negative connotations surrounding the term stressor, stressors are capable of inducing 

effects that are either beneficial or detrimental to the affected ecosystem (Kroeker et al., 

2017). One of the grand challenges facing ecologists is to be able to detect, understand, and 

predict how these different types of ecosystem stressors interact to affect biodiversity and 

ecosystem services (Hodgson & Halpern, 2019); although the challenge is more difficult since 

the observed interactions can substantially deviate from what is anticipated (Christensen et 

al., 2006). Ultimately, knowledge of how stressors interact is important in guiding 

conservation and management initiatives, and in helping to prevent remediation measures 

from being ineffective, or even potentially harming those ecosystems they are intended to 

preserve (Brown et al., 2013; Côté et al., 2016). 

Aquatic ecosystems and communities are particularly threatened by multiple stressors (Birk 

et al., 2020). For instance, Halpern et al. (2008) describe how every marine area is subjected 

to human influence, with 41% of these areas being impacted by multiple stressors. Moreover, 

freshwaters represent some of the most at-risk ecosystems and are frequently exposed to a 

wide range of stressors (Hecky et al., 2010; Ormerod et al., 2010; Woodward et al., 2010; He 

et al., 2019), with freshwater biodiversity declining at rates exceeding even those of the most 

impacted terrestrial ecosystems (Sala et al., 2000), and potentially endangering vital 

ecosystem services (Malaj et al., 2014). While stressors often interact to impact freshwater 

ecosystems (Birk et al., 2020), their presence in freshwater ecosystems is not a new 

phenomenon, with some freshwater bodies having been subjected to stressors for several 



Benjamin Joshua Burgess – Doctoral thesis 

 31 

centuries (Dudgeon et al., 2006). However, the stressors that freshwater systems are 

currently facing has expanded, with the introduction of novel stressors, such as 

nanomaterials, while existing ones are continuing to have severe impacts (Reid et al., 2019). 

The cumulative impact of multiple stressors has been identified as one of the most pressing 

and emerging threats to freshwater biodiversity, but despite this, our current understanding 

of both how stressors interact, and the severity of their effects, is poor (Reid et al., 2019).  

The term ecological surprise (sensu Paine et al., 1998) is often used to describe the changes 

in a biological response variable that contrast those anticipated when multiple stressors 

interact (e.g., Christensen et al., 2006; Jackson et al., 2016). Although an ecological surprise 

may be defined as an interaction that is either greater than, or less than, the expected 

magnitude from a null model, particular focus has been on interactions of stressors which 

interact synergistically; i.e., where the combined effect is greater than the sum of the 

individual effects. Synergistic interactions of multiple stressors are important to document, 

firstly due to their potential to have a dramatic effect on ecological communities, and 

secondly because the presence of a synergistic interaction means management strategies can 

potentially have a large effect by mitigating against just one of the interacting stressors 

(Brown et al., 2013; Côté et al., 2016; Haller-Bull & Bode, 2019). Because of their potential 

impact there has been a great deal of effort in recording the frequency of synergy in stressors 

across different ecosystems and communities (Côté et al., 2016). However, there is always a 

danger that an emphasis on their importance could lead to over-estimating the frequency of 

synergisms or other forms of ecological surprise (e.g., antagonisms) within the multiple 

stressor literature and, as highlighted by Côté et al. (2016), there is little evidence to suggest 

that stressors predominately interact in a synergistic manner. A pertinent question which has 

yet to be addressed is whether ecological surprises should be expected, or whether the 

prevalence of these interactions are skewed in some way by reporting biases, statistical 

sampling, or both. 

There is relatively little ecological theory that generates expectations of when and how often 

the cumulative effects of pairs of stressors should be synergistic, or indeed any other type of 

interaction. This is in contrast to other ecological interactions, such as the effects of multiple 

predators on prey density and biomass, where a much richer body of theoretical knowledge 

has been used to generate a number of hypotheses for testing (Sih et al., 1998; Schmitz, 
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2007). Instead, progress on ecosystem stressor interactions has been made largely by meta-

analyses across a number of experiments, realms, trophic levels, measured traits, taxonomic 

groups, and stressor types (e.g., Crain et al., 2008; Darling and Côté, 2008; Wu et al., 2011; 

Jackson et al., 2016). Within ecosystem stressor research, the most popular approach is to 

use the additive null model where the stressor interaction is predicted to be simply the sum 

of their individual effects (e.g., Crain et al., 2008; Darling & Côté, 2008; Strain et al., 2014; 

Jackson et al., 2016), although the multiplicative null model, the log-transformed version of 

the additive model, is also relatively common (e.g., Bancroft et al., 2008; Gruner et al., 2008; 

Harvey et al., 2013; Rosenblatt & Schmitz, 2014). These null models classify interactions as 

either being null (i.e., the additive or multiplicative effect of interacting stressors), synergisms 

(i.e., greater than the null), or antagonisms (i.e., less than the null). While distinctions are 

increasingly being made for various forms of antagonistic interactions in this simple scheme 

(e.g., Jackson et al., 2016), there exists a range of other classification schemes (Orr et al., 

2020), and these have been implemented across a number of studies (e.g., Travers-Trolet et 

al., 2014; Piggott et al., 2015). The profusion of null models can make it difficult to generalise 

results across different studies. A ‘synergistic’ or ‘antagonistic’ interaction may have 

contrasting definitions depending on the scheme being used leading to the same interactions 

being labelled differently under contrasting schemes; hence the biological and statistical 

interpretation is therefore dependent on the null model being applied. One way round this 

issue is to pool published data together to harness increased statistical power and conduct a 

meta-analysis to search for generalities under a particular null model (examples listed in Côté 

et al., 2016). However, despite their potential, these meta-analyses have to date not 

identified any general covariates capable of explaining the broad patterns of multiple stressor 

interactions, meaning we still lack general predictions of the consequences of multiple 

stressors (Côté et al., 2016). 

Given the lack of consistent generalities from empirical studies, the development of ecological 

theory within multiple stressor research may represent an approach capable of providing 

novel insights. Some theory has been developed for particular case studies (e.g., Brown et al., 

2013; Galic et al., 2018), but only a few studies (e.g., Haller-Bull & Bode, 2019) have so far 

investigated more general insights. Of primary interest is the generation of theory which can 

provide a mechanistic underpinning to the field, and potentially allow for an increased 
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understanding of multiple stressor interactions, compared to that provided solely by a null 

model approach (De Laender, 2018). However, theory could also be used to better 

understand the results obtained from the null model approach to empirical classification of 

stressor interactions. In particular, we know of no study that has investigated how robust the 

null models are to noisy data (i.e., sampling uncertainty and/or process variation); yet 

understanding this is important before we can draw strong conclusions from the empirical 

analyses. This knowledge is also important for evaluating the relative performances of the 

profusion of null models, and is therefore something which may help guide the end-user to 

decide which null model may be both appropriate and likely to yield important results in the 

face of what is often noisy and/or limited data. 

Here, we begin to close these gaps in understanding by testing for the prevalence of non-

additive effects of co-occurring pairs of stressors in freshwater ecosystems. We first develop 

classical community ecology models based on Lotka-Volterra consumer-resource dynamics in 

order to simulate data from biologically simple food webs impacted by pairs of stressors. This 

provides us with ’data’ where we know the underlying stressor-pair interactions. We then use 

this simulated data to investigate the ability of the additive null model to recover interactions 

under a range of different levels of data uncertainty which we model as observation error. 

With a better understanding of the statistical null model we then review the experimental 

literature to compile and analyse the largest (in terms of the number of interactions) dataset 

for the effects of co-occurring stressor interactions on the biomasses and densities of 

freshwater organisms. In particular, we ask whether ecological surprises are common in 

freshwater stressor interactions. The simulation experiments allow considerable insights into 

our empirical analyses and help prevent over-interpretation of our results.  

 

2.3  Methods 

Theoretical models 

In order to provide a better understanding of the empirical results that follow, we built food 

chain models based on the classical Lotka-Volterra consumer resource equations (Heath et 

al., 2014). We chose these models since we believe stressors may act directly on population- 

and trophic-level patterns, but also indirectly via trophic cascades (e.g., a species may be 
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indirectly affected if its primary resource is directly affected by a stressor). This approach is 

also broadly in line with our empirical data which focuses on population and community-level 

metrics as the responses to stressor treatments (see below). To increase the robustness of 

our conclusions we considered two forms of the model; one where (within trophic level) 

density dependence affects the death rates of each trophic level, and the other where 

consumer uptake is density regulated (Table 2.1). Both these scenarios were analysed by 

Heath et al. (2014) to investigate the roles of different types of density dependence on trophic 

cascades (see details therein). In both models the basal level of the chain describes the 

dynamics of a key nutrient that limits the productivity of the food chain, and we assumed 

nutrients are added at a constant rate, ω (Heath et al., 2014). Each subsequent equation then 

describes a different type of consumer. The first level is wholly dependent on the nutrients 

and may represent a primary producer such as an algal species that requires a key mineral 

such as silica. The second level consumes the first trophic level and is in turn consumed by a 

third trophic level, and so on until the apex consumer is reached. In the density dependence 

model (Equation 2.1; Table 2.1), the consumer (trophic level i) exploits the resource (trophic 

level i – 1) with a constant consumption/attack rate, 𝛼𝑖, and the conversion efficiency 

parameter, 휀𝑖, determines the proportion of the consumed resource that is converted into 

new consumers (Heath et al., 2014). Under density dependence, the consumer is self-

regulated by the intraspecific density dependence parameter 𝜆𝑖, which leads to an increase 

in death rate as the consumer density increases (Heath et al., 2014). In contrast, the consumer 

uptake regulation model (Equation 2.2; Table 2.1), assumes the effect of increasing 

consumers is to slow down the consumption of the resource, perhaps due to increased 

interference (Heath et al., 2014). In this case, the parameter ν𝑖, determines the consumer 

density at which the maximum per capita uptake rate is halved, defined as the density 

𝑥𝑖 =1/ν𝑖  (Heath et al., 2014). 
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Table 2.1: Equations used to establish theoretical food-chains. The equations, sets, and a brief 

description of the equivalent ecological trophic level are shown.  

 Equation Type Equation Description 

2.1.1 Density 

Dependence 

𝑑𝑥𝑛
𝑑𝑡

=  𝛼𝑛휀𝑛𝑥𝑛−1𝑥𝑛 − 𝛿𝑛𝑥𝑛 − 𝜆𝑛𝑥𝑛
2 

Change in density of Apex 

Consumer (𝑥𝑛) 

2.1.2 Density 

Dependence 

𝑑𝑥𝑖
𝑑𝑡

=  𝛼𝑖휀𝑖𝑥𝑖−1𝑥𝑖 − 𝛼𝑖+1𝑥𝑖𝑥𝑖+1 − 𝛿𝑖𝑥𝑖 − 𝜆𝑖𝑥𝑖
2 

Change in density of Non-

Apex Consumer (𝑥𝑖) 

2.1.3 Density 

Dependence 

𝑑𝑥0
𝑑𝑡

=  𝜔 − 𝛼1𝑥0𝑥1 
Change in density of 

Nutrients (𝑥0) 

 

2.2.1 Consumer  

Uptake 

Regulation 

𝑑𝑥𝑛
𝑑𝑡

=  
𝛼𝑛휀𝑛𝑥𝑛−1𝑥𝑛
1 + ν𝑛𝑥𝑛

− 𝛿𝑛𝑥𝑛 
Change in density of Apex 

Consumer (𝑥𝑛) 

2.2.2 Consumer  

Uptake 

Regulation 

𝑑𝑥𝑖
𝑑𝑡

=  
𝛼𝑖휀𝑖𝑥𝑖−1𝑥𝑖
1 + ν𝑖𝑥𝑖

−
𝛼𝑖+1𝑥𝑖𝑥𝑖+1
1 + ν𝑖+1𝑥𝑖+1

− 𝛿𝑖𝑥𝑖 
Change in density of Non-

Apex Consumer (𝑥𝑖) 

2.2.3 Consumer  

Uptake 

Regulation 

𝑑𝑥0
𝑑𝑡

=  𝜔 −
𝛼1𝑥0𝑥1
1 + ν1𝑥1

 Change in density of 

Nutrients (𝑥0) 

 

Using these equations, we established food-chains comprising either three, four, or five 

trophic levels, and the equation for each trophic level models how the biomass or density 

changed over time. For simplicity we assumed all key parameters (nutrient input ω; 

consumption rates 𝛼𝑖; conversion efficiencies 휀𝑖; uptake regulators ν𝑖; density independent 

𝛿𝑖 , and dependent death rates 𝜆𝑖, for trophic level i) do not vary over time, and we investigated 

the effect of stressors on equilibrium biomasses/densities. The models also ignore spatial 

structure in the community, which also remain closed to immigration from outside apart from 

the constant input of the nutrient. Hence these models represent the simplest form of 

community dynamics that can be used to investigate the effects of multiple stressors as well 

as the manner in which they interact.  

Stressors to the food chains were modelled by changing the values for parameters and 

comparing the resultant equilibrium densities across all trophic levels to the equilibria for a 
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set of baseline parameter values. Equations 2.1 and 2.2 are not mechanistic models for 

specific stressors (e.g., pollution, temperature) but instead capture the net effect of stressors 

on the ecological processes of the food web species. For simplicity, we assumed each stressor 

had either a positive or negative effect on one model parameter (i.e., ω, 𝛼𝑖, 휀𝑖, or 𝛿𝑖), and we 

investigated how pairs of stressors interact to affect community densities. The baseline 

parameters were drawn from uniform distributions with ranges given in Table 2.2. Therefore, 

for a given food chain, the baseline parameters for all trophic levels were independently 

sampled from the distribution of values given in Table 2.2. Similarly, the processes 

(parameters) affected by each stressor were randomly selected from the possible candidates, 

and the intensity of its effect on the baseline rate was drawn from a uniform distribution with 

the ranges shown in Table 2.2. The baseline parameter set therefore represented the control 

community, and as in experimental studies that employ the factorial design approach (e.g., 

Matthaei et al., 2010; Davis et al., 2018), we manipulated our model communities by 

investigating the effect of each stressor acting alone, as well as the stressors acting in 

combination. From these cases, we then computed the type of stressor interaction and how 

they combined to alter the community densities (see below for definitions of how stressor 

interactions are computed). We therefore chose one trophic level at random from the entire 

food chain, excluding the nutrient level. We focused on this population/trophic level and 

mirrored it in our selection of empirical data (see below). This also means the species or 

trophic levels under scrutiny were not always directly affected by the stressor but could be 

affected solely due to a trophic cascade effect. It is also important to note that a stressor 

could have led to either an increase or a decrease in parameter value relative to the baseline; 

and that multiple stressors could have acted on the same, or a different trophic level. We 

chose to model the scenario where each stressor affected only one parameter (and therefore 

one biological process); hence within our model communities, stressors did not interact at 

the parameter level. However, relaxing this assumption to allow two stressors to affect a 

single process (parameter) did not alter our results (Appendix Two).  
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Table 2.2: Explanation of the different parameters within Equations 2.1 and 2.2, with the mechanism 

they reflect, alongside the minimum and maximum values for the ranges of baseline parameter values. 

Parameter values were drawn from a uniform distribution U~(a, b) with lower limit, a, and upper limit, 

b, with the limits differing between the baseline and stressed parameters. The method for determining 

stressed parameter values is detailed in Appendix Two. 

Parameter Ecological Mechanism Baseline Value Range Stressed Value Range 

α 

 

The rate at which a trophic level 

predates upon the trophic level 

directly below. 

αb = U~(0.25, 0.75)         

 

 

U~(0.01, 0.99) 

 

ε 

 

The efficiency at which a trophic level 

can transform consumed matter into 

new individuals. 

εb = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

 

δ 

 

The density independent mortality 

rate of a trophic level. 

δb = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

 

ω 

 

The constant rate at which a resource 

(𝑥0) is input into the food chain. 

ωb = U~(25, 75) U~(1, 99) 

 

λ  The density dependent mortality rate 

of a trophic level. 

λ b = U~(0.00625, 0.025) The parameter was not 

under selection for 

alteration by a stressor 

ν A limit to the uptake rate of a 

consumer through a trait-mediated 

response, that may be behavioural or 

otherwise. 

ν b = U~(0.05, 0.15)  The parameter was not 

under selection for 

alteration by a stressor 

 

Overall, 1,320,000 different combinations, of equations, food-chain lengths, stressor pairs, 

and randomly selected baseline values were generated. Equilibrium densities, for each of 

these combinations, were calculated using Mathematica 10.4 (Wolfram Research, Inc., 2016). 

We only considered cases where the equilibria were all stable, and feasible (i.e., all densities 

were positive), and only equilibrium densities for trophic levels x1 and above were included 

in the stressor interaction results (i.e., we excluded the nutrient level from our stressor 

interaction analyses). Stability was assessed by determining the Jacobian matrix for each 

community and calculating the corresponding eigenvalues. For every community, all 

eigenvalues had a negative real part with the equilibria being point attractors. 
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Across all 1,320,000 combinations, 79.9% of the parameter sets resulted in the determination 

of equilibrium densities that were both stable and feasible, with the discarded 20.1% of 

parameter sets resulting in at least one biologically unfeasible density. From the full set of 

stable and feasible communities, we randomly selected 360,000 theoretical interactions, and 

for each community we randomly selected a single trophic level for the focus of our 

estimation of the stressor interaction. All subsequent analyses of the theoretical data were 

performed on this group of 360,000 theoretical interactions. This subsetting was required as 

there was a negative relationship between the number of trophic levels and the likelihood of 

the community being both stable and feasible, which biased the full dataset towards 

communities with only three trophic levels. The final 360,000 stressor interactions were 

selected with weighted probabilities to ensure approximately one third (i.e., ~120,000) were 

from each of the three food chain lengths, and that each model (Table 2.1) was also 

approximately equally represented. 

Unlike the empirical studies used in the meta-analyses below, the food chain models are 

purely deterministic, meaning that there are no random fluctuations around the equilibrium 

densities. In effect, for any given pair of stressors, there is no uncertainty (observation error) 

in the theoretical data. Clearly, this differs from the empirical data where observation error 

leads to an estimate of the densities/biomasses under investigation in the control and 

treatment replicate communities, and this observation error may lead to some stressor 

interactions being misclassified. For a better comparison with the empirical data, and to test 

the robustness of the additive null model to observation error, we modelled observation error 

by taking the 360,000 theoretical interactions from our original analyses and then multiplying 

the density of each trophic level by a random number drawn from a Gaussian distribution 

with a mean of 1.00 and standard deviation of 𝜎. This process was repeated between three 

and six times for each treatment, analogous to the number of replicates per treatment found 

in our empirical data (see below). Thus, larger values for 𝜎 led to larger deviations around the 

equilibrium biomasses, and therefore a larger observation error, with an increased likelihood 

that the stressor interaction was misclassified. Standard deviations, 𝜎, were from one of 50 

different levels, ranging from 1x10-6 to 5x10-1, in consistent logarithmic increments (e.g., 8x10-

6, 9x10-6, 1x10-5, 2x10-5, etc.). The interpretation of 𝜎 is straightforward, as we would expect 

99.7% of all observations to fall within 3𝜎’s of the ‘true’ stressor effect (i.e., the 
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biomass/density in the absence of any observation error). Appendix Two details a complete 

overview of how observation error was incorporated into the theoretical data.  

 

Collation of empirical data 

Through Web of Science we searched the primary scientific literature, for papers published 

before 1st January 2019, which investigated the impacts of multiple stressors on freshwater 

communities. In order to be incorporated, papers needed to report results where there was 

a factorial design, namely: (i) a control (without stressors); (ii) each stressor acting 

individually; and (iii) the stressors acting simultaneously. We required papers to report the 

mean value of the response, the number of replicates, and standard deviation or standard 

error for each treatment in the factorial design; failure to report any of this information led 

to the study being excluded from our analysis. Additionally, papers were required to report 

at least one of the following untransformed metrics: biomass, abundance, density, or 

chlorophyll-a of one or more groups of organisms within the stressed community. Hence, and 

in line with our trophic models, the focus of our effort was directed towards studies that 

report the effects of stressors acting at the population and community levels. Papers often 

reported the impacts of stressors on multiple different groups of organisms within a 

community; when this occurred, the responses of all different groups of organisms were 

included within the overall dataset. The different groups of organisms could comprise: 

populations of a single species (e.g., Daphnia pulex); a group of organisms within the same 

feeding guild (e.g., herbivores); a group of taxonomically similar organisms (e.g., taxa within 

the genera Ephemeroptera, Plecoptera, and Trichoptera); or a group of similar organisms 

(e.g., macroinvertebrates or algae). To be included within our dataset, papers had to 

investigate communities comprising a minimum of two different groups of organisms. Studies 

investigated a wide range of different stressors, although these were subsequently grouped 

into broader stressor categories, such as temperature, contamination, and habitat alteration.  

Previous analyses have frequently focused on collating data for only the greatest single 

intensity of a stressor (e.g., Jackson et al., 2016). In contrast, where studies reported the 

responses of communities to multiple intensities of different stressors, data for all of the 

different intensities were collated. All interactions considering the different intensities of 
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stressors were included in the overall dataset, although covariation in data due to repeated 

experiments across different stressor intensities was accounted for in the final meta-analyses 

(see section below).  

Some studies reported multiple different response metrics for the same group of organisms, 

included the same species within multiple different groups, or reported data for the same 

experiment over multiple different time points. Accordingly, in order to reduce the 

correlation/covariance within the overall dataset, these interactions were removed from our 

analyses. For instance, where the effects of stressor interactions on multiple different traits 

were reported, those considering density as the biological response metric were prioritised 

over abundances, which were in turn prioritised over biomasses, or those considering 

chlorophyll-a, respectively. Similarly, where papers reported data for stressor interactions 

over multiple different time points, only the final time point was used as this best matched 

our equilibrium assumption for the theoretical models. 

Appendix Two gives a complete overview of the different search terms used to find studies, 

the method used to determine whether the data for a study could be collated, the processes 

for extracting and collating the data, and the process for removing interactions to prevent 

covariance. 

 

The determination of effect sizes and the classification of interactions 

Across both the theoretical and empirical datasets, we used the same method to determine 

the classification of an interaction, using the factorial form of the effect size metric, Hedges’ 

d (Gurevitch et al., 2000). Hedges’ d is frequently used to investigate the impacts of multiple 

stressors as it estimates the standardised mean difference between the means of stressed 

and control samples and is unbiased by small sample sizes (Hedges & Olkin, 1985). It is 

calculated by comparing the effect of the interaction on ecological communities to the sum 

of effects of the stressors acting individually; namely, an additive null model. In line with 

current methods, we inverted the sign of the interactions when the expected effect of the 

additive null model was negative (Jackson et al., 2016; Piggott et al., 2015). This method 

allowed for interaction effect sizes to be compared regardless of their directionality. We 

therefore focused on the classification of the interaction as opposed to the absolute 
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magnitude/polarity of the effects. Appendix Two gives a complete breakdown of the 

equations used for calculating Hedges’ d.  

Once Hedges’ d for a given interaction of stressors was calculated, we then classified the 

interaction into one of four types as illustrated in Figure 2.1 and following the convention of 

Jackson et al. (2016). In brief, the four interaction classifications were: (i) Additive, where the 

effect of the additive null model was statistically indistinguishable from the effect of observed 

interaction; (ii) Synergistic, where the observed interaction effect was greater than the effect 

of the additive null model; (iii) Antagonistic, where the observed interaction effect was less 

than the effect of the additive null model, but both effects had the same polarity; and (iv) 

Reversal, where the observed interaction effect was less than the effect of the additive null 

model, but the observed and expected effects had contrasting polarities. The distinction 

between antagonistic and reversal interactions is relatively recent (e.g., Travers-Trolet et al., 

2014; Jackson et al., 2016), with most research still continuing to use the appellation of 

antagonistic to refer to both antagonistic and reversal interactions (e.g., Velasco et al., 2019; 

Gomez Isaza et al., 2020). 
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Figure 2.1: Graphical depiction of interaction types using population density as a response metric. 

White and grey bars denote densities under control and single stressors, respectively. The black bar 

denotes the additive (Add.) interaction classification (i.e., the sum of the effects for the individual 

stressors shown by the black arrows). The yellow bar denotes a synergistic (Syn.) interaction 

classification (i.e., a decrease in population density greater than the additive effect). The green bar 

denotes an antagonistic (Ant.) interaction classification (i.e., a decrease in population density less than 

the additive effect). The purple bar denotes a reversal (Rev.) interaction classification (i.e., a change in 

population density in the opposite direction to that of the additive effect). 

 

In our method, if Hedges’ d was positive, the interaction was classed as synergistic, and if 

negative, the interaction was classed as either an antagonistic or reversal interaction, 

although this could only be determined by comparing the effect of the additive null model to 

the observed effect (as outlined above). Each value of Hedges’ d had corresponding 95% 

confidence intervals; if these confidence intervals incorporated 0, then an interaction was 

deemed to be additive. The classification scheme outlined above is one of a number of 

possible choices (e.g., Crain et al., 2008; Jackson et al., 2016), and Appendix Two details a 

comparison of how these different schemes contrast each other.  
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Vote-counting  

Following the classification of all interactions, we implemented a vote-counting method to 

determine the relative proportions of the interaction classes across both the theoretical and 

empirical datasets. To consider the effect of different strengths of observation error on the 

ability to detect the ‘true’ stressor interaction in the modelled data, we computed the 

frequency of interaction types for each level of observation error investigated. 

 

Summary effect sizes  

Alongside the vote-counting method, we calculated summary effect sizes across both the 

theoretical and empirical datasets. The calculation of summary effect sizes represents one of 

the key components that defines a formal meta-analysis (Koricheva & Gurevitch, 2014), 

allowing for the collation of the individual effect sizes of multiple independent experiments 

or studies and determining a single summary effect. Pooling the data in this way increases the 

statistical power of our analyses, and therefore leads to a greater probability of correctly 

rejecting the null hypothesis that stressor interactions are additive. Meta-analyses and 

summary effect sizes are both useful and well-established within the field of multiple 

stressors (e.g., Crain et al., 2008; Jackson et al., 2016; Seifert et al., 2020), and give higher 

weightings to individual effect sizes with lower uncertainties (i.e., lower variances) which lead 

to more precise estimates of the overall summary effect size (Koricheva & Gurevitch, 2014).  

For the empirical analysis, summary effect sizes were determined by using a weighted random 

effect model and implemented in the metafor package (Viechtbauer, 2010) in R. Random 

effects were specified as being the identity (ID) of the study group of organisms nested within 

the ID for study. The random effects were specified in order to account for both within- and 

between-study variation contained within the empirical dataset. Additionally, some empirical 

studies considered multiple intensities of one or more stressors, and as such, calculations of 

the interaction class for each intensity of stressor used the same control. To account for any 

covariance between the different intensities of a single stressor, we incorporated covariance-

variance matrices within the meta-analytical models. For the empirical dataset, mixed effect 

models were also conducted with the fixed effects of stressor pair or organism group, 

alongside the previously described random effects (see Appendix Two). The summary effect 
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size for the theoretical dataset was also determined using a similar process. However, due to 

computational limitations caused by the number of interactions under analysis (360,000 

interactions at each level of observation error), fixed effect models for the theoretical data 

were fitted using the lm function. The models applied to both the theoretical and empirical 

datasets are explained in further detail within Appendix Two. While we detail the results of 

both the vote-counting and summary effect size methods, our results primarily focus on 

summary effect sizes, in line with recommendations for meta-analyses (Gurevitch et al., 

2018). 

The overall effect from a meta-analysis needs to be checked for consistency among effect 

sizes, termed as heterogeneity (Nakagawa et al., 2017). We used the I2 statistic, which is 

bounded between 0% and 100%, with 25%, 50%, and 75% being suggested as levels for, low, 

medium, and high heterogeneity, respectively (Higgins et al., 2003). Ecological meta-analyses 

often report high levels of heterogeneity (Senior et al., 2016), perhaps due to the variation in 

study organisms common to the questions being addressed, and we may have expected a 

high value here due to both range of study organism and range of stressor type. To explore 

the potential causes of heterogeneity within the empirical meta-analysis, we conducted 

separate meta-analyses on a sub-group of the dataset, a similar process to running a meta-

regression (Nakagawa et al., 2017), using organism group (i.e., producer or consumer) as the 

categorical moderator to explore heterogeneity (see Appendix Two). We also considered 

publication bias (see Appendix Two); although it should be noted that common tests for 

publication bias within meta-analyses can be limited by high heterogeneity (Nakagawa et al., 

2017).  

 

2.4 Results 

Stressor interactions within theoretical data 

We found no strong difference between the classification of stressor interactions from either 

form of food chain model (Table 2.1), or between the different lengths (three, four, five 

trophic levels) of food chains (see Appendix Two), showing that the frequencies of interaction 

classifications were robust to these details of the models. For the entire theoretical dataset 

of 360,000 stressor interactions (comprising both Consumer Uptake Regulation and Density 
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Dependence Equations, and across food chains of three, four and five levels) without 

observation error, antagonistic and synergistic interactions were the most frequently 

assigned (0.483 and 0.480, respectively), followed by reversal (0.0288), and finally additive 

interactions (0.00856). These frequencies represent the ‘true’ interactions as classified by the 

additive null model, under no data uncertainty. However, the ability of the additive null model 

to recover these interaction frequencies is very sensitive to observation error. Increasing 

observation error led to more interactions being classified as additive (the null model) and at 

higher levels additive interactions were clearly dominant (Figure 2.2a). This pattern could be 

generated if our theoretical interactions only weakly deviated from additivity, but checks 

confirmed that this was not the case, and that over 50% of interactions deviated from 

additivity by more than 5% (see Appendix Two). 



Benjamin Joshua Burgess – Doctoral thesis 

 46 

 

Figure 2.2: The effect of observation error (σ) on the stressor interaction categorisation, and summary 

meta-analytic effect sizes in the theoretical data. a) Frequency of the different interaction classes for 

the 360,000 theoretical stressor interactions at each level of observation error: Dotted black line 

denotes additive interactions; green short-dashed line indicates antagonistic interactions; yellow long-

dashed line denotes synergistic interactions; and purple line indicates reversal interactions. b) 

Summary effect sizes for the 360,000 theoretical stressor interactions, at each level of observation 

error - Black line denotes summary effect sizes; and red lines denote 95% confidence intervals. c) The 

ratio of positive to negative summary effect sizes at each level of observation error. 
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The summary effect size, and summary interaction class as generated from the meta-

analytical framework also showed high sensitivity to observation error, although in these 

analyses the outcome was rather different (Figure 2.2b). For low levels of observation error, 

the 95% confidence intervals of the summary effect size overlapped zero, indicative of an 

additive summary interaction class. This occurred because the frequency and magnitudes of 

synergistic (positive effect size) and antagonistic/reversal (negative effect sizes) interactions 

were approximately equal for low observation error (Figure 2.2a), effectively cancelling one 

another out, and the large confidence intervals were caused by the underlying large variance 

in effect sizes (See Appendix Two). However, with increasing observation error, the summary 

effect sizes became increasingly more negative, and confidence intervals for these summary 

effect sizes did not overlap zero, indicating an antagonistic/reversal summary interaction 

class. This result may seem surprising since, similar to the case of individual interactions 

(Figure 2.2a), we may expect increased observation error to lead to summary effects with 

larger confidence intervals that overlapped zero. Instead, we found that, although the ‘true’ 

stressor interactions (i.e., in the absence of observation error) were roughly equally divided 

between synergy and antagonism, the summary effect became increasingly more negative as 

observation error increased, indicating observation error affected synergistic and 

antagonistic interactions asymmetrically. Further inspection showed an increase in the 

proportion of negative effect sizes as observation error increased (Figure 2.2c), with this being 

mirrored by a decreasing summary effect size (Figure 2.2b). Although not so obvious due to 

the dominance of additive interactions, a similar trend could be observed in the frequencies 

of interaction classes at higher observation errors, with synergistic interactions heading 

towards 0 frequency faster than antagonistic interactions (Figure 2.2a). Hence, analyses of 

our model results with varying levels of observation error suggested synergies in pairs of 

ecosystem stressors may be under-reported in many empirical studies. 

 

Theoretical expectations 

In summary, our theoretical analyses led us to conclude that at biologically plausible levels of 

observation error (i.e., >0.01), we should expect (i) the empirical data to be dominated by 

additive interactions for individual interactions (Figure 2.2a), but (ii) in contrast the summary 

effect sizes computed across a large body of such studies may indicate a dominant role for 
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antagonistic, or reversal, interactions. Both of these results may occur even if, as in our 

simulated data, synergies are common for the ‘true’ interaction classifications.  

 

Stressor interactions within freshwater empirical data 

Our literature search within the Web of Science yielded 1805 papers that met our search 

criteria, 58 of which met our criteria for inclusion. They included 545 interactions summarised 

in Figure 2.3 to illustrate the frequency of different interaction classifications and the overall 

summary effect sizes and interaction classes. Additive interactions were the most frequent 

(0.829), followed by antagonistic (0.0991), reversal (0.0477), and finally synergistic (0.0239) 

interactions (Figure 2.3a). Additionally, the summary effect size for the entire dataset was 

negative with 95% confidence intervals that did not overlap zero (-0.632 ± 0.260), indicative 

of an antagonistic/reversal summary interaction class (Figure 2.3b). 
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Figure 2.3: Comparisons of the analyses of the freshwater stressor interaction dataset (545 

interactions) with the full theoretical stressor interaction dataset for different levels of observation 

error, σ (given in parentheses on the x-axis). Comparisons are for: a) proportions of the different 

interaction classes; and b) summary effect sizes for the empirical and theoretical dataset. Figure 2.3a; 

white circles denote additive interactions, green squares denote antagonistic interactions, yellow 

diamonds denote synergistic interactions, purple triangles denote reversal interactions. Figure 2.3b; 

closed circles denote significant summary effect sizes (i.e., 95% confidence intervals do not overlap 

zero), and open circles denote non-significant summary effect sizes (i.e., 95% confidence intervals 

overlap zero). 
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Our meta-analysis showed medium-level heterogeneity (I2 = 48.5%) although this was 

considerably lower than the mean heterogeneity (I2 = 91.7%) found in an analysis of previous 

ecological meta-analyses (Senior et al., 2016). Furthermore, two additional meta-analyses 

were conducted on sub-groups of the empirical dataset, with the categorical moderator of 

organism group used to explore this heterogeneity (Nakagawa et al., 2017). However, these 

additional meta-analyses failed to uncover any source of this heterogeneity, with the meta-

analysis for consumers reporting medium-level heterogeneity (I2 = 42.5%) and the producer 

meta-analysis reporting high-level heterogeneity (I2 = 67.7%) (see Appendix Two).  

 

Comparison of empirical and theoretical interaction classifications 

Overall, we found close agreement between our theoretical models with biologically 

reasonable levels of observation error and the freshwater empirical data (Figure 2.3). Vote-

counting results highlight how individual interactions tended to return an additive 

classification in the empirical dataset, and that this is expected in the theoretical data when 

estimates of metrics used to classify the interactions are mostly within 10% of the true value 

(Figure 2.3a). Similarly, summary effect sizes were negative in the simulated data under even 

a very small level of observation error (Figure 2.3b) despite synergies and antagonisms co-

dominating the ‘true’ interactions. This implies the summary effect size reported in the 

empirical data for freshwater communities (Figure 2.3b) may not necessarily be 

representative of the underlying ‘true’ stressor interactions.  

 

2.5  Discussion 

There has been much interest in understanding and cataloguing the joint effects of stressors 

on ecological communities and ecosystems (Côté et al., 2016; Schäfer & Piggott, 2018; 

Thompson et al., 2018b), but to date there has been relatively little guidance from ecological 

theory. Similarly, we know of no demonstration of the abilities of the statistical tools used for 

classifying interactions to recover known interactions in the face of data uncertainty. Here, 

our aim was to test the statistical tools used to define stressor interactions using data 

simulated from ecological theory in order to gain a deeper understanding of a freshwater 
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dataset. Our empirical analyses generate two main results: (1) vote-counting analyses suggest 

additive interactions to be by far the most dominant stressor interaction types in freshwater 

community experiments (Figure 2.3a); but (2) our meta-analysis shows antagonism to be the 

summary interaction class (Figure 2.3b). However, the analyses of the simulated data suggest 

both results should be expected under plausible levels of observation error (i.e., >0.01) in the 

data (Figure 2.3), and that only under unrealistically low levels of precision should we expect 

to recover the ‘true’ stressor-pair interactions in either individual studies or meta-analyses 

(Figure 2.2). We believe that once these statistical aspects are considered, the so-called 

‘ecological surprises’ (sensu Paine et al., 1998) may in fact be more prevalent in both our 

freshwater dataset, and more widely.  

 

Null model sensitivity to observation error 

The choice of the null model is hotly debated within ecological stressor research (Schäfer & 

Piggott, 2018), and it has been argued that null models should be able to accurately predict 

the combined effects of stressors (Orr et al., 2020). Our results (Figure 2.2) are the first 

attempt to quantify the degree of accuracy for the most commonly used null model, and we 

conclude that for all but the very lowest levels of observation error it is difficult to correctly 

reject the additive null interaction (Figure 2.2a). In other words, we find weak statistical 

power to recover the underlying stressor-pair interactions. On this basis, and given that most 

experiments have low sample sizes (we report a mean of 3.83 with a maximum of 16 per 

treatment in our empirical data), we consider it premature to conclude that most stressor 

interactions are truly additive in the freshwater data we collected. Instead, we should be 

careful to conclude that in the majority of cases we do not have sufficient evidence to reject 

the null (additive) interaction. However, it means that we should take notice whenever a non-

null interaction is returned by the additive null model, since only strong non-additive effects 

are likely to be detected (see Appendix Two). 

Perhaps more surprising is our finding that meta-analyses using the additive null model report 

antagonism as the summary interaction classification when observation error is non-

negligible, despite synergies co-dominating in our simulation data (Figure 2.2b). A naïve 

expectation would be for increased observation error to lead to summary effect sizes centred 
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around zero with large confidence intervals making it difficult to rule out an additive summary 

interaction in our simulation data. Smaller confidence intervals at higher levels of observation 

error are easily explained by the effect sizes becoming more similar due to the high variances 

of the response metrics (Appendix Two). Additionally, it is clear that observation error has an 

asymmetric effect on antagonisms and synergies, with this leading to a shift towards negative 

effect sizes dominating the distribution of simulated effect sizes (Figure 2.2c). Hence, 

although the return of an antagonistic summary interaction for our empirical dataset is 

mirrored in previous analyses of freshwater stressor experiments (Jackson et al., 2016; Lange 

et al., 2018), we cannot conclude that this is strong evidence for the dominance of antagonism 

in freshwater ecosystems. The simulation data therefore adds valuable interpretation of our 

empirical data that would otherwise be missed, and in so-doing highlights the importance of 

benchmarking statistical tools against data with known attributes.  

The high sensitivity to estimation uncertainty may be key reasons why stressor synergies are 

not as often reported as may be expected (Darling and Côté, 2008; Côté et al., 2016), although 

other reasons may also contribute, and we can also not rule out that the empirical results do 

truly reflect the underlying interactions. However, we believe our finding of high sensitivity 

to observation error in the null model is more general than either our theoretical results, or 

our freshwater dataset, and we suggest future studies should investigate other null models 

for their robustness to observation error and sample sizes. Such analyses would build on 

previous descriptions of the null models (e.g., Sih et al., 1998; Folt et al., 1999; Sih et al., 2004) 

and would be particularly useful if analyses considered the effect of sample size on statistical 

power, as this will help guide future empirical studies to improve the detection rate of non-

null stressor interactions.  

 

Theoretical expectations for interaction frequencies 

Our food chain models imply that, given adequate sample sizes (see above), we should expect 

synergistic and antagonistic interactions to co-dominate at the population and trophic levels, 

whereas additive interactions and reversals should be relatively rare. It may well be the case 

that our models are not good descriptors of the data we analyse; certainly, we ignore much 

important detail that is likely a feature in the data, such as spatial structure and temporal 
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variation in parameters caused by external perturbations not linked to the stressors, and 

more complex food web structure involving omnivory or parasitism. Unfortunately, the null 

model sensitivity to observation error implies we do not yet have the tools with which to 

discern the relative abilities of different theoretical models to capture the empirical data. 

However, our key theoretical finding for the relative rarity of additive interactions appears to 

be echoed in the few other theoretical studies on stressor interactions in ecological 

communities (e.g., Travers-Trolet et al., 2014; Thompson et al., 2018a; Haller-Bull & Bode, 

2019). This agreement is despite a variety of key differences in the model assumptions. In 

particular, Haller-Bull and Bode (2019) focused on populations rather than multispecies 

communities, but found dominant roles for synergistic and antagonistic interactions, with 

additive interactions occurring most frequently for stressors affecting the carrying capacity. 

Similar to our model, Thompson et al. (2018a) also focused on multispecies communities, but 

they assumed biological interactions were constant, whereas we allow interactions 

(consumption and conversion rates) to be modified by stressors, an assumption that seems 

likely to be met on a regular basis. For example, stressors have been shown to influence 

resource competition (Kroeker et al., 2013); susceptibility to parasitism in oysters (Lenihan et 

al., 1999); and modify the flow of energy through aquatic food webs by inducing changes in 

trophic links (Schrama et al., 2017). Despite this difference, Thompson et al. (2018a) found 

additive interactions were most prominent when species facilitated each other (i.e., positive 

species interactions), but that synergy or antagonism in combined stressor effects on species 

richness or community biomass were more common when species interactions are negative 

(competition or resource use).  

The apparent rarity of additive interactions in all of these models may appear at odds with 

the possible interpretation that two stressors acting on different species within a community 

could lead to an additive joint effect (Jackson et al., 2016). However, feedbacks in the food 

web, like those found in our models, mean that even if a species is unaffected directly by a 

stressor, it is highly likely that top-down or bottom-up effects will lead to indirect interactions 

for many species, and as a result, additive interactions are extremely unlikely in the absence 

of uncertainty (e.g., observation error). Indeed, we anticipate that additive interactions may 

only truly occur in scenarios where species in different and very weakly interacting sub-

communities are affected by different stressors, or, as found by Thompson et al. (2018a), 
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where species interactions are predominantly positive. We believe there will be an increasing 

role of theory in generating hypotheses for the ways in which stressors interact (De Laender, 

2018), and the most progress will be made when the theory is developed so it can be directly 

compared against empirical data, much as we have done here. 

 

Mechanistic understanding of multiple stressors 

In this study, we sought to address the question of how multiple stressors interact. This 

approach, when applied across both theoretical and empirical datasets can allow us to discern 

what may be expected across the interactions of multiple stressors. Future research may seek 

to address the question of why multiple stressors interact in the manner that they do. 

Undoubtedly, these two questions are entwinned, with the answers to each of these 

questions highly likely to be dependent on the other. However, while the use of null models 

is essential in determining the combined effect of multiple stressors (Thompson et al., 2018b), 

the adoption of a mechanistic approach to investigating multiple stressors may provide novel 

insights which address these joint questions (De Laender, 2018; Schäfer & Piggott, 2018). For 

instance, a mechanistic understanding may allow for responses such as co-tolerance or co-

susceptibility (Todgham & Stillman, 2013) to stressors to be more thoroughly understood 

from an ecological perspective. Ultimately, as our results imply, such an understanding is 

likely to require a large amount of empirical data to fully understand; however, there is ample 

scope for theoretical ecology to help fill this gap in our collective understanding of multiple 

stressors, and to generate specific hypotheses to be tested. Similarly, a mechanistic 

understanding of multiple stressor interactions would prove invaluable when mitigating the 

effects of stressors or implementing conservation initiatives.  

 

Future developments 

Our analysis represents a novel approach combining both theoretical and empirical methods. 

While this analysis provides a solid foundation, there are several aspects that could be 

adjusted in future research. Firstly, there is a clear need to better understand the limitations 

and data requirements of the null models (e.g., Gurevitch et al., 2000; Lajeunesse, 2011; 
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Thompson et al., 2018b) that are used to classify stressor interactions. Such knowledge would 

be very useful in guiding experimental design that would maximise the probability of 

uncovering non-null stressor interactions and would therefore provide a better 

understanding of their true prevalence. Knowing how many data points are required before 

we can realistically hope to detect a particular type of pattern, in this case a stressor 

interaction type of a given strength, is a critical component of experimental design. Moreover, 

our work has also uncovered some hitherto undescribed biases that lead to meta-analyses 

potentially over-emphasising antagonisms, and it is important to investigate other null 

models for this feature as well as looking for methods to reduce this bias. Secondly, the 

theoretical communities manipulated here combine multiple populations each on a separate 

trophic level. While this builds upon similar research conducted on a single population (Brown 

et al., 2013; Haller-Bull & Bode, 2019), there is scope for this approach to be expanded to 

consider more complex communities, for instance with multiple populations on a single 

trophic level (e.g., Thompson et al., 2018a). Finally, the manner in which stressors interact at 

the parameter or process level can occur in numerous ways, for instance either additively or 

multiplicatively (Haller-Bull & Bode, 2019). However, whether a process or parameter is 

impacted in an additive or multiplicative manner, will cause a stressed parameter value to 

change by differing degrees, with this in turn potentially resulting in contrasting frequencies 

of interaction classifications at the population level. Accordingly, the manner in which a 

process or parameter (e.g., feeding rate, mortality) is impacted may be determined by the 

individual stressors; for instance, if two simultaneously acting stressors are entirely 

independent of one another then their effect on an ecological process may be additive 

(Haller-Bull & Bode, 2019). Consequently, allowing stressors to impact the same process 

undoubtedly represents an area for expansion, particularly when considering how impacts at 

the parameter level affect population level properties. 

 

Conclusions 

Determining the ways multiple stressors interact is key when attempting to mitigate their 

effects, with the class of the observed interaction potentially outlining whether the removal 

of a stressor will have a beneficial, limited, or detrimental impact to an ecosystem (Brown et 

al., 2013; Côté et al., 2016). Our results show the value of developing a theoretical framework 
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which can aid in the interpretation of environmental stressor interactions, and we hope more 

general theory that makes specific predictions based on ecological mechanisms (e.g., De 

Laender, 2018; Fu et al., 2018; Thompson et al., 2018a) will be developed and tested in future. 

However, our results also highlight the urgent need to better understand the strengths and 

limitations of the null models that are used to classify the cumulative effects of community 

stressors, and we also believe a unified approach to the meta-analyses of individual studies 

will increase our understanding of how environmental stressors combine. 
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Chapter Three – Multiple stressor null models frequently fail to detect 

interactions due to low statistical power 

 

3.1 Abstract  

Ecosystems across the globe are being impacted by multiple anthropogenic drivers. One 

pressing question facing ecologists is understanding how these multiple stressors interact to 

impact ecosystems. Predominately, studies have investigated the interactions of stressors 

using null models, with the additive and multiplicative null models being those most widely 

applied. Such approaches classify interactions as being synergistic, antagonistic, reversal, or 

null. Despite their wide-spread use, there has been no thorough analysis of these null models, 

nor a systematic test of the robustness of their results to sample size or sampling error in the 

estimates of stressor effects. Using simulated food web models, we demonstrate that the 

additive and multiplicative null models are not directly comparable, illustrated by the null 

models assigning over a third of all interactions different classifications. We highlight that 

both null models have weak power to correctly classify interactions at commonly 

implemented sample sizes (i.e., ≤6 replicates), unless data uncertainty is unrealistically low; 

hence the majority of interactions are assigned a null classification given they are 

indistinguishable from the implemented null model. Using mathematical approximations and 

simulations, we demonstrate that increasing sample size increases the power to detect the 

true interactions; however, power only slowly increases with sample size. We demonstrate 

that for common experimental sample sizes, only exceptionally large effect sizes are able to 

be assigned a non-null classification. Ultimately, our results may aid researchers in the design 

of their experiments, and the subsequent interpretation of their results. Overall, our results 

show no clear statistical advantage of using one null model over the other, although we 

conclude that it is not possible nor even meaningful to compare interaction types under 

different null models. Furthermore, the low statistical power of commonly used null models 

means we are likely missing many synergistic and antagonistic stressor interactions. 
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3.2 Introduction 

Globally, ecosystems are being impacted by a plethora of external anthropogenic stressors 

(sensu disturbances, drivers, factors, or pressures) (Blowes et al., 2019; Christensen et al., 

2006), with such stressors encompassing a wide range of environmental or biotic changes 

including land-use change, invasive species, climate change, and pollution (Brook et al., 2008; 

Dirzo et al., 2014; Hillebrand et al., 2020; Jackson et al., 2020). As such, an individual stressor 

is capable of having impacts upon biodiversity, species abundances, and ecosystem services 

(Newbold et al., 2015; Sala et al., 2020; Tittensor et al., 2014; Vinebrooke et al., 2004), with 

ecosystems within freshwater, marine, and terrestrial realms all at risk (Beaumelle et al., 

2021; O’Hara et al., 2021; Reid et al., 2019). Although ecosystems are frequently subjected to 

multiple stressors, understanding how these concurrently acting stressors interact is difficult, 

with the combined effects of these stressors frequently unknown (Hodgson & Halpern, 2019). 

Accordingly, understanding, predicting, and mitigating the effects of multiple interacting 

stressors upon various ecosystem properties represents one of the major, yet urgent, 

challenges to be confronted by ecologists and conservationists (Côté et al., 2016; Jackson et 

al., 2021; Lindenmayer et al., 2020).  

At present, the inferred effects of multiple interacting stressors are predominately 

determined through the implementation of null models (De Laender, 2018), where the 

observed response is compared to an expectation that the stressors are non-interacting. Of 

these null models, the additive null model (Gurevitch et al., 2000) is the most widely applied 

(e.g., Crain et al., 2008; Jackson et al., 2016) and suggests that the overall effect of the multiple 

interacting stressors is equal to the sum of the effects of the stressors acting individually. 

While it has been previously assumed that the majority of interactions are able to be 

explained by the additive null model, there is growing evidence that substantial numbers of 

stressor interactions have effects different to those predicted by the additive null model (Côté 

et al., 2016). Increasingly, studies are illustrating the prevalence of interactions with effects 

that are: i) greater than anticipated by the additive null model (synergistic interactions); ii) 

less than predicted by the additive null model (antagonistic interactions); iii) opposite to that 

suggested by the additive null model (reversal interactions). Frequently, these non-additive 

interactions are considered to be ecological surprises (sensu Paine et al., 1998), namely that 
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they deviate from the expectation of the additive null model. Comparisons of the different 

interaction classes are illustrated by Figure 3.1. 

 

 

 

Figure 3.1: Comparison of the additive and multiplicative null models, illustrating the conditions under 

which the different interaction classifications are observed. Individual Stressors: Grey bars represent 

the change in a measured response due to a given stressor (Stressor 1 or Stressor 2). Null Model 

Expectations: Yellow bar represents the expected response under an additive null model; Purple bar 

represents the expected response under a multiplicative null model. Interaction Class: Arrows denote 

how an interaction would be classified for a given observed response. Blue arrows denote synergistic 
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interactions; Pink arrows denote antagonistic interactions; Orange arrows denote reversal 

interactions. For the additive and multiplicative null models, a null interaction is shown by the purple 

and yellow lines respectively. When comparing between the additive and multiplicative null models, 

the black line denotes the range of observed responses where the additive and multiplicative null 

models classify interactions differently (i.e., the interaction class is null model dependent). Whether an 

interaction class varies between null models, or not, is inherently explainable by the underlying algebra 

of the null models (see Appendix Three). a) Both Stressor 1 and Stressor 2 act upon the response in the 

same direction. b) Stressor 1 and Stressor 2 act upon the response in contrasting directions. 

 

While the majority of studies currently apply the additive null model there is a growing body 

of literature suggesting alternative null models (e.g., Tekin et al., 2020; Thompson et al., 

2018b) that may potentially be more appropriate when investigating the impacts of multiple 

stressors (Dey & Koops, 2021; Schäfer & Piggott, 2018). Frequently, this argument centres on 

the parsimonious nature of the additive null model which limits, or even prevents, any 

mechanistic insight into how stressors interact; with there similarly being calls for multiple 

stressor research to focus on the mechanisms underpinning stressor interactions (Orr et al., 

2020; Schäfer & Piggott, 2018). Accordingly, the multiplicative null model (Hawkes & Sullivan, 

2001; Lajeunesse, 2011) is the alternative which is most widely discussed (see Folt et al., 1999; 

Morris et al., 2007; Sih et al., 1998) and implemented (e.g., Gomez Isaza et al., 2020; Harvey 

et al., 2013). The simplest description of the multiplicative null model is that it represents the 

logarithmic form of the additive null model. However, this numeric transformation results in 

differences between the two null models including the fundamental assumptions 

underpinning each approach (Schäfer & Piggott, 2018). Given these assumptions, it has been 

suggested that the multiplicative null model may better reflect biological and ecological 

systems (Kerkhoff & Enquist, 2009), with this being particularly pertinent when certain 

responses are considered (e.g., mortality or survival) (Fournier et al., 2006). Furthermore, 

while interactions under the multiplicative null model are capable of varying from the 

expected effect in a similar manner to the additive null model, the classification assigned to 

any given interaction (i.e., synergistic, antagonistic, or reversal interactions) may also differ 

between the two null models (Figure 3.1). For instance, an interaction classed as being 

antagonistic by the additive null model may be deemed as being a synergistic interaction by 

the multiplicative null model.  
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Ultimately, the differences between the two null models, outlined above, result in several 

important ramifications. Firstly, when individual studies implement differing null models, 

direct comparisons of these studies are decidedly difficult; indeed, as a result of the 

contrasting assumptions underpinning each null model, the hypotheses they test are 

different. Secondly, where the conservation or management of a particular ecosystem is 

based on the results of a specific null model a different course of action may have been 

adopted if an alternative null model was used. Furthermore, there are potential 

consequences to incorrectly determining the interaction classification with conservation 

strategies being rendered ineffective or even detrimental (Brown et al., 2013; Côté et al., 

2016), and it is therefore imperative to understand how the additive and multiplicative null 

models inherently relate to one another. 

When planning an experiment, one fundamental criterion that ecologists should consider is 

whether an experimental design is capable of detecting a biologically important effect (Steidl 

et al., 1997). For the above null models, such prospective power analyses necessitate 

knowledge of the sample sizes required to detect an effect of a given strength against a 

backdrop of data uncertainty. In the particular case of stressor interactions, the aim of all null 

model tests is to uncover an effect that shows a departure from the null hypothesis (i.e., 

observing an antagonistic, reversal, or synergistic interaction). Accordingly, there is a need to 

understand how each of the three constituent components of the null model calculations 

(treatment means, treatment uncertainty, and sample sizes) can influence the results of these 

null models. However, we are not aware of any previous analysis which attempts to 

understand the role of each of these components, with this meaning that there is currently 

minimal guidance for ecological experiments. Indeed, there is currently a distinct lack of 

knowledge regarding how experimental design, or ecologically relevant levels of uncertainty 

can impact the results of these null models, or even the conditions under which results differ 

between the additive and multiplicative null models. Without knowledge on the attributes or 

statistical power of these null models it can be very hard to make robust conclusions from the 

results of model tests, or design experiments that are likely to yield results that reflect the 

underlying effects of the stressors on the biological system of concern. As examples, two 

recent multiple stressor meta-analyses (Gomez Isaza et al., 2020; Seifert et al., 2020) included 

no experiments with more than six replicates per treatment, while a third (Burgess et al., 



Benjamin Joshua Burgess – Doctoral thesis 

 62 

2021) found <1% of experiments used more than eight replicates per treatment. Currently 

there is no understanding of how these samples sizes might impact the power of either null 

model.  

Here, we focus on closing these gaps in knowledge about the additive and multiplicative null 

models for stressor interactions, outlining the role that treatment means, treatment 

uncertainty, and sample sizes play in determining model results. To this aim, we simulate data 

using an ecological model that has been shown to produce plausible distributions of 

interaction types (Burgess et al., 2021), whilst allowing for full control over the sample sizes 

and level of observation (measurement) error in the data. Using this simulated data, where 

we know the ‘true’ interaction type (i.e., that inferred in the absence of observation or 

sampling error), we are able to address the following questions:  

Question one: What are the conditions under which the additive and multiplicative null models 

agree, and disagree, and can we define these conditions from the model formulae? 

Question two: To what degree does treatment uncertainty (in the form of observation error) 

reduce the ability of both the additive and multiplicative null models to correctly infer the ‘true’ 

interaction classification? 

Question three: What is the relationship between the power to correctly reject the null models 

and sample size, and are current ranges of sample sizes adequate to detect most non-null 

interactions?  

 

3.3 Methods 

Additive null model 

Within multiple stressor research the form of the additive null model most commonly 

implemented is the factorial iteration of the null model, (namely Hedges’ d), outlined by 

Gurevitch et al., (2000). Hedges’ d, (henceforth referred to as the additive null model), is an 

estimate of the standardised mean difference between the means of the control and 

treatment samples, but also has the benefit of being unbiased by small sample sizes (Hedges 

& Olkin, 1985). The additive null model is calculated by comparing the effect of the stressors 

acting separately to the effect of the stressors acting simultaneously. Within our analysis we 
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also implement this form of the null model (Equation 3.1). The calculation of the additive null 

model depends on three variables, (namely the mean response value (XX), the number of 

replicate measurements (NX), and the standard deviation around the mean (SDX)), with each 

of these variables being taken under the four different treatments, (Control (C), Stressor A 

only (A), Stressor B only (B), Stressors A & B (I)). The calculation of the additive effect size, 

(ESAdd), is shown by Equation 3.1.1, with the algebraic notation used as described above. The 

pooled sampling standard deviation is denoted by s, (Equation 3.1.2); while J(m) (Equation 

3.1.3) is the small sample bias correction factor, often used where there is a small number of 

replicates per interaction (Borenstein et al., 2009). For each additive effect size a 

corresponding variance, (VAdd), standard error, (SEAdd), and confidence intervals, (CIAdd), are 

calculated by Equations 3.1.4 – 3.1.6. Here, we set the significance level to 0.05 (Zα/2 = 1.96), 

hence 95% confidence intervals are calculated. 

3.1.1)                                                                                                         𝐸𝑆𝐴𝑑𝑑  =  
𝑋𝐼 − 𝑋𝐴 − 𝑋𝐵 + 𝑋𝐶

𝑠
∙ 𝐽(𝑚) 

3.1.2)     𝑠 =   √
(𝑁𝐼 − 1) ∙ (𝑆𝐷𝐼)

2  +  (𝑁𝐴 − 1) ∙ (𝑆𝐷𝐴)
2  + (𝑁𝐵 − 1) ∙ (𝑆𝐷𝐵)

2  +  (𝑁𝐶 − 1) ∙ (𝑆𝐷𝐶)
2

𝑁𝐼 + 𝑁𝐴 + 𝑁𝐵 +𝑁𝐶 − 4
 

3.1.3)                                                                                   𝐽(𝑚)  =   1 − 
3

4 ∙ (𝑁𝐼 + 𝑁𝐴 + 𝑁𝐵 +𝑁𝐶 − 4) − 1
 

3.1.4)                                               𝑉𝐴𝑑𝑑  =   (𝐽(𝑚))
2 ∙ (

1

𝑁𝐼
+
1

𝑁𝐴
+
1

𝑁𝐵
+
1

𝑁𝐶
+

(𝐸𝑆𝐴𝑑𝑑)
2

2(𝑁𝐼 + 𝑁𝐴 + 𝑁𝐵 + 𝑁𝐶)
) 

3.1.5)                                                                                                                                              𝑆𝐸𝐴𝑑𝑑  =   √𝑉𝐴𝑑𝑑 

3.1.6)                                                                                                                                    𝐶𝐼𝐴𝑑𝑑  =   𝑍𝛼/2 ∙ 𝑆𝐸𝐴𝑑𝑑  

 

Multiplicative null model 

We implement the form of the multiplicative null model detailed by Lajeunesse (2011). 

Despite a somewhat similar appearance to the additive null model, the multiplicative null 

model applies a logarithmic transformation to the measured response values (Equation 3.2.1) 

and again incorporates measurements of the same variables for all four treatments used in 

the additive null model (notation used is the same as above). The multiplicative effect size, 

(ESMul), is calculated by Equation 3.2.1; while the corresponding variance, (VMul), standard 

error, (SEMul), and confidence intervals, (CIMul), are determined using 3.2.2 – 3.2.4. As above, 
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we set the significance level to 0.05 (Zα/2 = 1.96), hence 95% confidence intervals are 

calculated. 

3.2.1)                                                                                     𝐸𝑆𝑀𝑢𝑙  =   ln(𝑋𝐼) − ln(𝑋𝐴) − ln(𝑋𝐵) + ln(𝑋𝐶) 

3.2.2)                                                                 𝑉𝑀𝑢𝑙  =   
(𝑆𝐷𝐼)

2

(𝑋𝐼)
2 ∙ 𝑁𝐼

+
(𝑆𝐷𝐴)

2

(𝑋𝐴)
2 ∙ 𝑁𝐴

+
(𝑆𝐷𝐵)

2

(𝑋𝐵)
2 ∙ 𝑁𝐵

+
(𝑆𝐷𝐶)

2

(𝑋𝐶)
2 ∙ 𝑁𝐶

 

3.2.3)                                                                                                                                              𝑆𝐸𝑀𝑢𝑙  =   √𝑉𝑀𝑢𝑙 

3.2.4)                                                                                                                                    𝐶𝐼𝑀𝑢𝑙  =   𝑍𝛼/2 ∙ 𝑆𝐸𝑀𝑢𝑙 

 

Interaction classifications 

When using either the additive or multiplicative null models, individual interactions are able 

to be classified into one of four classes depending upon both effect sizes (Equations 3.1.1, 

3.2.1) and corresponding confidence intervals (Equations 3.1.6, 3.2.4). Using the naming 

conventions of (Orr et al., 2020), the classifications are: null, antagonistic, synergistic, or 

reversal interactions (Figure 3.1). An interaction was classed as null, regardless of whether 

the effect size was positive or negative, if the 95% confidence intervals for that interaction 

overlapped zero. Interactions were classed as synergistic if the effect size was positive and 

the 95% confidence intervals for that interaction did not overlap zero. Interactions were 

classed as antagonistic or reversal interactions, if the effect size was negative, and the 95% 

confidence intervals did not overlap zero. Furthermore, for an interaction to be classed as 

antagonistic, the expected and observed interaction effects had to both act in the same 

direction (e.g., for an additive interaction: XI – XC > 0 & XA + XB – 2XC > 0). In contrast, for an 

interaction to be classed as reversal, the expected and observed interaction effects had to 

both act in differing directions (e.g., for an additive interaction: XI – XC < 0 & XA + XB – 2XC > 0). 

Finally, it is important to note that a null interaction classification does not necessarily mean 

that stressors interact in an additive or multiplicative manner. A null classification denotes 

interactions where it was not possible to reject the null hypothesis (i.e., null model), not that 

the additive, or multiplicative, null model was accepted. The method for classifying 

interactions is explored more in Appendix Three. 
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Theoretical framework 

Described below is an overview of the framework used to simulate interaction data for our 

analyses. For full details, including formulae and details of distributions, refer to Appendix 

Three. 

Throughout our analysis we implement a theoretical framework (Burgess et al., 2021) to 

generate population densities analogous to those from empirical experiments. The 

theoretical framework is based upon Lotka-Volterra consumer-resource equations (Heath et 

al., 2014), enabling us to establish food chains of three, four, or five trophic levels and 

determine the densities of populations at equilibrium. Regardless of the length of food chain 

considered, the models contain three distinct types of trophic level. These levels are: i) basal 

trophic level, equivalent to a pool of a limiting nutrient; ii) consumer trophic level, which only 

predates the trophic level directly below, and is only predated upon by the trophic level 

directly above; iii) apex consumer trophic level, which only predates on the trophic level 

directly below, but is not predated upon itself. Both Heath et al., (2014) and Burgess et al., 

(2021) outline these models to a greater degree with additional detailing found there. 

In brief, the food-chain models (and therefore population densities) are governed by the 

densities of the trophic levels and five key parameters; namely attack rate, α; conversion 

efficiency, ε; density independent mortality rate, δ; density dependent mortality rate λ; and 

the basal (i.e., nutrient) input rate ω. The attack rate, αi, denotes the rate at which trophic 

level i feeds upon a resource (trophic level i-1). The conversion efficiency, εi, represents the 

proportion of the consumed resource that is converted into new consumers within trophic 

level i. The density independent mortality rate, δi, represents the background rate at which 

the density of trophic level i is reduced with each model time-step. The density dependent 

mortality rate, λi, increases the mortality rate of a trophic level with increasing population 

density. Finally, the basal input rate, ω, represents the constant rate at which the basal trophic 

level increases in density. 

We aim to investigate how stressors interact to impact the equilibrium densities of trophic 

levels within a theoretical food chain. As with empirical studies of multiple stressor 

interactions, our theoretical framework similarly employs a factorial experimental design. For 

the control treatment, the values of each of the above parameters (for each trophic level) are 
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drawn from pre-determined uniform distributions. Each of these parameters were randomly 

drawn across all trophic levels; hence for example, the value for the conversion efficiency 

parameter at trophic level i is unlikely to be the same as that for trophic level j. Following the 

method used by Burgess et al., (2021) we assume that all the previously described key 

parameters do not vary over time, with the intention of this framework to explore how 

stressors impact equilibrium densities. 

Subsequently, within our theoretical framework, food chains are subjected to stressors by 

altering the value for a single parameter (e.g., α, ε, δ, or ω) for a single trophic level, and 

keeping all other parameters constant under control values. Within these simulations, all 

parameters are equally likely to be selected to be stressed, although a single parameter is 

only ever impacted by one stressor (i.e., two stressors cannot act on the same parameter). 

For the interaction treatment of our experimental design, all parameters were under control 

conditions, except for those which were stressed in the individual treatments which were 

instead assigned their stressed values. Accordingly, for each of the four treatments we 

calculate the equilibrium densities of each trophic level within the food chain, and we use 

these densities as our treatment means to classify the stressor interactions using the null 

models (Equations 3.1 and 3.2, Interaction classifications section). When determining how 

stressors interact to impact populations, we randomly chose one trophic level from the entire 

theoretical food chain, (with the exception of the basal/nutrient trophic level which was never 

selected). Accordingly, our subsequent analysis is centred on individual trophic levels rather 

than entire communities; however, this approach means that the trophic level investigated 

was not always directly impacted by a given stressor but was able to be indirectly impacted 

through cascading effects. 

Implementing the above approach, a dataset comprising of 100,000 interactions was collated. 

These interactions represented approximately equal numbers of equilibrium densities for 

populations from the three different lengths of food chain. The calculation of the equilibrium 

densities for each food chain, across each of the four treatments, was conducted using 

Mathematica v10.4 (Wolfram Research Inc., 2016). In line with the method of Burgess et al., 

(2021), the equilibrium densities of all 100,000 interactions were both stable and greater than 

zero. These 100,000 interactions form the basis for each of subsequent analyses, detailed 

below. 
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Treatment means, treatment uncertainty, and sample sizes 

Question one centres around understanding the additive and multiplicative null models under 

idealised conditions (e.g., in the complete absence of uncertainty, or with infinite sample 

sizes). Such an analysis provides the clearest indication of how the null models differ from 

one another, based solely upon the 100,000 treatment means described above, allowing the 

‘true’ classification of any interaction to be determined. Accordingly, a focus upon treatment 

means allows the conditions under which the results of the null models agree or disagree to 

be better understood. 

Given that the food chain models are solved to a given equilibria, there is an absence of 

uncertainty at this stage. To mirror empirical experiments, we modelled treatment 

uncertainty, in the form of observation error for the equilibrium densities recorded at each 

treatment in each of the 100,000 interactions. In brief, we follow the method of Burgess et 

al., (2021), with each equilibrium density being multiplied by a number drawn from a Gaussian 

distribution with a mean of 1.00 and a standard deviation σ, with this process being repeated 

four times per treatment; with the number of replicates used here mirroring those frequently 

used within empirical experiments. Smaller values of σ will result in a tighter distribution of 

observed mean densities around the true population mean compared to larger values of σ. 

Our approach allows for an intuitive understanding of σ, as we can expect 99.7% of all 

observed treatment densities to fall within 3σ of the true value. We use 250 levels of σ, hence 

referred to as levels of observation error, ranging from 1.0x10-3 to 2.5x10-1 (see Appendix 

Three for more details). We then compute the probability of assigning the true interaction 

classification to each interaction under every level of observation error, thereby investigating 

the ability of each null model to correctly classify interactions in the face of uncertainty 

(Question two).  

To address Question three and investigate the role which sample size plays in the 

determination of interaction classifications, a similar method was employed as for treatment 

uncertainty (see Appendix Three). For three levels of observation error (0.001, 0.01, 0.1) the 

number of replicates per treatment was varied between three and 100, and for each 

combination of sample size and observation error, we computed the frequency of 

interactions that were assigned the ‘true’ interaction classification for each null model (see 

Treatment means). As such, this analysis provides a form of power analysis quantifying how 



Benjamin Joshua Burgess – Doctoral thesis 

 68 

increases in sample size may improve the ability of empirical experiments to detect significant 

interactions. 

 

3.4 Results 

Question one: What are the conditions under which the additive and multiplicative null models 

agree, and disagree, and can we define these conditions from the model formulae? 

Despite testing differing hypotheses, both the additive and multiplicative null models report 

similar frequencies of the different interaction classifications in the absence of any variation. 

Both null models report that antagonistic interactions are the most prevalent (additive 0.493; 

multiplicative 0.519), followed by a slightly reduced number of synergistic interactions (0.485; 

0.462), minimal frequencies of reversal interactions (0.023; 0.020), and a complete absence 

of null interactions (0.000; 0.000). 

The frequencies of the interactions reported suggest a high degree of alignment between 

both null models. However, when considering how individual interactions are classified by 

both null models, it is evident that substantial differences exist (Table 3.1). While the majority 

of interactions are assigned the same classification, over one third of interactions (33.6%) are 

assigned classifications which are null model dependent. This difference is predominately 

explained by interactions being assigned a synergistic classification by one null model and an 

antagonistic class by the other.  

 

Table 3.1: Proportions of interactions classed differently, or the same, across additive and 

multiplicative null models. Shaded boxes indicated the proportion of interactions where both null 

models agree. 

 Additive Null Model 

Synergistic Antagonistic Reversal Null 

Multiplicative  

Null Model 

Synergistic 0.299 0.158 0.005 0.000 

Antagonistic 0.181 0.328 0.010 0.000 

Reversal 0.005 0.007 0.007 0.000 

Null 0.000 0.000 0.000 0.000 
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Question two: To what degree does treatment uncertainty (in the form of observation error) 

reduce the ability of both the additive and multiplicative null models to correctly infer the ‘true’ 

interaction classification? 

As shown by Figure 3.2, both null models are sensitive to data uncertainty in the form of 

observation error. The frequency of null interactions rapidly increases accounting for over 

50% of all interactions for both null models by σ~0.005 (i.e., when nearly all sampled 

treatment means are within 1.5% of the true values). Hence even at small levels of 

observation error both the additive and multiplicative null models are frequently unable to 

be correctly rejected. Accordingly, under the levels of observation error considered here, it is 

expected that the majority of interactions would be assigned a null interaction class. Indeed, 

as shown for both the additive (Figure 3.2a) and multiplicative (Figure 3.2b) null models, the 

frequencies of synergistic and antagonistic interactions rapidly decline with increasing levels 

of observation error. However, the frequency of reversal interactions is relatively constant, 

regardless of the level of observation error.  
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Figure 3.2: The effect of observation error on the frequency of interaction classifications, showing how 

the proportions differed from those in the absence of observation error, using an additive null model 

(a) and multiplicative null model (b). Proportions of the different interaction classes are for the 100,000 

simulated interactions at each level of observation error. Pink line indicates null interactions. Orange 

line denotes reversal interactions. Blue line indicates synergistic interactions. Red line denotes 

antagonistic interactions.  

 

Question three: What is the relationship between the power to correctly reject the null models 

and sample size, and are current ranges of sample sizes adequate to detect most non-null 

interactions?  

As shown by Figure 3.3, increasing sample size leads to a higher rate of correctly rejecting 

both the additive and multiplicative null models (i.e., an increase in the true positive rate). 

However, even for large sample sizes, it can be difficult to detect the ‘true’ interaction if 

observation error is anything other than minimal. Moreover, at lower levels of observation 

error (i.e., 0.001 or 0.01) the multiplicative null model is correctly rejected more frequently 
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than the additive null model; however, the additive null model is correctly rejected, more 

frequently, for the highest level (0.1) of observation error. Our results suggest that increasing 

those sample sizes frequently observed in multiple stressor studies, will result either null 

model being correctly rejected more frequently.  

 

 

Figure 3.3: Frequency of interactions that are correctly classified (i.e., true positive rate) for a range of 

different treatment replicates. Three different levels of observation error are considered (0.001, 0.01, 

0.1), with these being indicated by longdashed, dashed, and dotted lines respectively. Yellow lines 

denote use of an additive null model, purple lines denote use of a multiplicative null model. 

 

By combining and rearranging Equations 3.1.1 – 3.1.6, it is possible to express the additive 

effect size as a function of sample size (Inequality 3.1). This inequality shows that for a given 

sample size, there is a minimum additive effect size value which must be exceeded in order 

for the interaction to be significantly different to the null model (i.e., critical effect size; see 

Lakens, 2021), and therefore be correctly classified as being non-null.  
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(Inequality 3.1) 

Unfortunately, the multiplicative null model does not yield such an inequality for calculating 

the critical effect size, due to a more complex structure in the calculation of the variance. 

However, we can instead estimate the relationship between the critical effect size and sample 

size using our simulated data. Figure 3.4 illustrates the relationship between effect sizes and 

samples sizes for both the additive (Figure 3.4a) and multiplicative (Figure 3.4b) null models 

using our simulated data. For the additive null model, there is a clear threshold (Inequality 

3.1) with points falling within this threshold being assigned a null classification, with those 

which fall outside this threshold given a synergistic, antagonistic, or reversal classification. In 

contrast, for the multiplicative null model it is apparent that a similar, general, relationship 

exists between sample size and whether an interaction is assigned a null classification (Figure 

3.4b). However, the lack of a sharp threshold of critical effect sizes for the multiplicative null 

model (Figure 3.4b) indicates that the relationship of this threshold to sample size is more 

complex than for the additive null model (Figure 3.4a; Inequality 3.1).  
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Figure 3.4: The relationship between treatment sample size and effect size for the additive (a) and 

multiplicative (b) null models. For each treatment sample size (3-100), points are plotted from 

simulations where an observation error of 0.01 was used. Pink points illustrate interactions that are 

classified as null (i.e., effect sizes not statistically different to zero), while black points denote 

interactions that are not classified as being null (i.e., effect size are statistically different to zero and a 

classification of antagonistic, reversal, or synergistic). The yellow line (Figure 3.4a) denotes the critical 

effect size threshold (Inequality 3.1) that interaction effect sizes must exceed in order for an interaction 

to be significantly different to zero (and hence classified as being non-null) under the additive null 

model. As in the methods, 95% confidence intervals were calculated (i.e., for Inequality 3.1, Zα/2 = 1.96). 
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3.4 Discussion 

While differences between null models have been discussed, in the context of multiple 

stressors, for many years (Folt et al., 1999; Soluk & Collins, 1988), we still lack a strong 

understanding of how they relate to one another or how robust they are to variation in 

sample measurements, or sample size. Here, we help rectify this by comparing the widely 

implemented additive and multiplicative null models and their abilities to infer the correct 

stressor interaction types in the face of multiple sources of uncertainty. Overall, our results 

illustrate the following points. Firstly, despite apparent similarities in interaction 

classifications, there are considerable differences between the additive and multiplicative null 

models (including both their results and the hypotheses they test), and as such it is difficult 

to draw direct comparisons between them. Secondly, both models are very sensitive to 

uncertainty in the estimation of the stressor effects, and it can be very hard to reject the null 

interaction even with very small measurement errors. This may mean many non-null 

interactions (especially synergistic and antagonistic interactions) may have been missed in 

previous experiments, though the null models appear to be robust in their ability to detect 

reversal interactions regardless of treatment uncertainty. Thirdly, our results show the key 

role that sample size plays in determining whether an interaction is significantly different to 

either null model. Indeed, it is clear that larger sample sizes allow smaller significant effects 

to be observed. However, for sample sizes most commonly implemented within ecological 

experiments it is evident that only those interactions with uncommonly large effects will ever 

be classified as being different to the null model. Overall, we conclude that from an analytical 

perspective there is not an obviously better null model, and that null model choice can 

therefore be based upon biological arguments without undue concerns over loss of statistical 

power. 

 

Empirical implications  

Given the threat that multiple stressors pose to natural systems (Lindenmayer et al., 2020), 

there is a pressing need to consider how stressors interact when implementing conservation 

initiatives (Didham et al., 2007), as this can help inform decisions on when, where and how 

to act (Brown et al., 2013; Côté et al., 2016). However, it is equally (if not more) important to 
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accurately identify the classification of any interaction that is occurring. Incorrectly assuming 

how stressors interact can lead to conservation actions either being ineffective or, in some 

situations, detrimental to the systems that they aim to preserve (Brown et al., 2013). Our 

results imply that synergistic, antagonistic, and reversal interactions may be frequently 

missed due to even low levels of uncertainty or small sample sizes, with this having 

consequences for management strategies. Ultimately, treatment means, uncertainty, and 

sample sizes all impact the calculation of effect sizes, variances (and hence the classification 

of interactions) in differing ways. Accordingly, an understanding of these relationships can 

both aid the interpretation of results and allow experimental approaches to be adjusted to 

ensure they are capable of answering the study question. 

As shown by the equations for both the additive (Equations 3.1.1 – 3.1.3) and multiplicative 

(Equation 3.2.1) null models, treatment means are a crucial component in the calculation of 

effect sizes, and hence the classifying of interactions. However, the two null models we have 

focussed on are clearly different, hence it should be no surprise that they lead to different 

interaction classifications. This difference in the results of null models is well-documented 

within fields such as pharmacology (Tang et al., 2015), where the class of an observed 

interaction may be prefixed by the null model implemented (e.g., Loewe antagonism) (Greco 

et al., 1992). However, Tang et al., (2015) note the difficulties that arise when interactions are 

classified differently across null models, a phenomena we similarly show with the frequency 

of null model dependent interactions. Currently, for multiple stressor ecology, there is no 

equivalent framework for interpreting, or reporting, results. This discrepancy should be 

remedied, given that the ambiguous usage of terms (such as synergistic or antagonistic 

interactions) is potentially hindering interpretation of multiple stressor interactions, both 

within and across disciplines (Dey & Koops, 2021; Orr et al., 2020). Additionally, given the 

contrasting nature of these null models, we have derived algebraic inequalities (Inequalities 

S1, S2) that can explain differences in interaction classifications as a function of treatment 

means. These inequalities provide useful insights regarding the values of treatment means 

under which interactions are classified differently between null models, although these are 

only for the scenario of no treatment uncertainty. Ultimately, we echo previous calls (Schäfer 

& Piggott, 2018) to thoroughly consider the choice of null model to be implemented within a 
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study, especially given that it is difficult to compare studies which implement different null 

models (see Null Model Selection). 

Treatment uncertainty (in the form of treatment standard deviations) impacts the calculation 

of additive effect sizes (Equations 3.1.1 – 3.1.3) and variances (Equation 3.1.4) as well as the 

variance of multiplicative effect sizes (Equation 3.2.2). As shown by Figure 3.2, under 

ecologically plausible levels of observation error, we would expect the majority of interactions 

to be assigned a null interaction classification (i.e., we are unable to reject the null model). 

Indeed, the dominance of null interactions has previously been observed in several meta-

analyses (e.g., Burgess et al., 2021; Lange et al., 2018; Stephens et al., 2013), illustrating that 

the results we present here are likely consistent across theoretical and empirical analyses. It 

is important to note that while uncertainty may arise due to technical variation (e.g., 

observation error), forms of biological variation such as heterogenous environmental factors 

or genetic variation may also contribute to any uncertainty (Higdon, 2013).  

While treatment means and uncertainty are unknowns that an experimenter is trying to 

estimate, sample size is the one factor that can, usually, be controlled and built into the 

experimental design. This arguably means that sample size is the most important of the three 

components to consider when attempting to increase the statistical power of any experiment. 

As our results show, increases in statistical power can be made by increasing the number of 

experimental replicates, but, within our analyses, the improvements are not dramatic (Figure 

3.3). These results corroborate earlier work that investigated the effect of sample size on 

models to detect interactions in epidemiological studies and found that statistical power can 

be very low under commonly encountered situations, and that the power converged very 

slowly with sample size (Greenland, 1983). 

Here, we provide a closed form solution (Inequality 3.1) that gives the critical effect size value 

required to be able to correctly reject the additive null model for a given sample size. As 

verified by our simulations, additive effect sizes with magnitudes greater than this threshold 

will be assigned a non-null (i.e., antagonistic, reversal, synergistic) interaction class, while any 

effect size with a magnitude less than the threshold will be assigned a null classification. The 

derivation of this additive critical effect size threshold has major implications for the design 

of multiple stressor experiments. Inequality 3.1 allows researchers to conduct an a-priori 

analysis to determine the critical (i.e., minimum) additive effect size required to reject the 
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null hypothesis (i.e., null model) for their experimental design. Indeed, such a finding allows 

researchers to determine whether their experimental design will only enable them to 

statistically distinguish exceptionally large effects or achieve sufficient power to determine 

the minimum effect size a researcher wishes to detect (Lakens, 2021). As previously 

highlighted, the empirical experiments included in three recent meta-analyses (Burgess et al., 

2021; Gomez Isaza et al., 2020; Seifert et al., 2020) predominately have eight or fewer 

replicates per treatment, with this meaning that only exceptionally large effects are able to 

be assigned a non-null interaction classification. Unfortunately, there is no closed form 

solution that we could find for the multiplicative null model, but our simulations suggest a 

similar pattern of effect size and sample size, albeit with effect sizes being on a different scale 

(Figure 3.4).  

While some researchers may wish for a heuristic guide, or ‘rule of thumb’, regarding sample 

sizes, such guidance may actually be unhelpful or even hinder experiments (Lakens, 2021). 

Overall, the minimum sample sizes required by a researcher vary with the question asked or 

hypothesis investigated. For instance, it might be important to measure even a statistically 

small deviation from a null model; hence a high statistical power is required. Alternatively, it 

might only be important to detect when large deviations from a null model occur; here, a 

lower statistical power will suffice. In both scenarios, decisions are made regarding the 

minimum effect size of ecological importance, which dictates the scope of any experiment. 

Resource limitations aside, sample size is an attribute which researchers have explicit control 

over; therefore, it is important that researchers determine, a-priori, whether their 

experimental design is capable of addressing their research question (Lakens, 2021; Mudge 

et al., 2012). However, there may be instances where an experiment has low statistical power, 

sample sizes cannot be increased, but an insight into the effects of interacting stressors is still 

required. In such a situation, statistical power may be increased by raising the level of 

significance (i.e., >0.05), increasing the likelihood of the null hypothesis (i.e., null model) being 

rejected, though the likelihood of Type-I errors will similarly be increased. As shown by Figure 

S3.2 (Supplementary Material), increasing the significance level results in a greater frequency 

of interactions being assigned their ‘true’ interaction classification for both null models, 

across all levels of observation error and number of replicates. Crucially, the altered level of 

significance must be justified, and not arbitrarily chosen (Lakens, 2021). As noted by Lakens 



Benjamin Joshua Burgess – Doctoral thesis 

 78 

(2021), such justification may be provided by either a cost-benefit analysis (see Field et al., 

2004) or a compromise power analysis (see Lakens, 2021). 

 

Null model selection  

Ultimately, the choice of null model is at the discretion of the individual researcher (Tang et 

al., 2015), but knowledge on statistical properties can be an important criterion in deciding 

which null model to use. Given our results indicate a similar level of sensitivity to both 

observation error and sample size we do not argue that either the additive or multiplicative 

null model is obviously better than the other, meaning the user can select a null model based 

upon biologically apposite criteria (see Schäfer & Piggott, 2018).  

While null models are capable of providing insights into the combined effects of interacting 

stressors, it has been suggested that the underlying assumptions of these statistical 

approaches limit their usefulness from an ecological perspective (De Laender, 2018; Schäfer 

& Piggott, 2018). One of the greatest criticisms of the additive null model is that it is capable 

of exceeding a feasible range of effects such that, for example, survival probability could drop 

below 0 or rise above 1 (Folt et al., 1999). This is particularly pertinent when considering 

responses that are bounded within fixed limits (e.g., mortality) (Fournier et al., 2006); as such, 

the use of the multiplicative null model in this scenario can negate the issue of unfeasible 

expectations (Darling & Côté, 2008; Fournier et al., 2006). However, rather than simply 

addressing a weakness of the additive null model, the multiplicative null model is explicitly 

useful in its own right. As noted by Kerkhoff & Enquist (2009), many biological processes (e.g., 

growth and metabolism), are inherently multiplicative; hence, the application of the 

multiplicative null model is perhaps a more ecologically appropriate approach. 

Questions remain as to whether an alternative null model would be more appropriate in any 

given situation, as it may better reflect the varied mechanisms through which stressors induce 

effects. Of the alternatives, the most often discussed is the dominance null model, where the 

predicted effect of multiple simultaneous stressors is simply assumed to be equal to that of 

the individual stressor with the greatest effect (Folt et al., 1999). Here, the dominance null 

model may reflect a protective mechanism, namely cross-tolerance, where the exposure to 

one stressor results in reduced susceptibility to an additional stressor (Todgham & Stillman, 
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2013; Velasco et al., 2019). Furthermore, reviews (Orr et al., 2020; Schäfer & Piggott, 2018) 

have suggested that future research should prioritise null models capable of providing 

mechanistic insights into multiple stressor interactions, for instance by considering the many 

physiological processes which stressors may affect (see Sokolova, 2021). Accordingly, the 

allied fields of toxicology and ecotoxicology may potentially provide methods that may be 

adopted in part (Schäfer & Piggott, 2018). Following this, Tekin et al., (2020) illustrated how 

an adapted toxicological model (Bliss Independence Model; see Bliss, 1939) could be applied 

to multiple stressors in an ecological context. However, it is important to consider that while 

other methods may be more established in their respective fields (e.g., Tekin et al., 2020; see 

Bliss, 1939; Segre et al., 2005; Yeh et al., 2006), within multiple stressor ecology they perhaps 

represent a departure from the more widely implemented null models.  

Finally, understanding how the null models relate to one another is important for drawing 

conclusions based upon results across multiple studies, and also perhaps for null model 

choice, but both of these depend upon an understanding of their statistical power. For 

example, it is clear that the Bliss Independence Model generates different predictions to 

other null models (Tekin et al., 2020), but are the results more robust to changes in sample 

size and measurement error? Two models could report a similar type of interaction for 

different reasons (e.g., a lack of data, or because it is the true interaction), but in most cases 

we do not have any understanding of the data requirements; this represents a fundamental 

issue which we hope future work will address. 

 

Limitations 

Broadly, our results can be grouped into two categories; those that provide general 

insights, and those that are dataset specific. The results based upon algebraic 

relationships (e.g., Inequality 3.1; Figure 3.4) are general and can be applied to any 

dataset, whereas results that depend upon data simulation might be dependent upon the 

distribution of the effect sizes generated by the underlying food chain model. Whilst the 

food chain model used here has been shown to generate ecologically plausible results 

(Burgess et al., 2021), the relationships shown here may differ with other datasets (for 

instance, where a response other than density is considered) which contain differing 
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distributions of effect sizes. Ultimately, we anticipate that many trends will remain across 

different datasets (e.g., the dominance of null interactions at commonly implemented 

sample sizes), though others (e.g., the frequency of antagonistic, reversal, and synergistic 

interactions in the absence of uncertainty) may vary between datasets. 

 

Conclusions  

‘Will my study answer my research question?’ is the most fundamental question a researcher 

can ask when designing a study (Johnson et al., 2015), and its answer requires an 

understanding of the statistical power of the tools at hand. Despite a large amount of effort 

going into determining the ways ecosystem stressors interact, and the development of a 

number of alternative models, there has been little attempt to quantify the statistical power 

of the null models used to classify the interactions. Here we have shown that the commonly 

used additive and multiplicative null models are both very sensitive to measurement error in 

the estimated effects of the stressors, and that it is difficult to reject the null model interaction 

for even large sample sizes. This means there is likely a large number of stressor interactions 

that are truly synergistic or antagonistic, but which are being incorrectly assigned, and 

therefore remain hidden from ecologists. This has deep implications for management 

strategies that might be based on these results, and it also makes it difficult to draw strong 

conclusions from reviews of the experimental literature. There have been calls (Orr et al., 

2020; Schäfer & Piggott, 2018) to move to a more mechanistic understanding of stressor 

interactions. Accordingly, this may mean a shift in the statistical tools that are implemented; 

however, there is a pressing need to understand both the benefits, data requirements, and 

limitations of any analytical approach so that the maximum ecological insight can be gained. 
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Chapter Four – Methodological variation obscures generalities across multiple 

stressor meta-analyses 

 

4.1 Abstract 

Multiple co-occurring stressors affect the majority of freshwater and marine ecosystems. 

However, how these stressors interact to affect ecosystems is not well understood; with 

aquatic meta-analyses revealing few (if any) consistent generalities. Some meta-analyses 

conclude that stressors interact synergistically (greater effect than expected) whilst others 

suggest that multiple stressors combine antagonistically (lesser effect than expected). To 

date, there are no proven explanations for the differences between these meta-analyses. As 

such, we determine whether methodological variation (a currently overlooked facet) is 

responsible for the disparate conclusions between multiple stressor meta-analyses. We 

collate datasets from seven aquatic multiple stressor meta-analyses, which are then analysed 

using a consistent multiplicative null model framework. Our results illustrate that once 

methodological variation is removed, consistent generalities are apparent across all seven 

datasets, with antagonisms dominating and a distinct absence of synergisms. Furthermore, 

by aggregating these individual datasets, we collate the single largest multiple stressor meta-

analytical dataset. Analysis of this aggregated dataset highlights that response metric is an 

ecologically important covariable in determining stressor interactions; with multiple stressors 

affecting density in a more strongly antagonistic manner than either biomass or survival. 

Similarly, multiple stressor interactions are shown to significantly differ between feeding 

groups for the response metric of density, but not biomass. Additionally, we do not observe 

any differences in interactions where the combined effect of stressors is predicted to have a 

positive or negative effect. Our results highlight that methodological variation is likely 

preventing multiple stressor meta-analyses from reaching consistent generalities, indicating 

that researchers must consider the methods used in future analyses. Furthermore, ecological 

variation is likewise undoubtedly important to consider, with our results also highlighting 

where data deficiencies currently exist in multiple stressor research. Finally, our results 

provide important insights for conservation practices which seek to remediate the effects of 

interacting stressors in aquatic ecosystems. 
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4.2 Introduction 

Whilst providing numerous ecosystem services (Sala et al., 2021; Smale et al., 2019; Sterner 

et al., 2020), such as the provision of food resources (Bernhardt & O’Connor, 2021; Costello 

et al., 2020), aquatic ecosystems are threatened by a multiplicity of stressors (Barbarossa et 

al., 2021; O’Hara et al., 2021; Su et al., 2021). Climate change (Trisos et al., 2020), habitat 

alteration (Best, 2019), invasive species (Diagne et al., 2021), and pollution (Johansen et al., 

2017) are examples of well-documented stressors which are capable of impacting individual 

organisms (Sokolova, 2021) through to entire ecosystems (Marshall et al., 2017), as well as 

their functions (Arrigo et al., 2020) and services (Andrello et al., 2017). However, novel 

stressors are also continuing to emerge (Reid et al., 2019).  

Despite a focus on single stressor experiments (Jackson et al., 2021), freshwater and marine 

ecosystems are frequently subjected to multiple co-occurring, and potentially interacting, 

stressors (EEA, 2018; Halpern et al., 2015; Ormerod et al., 2010). However, predicting how 

stressors combine to affect these ecosystems is challenging (Hodgson & Halpern, 2019), with 

the combined effect of stressors often based upon the effects of individual stressors. 

Accordingly, individual stressor effects are estimated by measuring one or more biological 

responses (e.g., population densities or individual growth rates), and comparing this to a 

control scenario without the stressor present (e.g., Griffith et al., 2012). Null models, such as 

the additive or multiplicative null models (see Folt et al., 1999; Sih et al., 1998; Soluk & Collins, 

1988), are often then used to determine an expected combined effect of stressors based upon 

single stressor impacts (Burgess et al., 2021). However, the observed effect of interacting 

stressors is capable of deviating from the null model expectation (sometimes referred to as 

an ‘ecological surprise’; sensu Paine et al., 1998) leading to pairs of stressors interacting in 

one of four different ways (Figure 4.1). Specifically, the observed effect of interacting 

stressors can (i) exceed that predicted by the null model (synergistic interaction); (ii) equal 

the predicted effect (null interaction); or be less than predicted, with either (iii) combined 

effects having the same polarity as the individual effects (antagonistic interaction), or (iv) the 

or the combined effects having different polarities to the individual effects (reversal 

interaction). Determining how stressors interact represents one of the grand challenges 

facing ecologists (Fleishman et al., 2011; Hodgson & Halpern, 2019). However, addressing this 

grand challenge is potentially complicated by stressors interacting in contrasting ways across 
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different response metrics. Indeed, it has been shown that, within a theoretical freshwater 

system, the same combination of stressors can result in additive interactions for body size 

and population biomass, synergistic interactions for abundance and resource processing, and 

antagonistic interactions for reproduction rates (Galic et al., 2018). 

 

Figure 4.1: Graphical illustration of interaction types for a given response metric. Yellow and red bars 

denote the change in a response metric as a consequence of individual stressors, while the expected 

interactive effect of these stressors (under a multiplicative null model) is shown by the orange bar. 

Compared to this multiplicative expectation, examples of synergistic (light grey), null (white), 

antagonistic (dark grey), and reversal (black) interactions are shown. Differences in directionality of 

stressor effects are shown between Figure 4.1a (positive) and Figure 4.1b (negative). 
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Whilst ecosystems across realms are affected by co-occurring stressors (Vinebrooke et al., 

2004), there is growing evidence that aquatic ecosystems are particularly at risk to the effects 

of interacting stressors (e.g., Crain et al., 2008; Jackson et al., 2016). Indeed, freshwater 

species have experienced an average decline in population abundances of 84% since 1970 

(WWF, 2020), with these declines greater than those observed for terrestrial species 

(Dudgeon, 2019). Such declines are severe given that rivers, reservoirs, and lakes cover 2.3% 

of the Earth’s surface (Lehner & Döll, 2004) yet freshwater ecosystems contain 9.5% of the 

animal species found on Earth (Balian et al., 2008). Furthermore, 32% of all freshwater species 

are threatened with extinction, compared to the 24% of terrestrial species under threat 

(Collen et al., 2014). Similarly, multiple interacting stressors have been identified as an 

intensifying threat which endangers freshwater ecosystems (Reid et al., 2019). Likewise, 

despite covering a much greater surface area than freshwater environments, marine 

ecosystems are similarly at risk from multiple stressors (Halpern et al., 2019); indeed, 

between 1970 and 2012, marine species have undergone average declines in population 

abundances of 36% (WWF, 2016). Only a small minority of the ocean (2.3%) is not affected by 

multiple stressors (Halpern et al., 2015), with at-risk species facing negative effects of 

stressors across an average of 57% of their range (O’Hara et al., 2021). Furthermore, the 

negative impacts of stressors are intensifying across many at-risk species’ ranges (O’Hara et 

al., 2021) while some marine environments are subjected to over fifteen co-occurring 

stressors (Côté et al., 2016). 

Given the sheer number of stressors and their interactions, the plethora of potentially 

impacted species and communities, and the myriad of potential response metrics, testing 

every potentially important combination of anthropogenic and ecological variables in aquatic 

ecosystems is an unfeasible proposition (Côté et al., 2016). Nevertheless, empirical studies 

investigating multiple stressor interactions can provide important insights into whether 

conservation measures will be effective for a given ecosystem (Brown et al., 2013). However, 

whether the results of these empirical studies are applicable to different ecosystems or 

alternative combinations of stressors is not necessarily clear. As such, an alternative approach 

to understand multiple stressor interactions is to search for generalities which are applicable 

to broad categories of stressors, ecosystems, or response metrics (Côté et al., 2016). To date, 

meta-analyses have been the primary tool used to search for these generalities (Côté et al., 
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2016). Such meta-analyses vary in the stressor combinations (e.g., Bancroft et al., 2008; 

Gomez Isaza et al., 2020), realms (e.g., Jackson et al., 2016; Wu et al., 2011), taxonomic groups 

(e.g., Egea-Serrano et al., 2012; Seifert et al., 2020), or response metrics (e.g., Burgess et al., 

2021; Darling & Côté, 2008) that they consider, with all collating data from multiple empirical 

studies.  

However, while it may be anticipated that multiple meta-analyses will often reach the same 

conclusions, this has not occurred to date. As shown by Table 4.1, several meta-analyses for 

aquatic ecosystems report overall synergistic effects (e.g., Bancroft et al., 2008; Crain et al., 

2008), whilst others report overall antagonistic effects (e.g., Burgess et al., 2021; Jackson et 

al., 2016). Similar patterns are also observed for the frequency of individual interaction 

classifications, with some meta-analyses reporting that null interactions dominate (e.g., 

Burgess et al., 2021; Lange et al., 2018), whilst others report that antagonisms (e.g., Jackson 

et al., 2016) or synergisms (e.g., Przeslawski et al., 2015) are the most prevalent. Alternatively, 

other meta-analyses report approximately equal frequencies of interaction classifications 

(e.g., Crain et al., 2008; Darling & Côté 2008; Gomez Isaza et al., 2020). Ultimately, the 

differences between meta-analyses are not currently explainable by a consistent ecological 

criterion; as such, few generalities have emerged from multiple stressor meta-analyses (Côté 

et al., 2016). For instance, no congruous patterns have been observed for meta-analyses 

conducted on marine data, though several freshwater meta-analyses have reported 

antagonistic summary interaction classifications (Table 4.1). 
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Table 4.1: Comparisons of meta-data, methods, and main results for selected freshwater (light blue), marine (dark blue), or mixed-realm (black) meta-analyses. 

* denotes that reversal interactions were not distinguished from antagonistic interactions. 

Meta-analysis Study Group 

(Realm) 

Stressor 

combination 

Response metric Organisation level Feeding 

group 

Overall 

Interaction Class 

Individual interactions % 

Null | Syn. | Ant. | Rev. 

Null 

model 

Used in 

analysis 

Bancroft et 

al., (2008) 

Amphibians 

(Freshwater) 

UV-B and 

second stressor 

Survival Population Heterotroph Synergistic Not reported Multi. No 

Crain et al., 

(2008) 

Multiple 

(Marine) 

Multiple Density, growth, 

survival, etc. 

Community, 

population, organism 

Autotroph, 

heterotroph 

Synergistic 26 | 36 | 38 | * Add. Yes 

Darling & 

Côté, (2008) 

Multiple 

(Multiple) 

Multiple Survival Population Heterotroph Not reported 23 | 35 | 42 | * Add. No 

Harvey et al., 

(2013) 

Multiple 

(Marine) 

Temperature & 

CO2 

Calcification, growth, 

survival, etc. 

Community, 

population 

Autotroph, 

heterotroph 

Not reported  

 

Not reported Multi. Yes 

Przeslawski et 

al., (2015) 

Embryo / Larvae 

(Marine) 

Multiple Development, 

growth, survival, etc. 

Population, organism Autotroph, 

heterotroph 

Not reported 

 

17 | 65 | 17 | * Add. Yes 

Jackson et al., 

(2016) 

Multiple 

(Freshwater) 

Multiple Biomass, density, 

survival, etc.  

Community, 

population, organism 

Autotroph, 

heterotroph 

Antagonistic 17 | 28 | 41 | 15 Add. Yes 

Lange et al., 

(2018) 

Fishes 

(Freshwater) 

Multiple Biomass, growth, 

survival, etc. 

Population, organism Heterotroph Antagonistic 80 | 3 | 17 | * Add. Yes 

Gomez Isaza 

et al., (2020) 

Multiple 

(Freshwater) 

Nitrate and 

second stressor 

Survival Population Heterotroph Not reported 33 | 25 | 42 | * Multi. Yes 

Seifert et al., 

(2020) 

Phytoplankton 

(Marine) 

Multiple Growth Population Autotroph Not reported  

 

Not reported Add. No 

Stockbridge et 

al., (2020) 

Seagrasses 

(Marine) 

Multiple Biomass, mortality, 

survival, etc. 

Population Autotroph Not reported 57 | 36 | 6 | * Add. No 

Burgess et al., 

(2021) 

Multiple 

(Freshwater) 

Multiple Biomass, density Community, 

population 

Autotroph, 

heterotroph 

Antagonistic 82 | 2 | 10 | 5 Add. Yes 
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These disparate results may be attributed to variation in meta-analyses that is based upon 

either (i) data or (ii) methodology. Data-based variation includes meta-analyses analysing 

contrasting ecological data (e.g., differing response metrics, taxonomic groups, or stressor 

combinations) and is often the most commonly considered source of variation between meta-

analyses. However, methodological variation between meta-analyses represents a previously 

overlooked facet. Some methodological differences are easily apparent, such as whether the 

meta-analysis employs an additive or multiplicative null model (see Table 4.1); with these null 

models having previously been shown to differ from one another in their underlying 

assumptions and results (Chapter Three). Similarly, alternative frameworks (e.g., Jackson et 

al., 2016; Piggott et al., 2015) are sometimes used to classify interactions. As such, despite 

being oft compared, it should not be expected that meta-analyses employing different null 

models, or interaction classification frameworks, should return the same results.  

A final less evident source of methodological variation is that meta-analyses may employ 

differing versions of the same null model. For instance, Darling & Côté (2008), Hillebrand 

(2002), Siviter et al. (2021) and Yue et al. (2017) all employ an additive null model; however, 

each meta-analysis calculates the additive null model using different equations. For instance, 

Hillebrand (2002), Siviter et al. (2021), and Yue et al. (2017), all use variants of the additive 

null model outlined by Gurevitch et al. (2000) (Hedges’ d); whilst Darling & Côté (2008), 

implement an entirely different effect size metric. Similarly, contrasting versions of the 

multiplicative null model are also utilised in different meta-analyses (e.g., Darling & Côté 

2008; Dey & Koops, 2021; Hawkes & Sullivan, 2001; Rosenblatt & Schmitz, 2014). Accordingly, 

the extent to which the methodological variation between meta-analyses impacts the results 

and conclusions of these studies is currently unknown. Here, we attempt to determine 

whether methodological variation is one of the primary drivers of these differences by testing 

the below hypothesis. 

Hypothesis one: Elimination of methodological variation results in minimal differences in both 

interaction classification frequencies and summary effect sizes between meta-analytical 

datasets. 

In order to test this hypothesis, seven different meta-analyses, all considering the impacts of 

multiple stressors in aquatic systems (see Table 4.1), were collated and individually analysed 

using the same consistent framework utilising the multiplicative null model. Based upon a 
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previous analysis (Hungate et al., 2009), it was our expectation that methodological variation 

would be responsible for some, but not all, of the differences between meta-analyses.  

Additionally, the aggregation of these datasets provides an opportunity to analyse the single 

largest meta-analytical dataset on the effects of multiple stressors on aquatic systems. 

Accordingly, this large-scale dataset was then used to test three simple hypotheses, based on 

ecological rationale, regarding differences in interacting stressor effects between response 

metrics (Hypothesis two), feeding groups (Hypothesis three) and the expected direction of 

effects (Hypothesis four). 

Stressors are capable of affecting multiple different response metrics (e.g., density, growth, 

or survival) (Kroeker et al., 2013); however, given that stressors affect disparate physiological 

pathways, response metrics can be impacted in contrasting ways (Segner et al., 2014). For 

example, stressors may swiftly affect physiological responses, though response metrics such 

as growth may only be substantially impacted by chronic stressors (Lange et al., 2018). 

Similarly, compensatory dynamics are also capable of moderating stressor effects (Jackson et 

al., 2016). For instance, at the community level, a reduction in the biomass of one species may 

be offset by an increase in the biomass of another (Ives & Cardinale, 2004); however, such 

compensatory dynamics may not necessarily occur where response metrics are measured at 

lower levels of ecological organisation (e.g., survival). Whilst these processes all modify the 

effects of single stressors, they likewise influence how stressor interactions affect different 

response metrics. Indeed, stressor interactions have previously been shown to vary between 

physiological and survival metrics in freshwater fishes (Lange et al., 2018).  

Accordingly, multiple stressor interactions are potentially capable of varying across response 

metrics, with such differences being either contrasting interaction classifications (e.g., 

antagonisms or synergisms) or differing interaction strengths between response metrics. 

Based upon the above ecological processes, our expectation is that multiple stressor 

interactions will vary across response metrics; however, in line with recent analyses (Chapter 

Three) we anticipate that these interactions are unlikely to be synergistic. As such, the 

following hypothesis was tested. 

Hypothesis two: The effects of multiple stressors significantly differ across response metrics. 
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Multiple covariables have been purported as being important in determining stressor 

interactions, though few have been found to be consistently important across meta-analyses 

(Côté et al., 2016). However, feeding group (e.g., autotrophs or heterotrophs) is one such 

covariate which is often reported as moderating stressor interactions; although the exact 

nature of this relationship may vary (e.g., Crain et al., 2008; Jackson et al., 2016). While 

differences between feeding groups are readily apparent, such physiological disparities 

between autotrophs and heterotrophs may result in differing biological mechanisms being 

affected by stressors (Bracewell et al., 2019). Given differences in physiology and stressor 

modes of action, it is likely that multiple stressors will affect autotrophs and heterotrophs in 

a divergent manner. Indeed, as before, such effects could be differences in either observed 

interaction classifications, or the relative strength of any interaction. 

To date, meta-analyses have primarily investigated the role of feeding group in isolation, 

without consideration of other potentially important covariates. Instead, we investigate 

whether interactions differ between feeding groups across response traits. To our knowledge, 

such an analysis has not previously been conducted. However, given that stressors can affect 

differing physiological processes (Bracewell et al., 2019), our expectation is that stressor 

interactions will differ between feeding groups for a given response metric. Accordingly, we 

test the following hypothesis.  

Hypothesis three: For a given response metric, the effect of multiple stressors significantly 

differs between autotrophic and heterotrophic feeding groups. 

Despite some differences in nomenclature (Orr et al., 2020), it is widely known that stressors 

are capable of inducing either positive, or negative, effects upon an ecosystem (Kroeker et 

al., 2017). Indeed, a stressor which has a negative effect on one species may have a directly, 

or indirectly, positive effect on another species (Piggott et al., 2015). As such, the combined 

effect of two stressors can also have either a positive or negative impact, with it possible to 

calculate an expectation for the combined effect of two interacting stressors based upon their 

individual effects (see Section 4.3).  

However, to our knowledge, there has been limited research to determine whether the effect 

of interacting stressors differs depending upon whether a positive or negative combined 

effect is expected. Should we expect interactions, where a positive combined effect is 
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predicted, to be synergistic? Or should we anticipate interactions, where a negative combined 

effect is predicted, to be antagonistic? To date, there is no guidance as to whether we should 

expect interactions to vary with the predicted direction of combined stressor effects.  

Our naïve expectation was that interactions would not vary with the predicted direction of 

combined effects. Instead, we anticipate that response metric and feeding group may instead 

be more important in determining stressor interactions; though the lack of previous 

experiments or theoretical underpinnings provide no support, or counterbalance, to our 

expectation: 

Hypothesis four: For a given response metric, the effects of multiple stressors will not 

significantly differ between stressor interactions which have an expected negative, or positive, 

effect. 

 

4.3 Methods 

Data collation 

Seven multiple stressor meta-analyses were selected, with three and four datasets from the 

marine (Crain et al., 2008; Harvey et al., 2013; Przeslawski et al., 2015) and freshwater realms 

(Burgess et al., 2021; Gomez Isaza et al., 2020; Jackson et al., 2016; Lange et al., 2018) 

respectively. Each of these meta-analyses consider different combinations of covariates 

(Table 4.1), such as stressor combination and response metric. If the datasets for each meta-

analysis were not publicly available, the corresponding author for each study was contacted. 

An additional marine dataset on phytoplankton growth (Seifert et al., 2020) was initially 

considered for inclusion within this analysis. However, given the logarithmic transformation 

applied to this data, and the corresponding challenges in inferring null model results from 

logarithmically transformed data (Griffen et al., 2016), the inclusion of this dataset was 

decided against. 

For hypothesis one, each of the seven meta-analytical datasets were kept as close to those 

used in the original analysis for each meta-analysis as possible. However, the data for each 

interaction was compared to original source for the data with any numerical issues that were 

identified being rectified (see Table 4.2).   
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Table 4.2: Examples of the data quality issues encountered within the datasets, alongside their impacts 

upon results and remedies. 

Issue Impact Remedy 

Numeric values for means, 

standard deviations, or 

sample sizes are missing. 

Effect sizes, variances, and confidence 

intervals cannot be calculated. The data 

will not be able to be analysed. 

Determine whether the missing 

data can be reextracted from the 

original data source. 

Reported standard 

deviations actually represent 

other error metrics (e.g. 

standard error or 95% 

confidence intervals). 

Effect size variances and confidence 

intervals are incorrect. Potential to 

alter the reported interaction 

classification and impact the summary 

effect size. 

Determine whether standard 

deviations can be reextracted from 

the original data source.  

Reported means actually 

represent other metrics (e.g. 

medians, or model 

coefficients). 

Effect sizes, variances, and confidence 

intervals are incorrect. The reported 

interaction classification may differ, the 

summary effect size will be impacted. 

Determine whether means can be 

reextracted from the original data 

source. 

Controls, single stressor, and 

combined stressor 

treatments are provided in 

the wrong order. 

Effect sizes are incorrect. Potential to 

alter the reported interaction 

classification and impact the summary 

effect size. 

Compare the data for each 

treatment to the original data 

source. 

Technical, as opposed to 

biological, replicates are 

reported (i.e., pseudo-

replication is occurring). 

Effect size variances and confidence 

intervals are incorrect. Potential to 

alter the reported interaction 

classification and impact the summary 

effect size. 

Compare the number of replicates 

for each treatment to the original 

data source. Methods should also 

be checked to ensure that 

experimental replication occurs. 

Numeric values are 

incorrect. 

Effect sizes, variances, and confidence 

intervals are incorrect. The reported 

interaction classification may differ, the 

summary effect size will be impacted. 

Compare the numeric values for 

each treatment to the original data 

source. 

Reported data has been 

transformed (e.g., 

logarithmic transformation). 

Effect sizes, variances, and confidence 

intervals are incorrect. The null model 

assumptions are not met. 

The data may be able to be used if 

the transformation can be 

reversed.  

 

Data aggregation 

So as to address hypotheses two - four, the seven individual meta-analytical datasets were 

combined into a single dataset (hence referred to as the aggregated dataset). While the 

aggregation of multiple meta-analyses has previously been conducted for ecological systems 
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(e.g., Hillebrand et al., 2020) such an approach has not previously been conducted for multiple 

stressor meta-analyses.  

Across each of the seven datasets, multiple categorical variables were collated, namely: 

realm, response metric, stressor combination, feeding group, and organisation level. As 

different meta-analyses may classify categorical variables in contrasting ways, a single 

consistent framework was used to classify these variables which involved consulting the 

original source of the data (see Appendix Four). Despite data for multiple categorical variables 

being collated, these variables were not subsequently analysed. This is due to the analysis 

being limited to a few, core, hypotheses as recommended to reduce any potential issues with 

multiplicity (Bender et al., 2008; O’Dea et al., 2021). 

Overall, once duplicated interactions were removed, the aggregated dataset comprised 821 

interactions, accounting for twelve different response metrics. For hypotheses two – four, our 

analyses solely focussed on the response metrics of biomass, density, and survival. Overall, 

these three response metrics account for the majority (76.0%) of all interactions (see Results; 

Figure 4.3).  

The analysis for hypothesis one uses the meta-analytical datasets as close to their original 

forms as possible. However, for hypotheses two - four, interactions were additionally 

excluded if the following conditions occurred. Firstly, where non-independence of data 

occurred (i.e., multiple metrics were reported for the same study group), data was excluded 

so that density data was prioritised over biomass data, which was in turn prioritised over 

survival data. Secondly, data was excluded if the stressors were not external pressures (e.g., 

interactions where sampling time or stocking density was a stressor were excluded). Finally, 

data was excluded if the means and standard deviations were not reported in a standardised 

manner. Survival data was required to be expressed as proportion survival, whilst biomass 

and density data were required to be untransformed data (e.g., individuals l-1 or mg m-2).  

For hypotheses three and four, the aggregated dataset was then subset, according to each of 

the response metrics, with these subsets hence termed the aggregated biomass, aggregated 

density, and aggregated survival datasets. 
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Multiplicative null model 

The multiplicative null model was selected for this analysis, as it is thought to be more 

ecologically realistic than the additive null model (Schäfer & Piggott, 2018), and has been 

implemented in previous multiple stressor meta-analyses (e.g., Harvey et al., 2013, 

Rosenblatt & Schmitz, 2014). Similarly, the multiplicative null model has a corresponding 

effect size (i.e., factorial response ratio) which is easily understandable, statistically rigorous, 

and mathematically detailed (see Lajeunesse, 2011). Here, the multiplicative null model 

represents the factorial form of the response ratio, comparing the observed effect of multiple 

stressors against that which is expected based upon the effects of individual stressors. The 

calculation of the multiplicative null model is based upon three variables: the mean response 

metric value (XX), the standard deviation around the mean (SDX), and the number of replicate 

measurements (NX). Each of these variables are required for each of the four treatments: 

control conditions (C), stressor A only (A), stressor B only (B), and stressors A and B together 

(I).  

The equation for calculating the multiplicative effect size is shown by Equation 4.1, using the 

notation shown above. For each effect size, corresponding variances (Equation 4.2), standard 

errors (Equation 4.3), and confidence intervals (Equation 4.4) are calculated. Together these 

values are used to classify individual interactions and calculate summary effect sizes (see 

below).  

Prior to interactions being assigned classifications, or the calculation of summary effect sizes, 

directionality (see Figure 4.1) was removed from each interaction. Following a widely used 

method (e.g., Jackson et al., 2016; Siviter et al., 2021), where the expected effect of the 

individual stressors for a given interaction (Equation 4.5) was negative, the sign of the effect 

size for that interaction (Equation 4.1) was inverted. This allows interaction effect sizes to be 

comparable to one another regardless of their directionality. The observed effect of 

interacting stressors was likewise calculated (Equation 4.6). 

4.1)                                                                                               𝐸𝑆 =   ln(𝑋𝐼) − ln(𝑋𝐴) − ln(𝑋𝐵) + ln(𝑋𝐶) 

4.2)                                                                          𝑉 =   
(𝑆𝐷𝐼)

2

(𝑋𝐼)
2 ∙ 𝑁𝐼

+
(𝑆𝐷𝐴)

2

(𝑋𝐴)
2 ∙ 𝑁𝐴

+
(𝑆𝐷𝐵)

2

(𝑋𝐵)
2 ∙ 𝑁𝐵

+
(𝑆𝐷𝐶)

2

(𝑋𝐶)
2 ∙ 𝑁𝐶

 

4.3)                                                                                                                                                              𝑆𝐸 =   √𝑉 
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4.4)                                                                                                                                                   𝐶𝐼 =   𝑍𝛼/2 ∙ 𝑆𝐸 

4.5)                                                                                                          𝐸𝑥𝑝.=  ln(𝑋𝐴) + ln(𝑋𝐵) − 2 ∙ ln(𝑋𝐶) 

4.6)                                                                                                                                 𝑂𝑏𝑠. =   ln(𝑋𝐼) −  ln(𝑋𝐶) 

Throughout this analysis, α (i.e., the level of significance) was set at 0.05, hence Zα/2 = 1.96. 

 

Classification of interactions 

Using the multiplicative null model, a given interaction can be assigned one of four interaction 

classifications based upon its effect size and confidence intervals. By implementing a widely 

used classification system (e.g., Burgess et al., 2021; Jackson et al., 2016) an interaction can 

be assigned either an antagonistic, null, reversal, or synergistic classification (Figure 4.1).  

The classification system uses the following framework to assign each individual interaction a 

classification.  

i) If the 95% confidence intervals overlap zero (i.e., the multiplicative null model 

cannot be rejected), the interaction was assigned a null interaction classification.  

ii) If the multiplicative null model can be rejected (i.e., 95% confidence intervals do 

not overlap zero) and the effect size is positive, then the interaction was assigned 

a synergistic classification.  

iii) If the null model can be rejected, the interaction effect size is negative, and both 

the expected (Equation 4.5) and observed (Equation 4.6) effects have the same 

polarity, the interaction is assigned an antagonistic classification.  

iv) If the null model can be rejected, the interaction effect size is negative, and both 

the expected (Equation 4.5) and observed (Equation 4.6) effects have differing 

polarities, the interaction is assigned a reversal classification. 

 

Vote-counting 

Once all interactions were assigned a classification, a vote-counting method was conducted 

to determine whether the relative proportions of the interaction classes vary between the 

different meta-analytical datasets (hypothesis one). For hypotheses two - four the results of 

this analysis are shown in Appendix Four. 
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Meta-analyses 

In addition to the vote-counting methods, formal meta-analyses were conducted. Here, meta-

analyses allow for a single summary effect size to be obtained for each of the individual meta-

analytical datasets (hypothesis one), and each of the considered response metrics from the 

aggregated dataset (hypothesis two). Similarly, summary effect sizes can be obtained for the 

sub-group analyses across a single response metric (hypotheses three and four). 

Meta-analytical models were implemented using the metafor package (v2.1.0) (Viechtbauer, 

2010), with either random- (hypothesis one) or mixed-effect (hypotheses two - four) models 

being specified. Across all meta-analytical models, we accounted for between- and within-

study variation using random effects. Here, random-effects were specified using a hierarchical 

structure where a unique identifier for the study group of organisms which was nested within 

a unique identifier for each individual study. Similarly, within mixed-effect models, fixed-

effects were specified as a categorical covariate (i.e., response metric, feeding group, or 

expected direction of effects). Across all meta-analytical models, weighting of the individual 

effect sizes occurs with those with lower uncertainty (i.e., lower variances) being given a 

higher weighting within the model.  

For each summary effect size, it was possible to assign a summary interaction classification, 

following a similar procedure to that for individual interactions (see Classification of 

interactions). While synergistic and null summary interaction classifications were assigned in 

the same manner as for individual interactions, it was not possible to differentiate between 

antagonistic and reversal summary interaction classifications. Accordingly, whenever a 

summary effect size was significantly negative, this was assigned an antagonistic summary 

interaction class. As a post-hoc analysis we implemented Wald-type χ2 tests to investigate 

statistically significant differences in summary effects (hypotheses two – four) between pairs 

of factors of interest. 

Several of the meta-analytical datasets included data for multiple intensities of one or more 

stressors. As such, calculations of effect sizes sometimes used the same control resulting in 

covariance across these effect sizes. Accordingly, covariance-variance matrices were induced 

within meta-analytical models as a means of accounting for any potential covariance (see 

Appendix Four). 
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Finally, for each of the meta-analytical models, model diagnostics were conducted. 

Heterogeneity was assessed using the I2 statistic, with the boundaries of 25%, 50%, and 75% 

being suggested as indicating low, moderate, or high heterogeneity respectively (Higgins et 

al., 2003). Due to variation in study organisms, environments, and other variables, ecological 

meta-analyses often report high heterogeneity (Senior et al., 2016). Additionally, potentially 

influential results were assessed using �̂�, Cook’s Distance, and DFBETA. Where potentially 

influential effect sizes were identified, the data was reassessed for errors (see Table 4.2), 

whilst the original source of the data was assessed to determine whether the effect sizes 

should be included from an ecological perspective (e.g., whether a factorial design was used, 

whether external stressors were implemented). Heterogeneity and model diagnostics are 

reported in Appendix Four. 

 

4.4 Results 

Hypothesis one: Elimination of methodological variation results in minimal differences in both 

interaction classification frequencies and summary effect sizes between meta-analytical 

datasets. 

Across all seven meta-analytical datasets, null interactions are the most prevalent individual 

interaction class, accounting for between 58.5% and 81.2% of all interactions (Figure 4.2a). 

However, there is no consistent pattern in the frequency of the antagonistic, reversal, and 

synergistic interaction classes across the datasets. 

All seven meta-analytical datasets report negative summary effect sizes (Figure 4.2b), with 

the effect sizes for five datasets (Burgess et al., 2021; Harvey et al., 2013; Jackson et al., 2016; 

Lange et al., 2018; Przeslawski et al., 2015) being assigned an antagonistic summary 

interaction class, while the effects sizes for the remaining datasets (Crain et al., 2008; Gomez 

Isaza et al., 2020) were assigned a null summary interaction class. Additionally, there is 

substantial variation between the different summary effect sizes. 
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Figure 4.2: Results of the multiplicative null model across the seven meta-analytical datasets that were 

compiled. Figure 4.2a: the frequencies of null (white squares), synergistic (light-grey upward triangles), 

antagonistic (dark grey diamonds), and reversal interactions (black downward triangles) are shown. 

Figure 4.2b: filled points denote interactions where 95% confidence intervals do not overlap zero, 

hollow points denote interaction interactions where 95% confidence intervals overlap zero. Points 

outlined in dark blue or light blue denote datasets based upon the marine and freshwater realms 

respectively. Confidence intervals of the summary effect sizes are denoted by solid and dashed lines 

respectively.  
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Aggregated dataset 

Once the individual datasets have been aggregated into a single dataset (with duplicate 

interactions being removed), it is evident that some response metrics are more frequently 

considered than others, with the response metrics of biomass, density, and survival 

accounting for 76.0% of all interactions (Figure 4.3a). However, response metrics vary in 

whether they are predominately measured within the marine, or freshwater realms. Similarly, 

it is apparent that the vast majority of interactions within this dataset have sample sizes of 

four, or fewer, replicates per treatment with no interaction having more than twelve 

replicates per treatment (Figure 4.3b).  

For the aggregated biomass, density, and survival datasets, up to 24 unique stressor 

combinations are reported (Figure 4.3c). Similarly, for these datasets, all data is measured at 

higher levels of ecological organisation with the majority of biomass and density data being 

measured at the community level, while all survival data is measured at the population level 

(Figure 4.3d). Finally, it is evident that there are differences in the feeding groups, and body 

sizes, for organisms across the different aggregated response metric datasets (Figure 4.3e). 

As such, the aggregated survival dataset overwhelmingly considers heterotrophic 

macroorganisms, the aggregated biomass dataset predominately represents autotrophic 

microorganisms, whilst the aggregated density dataset is a more even combination of feeding 

groups and body sizes. 
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Figure 4.3: Summary of the aggregated dataset, though with removal of duplicate interactions, (Figure 

4.3ab) and the aggregated biomass, density, and survival datasets (Figure 4.3cde). Figure 4.3a: 

Number of interactions for each response metric in the aggregated dataset, separated by realm. Figure 

4.3b: Number of interactions by mean number of replicates per treatment. Where the mean number 

of replicates is a non-integer, it is rounded to the nearest integer. Figure 4.3c: Number of unique 

stressor combinations for the aggregated biomass, density, and survival datasets. Figure 4.3d: Number 

of interactions, across levels of ecological organisation, for the aggregated biomass, density, and 

survival datasets. Figure 4.3e: Number of interactions, across feeding group and body size, for the 

aggregated biomass, density, and survival datasets.  
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Hypothesis two: The effects of multiple stressors significantly differ across response metrics. 

For biomass, density, and survival data, all summary effect sizes are negative, with those for 

biomass and density being significantly different to zero, indicating an antagonistic 

interaction; however, the effect size for survival is not significantly different to zero, indicating 

a null interaction (Figure 4.4). No significant difference was observed between the effect sizes 

for biomass and survival (χ2 = 0.1892, p = 0.6635), though significant differences were 

observed between the effect sizes of biomass and density (χ2 = 6.6564, p = 0.0099) as well as 

density and survival (χ2 = 7.9844, p = 0.0047). 

 

  

Figure 4.4: Summary effect sizes for the biomass, density, and survival response metrics. Filled points 

denote significant summary effect sizes (i.e., 95% confidence intervals do not overlap zero), hollow 

points denote non-significant summary effect sizes (i.e., 95% confidence intervals overlap zero). 

Differences in the summary effect sizes for each response metric, between levels of a fixed effect, are 

tested using a Wald-type chi squared test. Levels of significance are denoted by the following 

annotation: p value < 0.05 (*), p value < 0.01 (**), p value < 0.001 (***). Numbers in parenthesises 

denote the total number of interactions within each group.  
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Hypothesis three: For a given response metric, the effect of multiple stressors significantly 

differs between autotrophic and heterotrophic feeding groups. 

Comparing summary effect sizes between autotrophic and heterotrophic feeding groups 

yields contrasting results across response metrics (Figure 4.5ab). For density data (Figure 

4.5b), no significant difference was observed between the summary effect sizes for each 

feeding group (χ2 = 0.9607, p = 0.3270), with both being assigned an antagonistic summary 

interaction classification.  

In contrast, for the aggregated biomass dataset (Figure 4.5a), the summary effect size for the 

heterotrophic feeding group is negative and significantly different to zero (again indicating an 

antagonistic interaction), whilst the autotroph summary effect size is non-significantly 

negative (indicating a null interaction between stressors). Additionally, a significant difference 

was reported between the biomass summary effect sizes for the different feeding groups (χ2 

= 6.7921, p = 0.0092).  

While results of this analysis are shown for both the biomass and density aggregated datasets, 

the data within the survival aggregated dataset was overwhelmingly heterotrophic (Figure 

4.3e). Accordingly, analysis comparing summary effect sizes between autotrophic and 

heterotrophic feeding groups for survival data was not shown as no meaningful comparison 

can be made.  

 

Hypothesis four: For a given response metric, the effects of multiple stressors will not 

significantly differ between stressor interactions which have an expected negative, or positive, 

effect. 

Comparisons of the summary effect sizes between the expected direction of interaction 

effects yields similar results across all response metrics (Figure 4.5cde). For all response 

metrics and expected direction of effects, the summary effect sizes were negative and 

significantly different to zero, indicating antagonistic interactions. The single exception was 

for biomass data, where the direction of the expected effect of interacting stressors was 

negative; here, the summary effect was negative but not significantly different to zero, 

indicating a null interaction. 
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Finally, no significant differences in effect sizes were observed between the contrasting 

directions of expected stressor effects across any of the response metrics (biomass: χ2 = 

1.2134, p = 0.2707; density: χ2 = 0.0017, p = 0.9668; survival: χ2 = 2.2777, p = 0.1312). 

 

 

Figure 4.5: Summary effect sizes for each response metric across the fixed effects of feeding group 

(Figure 4.5ab) and expected direction of effects (Figure 4.5cde). Filled points denote interactions where 

95% confidence intervals do not overlap zero, hollow points denote interaction interactions where 95% 

confidence intervals overlap zero. Differences in the summary effect sizes for each response metric, 

between levels of a fixed effect, are tested using a Wald-type chi squared test. Levels of significance 

are denoted by the following annotation: p value < 0.05 (*), p value < 0.01 (**), p value < 0.001 (***). 

Numbers in parenthesises denote the total number of interactions within each group. 

 

4.5 Discussion 

Meta-analyses are capable of providing general insights into how multiple stressors are likely 

to interact. However, despite the potential to highlight wide-ranging generalities, agreement 
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between multiple stressor meta-analyses has to date been limited (Côté et al., 2016). By 

removing methodological variation and using the same statistical framework across a large 

number of stressor-pair interactions we have shown that strong generalities emerge (Figures 

4.3 – 4.5). Firstly, synergistic interactions are rare. Summary effect sizes across all analyses 

are negative and assigned an antagonistic, or null, summary interaction classification; with 

our results supporting suggestions that the prevalence of synergisms is overstated (Côté et 

al., 2016). Secondly, individual interactions are overwhelmingly assigned null classifications. 

However, rather than being attributed to ecological phenomena, previous analyses have 

shown that small sample sizes limit our ability to reject a null model (Chapter Three). Thirdly, 

some differences in interactions are observed between response metrics and feeding groups. 

However, no difference in interactions were found between stressor interactions where 

positive or negative effects were expected. 

 

Methodological variation 

Our results highlight that methodological variation is partially responsible for the wide-

ranging results of previous meta-analyses. Following the removal of methodological variation, 

all meta-analytical datasets report that individual interactions are predominately assigned a 

null classification (Figure 4.2a), whilst all summary effect sizes are negative and assigned 

either an antagonistic, or null, summary interaction classification (Figure 4.2b). Our results 

contrast many of the findings of these original analyses. However, methodological variation 

partially explains the absence of any generalities across meta-analyses (Côté et al., 2016), and 

may explain some disparities between these studies. Nevertheless, following the removal of 

methodological variation from our analysis, differences between the meta-analytical datasets 

remain (e.g., differences in the strength of antagonistic interactions across meta-analytical 

datasets). These differences can hence be attributed to ecological variation within, and 

between, the datasets (e.g., contrasting response metrics). Understanding the sources of this 

ecological variation is crucial as it may lead to both the discovery of important covariates 

which drive stressor interactions, as well as widely-applicable generalities which have 

implications for future research and the mitigation of interacting stressors. Whilst we explore 

potentially important covariates (Figures 4.4 – 4.5), one generality evident from the analysis 

of methodological variation is the distinct lack of synergisms, with this result mirroring with 
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the conclusions of Côté et al. (2016). Additionally, while meta-analyses attempt to identify 

ecologically important covariables, it is also important to determine where results are driven 

by factors other than ecology. Previous analysis has shown that the prevalence of null 

classifications for individual interactions is driven by sample sizes, not ecological factors 

(Chapter Three). Indeed, within our aggregated dataset, the majority of interactions have 

small sample sizes (Figure 4.3b), which in turn means that null models are unlikely to be 

rejected unless exceptionally strong signals are present (Chapter Three). Accordingly, in 

keeping with recommendations (Gurevitch et al., 2018), meta-analyses should predominately 

focus on summary effect sizes as opposed to solely drawing, potentially erroneous, ecological 

inferences from the vote-counting of individual interaction classifications.  

Multiple versions of the additive and multiplicative null models have previously been used, 

with the seven meta-analyses considered here all using differing null models or classification 

frameworks. As such, it is not entirely clear how these differences alter the results of any 

given meta-analysis. However, one example which is easily interpretable, relates to the 

frequency of the different interaction classifications. Whilst the calculation of the standard 

error is shown by Equation 4.3, it may be incorrectly assumed that the square root of the 

effect size variance is the standard deviation, not the standard error. Hence, Equation 4.7 may 

be incorrectly used to calculate effect size standard errors. 

4.7)                                                                                                                         𝑆𝐸 =   
√𝑉

√𝑁𝐶 + 𝑁𝐴 + 𝑁𝐵 + 𝑁𝐼
 

Accordingly, the use of Equation 4.7 (as opposed to Equation 4.6) leads to 95% confidence 

intervals being incorrectly reduced by a factor of √𝑁𝐶 + 𝑁𝐴 + 𝑁𝐵 + 𝑁𝐼. Based upon the data 

within the aggregated dataset this would lead to confidence intervals being reduced by a 

minimum of 64.6%, though in some more extreme cases confidence intervals would be 

reduced by 85.6%. Such a reduction greatly reduces the likelihood of the confidence intervals 

for individual interactions overlapping zero, hence leading to a greater prevalence of 

synergistic, antagonistic, and reversal interactions than might otherwise be expected.  

Our findings represent the first illustration of the major impacts of methodological variation 

upon multiple stressor meta-analyses. Furthermore, our results echo those of a previous 

analysis (Hungate et al., 2009) which found that the substantial divergence in the conclusions 
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of four highly similar soil carbon meta-analyses principally occurred due to methodological 

variation. Accordingly, our results highlight that methodological differences represent a 

substantial source of variation between multiple stressor meta-analyses.  

The effect size calculation we implement here is the factorial log response ratio which is 

widely implemented and mathematically detailed (Lajeunesse, 2011); although we note that 

if alternative effect sizes are used, alternative conclusions may be reached. As such it is 

imperative that future meta-analyses explicitly consider the potential impacts of a particular 

methodology from both an ecological and statistical perspective. Indeed, the choice of 

statistical procedure can have substantial implications for both the meta-analytical results 

and the subsequent ecological interpretation (Hungate et al., 2009).  

Finally, there is a need for model diagnostics to be more widely used within multiple stressor 

meta-analyses. While visual assessment of funnel plots is a commonly implemented 

diagnostic measure, it has been shown to be a poor method for determining whether 

publication bias is present (Simmonds, 2015). Furthermore, common tests for publication bias 

are often limited by high levels of heterogeneity (Nagakawa et al., 2017) which are frequently 

reported within ecological meta-analyses (Senior et al., 2016). In contrast, alternative 

diagnostic measures such as Cooks’ Distance, DFBETAS, and �̂� should be implemented. These 

metrics are capable of identifying potentially influential data points and determining whether 

the results of a meta-analysis are being unduly driven by a small number of interactions. 

Furthermore, use of these metrics may also prevent any issues with data quality (see Table 

4.2) from occurring, as any potential issues may be highlighted during these post-hoc 

analyses. 

 

Response metrics 

Hypothesis two is based upon the expectation that stressors affect different biological 

mechanisms, and hence impact response metrics (e.g., density, survival) in contrasting ways 

(Segner et al., 2014). Our results support this hypothesis (Figure 4.4), with density being 

affected by multiple stressors in a significantly more antagonistic manner than either biomass 

or survival. However, whether the observed differences between response metrics occur due 

to disparate physiological pathways is unclear (see Physiological pathways). Alternatively, 
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compensatory effects may be responsible for the antagonistic interactions reported for 

biomass and density data. At the community level, a reduction in the biomass or density of 

one species may be offset by increases in others (Ives & Cardinale, 2004). For instance, a single 

stress-tolerant species may only become dominant within a community in the presence of 

stressors, as has been shown for an herbivorous zooplankton species (Christensen et al., 

2006). As such, this phenomena may lead to an antagonistic interaction occurring, as any 

changes in community biomass or density would potentially be less than that predicted by 

the null model. However, compensatory effects do not explain the significant difference 

between biomass and density summary effect sizes. Accordingly, such varying responses 

between metrics could be due to differences in the effects of stressors. For instance, a 

stressor could lead to an increase in the density of species but lead to smaller organisms due 

to increased competition for limited resources (e.g., Thaker et al., 2018). Alternatively, a 

stressor could lead to a reduction in species density but a positive effect on biomass as a 

consequence of compensatory effects where individuals that survive become larger, 

potentially due to a greater availability of resources (Galic et al., 2018).  

Whilst all response metrics report antagonistic (or null) interactions, there are potential 

implications for any conservation measures which aim to mitigate the effect of stressors and 

their interactions (Côté et al., 2016). Indeed, where antagonistic interactions occur, the 

removal of a stressor may have a limited, or even detrimental, effect upon an affected system 

(Brown et al., 2013). Similarly, the relative strength of an interaction should also be 

considered. Given that interacting stressors have a significantly stronger antagonistic effect 

upon density compared to either biomass or survival, the effects of any remediation measures 

may be asymmetrical across response metrics. 

To date, few meta-analyses have investigated effect sizes across response metrics. Of those 

that have, Lange et al. (2018) found substantial differences between the effect sizes for 

biomass and survival; although, the results of other analyses are less clear (e.g., Jackson et al., 

2016). It is also important to note that all previous meta-analyses which compare across 

response metrics implement an additive null model. However, the additive null model is not 

necessarily reflective of biological systems (Schäfer & Piggott, 2018), and can even lead to 

unfeasible predictions (e.g., a predicted survival of less than zero) (Folt et al., 1999). Where a 

bounded response metric is considered, interaction data is likely skewed in favour of 
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antagonisms, given that synergisms or truly null interactions are unlikely, or unable, to be 

reported by the additive null model (Lange et al., 2018). As such, the lack of clarity in the 

effects of multiple stressors across response metrics may in part be due to the use of a 

potentially ecologically inappropriate null model.  

 

Feeding groups 

We anticipated that the effects of multiple stressors would differ between autotrophs and 

heterotrophs, potentially as a consequence of differing stressor modes of action (Bracewell 

et al., 2019). However, no consistent pattern was observed across response metrics, with no 

significant difference between feeding groups for the aggregated density data (Figure 4.5b), 

but a significant difference between the summary effect sizes for the autotrophic and 

heterotrophic biomass data (Figure 4.5a).  

Accordingly, for the biomass data, it may be that our original assumptions regarding differing 

physiological mechanisms are met. However, it is important to note that the overwhelming 

majority of the autotrophic biomass data represents microorganism communities (e.g., broad 

groups of phytoplankton) whereas the heterotrophic biomass data represents a more even 

ratio of microorganisms and macroorganisms (Figure 4.3e). As such, rather than reflecting 

differences between heterotrophic and autotrophic organisms, the observed effects may 

instead relate to differences in body sizes. Furthermore, body size is shown to be positively 

correlated to generation time (Gillooly, 2000), with generation time also likely to affect a 

species’ response to stressors (Brook et al., 2008; Jackson et al., 2021).  

Whilst autotrophic and heterotrophic density data is likewise split between microorganisms 

and macroorganisms in a similar manner to the biomass data (Figure 4.3e), biomass and 

density are not necessarily equivalent metrics, or affected by interacting stressors in the same 

manner (see Galic et al., 2018). As such, these observed differences between response 

metrics may occur due to biomass and density being directly, and indirectly, affected by 

ecological or physiological processes in differing ways. Ultimately, the differences between 

feeding groups across response metrics (with particular emphasis on autotrophic, or 

microorganism, biomass) undoubtedly warrants further investigation. 
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Expected direction of effects 

Stressors may have either positive or negative effects (Kroeker et al., 2017; Orr et al., 2020), 

and therefore the combined impact of multiple stressors is similarly capable of eliciting either 

a positive or negative response. However, we are not aware of any meta-analyses which have 

attempted to determine whether the class, or strength, of an interaction varies depending 

upon whether it has an expected positive or negative effect. Here we attempt to address this 

gap in the literature. As our results show (Figure 4.5cde), across all response metrics, either 

antagonistic or null interaction classes are reported where positive or negative effects of 

multiple stressors are expected. Additionally, there were no statistically significant 

differences between the effect sizes where positive or negative effects were expected for any 

response metric. Our results support our hypothesis, suggesting that the effects of multiple 

stressors are consistent (both in strength and interaction class) regardless of whether a 

positive or negative effect of stressors is expected. However, our analysis is not capable of 

elucidating the physiological pathways through which positive, or negative, effects are 

induced. While no significant differences, based upon expected stressor effects, were 

observed within this meta-analysis, it may be important to consider predicted stressor effects 

in the context of organisation level. Accordingly, at the level of the individual, differences may 

be apparent depending upon whether stressors affect the same, or disparate, mechanisms 

(see Physiological pathways). In contrast, at higher levels of organisation (e.g., communities) 

compensatory dynamics may lead to any differences being minimized. However, the 

aggregated datasets considered here are predominately represented by higher levels of 

ecological organisation; as such, analysis of organisation level was beyond the remit of our 

meta-analysis. Nevertheless, this analysis represents the first attempt to understand the 

effects of stressor directionality; accordingly, our understanding of this phenomena would 

undoubtedly be improved by future experimental or theoretical analyses. Our analysis also 

suggests that, given no significant differences between interactions with contrasting 

directionalities, there may be minimal ramifications for management practices. Accordingly, 

conservation actions may instead focus on alternative stressor properties (e.g., stressor 

modes of action) that may be more relevant for the remediation of a given system. 
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Physiological pathways 

Meta-analyses are capable of revealing how stressor interactions affect ecosystems; 

however, such insights are broadly limited to wide-ranging generalities. Accordingly, to 

compliment these general insights, there is a need to consider the specific physiological 

mechanisms underpinning the effects of stressors and their interactions (Schäfer & Piggott, 

2018). Furthermore, stressor modes of action may help explain the results of a given null 

model (Townsend et al., 2008), with null interactions potentially occurring where stressors 

impact disparate physiological mechanisms (Gunderson et al., 2016). Similarly, a given 

stressor has the potential to modulate the effect of an additional stressor, either exacerbating 

(cross-susceptibility) or mitigating (cross-tolerance) its impact on a physiological response 

(Todgham & Stillman, 2013). As such, enhanced knowledge of these phenomena, in 

conjunction with physiological pathways, and the timing of stressor interactions (Gunderson 

et al., 2016; Jackson et al., 2021), may be crucial when transitioning multiple stressor ecology 

into practical conservation measures (Rodgers & Gomez Isaza, 2021). 

An understanding of stressor modes of action may also shape the scope of multiple stressor 

meta-analyses and the hypotheses that are addressed. For instance, many meta-analyses 

group stressors into categories (e.g., contaminants, habitat alteration) based on their 

qualitative properties. However, large-scale meta-analyses often find no generalities across 

stressor combinations (e.g., Burgess et al., 2021; Jackson et al., 2016). Given the broad nature 

of this meta-analysis, coupled with the large number of unique stressor combinations for each 

response metric (Figure 4.3c), we do not attempt to explore the role of stressor combination 

in determining stressor interactions. 

Finally, there is evidence that qualitatively dissimilar stressors may act through the same 

physiological pathways, with both temperature and chlorpyrifos being shown to impact 

thyroid hormones in Acanthurus triostegus, (Besson et al., 2020). Such physiological effects 

are also capable of transitioning to the community level through the alteration of predator-

prey relationships (Besson et al., 2020), a phenomena observed for a range of aquatic 

stressors and taxa (e.g., Shears & Ross, 2010). As such, this suggests that precedence should 

be given to a stressor’s mode of action, as opposed to its qualitative properties; however, 

such mechanistic insights are seldom reported and often inadequately understood (Spears et 

al., 2021). Accordingly, increased consideration of physiological pathways may lead to the 
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discovery of more generalities for multiple stressor interactions (across all levels of 

organisation), which in turn may aid understanding of both stressor interactions and modes 

of action. Ultimately, given the potential benefits, greater overlap of these complimentary 

approaches should be viewed as a priority for multiple stressor ecology.   

 

Future directions 

One of the main aims of meta-analyses is to determine whether ecologically important 

covariables are capable of explaining sources of heterogeneity within a given dataset. As such, 

within this multiple stressor meta-analysis, we have sought to determine whether response 

metric, feeding group, or expected direction of effects are important covariables in 

determining how stressors interact in aquatic ecosystems. However, while there is an 

ecological rationale underpinning each of these covariables, there is a plethora of other 

covariables which future multiple stressor analyses (meta-analytical or otherwise) may wish 

to investigate. Indeed, there are numerous calls for multiple stressor ecology to place a 

greater emphasis on understanding the mechanisms underpinning stressor effects (e.g., 

Kroeker et al., 2017; Schäfer & Piggott, 2018; see Physiological pathways). However, 

alternative covariables to consider include the level of ecological organisation at which the 

effect of multiple stressors is measured. As such, future multiple stressor research may wish 

to focus on higher levels of ecological organisation given that a species’ sensitivity to stressors 

is partially defined by its relationships to other species in a community (Beauchesne et al., 

2021), as well as conservation actions primarily being enacted at these higher levels of 

ecological organisation (Orr et al., 2020). To date, meta-analyses have failed to determine 

generalities regarding whether certain organisation levels are more likely to be affected by 

particular interaction classifications (Côté et al., 2016; Orr et al., 2020); though as we have 

illustrated here, such disparities may arise as a consequence of differences in methodology, 

not ecology. However, there is growing body of ecological theory investigating stressor 

interactions across levels of organisation (Orr et al., 2020). This theory has shown the 

importance of interactions between species in determining whether community level 

response metrics are affected by synergisms or antagonisms (De Laender, 2018; Thompson 

et al., 2018a). Furthermore, theoretical freshwater systems have shown that interaction 

classifications may differ, or align, across different organisation levels (Galic et al., 2018). 
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However, within this analysis, the response metrics we consider are skewed towards either 

community or population organisation levels (Figure 4.3d); as such, analysis of organisation 

level was not possible. Accordingly, future multiple stressor meta-analyses may wish to 

investigate the importance of organisation level as a covariable in determining stressor 

interactions. 

A second potential explanatory variable, which future analyses may wish to consider, is 

whether interactions differ between realms (i.e., freshwater and marine ecosystems). Whilst 

combining datasets from different realms, we do not test its effect within our analyses, for 

several reasons. Firstly, of the seven datasets considered here, the four freshwater datasets 

are more recently published, as such they are able to collate data from a wider pool of the 

scientific literature than the three marine studies. Secondly, the freshwater datasets primarily 

consider biomass, density, or survival response metrics; in contrast, the marine datasets 

consider a much broader range of response metrics, with each metric often having a smaller 

number of interactions (Figure 4.3a). Together, these attributes mean that our aggregated 

dataset is weighted towards freshwater interactions, with the ramification that comparisons 

across realms are not necessarily meaningful. As such, if future research wishes to explore 

the effect of realm, then further generalities may be uncovered. However, it may be necessary 

to consider more specific ecosystem types than simply freshwater or marine realms (e.g., 

coastal, estuarine, or wetland environments), as stressors may interact differently in 

lacustrine or riverine ecosystems (Birk et al., 2020). 

Ultimately, one of the greatest limitations faced by multiple stressor meta-analyses is the 

availability of data that is able to be analysed. As shown by Figure 4.3a, particular response 

metrics (e.g., diversity, growth, and reproduction) are under-represented in meta-analyses. 

Similarly, as discussed above, data limitations mean that determining the importance of 

covariables such as realm, organisation level, or even feeding group remain difficult. 

Accordingly, to overcome this issue, future empirical studies may wish to focus on those areas 

which we have highlighted has being potentially data deficient (see Figure 4.3). Similarly, 

there is likewise ample scope for future multiple stressor meta-analyses to collate new 

datasets, building upon those already compiled, and incorporating more recently published 

studies.  
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Our analysis has revealed that many of the disparities between multiple stressor meta-

analyses have arisen due to methodological, not ecological, variation (see Methodological 

variation). Here, we have standardised methods across all analyses by using a single 

consistent version of the multiplicative null model and interaction classification framework. 

While the multiplicative null model is generally considered to be more ecologically realistic 

than the additive null model (Schäfer & Piggott, 2018), there are an increasing number of 

alternatives which may be appropriate under particular circumstances (e.g., Tekin et al., 2020; 

Thompson et al., 2018b). Given the methodological variation outlined by our analysis, future 

analyses should explicitly describe all equations used within null model calculations; such 

details would hence allow simple comparisons between studies which potentially highlight 

methodological rationale for why the results of two studies differ. Similarly, future analyses 

should explicitly justify why a particular null model was implemented. Given that versions of 

the additive and multiplicative null models have been shown to be comparable in terms of 

statistical power (Chapter Three), researchers can hence select a null model based upon 

ecological criteria, which should be described. 

 

Conclusions 

Both freshwater and marine ecosystems are being subjected to multiple co-occurring 

stressors (Halpern et al., 2015; Reid et al., 2019). Furthermore, understanding how stressors 

interact is imperative when enacting conservation measures upon an aquatic ecosystem 

(Brown et al., 2013). However, no generalities across multiple stressor meta-analyses have 

previously been reported (Côté et al., 2016) as such hindering our collective understanding of 

stressor interactions in freshwater and marine ecosystems. Our results illustrate that 

methodological variation is responsible for the absence of both generalities (e.g., absence of 

synergisms), and ecologically important covariates (e.g., response metric) across aquatic 

multiple stressor meta-analyses. These findings illustrate the need to thoroughly consider 

both the statistical tools used to classify stressor interactions and any comparisons that are 

made across meta-analyses. Our results likewise have implications for the management of 

aquatic ecosystems given that response metric and feeding group are identified as potentially 

important covariates for determining how stressors interact. Importantly, our analysis also 

highlights where data deficiencies in aquatic meta-analyses currently exist, and hence limit 
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the ability of these analyses to determine whether particular covariates (e.g., realm, 

organisation level, certain response metrics) are important in driving stressor interactions in 

aquatic ecosystems. Ultimately, future research should seek to address the issues we 

spotlight here, so that a greater understanding of multiple stressor interactions can transition 

into tangible benefits for the conservation and remediation of affected freshwater and 

marine ecosystems. 
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Chapter Five – Discussion  

 

Nearly all ecosystems are subjected to multiple stressors (Halpern et al., 2015). Indeed, 

understanding how co-occurring stressors interact to affect ecosystems is one of the most 

pressing questions currently facing ecologists (Fleishman et al., 2011; Rudd, 2014). However, 

multiple stressor ecology has to date been hindered by the absence of generalities applicable 

across studies. The results of such studies may frequently differ with various interaction 

classifications reported (e.g., antagonistic, null, or synergistic interactions). Furthermore, 

similar studies may likewise reach divergent conclusions as to how stressors interact (e.g., 

Jackson et al., 2016; Lange et al., 2018). This absence of any generalities ultimately harms 

multiple stressor ecology as a field, limiting the insights it can provide to sister disciplines (e.g., 

conservation science) and obscuring future directions for research. To date, the disparate 

conclusions of much multiple stressor research has often been attributed to underlying 

variation from ecological or environmental sources. However, attempts to identify ecological 

covariables capable of explaining this variation have so far failed to provide any consistent 

insights (Côté et al., 2016). While ecological, or environmental, factors are undoubtedly 

important in determining how stressors interact, the current failure to identify these 

covariables suggests that other factors may be influencing results. Accordingly, variation in 

statistical methods (i.e., null models) is one such factor which is potentially capable of 

explaining differences between studies. Indeed, there is an increasing appreciation that there 

are inherent differences between null models (i.e., additive and multiplicative null models) 

including the hypotheses that they test (Schäfer & Piggott, 2018). However, there is a limited 

understanding of the statistical methods through which these null models are applied. 

Importantly, there may be instances where results arise due to the statistical properties of 

these methods, yet they are erroneously ascribed ecological importance. Accordingly, an 

understanding of the statistical tools frequently employed in multiple stressor ecology is 

currently missing, yet crucial to the progression of the field.  

Within this thesis, the research I have detailed has attempted to understand multiple stressor 

interactions from various different, often novel, perspectives. Broadly, I have utilised 

theoretical (Chapters Two and Three) or meta-analytical (Chapters Two and Four) approaches 
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to better understand the statistical tools used to analyse, and classify, the interactions of 

multiple stressors. While the use of null models is widespread in multiple stressor ecology 

(e.g., Folt et al., 1999; Galic et al., 2018; Siviter et al., 2021) a detailed understanding of these 

approaches was previously missing. As such, it was unclear whether these null models 

encompass any biases (aside from those previously described; see Sih et al., 1998) which may 

skew any interpretation of how stressors interact to affect all levels of ecological organisation. 

Accordingly, this thesis has addressed these limitations. In Chapter Two, I have shown that 

the dominance of antagonistic summary interaction classifications, under the additive null 

model, may be an artefact of the statistical tool. Indeed, a theoretical dataset with an 

approximately equal frequency of ‘true’ synergistic and antagonistic interactions, will report 

an antagonistic summary interaction classification under ecologically relevant sample sizes 

and observation errors. Such a finding is mirrored in the results of the largest published 

multiple stressor meta-analysis (Chapter Two; Burgess et al., 2021). In Chapter Three, I build 

on this analysis illustrating that some patterns (e.g., frequency of individual interaction 

classifications) are predominately driven by sample sizes and other statistical factors, with 

this occurring regardless of whether the additive or multiplicative null models are used. As 

such, ecological interpretations of these results are likely inaccurate and instead highlighting 

that methodological choices are often limiting our ability to determine how stressors truly 

interact. In Chapter Four, I build on the previous chapters reanalysing seven multiple stressor 

meta-analyses determining why the results of these studies are so disparate. The results of 

this chapter illustrate that methodological differences are one of the major causes of these 

contrasting conclusions, with the removal of these differences rendering the results more 

consistent across all seven meta-analyses. Furthermore, I highlight that multiple stressor 

interactions vary in classification, or strength, across response metrics, a previously disputed 

finding (Côté et al., 2016).  

As such, the analysis, results, and conclusions of this thesis build on the existing multiple 

stressor literature, offering explanations for several of the more prominent issues within the 

field of multiple stressor ecology. Accordingly, the analysis of Chapters Two, Three, and Four 

has met the following aims, first outlined in Chapter One. 

i. Determine whether ecological surprises (i.e., antagonistic, reversal, and synergistic 

interactions) are more prevalent than currently expected. 
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ii. Determine whether ecology, or methodology, are responsible for the conclusions of 

previous multiple stressor research. 

iii. Determine the causes responsible for the absence of consistent generalities across 

multiple stressor meta-analyses. 

iv. Determine what covariables (e.g., feeding group or response metric) are important in 

determining how stressors interact in aquatic ecosystems. 

Within this chapter, I explore the contributions of Chapters Two, Three, and Four to the field 

of multiple stressor ecology. Firstly, I outline the findings of each chapter, highlighting 

overarching conclusions, and the subsequent implications for the collective understanding of 

interacting stressors. Secondly, building on the findings of this thesis, I explore future 

directions for multiple stressor ecology. In doing so, I spotlight where methodological, 

empirical, and theoretical advances could be made. Finally, I provide a broader commentary 

on multiple stressor ecology, outlining those areas (outside the remit of this thesis) which 

require further research and postulating on our current understanding of how interacting 

stressors affect ecosystems. 

 

5.1 Implications for the understanding of multiple stressor interactions 

Multiple stressor ecology is often primarily concerned with answering the question: How do 

co-occurring stressors interact? Indeed, within this thesis, this is a question I have often 

attempted to answer. However, it may be argued that the majority of studies view obtaining 

an answer to this question as more important than the process through which the answer is 

gained. While this in itself is not necessarily an issue, it undoubtedly becomes one if the 

process is subsequently shown to be inappropriate, or a valid process is incorrectly applied. 

Within this thesis, I have attempted to gain a greater understanding of the methods used to 

determine how stressors interact. In doing so, I have illustrated potential issues regarding 

both the null models and experimental design (Chapters Two and Three) alongside instances 

where, unfortunately, statistical procedures have sometimes been erroneously conducted 

(Chapter Four). Below, I outline the conclusions of each chapter, describing the implications 
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both for past research and how these findings can be utilised by future multiple stressor 

studies. 

To date, there has been relatively little research which seeks to combine theoretical and 

empirical data within multiple stressor ecology. However, in Chapter Two, I help fill this 

literature gap by using both theoretical and empirical approaches to better understand the 

interactions of multiple stressors. Here, the empirical approach comprises one of the largest 

published multiple stressor meta-analysis (Burgess et al., 2021) which considers freshwater 

density data. In contrast, the theoretical approach considers food chains established using 

fundamental ecology (Heath et al., 2014) which are then subjected to stressors by altering 

parameters corresponding to ecological processes (e.g., mortality rates). These theoretical 

simulations revealed that under increasing levels of uncertainty, individual interactions are 

increasingly likely to be assigned a null classification. Furthermore, at lower levels of 

uncertainty, there is an approximately equal split of negative to positive effect sizes for 

individual interactions, with summary effect sizes assigned a null classification. However, 

under increasing uncertainty, individual interactions are more likely to have a negative (than 

positive) effect size; summary effect sizes are likewise skewed towards being assigned 

antagonistic interaction classifications. The results of the freshwater meta-analysis likewise 

mirror these findings, with null classifications dominating for individual interactions, but an 

antagonistic summary effect size is reported. The findings of Chapter Two have implications 

for past multiple stressor research. Both the theoretical and empirical approaches report that 

the majority of individual interactions are assigned a null classification, but summary effect 

sizes are classified as antagonistic. However, these results likewise align with previous 

freshwater research (e.g., Lange et al., 2018) and contrast other studies (e.g., Jackson et al., 

2016). As such, these results indicate that there may be ecological processes (or statistical 

attributes) that are currently unconsidered but instrumental in driving reported patterns. 

Accordingly, the results of Chapter Two raise further questions regarding potential artefacts 

in the statistical tools (or modelling approaches) or currently unconsidered ecological 

processes which may be instrumental in driving the reported patterns across this chapter and 

previous research. Ultimately, the results of Chapter Two have directed and shaped the 

analyses of the subsequent chapters of this thesis. 
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In Chapter Three, I expanded upon the theoretical methods used in Chapter Two, to better 

understand the null model approaches often utilised within multiple stressor ecology. The 

research presented within this chapter explored both the additive and multiplicative null 

models from a statistical perspective, as opposed to the ecological viewpoint from which 

these tools are predominately viewed. The analyses of these null models spotlight several 

important points. Firstly, the results of the additive and multiplicative null models cannot be 

directly compared. This is due to the fact that these null models implement differing 

assumptions and hence test different hypotheses (namely whether stressors interact in an 

additive or multiplicative manner), with interactions often being assigned contrasting 

classifications by the different null models. Accordingly, comparisons of studies which 

implement differing null models (e.g., Côté et al., 2016) will be inherently difficult. This 

analysis has also revealed that, statistically, neither null model is obviously better than the 

other, meaning that the choice of null model to be implemented by a study can be based on 

ecological criteria. However, it has been shown that both sample sizes and the uncertainty 

surrounding treatment means may have significant effects on null model conclusions. For 

instance, experiments which utilise small sample sizes (i.e., those common in multiple stressor 

ecology) frequently lack the necessary statistical power to determine whether an interaction 

between stressors is occurring. These findings have implications for the interpretation of 

previous multiple stressor research. While previous multiple stressor meta-analyses (e.g., 

Lange et al., 2018) have concluded that the majority of stressor interactions are assigned a 

null (i.e., additive) interaction classification, this may simply reflect an absence of statistical 

power (due to limited sample sizes) as opposed to any ecological mechanisms. Accordingly, it 

is important that researchers do not assign ecological importance to results which are simply 

statistical artefacts.  

Previous research has highlighted the absence of generalities from multiple stressor meta-

analyses (Côté et al., 2016). In Chapter Four, I collate, rectify, and reanalyse datasets from 

seven freshwater and marine multiple stressor meta-analyses. In doing so I implement the 

multiplicative null model under a single consistent framework for all seven datasets, with this 

analysis revealing that the removal of methodological differences results in consistent 

conclusions across all multiple stressor meta-analyses. Furthermore, some of the previously 

disparate results have been shown to be due to erroneous methods. The results of these 
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meta-analyses align with those of Chapters Two and Three, with all meta-analyses reporting 

that most individual interactions are assigned null classifications (likely due to small sample 

sizes within multiple stressor experiments) while all summary effect sizes are assigned either 

an antagonistic or null interaction classification. However, whether the prevalence of 

antagonistic summary interaction classifications is due to ecology or artefacts within the 

methods (Chapter Two) remains to be determined. The formation of a single dataset (by 

amalgamating data from each of the seven meta-analyses) also reveals that response metric 

(e.g., biomass, density, survival) and feeding group (e.g., autotrophs, or heterotrophs) may be 

important variables in determining stressor interactions. As such, it is likely that 

methodological differences (or errors) have prevented consistent generalities across multiple 

stressor meta-analyses from being identified. Overall, this may potentially have severe 

consequences with multiple stressor research being diverted to search for ecological 

explanations for methodological differences. 

 

5.2 Thesis contribution to future analyses 

Overall, this thesis makes several important findings, which in turn should be considered, and 

ideally implemented, within any future multiple stressor analyses. Firstly, there must be a 

greater appreciation of the null models used in multiple stressor ecology, particularly 

regarding the implementation and subsequent interpretation of these statistical tools. For 

instance, it is important to consider that null models test whether a particular hypothesis 

(e.g., an additivity of stressor effects) can be rejected. Accordingly, a failure to reject the null 

model does not equate to the null model being accepted. While this may appear to be a trivial 

difference in conclusions, it is nonetheless important to acknowledge, and respect, this 

difference. As such, a failure to reject a null model may be due to a number of factors. For 

instance, there may be an ecological basis for why a null model was rejected, namely that 

stressors truly interact in an additive (or multiplicative) manner hence no deviation from the 

null model occurs. Alternatively, such factors may be statistical, perhaps revolving around 

high levels of variation, or low sample sizes. Indeed, if there are high levels of variation it may 

be difficult to reject the null model even if an interaction between stressors is occurring 

(Chapter Two). Similarly, if an experiment uses low sample sizes per treatment, then that 

experiment will only have the necessary statistical power to detect exceptionally strong 
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signals (e.g., strong synergistic or antagonistic interactions) (Chapter Three). As such, there is 

a need for researchers to consider the statistical properties (e.g., power) of their experiment 

a-priori. Indeed, calculations of critical effect sizes (Chapter Three) for an experiment will 

indicate whether it has the necessary statistical power to detect an effect of a desired 

strength, or only exceptionally strong interactions. Ideally, the calculation of any effect size 

(e.g., Gurevitch et al., 2000; Lajeunesse, 2011) should be accompanied by the critical effect 

size (where appropriate) so that readers are able to determine the statistical power of any 

experiment and how this may affect the interpretation of any results. Indeed, a greater 

appreciation of the power of any experiment may lead to an increased consideration of the 

relative strength of stressor interactions, alongside their classification. For instance, if an 

experiment with low statistical power reveals a synergistic interaction, then such interaction 

could be described as being a ‘strong synergism’. Alternatively, if the same experiment 

instead returns a null interaction classification, then this may be described as ‘a strong 

interaction was not found to occur’ as a weaker interaction may still be occurring which the 

experiment failed to detect.  

There have also been suggestions that multiple stressor experiments should consider a 

greater range of stressor intensities, given that this may help reveal how stressors interact 

from a mechanistic perspective (Griffen et al., 2016; Schäfer & Piggott, 2018). However, given 

that resource limitations are commonplace in multiple stressor ecology it may be that 

considering additional stressor intensities may further reduce the already limited statistical 

power of any experiments. As such, if resource limitations are an issue, it may be prudent to 

adopt a pragmatic approach and focus on fewer stressor intensities each with more 

replicates. Alternatively, if the consideration of multiple stressor intensities is required, then 

different statistical analyses may be necessary. Other approaches have been suggested (e.g., 

Spears et al., 2021) though these tools may not be as widely used as the approaches 

implemented here with their benefits or limitations yet to be fully outlined. Furthermore, 

where new null models (e.g., Tekin et al., 2020; Thompson et al., 2018b) are presented, these 

must be thoroughly understood, and benchmarked against existing widely used methods, 

before they are widely adopted. Indeed, such an understanding may reveal ecological or 

statistical rationale which encourage (or potentially discourage) transitioning from one 

method to another (e.g., Orr et al., 2021a). 
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Meta-analyses represent some of the most influential (and highly-cited) research within 

multiple stressor ecology. However, as previously illustrated (Chapter Four), methodological 

differences have prevented these meta-analyses from revealing consistent generalities, 

which ultimately has held back multiple stressor ecology as a field. So as to prevent 

methodological differences (or errors) from occurring in the future, it is important that (as a 

minimum) multiple stressor meta-analyses outline all equations that have been used and 

ensure that raw data is openly available. Indeed, such actions would perhaps prevent 

methodological issues from arising so easily, given that equations could be compared to their 

original sources and raw data able to be reanalysed. Additionally, there is ample scope for 

future multiple stressor meta-analyses. Indeed, the discovery of generalities is an important 

aspect of multiple stressor ecology, given the potential for these generalities to shape 

management actions. However, our knowledge of these generalities is currently poor. As 

such, future meta-analyses may wish to determine whether a given co-variable is important 

in determining how stressors interact. Such meta-analyses may wish to expand on previous 

studies or focus on those variables which are currently data deficient (Chapter Four) or have 

been the subject of contrasting conclusions to date (see Côté et al., 2016).  

Using the existing datasets of seven aquatic meta-analyses (Chapter Four), current gaps in the 

multiple stressor experimental literature have been identified. As such, future aquatic 

experimental studies have the potential to rectify these omissions from the scientific 

literature. However, it is important that future experiments consider environmental 

conditions or stressor combinations that reflect those likely to be experienced by ecosystems 

(Korell et al., 2020). For instance, there is little to be gained (from a conservation standpoint) 

in determining how an ecosystem responds to a pharmaceutical contaminant, if that 

ecosystem is unlikely to be subjected to said contaminant. To date, empirical studies within 

the freshwater or marine realm have often prioritised response metrics such as abundance, 

density, or survival. However, there is the potential for future experiments to consider other 

community level metrics such as stability (e.g., Polazzo & Rico, 2021) to gain a perspective of 

how stressors may interact to affect alternative ecosystem properties. Similarly, future 

research may likewise wish to analyse long term datasets (e.g., RivFishTIME; Comte et al., 

2021a) in an attempt to understand how co-occurring stressors affect ecosystems in ‘real 

world’ conditions (e.g., Comte et al., 2021b; Erős et al., 2020). Indeed, such analyses may 
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reveal how metrics such as population densities, species interactions, or stability vary in 

response to multiple stressors across time-scales. Furthermore, there are increasing 

discussions on the need to consider stressor time-scales (relative to a species’ generation 

time) within multiple stressor ecology (Jackson et al., 2021). 

As previously identified (Chapters One - Three), ecological theory has not been widely utilised 

within multiple stressor ecology. However, the incorporation of ecological theory into 

multiple stressor ecology is essential, given that it may be used to make predictions that can 

be tested with empirical data (e.g., Chapter Two); similarly, such theory may also be used to 

test the findings of experimental analyses. Indeed, this absence of theoretical ecology is 

particularly acute when considering freshwater environments, though this likewise provides 

ample opportunity for future studies to build on the limited research in this realm. 

Accordingly, one potential avenue for expansion is the use of fundamental theoretical 

ecology, within multiple stressor research, in novel ways (e.g., Galic et al., 2018). 

Alternatively, existing general ecosystem models (e.g., Christensen & Walters, 2004; Harfoot 

et al., 2014; Purves et al., 2013) could be more widely expanded (e.g., Bartlett et al., 2016; Fu 

et al., 2018) to consider how multiple stressors affect various levels of ecological organisation.  

 

5.3 Broad overview of multiple stressor ecology 

Multiple stressor ecology is a relatively broad discipline and (as previously discussed) 

encompasses all levels of ecological organisation and overlaps with a range of other fields 

(e.g., ecotoxicology, conservation science). However, there are various commentaries on 

where attention should be focussed within multiple stressor ecology. Indeed, many studies 

(e.g., Griffen et al., 2016; Schäfer & Piggott, 2018) suggest that multiple stressor ecology 

should initially focus on gaining a mechanistic understanding of stressors, most likely at the 

organismal level given that stressors primarily act on individuals (Maltby, 1999). Alternatively, 

Orr et al., (2020) describe how multiple stressor research should prioritise understanding how 

interacting stressors affect higher levels of biological organisation, given that conservation 

actions are primarily enacted on communities or ecosystems. As has been repeatedly noted, 

stressors do not affect different organisation levels in isolation, instead stressor effects may 

transition between these different levels (e.g., Besson et al., 2020; Shears & Ross, 2010). In a 
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similar manner, insights gained from multiple stressor research conducted at one 

organisation level will likewise percolate, providing benefits to our understanding of stressor 

effects at other levels of organisation (Griffen et al., 2016). Accordingly, focussing future 

research on one organisation level will likely lead to both benefits and ramifications for the 

field as a whole. However, discussions regarding the future of multiple stressor ecology are 

undoubtedly important, although it would be remiss not to frame these arguments in regard 

to the relative benefits which focussing on these different levels of organisation can provide. 

The need for a mechanistic understanding of stressor effects has been outlined by numerous 

studies (e.g., Griffen et al., 2016; Orr et al., 2021b; Schäfer & Piggott, 2018). However, despite 

being oft discussed, a mechanistic understanding of stressors and their interactions is by no 

means easy to achieve. Indeed, a large amount of data is required for a mechanistic 

understanding, although currently this data is often limited or absent (Spears et al., 2021). A 

limited mechanistic understanding is further compounded by the sheer number of stressors 

(and their intensities) coupled with a plethora of organisms and myriad of physiological 

pathways which are potentially able to be affected (Côté et al., 2016). As such, given the 

multiplicity of stressor and organism combinations, prioritisation of particular stressors or 

organisms of concern is likely to be necessary. However, given the currently limited data on 

stressor mechanisms, there is ample scope for novel experimental studies to fill this literature 

gap. Similarly, it is likely that experiments conducted at the individual level will be less 

resource intensive than those at higher levels of organisation. As such, for these experiments, 

there is the potential to implement much larger sample sizes than those typically used for 

community level experiments. As such, these larger sample sizes would in turn allow much 

subtler stressor effects to be determined given the increased statistical power of these 

experiments (Chapter Three). Indeed, this greater statistical power may be crucial in 

determining whether stressors interact to perturb physiological mechanisms which may 

subsequently affect other response metrics in different ways (e.g., survival). 

The importance of stressor interactions within management planning is often discussed 

within multiple stressor ecology (e.g., Brown et al., 2014; Falkenburg et al., 2013; Kath et al., 

2018); indeed, it has been shown that a failure to account for stressor actions can lead to 

conservation actions failing (Brown et al., 2013). Given that such actions are primarily focused 

on communities and ecosystems, Orr et al. (2020) have called for a prioritisation of these 



Benjamin Joshua Burgess – Doctoral thesis 

124 
 

organisation levels within multiple stressor ecology. Indeed, community or ecosystem level 

studies may reveal how species interactions, community stability and even ecosystem 

services are affected by interacting stressors. However, interpreting any changes in these 

response metrics may rely on understanding population level effects (e.g., changes in feeding 

or survival rates); although these may in turn require knowledge of stressor effects at the 

individual level to fully understand (see above). Indeed, an improved ability to manage 

impacted ecosystems requires knowledge of stressor effects across all levels of organisation 

(De Laender et al., 2016; Polazzo & Rico, 2021). However, an increased consideration of the 

effects of stressors at an ecosystem or community level will undoubtedly be important. 

Although it is equally important (if not more so) that multiple stressor ecology collaborates to 

a greater degree with conservation science. To date, multiple stressor ecology is primarily 

academic in its outlook. However, to have the maximum benefits to science (and society) 

there must be shift towards prioritising the tangible, or practical, benefits from multiple 

stressor ecology. Indeed, there have been few (if any) instances where an understanding of 

stressor interactions has resulted in a successful management plan, with none apparent for 

freshwater ecosystems (Spears et al., 2021). However, the absence of management decisions 

based on multiple stressor ecology may be due in part to the lack of clear generalities which 

the field has provided (Côté et al., 2016). Overall, while an increased prioritisation of multiple 

stressor effects at the community or ecosystem levels is perhaps welcome, researchers must 

consider the direct (i.e., practical) implications of their work and how conservation or 

management actions may be aided. 

Finally, based upon previous results (Chapters Two and Four) it may be that stressors 

generally interact in an antagonistic manner. As such, if the majority of stressor interactions 

are truly antagonistic then what are the ecological implications? Indeed, is this evidence that 

ecosystems inherently push back against perturbations? If such mitigation does occur, it is 

unlikely to be a single process which may alleviate any stressor effects, but instead an 

amalgamation of processes across organismal (e.g., physiological; Sokolova, 2021), 

population (e.g., genetic; Orr et al., 2021b), and community (e.g., stability; Polazzo & Rico, 

2021) levels. Importantly, it may also be that these mitigation processes fundamentally 

change the properties of an ecosystem. As such, if stressors are removed from an ecosystem, 

it will not necessarily revert to the same state it inhabited prior to the stressors. Accordingly, 
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if a population evolves to adapt to the presence of stressors, then the removal of these 

stressors may have unforeseen, negative, consequences for this population and others in the 

community (Orr et al., 2021b). Indeed, such mechanisms may likewise make understanding 

how ecosystems respond to the removal of interacting stressors even more challenging. As 

such, this further highlights the need for stressor mechanisms to be better understood and 

for multiple stressor ecology to become more entwinned with conservation science. 

 

5.4 Concluding remarks 

Various anthropogenic actions are having significant impacts on the natural world (Best, 2019; 

Dudgeon, 2019). Indeed, the effects of many of these stressors (e.g., climate change or 

pollution) are increasingly understood when considered in isolation (Reid et al., 2019). 

However, there remains much uncertainty as to how these stressors may combine to affect 

ecosystems (Côté et al., 2016). Individual experiments and meta-analyses have all reported 

that antagonistic, null, and synergistic interactions should be expected, though there has 

been little consistency in these conclusions. Accordingly, the research within this thesis has 

helped illustrate why such generalities are so far absent. For instance, multiple stressor 

experiments may only have the necessary statistical power to detect exceptionally strong 

interactions, meaning that many weaker (though potentially still important) interactions 

between stressors are not reported (Chapter Three). For multiple stressor meta-analyses, 

disparate (and sometimes erroneous) methodologies are likely responsible for the absence 

of any generalities (Chapter Four). 

Although grounded in established science (e.g., Soluk & Collins, 1988), multiple stressor 

ecology is still relatively immature as a field of research. Indeed, this relative infancy may be 

partially responsible for the absence of generalities, as there is minimal guidance of how 

decisions (with statistical or analytical consequences) may affect ecological interpretations. 

As such, while future aims have previously been suggested for multiple stressor ecology (e.g., 

Griffen et al., 2016; Orr et al., 2020; Schäfer & Piggott, 2018) it may be prudent to first 

consider the statistical aspects of the field (e.g., sample sizes and analytical techniques) which 

may be preventing these aims from being met. It is only once these statistical attributes are 
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better understood that multiple stressor ecology can make greater progress in gaining 

mechanistic insights or overlapping with conservation science. 
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Appendix One 

 

Web of Science was searched (22/06/2021) to determine the number of multiple stressor 

papers published per year which were either general or freshwater specific. The following 

search terms were used and based upon those described by Orr et al. (2020). 

 

Overall number of multiple stressor papers 

TI = (“multiple stress*” OR “stressors” OR “global change factors” OR “environmental factors” 

OR “global change drivers” OR “multiple drivers” OR “synerg*” OR “amplif*” OR “antagon*” 

OR “dampen*” OR “additive” OR “multiplicative” OR “reversal” OR “interactive effects” OR 

“multifactor” OR “nitrogen and phosphorus limitation” OR “multiple limiting resources” OR 

“nutrient co-limitation” OR “global change experiments” OR “counteract*”)  

AND  

TS = (“multiple stress*” OR “stressors” OR “global change factors” OR “global change drivers” 

OR “multifactor” OR “cumulative effect*” OR “net effect*” OR “combined effect*” OR 

“interacting” OR “nitrogen and phosphorus limitation” OR “multiple limiting resources” OR 

“nutrient co-limitation” OR “global change experiments”)  

AND  

WC = (“Ecology” OR “Toxicology” OR “Environmental Sciences” OR “Plant Sciences” OR 

“Zoology” OR “Marine Freshwater Biology” OR “Limnology” OR “Oceanography” OR 

“Multidisciplinary Sciences” OR “Plant Sciences” OR “Microbiology” OR “Biodiversity 

Conservation”)  

AND  

PY = (1900-2020) 
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Number of multiple stressor papers considering the freshwater realm 

TI = (“multiple stress*” OR “stressors” OR “global change factors” OR “environmental factors” 

OR “global change drivers” OR “multiple drivers” OR “synerg*” OR “amplif*” OR “antagon*” 

OR “dampen*” OR “additive” OR “multiplicative” OR “reversal” OR “interactive effects” OR 

“multifactor” OR “nitrogen and phosphorus limitation” OR “multiple limiting resources” OR 

“nutrient co-limitation” OR “global change experiments” OR “counteract*”)  

AND  

TS = (“multiple stress*” OR “stressors” OR “global change factors” OR “global change drivers” 

OR “multifactor” OR “cumulative effect*” OR “net effect*” OR “combined effect*” OR 

“interacting” OR “nitrogen and phosphorus limitation” OR “multiple limiting resources” OR 

“nutrient co-limitation” OR “global change experiments”)  

AND  

WC = (“Ecology” OR “Toxicology” OR “Environmental Sciences” OR “Plant Sciences” OR 

“Zoology” OR “Marine Freshwater Biology” OR “Limnology” OR “Oceanography” OR 

“Multidisciplinary Sciences” OR “Plant Sciences” OR “Microbiology” OR “Biodiversity 

Conservation”)  

AND  

PY = (1900-2020) 

AND 

TS = (“Freshwater” OR “river” OR “stream” OR “pond” or “lake” or “catchment” or “riparian”) 
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... & Piggott, J. J. (2020). Towards a unified study of multiple stressors: divisions and common 
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Theoretical simulations 

The following section details the method used to generate data for the theoretical 

simulations. 

 

Equations 

The equations (Equations 2.1 & 2.2) used throughout this analysis have been taken from 

Heath et al., (2014); though the equations have been minorly adapted to include density 

independent mortality at all trophic levels (except for the bottom trophic level) as opposed 

to only the apex trophic level. The two sets of equations comprise differing forms of dynamics 

and regulation. Equation 2.1 (DD-Equations) comprises a term for density-dependent 

mortality, whereas in Equation 2.2 (CR-Equations) consumer uptake is regulated by density. 

These two sets of equations have been explored in detail, and compared to alternate forms 

of classic ecological theory, by Heath et al., (2014). 

 

Generation of Theoretical Data 

Theoretical stressor interaction data was generated using the following method (expanded 

from that in Section 2.3).  

1) Parameter combinations were randomly determined for 1,320,000 food chains, where 

each combination of equation type (DD-Equations or CR-Equations) and food chain 

length (three, four, or five trophic levels) accounts for 220,000 parameter 

combinations. Each parameter was randomly assigned a value from a predetermined 

range, with ranges differing depending upon the parameter in question (Table 2.2). 

The parameter values were drawn from a uniform distribution (i.e., any value in the 

range is as likely to be selected as any other). These values are considered to be 

baseline parameter values. 

 

2) Two parameters were randomly chosen to be subjected to stress with all candidate 

parameters being chosen with equal probability. These two parameters have different 

values to their baseline equivalents, but all other parameters will maintain the same 
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values. Stressed parameter values were chosen from the ranges given in Table 2.2, 

using a uniform distribution. Only the parameters of attack rate (α), conversion 

efficiency (ε), density independent mortality (δ), or nutrient input rate (ω) were able 

to be stressed. The parameters selected to be stressed could be on the same trophic 

level (e.g. α2 and ε2) the same biological process on different trophic levels (e.g. ε2 and 

ε1) or different biological processes on different trophic levels (e.g. ε1 and α2). 

Additionally, α1 was not stressed in any of the simulations. This is due to the fact that 

altering α1 only had any impact upon the nutrient trophic level, and no impact upon 

any other trophic levels in the simulations (unpublished data). Given that this analysis 

was primarily concerned about non-nutrient trophic levels, α1 was not stressed in any 

analysis. 

 

Stressor A parameter values are the same as the baseline values except that the 

parameter value for the first stressed parameter is changed to the stressed value. 

Stressor B parameter values are the same as the baseline values except that the 

parameter value for the second stressed parameter is changed to the stressed value.  

Interaction parameter values are the same as the baseline values except that the 

parameter value for both stressed parameters are changed to the corresponding 

stressed values.  

Overall, there are 5,280,000 parameter combinations equating to 1,320,000 

parameter groups for individual food chains under baseline, stressor A, stressor B, and 

interaction conditions. 

When determining the value of the stressed parameters, these were again selected 

using a uniform distribution. When α, ε, or δ were selected to be stressed, the stressed 

value was determined from a uniform distribution (U~(0.01, 0.99)), which was 

bounded at 0.01 and 0.99 for the lower and upper limits respectively. The single caveat 

placed upon this uniform distribution was that stressed parameter values were unable 

to have a value within the range of the baseline value ± 0.025, this was so as to ensure 

that any stressed parameter value was suitably different to the baseline parameter 
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value. The same approach was adopted when ω was selected to be stressed, though 

the limits of the uniform distribution (U~(1, 99)) were 1 and 99, with the excluded 

range being the baseline parameter value ± 2.5. 

 

3) For each of the 1,320,000 parameter groups, the equilibrium densities of all trophic 

levels in the food chain, under all levels of stress, were determined using the NSolve 

function in Mathematica 10.4 (Wolfram Research Inc., 2016). Equilibrium densities are 

referred to as the densities of each trophic level in the food chain that result in there 

being no net change in the density of any other trophic level. Furthermore, additional 

constraints were placed on the equilibrium densities in that they needed to be feasible 

(i.e. the equilibrium densities of all trophic levels in the food chain had to be positive 

and non-zero).  

For some parameter groups, equilibrium densities were able to be calculated for the 

baseline parameter values but not for either stressor A, stressor B, or the interaction 

parameter values. When this occurred the equilibrium densities for the entire 

parameter group were discarded from any further analysis. 

Overall, feasible equilibrium densities could be found, under all four levels of stress, 

for 1,054,272 (79.9%) parameter groups. 

 

4) From the 1,054,272 parameter groups, 360,000 were randomly selected (with each 

combination of food chain length and equations accounting for ~16.667% of 

interactions). From each of these 360,000 parameter groups, the equilibrium density 

of a single trophic level (consistent across each level of stress) was randomly selected 

and collated into a single dataset for analysis, hence referred to as the analysis 

dataset. All subsequent analysis was performed on this analysis dataset. For this 

analysis, the number of interactions (360,000) was large enough to ensure that 

repeating the analysis would not cause substantially different results to occur, whilst 

also being computationally feasible. Furthermore, this also allowed for significant 

numbers of interactions to be included from i) both types of equations, ii) all lengths 

of food chain, iii) all considered trophic levels. 
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Simulation of observation error 

For each parameter group, when calculating the equilibrium densities, there was no innate 

variation included within the equations. Hence, using the same parameter values will return 

the same equilibrium densities each time. However, this is not necessarily reflective of 

ecological systems. To account for this, observation error was incorporated into the analysis 

dataset through the following method.  

5) Firstly, the level of observation error, σ, to be included was chosen, where σ refers to 

the standard deviation of a normal distribution with a mean of 1 (i.e. N~(1, σ)). Within 

this analysis, observation error was included with equal spacing on a logarithmic scale 

(between 1x10-6 and 5x10-1) with there being 50 different levels of observation error 

investigated (alongside the absence of observation error). Through the rest of this 

method we use a level of observation error of σ. 

 

6) For each of the 360,000 parameter groups in the analysis, a number of replicates (n) 

(either three, four, five, or six), was randomly selected using a uniform distribution. 

The number of replicates was consistent across the different treatments for each 

parameter group (i.e. baseline, stressor A, stressor B, and interaction). The range of n 

was chosen to mirror the ranges of replicates reported in the majority of empirical 

studies that made up our freshwater stressor analysis. 

 

7) For each treatment within each parameter group, n values from a Gaussian 

distribution with a mean of 1 and standard deviation of σ were taken. These values 

were then multiplied by the equilibrium density for that treatment; with the mean and 

standard deviation of these new n equilibrium densities being calculated. 

This was conducted for each treatment within each parameter group. Additionally, if 

any of the n values from the Gaussian distribution were equal to, or greater than, 2 or 

less than, or equal, to 0, then the n values from the Gaussian distribution were re-

drawn. 
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Accordingly, by having the mean, standard deviation, and number of replicates for 

each treatment, it is possible to calculate effect size metrics (Hedges’ d) and determine 

interaction classifications.  

 

Additional Results 

Overall, the qualitative pattern for the interaction classification frequencies varied with 

observation error. Figure S2.1.1 shows how the frequency of the different interaction classes 

varies with observation error for the overall dataset of 360,000 interactions, as well as this 

dataset when subset for food chains using either CR-Equations or DD-Equations. Similarly, 

Figure S2.1.2 shows how the frequency of interaction classes varies when the overall dataset 

is subset by the length of food chain. Figure S2.1.3 shows how interactions classed as being 

reversal, antagonistic, or synergistic under no observation error, are reclassified when 

observation error is incorporated at different levels. Figure S2.1.4 illustrates the distribution 

of effect sizes under different levels of observation error. Penultimately, Figure S2.1.5 shows 

the frequency of the interaction classifications, summary effect sizes, and ratio of positive to 

negative effect sizes under different levels of observation error when two stressors are 

capable of acting upon the same single parameter. The method for this section is near 

identical to that outlined above, with the only difference being that the same parameter can 

be impacted by two individual stressors, with the interaction stressed parameter value being 

the additive effect of the individual stressors. The interaction stressed parameter value still 

had to be within the same limits as before, though if it exceeded these limits the individual 

stressed parameter values were redrawn. As shown, the results of this analysis (Figure S2.1.5) 

are highly similar to when two stressors only ever act on different parameters (Figure 2.2).  

Finally, Figure S2.1.6 illustrates the frequency of interactions that are assigned the ‘true’ 

interaction classification (across all levels of observation error) for different levels of 

deviation. Here, deviation is calculated as 
𝐷𝐼−𝐷𝐴−𝐷𝐵+𝐷𝐶

𝐷𝐴+𝐷𝐵−2𝐷𝐶
 ∙ 100%, with this metric denoting the 

percentage difference between the observed and additive null model predicted interaction 

effects. For Figure S2.1.6, interactions have been grouped, according to their deviation, into 

bins of 5% intervals (i.e. 0% ≤ deviation < 5%; 5% ≤ deviation < 10%; etc.). We found no 

evidence for interactions only weakly deviating from additivity, with the majority (53.1%) of 
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interactions have a deviation greater than ±5%, including numerous interactions having a 

deviation of greater than ±50% (10.1%) or greater than ±100% (5.2%). Under each level of 

observation error, the frequency of interactions that are correctly classified has been 

determined. As expected, correct classification of the most minorly deviating interactions 

(i.e., 0% ≤ deviation < 5%) declines quite quickly with increasing observation error (Figure 

S2.1.6). However, the correct classification of the more strongly deviating interactions 

declines much more slowly. If we compare Figure 2.2 to Figure 2.1.6 we can see that by an 

observation level of around 1x10-2 most correctly assigned interactions are in the larger 

deviation classes, but that as we observe in Figure 2.2, there is still a high total proportion of 

interactions that can be correctly detected. 
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Figure S2.1.1: Prevalence of the different classifications of interactions for the theoretical 

data, when observation error (σ) was implemented, separated for data from Consumer 

Uptake Regulation Equations, Density Dependence Equations, and the combined dataset. a) 

Overall dataset, b) only food chains with CR dynamics, c) only food chains with DD dynamics. 

Dotted black line denotes additive interactions. Dashed green line indicates antagonistic 

interactions. Long-dashed yellow line denotes synergistic interactions. Solid purple line 

indicates reversal interactions. 

 

 



Benjamin Joshua Burgess – Doctoral thesis 

159 
 

 

Figure S2.1.2: Prevalence of the different classifications of interactions for the theoretical 

data, when observation error (σ) was implemented, separated for data from the three 

different lengths of food chain. a) Communities comprising three trophic levels, b) 

Communities comprising four trophic levels, c) Communities comprising five trophic levels. 

Dotted black line denotes additive interactions. Dashed green line indicates antagonistic 

interactions. Long-dashed yellow line denotes synergistic interactions. Solid purple line 

indicates reversal interactions. 
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Figure S2.1.3: For a given ‘true’ interaction classification (i.e. when observation error is not considered) 

the proportions of this interaction classification that are reassigned to a different class when 

observation error (σ) was implemented. The data shown is for the combined dataset of containing 

simulations using either set of equations, comprising 360,000 interactions. a) Reversal interactions, b) 

Antagonistic interactions, c) Synergistic Interactions. Dotted black line denotes additive interactions. 

Dashed green line indicates antagonistic interactions. Long-dashed yellow line denotes synergistic 

interactions. Solid purple line indicates reversal interactions. 
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Figure S2.1.4:  Distribution of effect sizes for the theoretical data, under multiple levels of observation 

error. Yellow indicates the effect size distribution for an observation error (σ) of 1x10-4; Orange 

indicates the effect size distribution for an observation error of 1x10-3; Red indicates the effect size 

distribution for an observation error of 1x10-2; Black indicates the effect size distribution for an 

observation error of 1x10-1. 
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Figure S2.1.5: The effect of observation error (σ) on the stressor interaction categorisation, and 

summary meta-analytic effect sizes in the theoretical data where two stressors are able to act on the 

same parameter. a) Frequency of the different interaction classes for the 360,000 theoretical 

interactions at each level of observation error. Dotted black line denotes additive interactions. Green 

short-dashed line indicates antagonistic interactions. Yellow long-dashed line denotes synergistic 

interactions. Purple line indicates reversal interactions. b) Summary effect sizes for the 360,000 

theoretical interactions, at each level of observation error. Black lines denote summary effect sizes, 

and red lines denote 95% confidence intervals. c) Ratio of positive to negative summary effect sizes at 

each level of observation error. 
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Figure S2.1.6: Frequency of interactions that are assigned the correct classification in the presence of 

observation error (σ). Lines refer to different levels of deviation. Dark blue - 0% ≤ deviation < 5%; purple 

- 5% ≤ deviation < 10%; pink - 10% ≤ deviation < 15%; orange - 15% ≤ deviation < 20%; yellow - 20% ≤ 

deviation < 25%. 

 

 

References 

Heath, M. R., Speirs, D. C., & Steele, J. H. (2014). Understanding patterns and processes in 

models of trophic cascades. Ecology Letters, 17(1), 101-114. 

Wolfram Research. Inc. (2016). Mathematica (Version 10.4). Wolfram Research, Inc., 

Champaign, Illinois. 

  



Benjamin Joshua Burgess – Doctoral thesis 

164 
 

Literature search 

The following section details the literature search for empirical data to be used within the 

multiple stressor meta-analysis. 

A search for literature was conducted in Web of Science (26/02/2019) using the following 

search criteria, for papers published up to, and including, 31st December 2018: 

TS = ("synerg*" OR "antagon*" OR "additive" OR "dampen*" OR "combined" OR "multiple" 

OR "factorial" OR "experiment" OR "stressor" OR "multiple stressor") AND TS = ("freshwater" 

OR "river" OR "stream" OR "lake" OR "catchment" OR "pond" OR "riparian") AND TS = 

("impact" OR "effect") AND TS = ("communit*") AND TS = ("biomas*" OR "abundan*" OR 

"densit*") AND SU=("Biodiversity & Conservation" OR "Environmental Sciences & Ecology" 

OR "Fisheries" OR "Marine & Freshwater Biology" OR "Mathematical & Computational 

Biology" OR "Microbiology" OR "Plant Sciences" OR "Zoology") 

The search terms used here were adapted from those used by Jackson et al., (2016). 

 

Overall, 1805 entries were returned. 

To be included within this dataset, studies had to investigate the impacts of two stressors, 

upon a freshwater community. There was no limit placed upon the types of stressor that could 

be considered, so long as the stressor was a manipulation of environmental, or novel 

ecological, conditions as opposed to measuring the response of native communities to 

normal, or expected, events or disturbances. 

 

Only data referring to the abundance, biomass, density (or in some cases chlorophyll-a, or 

other chemical concentrations from which biomass could be estimated) was collated. For 

each group of organisms, the study had to report, mean values, standard deviation or 

standard error, and the number of replicates for the following: 

i) Data for the group of organisms under control conditions (i.e. no stressors) 

ii) Data for the group of organisms under Stressor A (a single stressor) 

iii) Data for the group of organisms under Stressor B (a single stressor) 
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iv) Data for the group of organisms under both Stressors A and B (both stressors 

acting simultaneously) 

 

Each study could report data for multiple different groups of organisms, all of which was 

collated. Additionally, some studies reported data for freshwater communities exposed to 

multiple different intensities of a stressor, all of these were collated, so long as the above 

factorial design was followed. Where studies did not report mean values, standard deviation 

or standard error, or the number of replicates, the data was not incorporated within the 

dataset. 

Each paper was individually screened to determine whether it was suitable for inclusion 

within our study. Firstly, titles and abstracts were assessed to determine whether the paper 

was potentially relevant to our study. If a paper was potentially relevant the methods were 

read to determine whether the study design was factorial and met the above criteria for 

inclusion. If the paper met the criteria, then the results and supplementary information were 

considered to determine whether all required data (above) was presented. Overall, data 

extraction was attempted for 124 papers. However, at this stage 66 papers were deemed 

unsuitable for data extraction, due to issues such as missing data, or having figures that were 

too unclear for data extraction. 

To be included within this dataset, studies had to investigate freshwater communities. Those 

experiments which were conducted upon other such aquatic environments, e.g. marsh, 

brackish, estuarine, or coastal environments were not considered. From each study, data was 

extracted from tables or from figures using WebPlotDigitizer software (Rohatgi, 2017). 

Overall, 58 papers were found, which were able to contribute data to this dataset, 

contributing a total of 859 interactions. However, to reduce covariance within the dataset 

between these interactions, the following protocol was adopted. 

i) Where studies reported data for multiple response metrics, preference was given 

in the following order: Density, Abundance, Biomass, and Chlorophyll-a (and other 

chemical proxies for biomass). 

ii) Where studies reported data for multiple overlapping groups of organisms, 

preference was given to subsets of groups of organisms as opposed to coarser 
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groupings. For instance, if a study reported densities of i) overall periphyton, 

alongside data for constituent ii) algae and iii) bacteria; only ii and iii would be 

included in the dataset. 

iii) Where studies reported data for the same group of organism, but in different 

locations within the study environment, only one location was used, with 

preference being given to the location where a more complete set of data was 

able to be extracted. 

iv) Where studies reported data for multiple time points, preference was given to the 

time point measured latest in the experiment. 

 

After following this protocol, the number of interactions was reduced to 545.  

 

Within the dataset, each stressor is assigned into one of seven different categories depending 

upon qualitative properties of the stressor. The seven different categories are: community 

composition, contamination, habitat alteration, light, nutrients, salinity, and temperature, 

with explanations and examples given in Table S2.2.1.  
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Table S2.2.1: The seven broad categories of stressor considered within this analysis, with examples and 

definitions provided. 

Stressor 

Category 

Explanation Example 

Community 

Composition 

The addition or removal of a group of organisms 

from the community. 

e.g. Invasive 

species 

Contamination The addition of a chemical (with the exception of 

nutrients) at concentrations not normally found in 

the system. 

e.g. Pesticides  

Habitat 

Alteration 

Changing the physical properties of a system from 

those normally seen 

e.g. 

Sedimentation 

Light Change in the levels of light that a system receives e.g. UV 

Nutrients Addition of nutrients to a system at levels exceeding 

those normally found 

e.g. Nitrogen 

Salinity An increase in the salinity of the freshwater study 

system 

e.g. Salt addition 

Temperature An increase in the temperature of the freshwater 

study system 

e.g. Temperature 

increase 

 

References 

Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of 

multiple stressors in freshwater ecosystems: a meta‐analysis. Global Change Biology, 22(1), 

180-189. 

Rohatgi, A. (2017) WebPlotDigitalizer: HTML5 based online tool to extract numerical data 

from plot images. Version 4.1. URL <http://arohatgi.info/WebPlotDigitizer/app/> 

  



Benjamin Joshua Burgess – Doctoral thesis 

168 
 

Calculation of Hedges’ d 

This section details the calculation of Hedges’ d, used to implement the additive null model. 

For each interaction the effect size metric of Hedges’ d was calculated. Hedges’ d is an 

estimate of the standardised mean difference that is not biased by small sample sizes (Hedges 

and Olkin, 1985). Here we use the method outlined in Gurevitch et al., (2000) to calculate 

Hedges’ d, which uses an additive null model to compare the predicted effect of two stressors 

upon a system (i.e. the sum of their effects) to the effect that is actually observed. In order to 

calculate this, experiments are required to use a factorial design with four treatments: control 

conditions with no stressors (C), only stressor A present (A), only stressor B present (B), and 

both stressors present (I). For each of these treatments, the mean 

density/abundance/biomass of the response group of organisms (DX) the standard deviation 

of the mean response (sx), and the number of replicates (Nx) is required. 

 

Overall, Hedges’ d (dint) was calculated using the following equations: 

𝑑𝑖𝑛𝑡 = 
𝐷𝐼 − 𝐷𝐴 −𝐷𝐵 + 𝐷𝐶

𝑠
 

Where s is the pooled standard deviation of dint: 

𝑠 =  √
(𝑁𝐼 − 1)(𝑠𝐼)2 + (𝑁𝐴 − 1)(𝑠𝐴)2 + (𝑁𝐵 − 1)(𝑠𝐵)2 + (𝑁𝐶 − 1)(𝑠𝐶)2

(𝑁𝐼  + 𝑁𝐴  + 𝑁𝐵  +  𝑁𝐶 − 4)
 

The variance of dint can be calculated as: 

𝑣𝑖𝑛𝑡 = (
1

𝑁𝐼
+ 
1

𝑁𝐴
+ 
1

𝑁𝐵
+ 
1

𝑁𝐶
+ 

𝑑𝑖𝑛𝑡
2

2(𝑁𝐼 + 𝑁𝐴 + 𝑁𝐵 + 𝑁𝐶)
) 

Where the standard error of dint can be calculated (Borenstein 2009) as: 

𝑆𝐸𝑖𝑛𝑡 = √𝑣𝑖𝑛𝑡 

Where 95% confidence intervals are calculated as: 

𝐶𝐼95% = 1.96 ∗ 𝑆𝐸𝑖𝑛𝑡 
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For each interaction, directionality was removed using the method stated in Section 2.3 and 

outlined in Piggott et al., (2015). This involved inverting the response direction of the 

calculated Hedges’ d where the predictive additive effects were negative.  

 

For each interaction, it is possible to use Hedges’ d to determine an interaction classification 

(namely, additive, antagonistic, synergistic, or reversal). Accordingly, an interaction was 

classified as being additive if, 𝑑𝑖𝑛𝑡  ±  𝐶𝐼95%, overlaps zero. If 𝑑𝑖𝑛𝑡  ±  𝐶𝐼95% does not overlap 

zero, then an interaction was classified under the following conditions: 

i) dint > 0, the interaction is classed as being synergistic 

ii) dint < 0 and 

𝐷𝐴 +𝐷𝐵 − 2𝐷𝐶  and 𝐷𝐼 − 𝐷𝐶  have the same polarity, the interaction is classed as 

being antagonistic 

iii) dint < 0 and 

 𝐷𝐴 + 𝐷𝐵 − 2𝐷𝐶    and 𝐷𝐼 − 𝐷𝐶have the different polarities, the interaction is 

classed as being reversal 

The method was used for all empirical interactions, and for theoretical interactions where 

observation error was included. 
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Theoretical interactions without observation error 

When no observation error was present in the theoretical experiments, dint was instead 

classified using the following equation: 

𝑑𝑖𝑛𝑡 = 𝐷𝐼 − 𝐷𝐴 −𝐷𝐵 + 𝐷𝐶  

This is due to the fact that with no observation error, the was no variation in the densities of 

trophic levels, hence effect sizes could be determined exactly with no confidence intervals.  

Accordingly, under this set of scenarios, if: 

iv) dint > 0, the interaction is classed as being synergistic 

v) dint < 0 and 

𝐷𝐴 +𝐷𝐵 − 2𝐷𝐶    and 𝐷𝐼 −𝐷𝐶  have the same polarity, the interaction is classed as 

being antagonistic 

vi) dint < 0 and 

 𝐷𝐴 + 𝐷𝐵 − 2𝐷𝐶    and 𝐷𝐼 − 𝐷𝐶  have the different polarities, the interaction is 

classed as being reversal 

vii) dint = 0, the interaction is classed as being additive 
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Naming conventions 

Within this research, we have adopted the naming convention for interaction classes, first 

established by Jackson et al., (2016), and additionally outlined by Orr et al., (2020). Table 

S2.4.1 outlines how the naming of interaction classes within this study corresponds to those 

used within previous studies. 

Table S2.4.1: Comparisons of the naming of interaction classifications within this study, and other 

studies. 

This research Travers-Trolet et al., (2014) / Fu et al., (2018) Common Nomenclature 

Additive Additive Additive 

Synergistic Synergistic Synergistic 

Antagonistic Dampened Antagonistic 

Reversal Antagonistic Antagonistic 

 

The term antagonistic is frequently used to describe different classes of interactions 

depending upon the study. Frequently, studies do not differentiate between antagonistic and 

reversal interactions simply classifying both as being antagonistic. 
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Weighted meta-analyses 

Meta-analyses were conducted using the metafor package (Viechtbauer, 2010) in R, using the 

function rma.mv. The meta-analyses conducted within our research were weighted. For every 

meta-analyses, each interaction was weighted, with the weighting given to each interaction 

by determined by the rma.mv() function.  

Many of the included empirical studies conducted experiments where multiple treatments of 

the same stressor were investigated, or the same control was used for multiple factorial 

experiments. In order to account for covariance between these interactions, covariance-

variance matrices were used within the empirical meta-analyses. Covariance-variance 

matrices take the form of the below example (Equation S5.1). In this example the variance of 

the four interactions are along the major diagonal (vi) whilst interactions 1 and 2 share a 

control, hence the covariance of these two interactions (c1,2) is incorporated in the 

corresponding off-diagonal positions. Where two interactions do not share a control (there is 

no covariance) the corresponding off-diagonal position is filled with a 0.  

(

𝑣1 𝑐1,2
𝑐1,2 𝑣2

0   0
0   0

0 0
0 0

𝑣3 0
0 𝑣4

) 

Equation S5.1, an example of a covariance-variance matrix. 

 

For the empirical meta-analyses, random effects were specified as being: 

i) The study the interaction was published in, 

ii) The study group of organisms. 

Within the meta-analytical model, ii) was nested within i). Accordingly, i) allows us to account 

for between study variance, whilst ii) allows us to account for within study variance. 

For the meta-analytical results within the main text of the paper, there were no fixed effects 

specified. However, two additional meta-analytical models were conducted, with the 

categorical moderators of organism group and stressor combination, to test whether our 

results were robust across subsets of the empirical data (Figures S2.5.1 – S2.5.2). The results 

from these meta-analytical models are in line with the main findings of this study. All sub-
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groups reported summary effect sizes that were negative, with confidence intervals that did 

not overlap zero (i.e. antagonistic/reversal interactions) or had confidence intervals that 

overlapped zero (additive interactions). However, it should be noted that many of these sub-

groups had small numbers of interactions, and as such care should be taken when inferring 

conclusions from these results. 

For the theoretical meta-analytical models, a slightly different approach was used, with this 

due to computational constraints. Here, weighted fixed effect models were conducted using 

the lm function in R. For models using the theoretical data, the weighting given to each 

interaction was specified as being the reciprocal of the interaction variance. Discrepancies 

between the use of metafor, lm, nlme, and lme4 have been previously documented (see 

<http://www.metafor-project.org/doku.php/tips:i2_multilevel_multivariate>). Ultimately, it 

has been shown that the summary effect size between the two methods remains the same, 

but that the standard errors differ. While we acknowledge the differences between the two 

methods, due to the computational constraints it was unavoidable.  

Figures S2.5.3 – S2.5.4 are variants of Figure 2.3 (main text) but allow for comparisons 

between the results of the empirical meta-analysis and subsets of the theoretical analyses 

where only interactions from either the DD- or CR-Equations are considered. As in Figure 2.3, 

three different levels of observation error (0.1, 0.01, 0.001) are considered. 
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Figure S2.5.1: a) Results of meta-analytical model with the inclusion of organism group (i.e. producer, 

consumer, or unclear) as a fixed effect. For each organism group, the summary effect size, with 

accompanying 95% confidence intervals are shown. Filled circles indicate that the 95% confidence 

intervals do not overlap zero, while unfilled circles indicate that the 95% confidence intervals overlap 

zero. b) The frequency of the different interaction classes, for each organism group, legend as for Figure 

2.3. For x-axis labels, numbers in brackets indicate the number of interactions for organism group. 
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Figure S2.5.2: a) Results of meta-analytical model with the inclusion of stressor combination as a fixed 

effect. For each stressor combination, the summary effect size, with accompanying 95% confidence 

intervals are shown. Filled circles indicate that the 95% confidence intervals do not overlap zero, while 

unfilled circles indicate that the 95% confidence intervals overlap zero. b) The frequency of the different 

interaction classes, for each stressor combination, legend as for Figure 2.3. For x-axis labels, numbers 

in brackets indicate the number of interactions for stressor combination. The following notation 

denotes each group of stressors: CC – community composition; Con – contamination; HA – habitat 

alteration; L – light; N – nutrients; S – salinity; T – temperature. 
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Figure S2.5.3: Comparisons of the analyses of the freshwater interaction dataset with the theoretical 

interaction dataset for different levels of observation error, σ (given in parentheses on the x-axis). For 

the theoretical dataset only effect sizes for interactions determined using DD Equations (Table 1 main 

text) are shown. Comparisons are for a) proportions of the different interaction classes, and b) 

summary effect sizes for the empirical and theoretical dataset. The empirical dataset comprised 545 

interactions, while the theoretical dataset comprised all simulated interactions at the level of 

observation error stated within the parentheses. For Figure S2.5.3a) White circles denote additive 

interactions. Green squares denote antagonistic interactions. Yellow diamonds denote synergistic 

interactions. Purple triangles denote reversal interactions. For Figure S2.5.3b) Closed circles denote 

significant summary effect sizes (i.e. 95% confidence intervals do not overlap zero); open circles denote 

non-significant summary effect sizes (i.e. 95% confidence intervals overlap zero). 
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Figure S2.5.4: Comparisons of the analyses of the freshwater interaction dataset with the theoretical 

interaction dataset for different levels of observation error, σ (given in parentheses on the x-axis). For 

the theoretical dataset only effect sizes for interactions determined using CR Equations (Table 1 main 

text) are shown. Comparisons are for a) proportions of the different interaction classes, and b) 

summary effect sizes for the empirical and theoretical dataset. The empirical dataset comprised 545 

interactions, while the theoretical dataset comprised all simulated interactions at the level of 

observation error stated within the parentheses. For Figure S2.5.4a) White circles denote additive 

interactions. Green squares denote antagonistic interactions. Yellow diamonds denote synergistic 

interactions. Purple triangles denote reversal interactions. For Figure S2.5.4b) Closed circles denote 

significant summary effect sizes (i.e. 95% confidence intervals do not overlap zero); open circles denote 

non-significant summary effect sizes (i.e. 95% confidence intervals overlap zero). 
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Meta-analysis heterogeneity and asymmetry 

This section discusses methods used to assess potential heterogeneity and asymmetry within 

meta-analyses. 

 

Heterogeneity 

In order to quantify the effects of heterogeneity within the meta-analytical models, I2 

statistics were calculated. For the overall meta-analytical model an I2 statistic of 48.5%, just 

below the benchmark of high heterogeneity from Higgins et al., (2003); though the usefulness 

of these benchmarks in ecological meta-analyses is questioned (Nakagawa et al., 2017). 

Overall, this suggests that heterogeneity within our meta-analysis was lower than either the 

mean (91.69%) or median (84.67%) I2 found in an analysis of previous ecological meta-

analyses (Senior et al., 2016).  

Subsequently, in order to explore some of the sources of heterogeneity we conducted two 

additional meta-analyses on subgroups of the empirical dataset using the ecologically 

relevant categorical moderator of organism group (namely Producer or Consumer) to subset 

the data. Overall, there were 206 interactions for producers, and 337 interactions for 

consumers (while a further two interactions were classed as unclear – namely where the 

response of dinoflagellates to interacting stressors was measured – and excluded from further 

analysis). Overall, running meta-analytical models following the same method as outlined in 

the methods, the meta-analytical model for producers returned an effect size of -0.571 

±0.377, corresponding to an antagonistic/reversal summary interaction class; while the meta-

analytical model for consumers returned an effect size of -0.614 ±0.333, also corresponding 

to a summary interaction class of antagonistic/reversal. For both of these sub-group meta-

analyses I2 statistics were calculated. For the producer meta-analytical model, I2 was equal to 

67.7%, while for the consumer meta-analytical model, I2 was equal to 42.5%. Overall, the sub-

group analysis revealed that even within these sub-groups, heterogeneity was either 

moderate or high.  
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Publication Bias 

Within the overall meta-analysis, moderate-high levels of heterogeneity were observed. 

However, this can have ramifications for the traditional methods of assessing publication bias 

within meta-analyses (Ioannidis & Trikalinos, 2007; Nakagawa et al., 2017). Publication bias 

can manifest through a lack of studies where there are small, or insignificant, effects being 

published, and instead studies reporting large, or significant effects, are predominately 

published. As has been previously noted, ecological meta-analyses frequently report high 

levels of heterogeneity (Senior et al., 2016), as such assessing publication bias can be 

challenging, as indications of publication bias may instead reflect high levels of heterogeneity. 

For our analysis we report the Fail-Safe Number (using the Rosenberg approach) which 

indicates the number of studies averaging null results that would need to be added to the 

analysis to reduce the significance level to a target alpha level (0.05). For our analysis the 

reported Fail-Safe Number is 33674.  

Additionally, we include two funnel plots illustrating the relationship between effect size and 

sample size (Figure S2.6.1a) and effect size and the inverse of the interaction variance 

(S2.6.1b). As shown by Figure S2.6.1a, there are consistent bands of sample sizes which 

correspond to sample sizes exactly devisable by four (i.e. 8, 12, 16, 20, 32), which correspond 

to equal numbers of replicates for each of the four treatments within each interaction. 

Similarly, these bands are also visible within Figure S2.6.1b. Interpretation of these plots is 

difficult for several reasons. Firstly, there is correlation between both sample sizes and effect 

sizes, and the variance and the effect sizes. This is because the sample size is used in the 

calculation of the effect size and the effect size is used in the calculation of the variance (see 

Calculation of Hedges’ d). Further complicating this is the complex structure of our data, and 

the inability of the plots to accurately reflect this. While the meta-analytical models account 

for both covariance between interactions where interactions share a control or control and 

treatment (see Weighted meta-analyses), or the specified random effects (see Weighted 

meta-analyses), this is not able to be accounted for within these plots. Similarly, we 

implement Egger’s test (modified to account for multivariate/multi-level meta-analyses), 

which is a measure of funnel plot symmetry, using the inverse of interaction variance as the 

specified moderator (p-value < 0.001) which indicated significant asymmetry within the 
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funnel plot. However, again we note both the potential difficulties in interpreting funnel plots, 

and the difficulties which heterogeneity poses to identifying publication bias. 

 

 

Figure S2.6.1: a – Interaction effect size against sample size for the 545 interactions within the 

empirical dataset. b – Interaction effect size against the inverse of interaction variance for the 545 

interactions within the empirical dataset. 
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Summary figures for empirical data 

Additional figures detailing the geographic distribution of papers from which empirical data was 

extracted (Figure S2.8.1) and the number of papers per year that were included in this analysis, and 

the number of papers per year that were revealed in the systemic literature search (Figure S2.8.2). 

 

 

Figure S2.8.1: Number of papers, from which data was extracted, that were included in our analysis 

shown by country of origin. Darker colours indicate more papers originating from the country in 

question. Countries coloured white indicate no papers originating from the country in question. 
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Figure S2.8.2: Number of papers by year that were revealed by the systematic literature review (red 

squares) and those that were included in our study (orange circles). Lines indicate generalised linear 

models fit to the data, with Year as the explanatory variable and Number of Papers as the response 

variable, both Gaussian and Poisson distributions were used to fit the models, with AIC values used to 

select the best fitting model. For the systematic literature review, a Gaussian distribution with intercept 

= -8074.1961, p<0.001; and coefficient =4.0601, p<0.001 was the best fitting model. For the papers 

included within our analysis, a Poisson distribution with intercept = -160.25750, p<0.001; and 

coefficient = 0.08024, p<0.001 was the best fitting model.  
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Appendix Three 

 

Supplementary material for Chapter Three. 

A table of contents is provided below. 
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Theoretical framework 

Outlined below is the detailed method for the generation of data using a food chain model, 

alongside its subsequent analysis. The theoretical framework used here is based on that 

implemented by Burgess et al., (2021). 

 

Food chain model 

The food chain model we use within our analysis is based on equations from Heath et al., 

(2014) (Equation S3.1). These equations are used to calculate the change over time in density 

for each trophic level and contain a form of self-regulation in density-dependent mortality 

(i.e. the trophic level experiences a greater rate of mortality under higher densities, compared 

to lower densities). As described in Section 3.3, the equations comprise four different 

parameters which represent: i) attack rate (α); ii) conversion efficiency (ε); iii) density 

independent mortality (δ); iv) density dependent mortality (λ). The food chains modelled 

within our analysis were able to comprise either three, four, or five different trophic levels; 

although regardless of the length of food chain modelled, the same equations (Equation S3.1) 

were used. However, within a given food chain, each of the different trophic levels were 

modelled using different equations. The change in density of the bottom trophic level (x0) - 

representing the pool of an essential element, mineral, or nutrient - was modelled using 

Equation S3.1.1. Here, the change in x0 is modelled as the constant input of said nutrient 

minus the uptake of the nutrient by the trophic level directly above the nutrient pool (i.e. x1). 

Accordingly, the change in density of all trophic levels (xi) aside from the bottom (x0) and top 

(xn) trophic levels is modelled using Equation S3.1.2. Here, the change in xi is modelled as the 

increase in density due to conversion of predated resources (xi-1), minus the decrease in 

density due to predation by the above trophic level (xi+1), density independent mortality, and 

density dependent mortality. Finally, the change in density of the top (xn) trophic level is 

modelled using Equation S3.1.3. Here, the change in xn is modelled as the increase in density 

as a result of predating on the below trophic level (xn-1) minus the change in density due to 

both density dependent and density independent mortality. For the top trophic level there is 

no form of predation from an above trophic level. 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆3.1.1:                                                                                                    
𝑑𝑥0
𝑑𝑡

=  𝜔 − 𝛼1𝑥0𝑥1 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆3.1.2:                                                  
𝑑𝑥𝑖
𝑑𝑡
=  𝛼𝑖휀𝑖𝑥𝑖−1𝑥𝑖 − 𝛼𝑖+1𝑥𝑖𝑥𝑖+1 − 𝛿𝑖𝑥𝑖 − 𝜆𝑖𝑥𝑖

2 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆3.1.3:                                                                    
𝑑𝑥𝑛
𝑑𝑡

=  𝛼𝑛휀𝑛𝑥𝑛−1𝑥𝑛 − 𝛿𝑛𝑥𝑛 − 𝜆𝑛𝑥𝑛
2 

 

Data generation 

Building on the description given in Section 3.3, the theoretical framework generated data in 

the following manner. Firstly, for each length of food chain, 220,000 parameter combinations 

were randomly determined (i.e., a total of 660,000 parameter combinations). For each 

combination, each parameter was assigned a random value from a predetermined uniform 

distribution, though these distributions differed for each parameter (Table S3.1.1). These 

combinations and parameter values are hence referred to as the control parameter values. 

 

Table S3.1.1: Uniform distributions from which the control values of each parameter could be randomly 

drawn.  

Parameter Control parameter distribution 

α U ~ (0.25, 0.75)   

ε U ~ (0.25, 0.75)  

δ U ~ (0.25, 0.75)      

ω U ~ (25, 75) 

λ  U ~ (0.00625, 0.025) 

 

Secondly, for each combination of parameters, two were randomly selected (with all 

parameters equally likely to be chosen) to be subjected to stress and have their values altered. 

Accordingly, all other parameter values remain the same as their control values, though the 

values of the stressed parameters differ. The values of stressed parameters were randomly 

drawn from the uniform distributions shown by Table S3.1.2; following the method of Burgess 

et al. (2021), only the parameters of attack rate, conversion efficiency, density independent 

mortality, or nutrient input rate were randomly selected to be stressed. The single restriction 

that was placed on the stressed parameter values, was that they were unable to be in the 
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range of the control parameter value ± 0.025 (except for ω where the excluded range was the 

control parameter value ± 2.5). The rationale for this limitation was to make sure that the 

stressed parameter values were meaningfully different to the control parameter values. The 

parameters which were randomly selected to be stressed could be the same processes across 

differing trophic levels, differing processes on the same trophic level, or differing processes 

across differing trophic levels. Furthermore, α1 was never able to be selected to be stressed. 

This follows the method of Burgess et al. (2021), which describes how the alteration of α1 only 

impacted the bottom trophic level, not any other trophic level. Given that our method follows 

that of Burgess et al. (2021) in investigating only non-basal trophic levels, α1 was not stressed 

in our analysis.  

 

Table S3.1.2: Uniform distributions from which the stressed values of each parameter could be 

randomly drawn.  

Parameter Stressed parameter distribution 

α U ~ (0.01, 0.99)   

ε U ~ (0.01, 0.99)  

δ U ~ (0.01, 0.99)      

ω U ~ (1, 99) 

 

As described in the main text, the theoretical framework implements a factorial design similar 

to those found within experimental studies. Accordingly, corresponding treatments are: i) 

Control parameter values; Stressor 1 parameter values (i.e. all parameters have the same 

values as the control parameters with the exception that the first stressed parameter has its 

parameter value changed to the stressed value); Stressor 2 parameter values (i.e. all 

parameters have the same values as the control parameters with the exception that the 

second stressed parameter has its parameter value changed to the stressed value); 

Interaction parameter values (i.e. all parameters have the same values as the control 

parameters with the exception that both stressed parameters have their parameter values 

changed to the stressed values). In totality, we investigated 2,640,000 different parameter 

combinations for individual food chains, with each treatment having a corresponding 660,000 

parameter combinations. 



Benjamin Joshua Burgess – Doctoral thesis 

196 
 

Thirdly, as described in the main text, the focus of this analysis was on equilibrium densities. 

Here, equilibrium densities refer to the density of each trophic level in a given food chain so 

that there is no net change in the density of any other trophic level. Hence, for each of the 

2,640,000 parameter combinations, the equilibrium densities were determined using 

Mathematica v10.4 (Wolfram Research Inc., 2016). We placed additional constraints on the 

equilibrium densities, ensuring that they were greater than zero (representing biologically 

feasible densities). Where a feasible density was unable to be determined (for any of the four 

treatments within the factorial design), the entire factorial treatment design (i.e. control, 

stressor 1, stressor 2, and interaction equilibrium densities) was excluded from any 

subsequent analysis. Finally, it was possible to determine equilibrium densities for every 

treatment for 516,349 (78.23%) of all factorial treatments. Accordingly, from these 516,349 

factorial treatments, 100,000 were randomly selected (with approximately one third of 

interactions coming from each length of food chain). For each of these 100,000 factorial 

treatments, a single trophic level was randomly selected with the equilibrium densities of this 

trophic level, under each of the factorial treatments, being collated into a single dataset, upon 

which all further analysis was conducted. As shown by Burgess et al. (2021), there are no 

significant differences in the responses of the various food chain lengths, hence allowing 

interactions from different food chain lengths to be pooled. 

 

Data analysis – Treatment means 

As described in Chapter Three, question one centres on understanding both null models in 

the absence of uncertainty. Accordingly, using the exact equilibrium densities (i.e. treatment 

means) provides the best opportunity to determine the ‘true’ interaction classification under 

each null model and the conditions under which the null models agree or disagree in their 

classifications. Accordingly, the above dataset was used to address question one.  

 

Data analysis – Treatment uncertainty 

Following the method of Burgess et al., (2021), uncertainty was incorporated into the 

theoretical framework in the form of observation error. Firstly, observation error was 
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modelled using a normal distribution, with a mean of 1.00 and standard deviation of σ. Here, 

σ represents the level of observation error to be included. Within this analysis, 250 levels of 

observation error were used ranging from 0.001 to 0.25, in increments of 0.001. Secondly, 

each of the 100,000 factorial treatments was randomly assigned a number of replicates (n) 

(for this analysis, n was assigned a constant value of four replicates across all treatments). 

Finally, for each treatment within a factorial treatment design, n values from a normal 

distribution with a standard deviation of σ and a mean of 1.00 were drawn. The single limit 

placed upon these values was that they could not be greater than or equal to 2.00, nor less 

than or equal to 0.00. The equilibrium density for a given treatment were then multiplied by 

these values, with the mean and standard deviation of these new n equilibrium densities 

being determined. Accordingly, each factorial treatment design has corresponding values for 

the mean, standard deviation, and sample size for every treatment. As such, the additive and 

multiplicative null models are then able to be applied to each factorial treatment design. 

 

Data analysis – Sample size 

In order to understand the role of sample size in the results of both null models (i.e. question 

three), a similar method to that used to explore treatment uncertainty was implemented. 

Indeed, the implemented method, differs only to that used for treatment uncertainty in two 

fundamental ways. Firstly, rather than consider 250 levels of observation error, three levels 

were selected (0.001, 0.01, and 0.1). Secondly, rather than randomly drawing the sample size 

from a predetermined range for each factorial treatment design, the assigned sample size 

was systematically varied between three and 100 replicates (in steps of a single replicate).  

As for treatment uncertainty, for each treatment within a factorial treatment design, n values 

(i.e. iteratively varied between 3 and 100) from a normal distribution with a standard 

deviation of σ (i.e. varied between 0.001, 0.01, and 0.1) and a mean of 1.00 were drawn. As 

before, the single limit placed upon these values was that they could not be greater than or 

equal to 2.00, nor less than or equal to 0.00. The equilibrium density for a given treatment 

was then multiplied by these values, with the mean and standard deviation of these new n 

equilibrium densities being determined. 
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As before, each factorial treatment design has corresponding values for the mean, standard 

deviation, and sample size for every treatment. Therefore, the additive and multiplicative null 

models are then able to be applied to each factorial treatment design. 
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Interaction classifications 

As described in Section 3.3, an interaction can be classified as a synergistic, antagonistic, 

reversal, or null interaction using either the additive (Gurevitch et al., 2000) or multiplicative 

(Lajeunesse, 2011) null models. As detailed in Section 3.3, the classification of an interaction 

is dependent upon the effect size (𝐸𝑆), associated confidence intervals (𝐶𝐼95%), the observed 

(𝑂𝑏𝑠.) and predicted (𝑃𝑟𝑒𝑑.) interactive effect of stressors. 

For the additive null model, the 𝑃𝑟𝑒𝑑. can be calculated as 𝑋𝐴 + 𝑋𝐵 − 2𝑋𝐶; while for the 

multiplicative null model, 𝑃𝑟𝑒𝑑. can be calculated as ln (
𝑋𝐴𝑋𝐵

𝑋𝐶
2 ). Similarly, for the additive null 

model, 𝑂𝑏𝑠. can be calculated as 𝑋𝐼 − 𝑋𝐶; while for the multiplicative null model, 𝑂𝑏𝑠. Can 

be calculated as ln (
𝑋𝐼

𝑋𝐶
). 

Using this scheme, interactions were classified as follows: 

When 𝑃𝑟𝑒𝑑. ≥ 0  

1) If 𝐸𝑆 ± 𝐶𝐼95% overlaps zero, then the interaction was assigned a null classification. 

 

2) If 𝐸𝑆 > 0, the interaction was assigned a synergistic classification. 

 

3) If 𝐸𝑆 < 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. both have the same polarity, the interaction was 

assigned an antagonistic classification. 

 

4) If 𝐸𝑆 < 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. have contrasting polarities, the interaction was 

assigned a reversal classification. 

 

When 𝑃𝑟𝑒𝑑. < 0  

1) If 𝐸𝑆 ± 𝐶𝐼95% overlaps zero, then the interaction was assigned a null classification. 

 

2) If 𝐸𝑆 < 0, the interaction was assigned a synergistic classification. 

 

3) If 𝐸𝑆 > 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. both have the same polarity, the interaction was 

assigned an antagonistic classification. 

 

4) If 𝐸𝑆 > 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. have contrasting polarities, the interaction was 

assigned a reversal classification. 
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Question one was addressed in the absence of any treatment uncertainty, hence there are no 

standard deviations, or effect sizes associated with any treatments (i.e. only means). 

Accordingly, for the analysis centred on this question, slightly different steps to classify 

interactions were used: 

When 𝑃𝑟𝑒𝑑. ≥ 0  

1) If 𝐸𝑆 = 0, then the interaction was assigned a null classification. 

 

2) If 𝐸𝑆 > 0, the interaction was assigned a synergistic classification. 

 

3) If 𝐸𝑆 < 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. both have the same polarity, the interaction was 

assigned an antagonistic classification. 

 

4) If 𝐸𝑆 < 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. have contrasting polarities, the interaction was 

assigned a reversal classification. 

 

When 𝑃𝑟𝑒𝑑. < 0  

1) If 𝐸𝑆 = 0, then the interaction was assigned a null classification. 

 

2) If 𝐸𝑆 < 0, the interaction was assigned a synergistic classification. 

 

3) If 𝐸𝑆 > 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. both have the same polarity, the interaction was 

assigned an antagonistic classification. 

 

4) If 𝐸𝑆 > 0, and if 𝑂𝑏𝑠. and 𝑃𝑟𝑒𝑑. have contrasting polarities, the interaction was 

assigned a reversal classification. 
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Treatment means 

As described in Section 3.4 (see Treatment means), the classification of interactions may vary 

between null models. Indeed, within our analyses the different null models assigned 

contrasting classifications to over one third of all interactions. However, the differences (and 

indeed similarities) between the classifications of the different null models can be attributed 

to their underlying algebraic relationships. Accordingly, by combining and rearranging both 

null model equations, it is possible to derive two inequalities which, when met, detail the 

conditions under which the additive and multiplicative null models report differing interaction 

classifications. 

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑆3.3.1:                                                                               0 ≤
𝑋𝐼𝑋𝐶−𝑋𝐴𝑋𝐶−𝑋𝐵𝑋𝐶+𝑋𝐶

2

𝑋𝐴𝑋𝐵−𝑋𝐴𝑋𝐶−𝑋𝐵𝑋𝐶+𝑋𝐶
2  ≤ 1  

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑆3.3.2:                                                                                0 <  
2𝑋𝐶

2−𝑋𝐴𝑋𝐶−𝑋𝐵𝑋𝐶

𝑋𝐴𝑋𝐵−𝑋𝐴𝑋𝐶−𝑋𝐵𝑋𝐶+𝑋𝐶
2 < 1  

XC, XA, XB, and XI represent mean response values under control, the first stressor, the second 

stressor, and both stressors respectively. If either inequality is met, then the interaction will be 

classified differently between the additive and multiplicative null models. 

Interpretation of the inequalities can be explained as follows, illustrated by Figure S3.3.1. If 

only Inequality S3.3.1 is met, an interaction will be classified differently between the additive 

and multiplicative null models, though neither null model classifies an interaction as being a 

reversal interaction (blue points, Figure S3.3.1). If only Inequality S3.3.2 is met, an interaction 

will be classified differently between the null models, with one null model reporting an 

antagonistic interaction while the other reports a reversal interaction (red points, Figure 

S3.3.1). If both Inequalities S3.3.1 and S3.3.2 are met, an interaction will be classified 

differently between the null models, with one null model reporting a reversal interaction and 

the other reporting either an antagonistic, null, or synergistic interaction (purple points, 

Figure S3.3.1).  
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Figure S3.3.1: Values of Inequality S3.3.1 and Inequality S3.3.2 for each interaction in the absence of 

observation error. Points in black denote interactions were neither inequality was met, hence the 

interaction was assigned the same classification by both the additive and multiplicative null models.  

Blue points denote interactions where Inequality S3.3.1 was met, but Inequality S3.3.2 was not. Red 

points indicate interactions where Inequality S3.3.2 was met, but Inequality S3.3.1 was not. Purple 

points indicate interactions where both inequalities were met. Refer to the above explanation of each 

inequality, and the interactions assigned by each null model.  
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Treatment uncertainty 

The reason that observation error leads to the dominance of null interactions (e.g., Figure 3.2) 

is as follows. For the multiplicative null model, the effect size variance is proportional to the 

standard deviation (Equation 3.2.2). Hence higher levels of observation error result in larger 

variances whilst the effect size itself remains unaffected. For the additive null model higher 

levels of observation error reduce both the magnitude of the effect size (Equations 3.1.1 – 

3.1.2), and the magnitude of the effect size relative to the variance of the effect size (Equation 

3.1.4). Accordingly, if all other variables remain the same, higher levels of observation error 

would lead to larger confidence intervals surrounding the multiplicative effect size (increasing 

the likelihood that the interaction effect size will be non-significant). Alternatively, higher 

levels of observation error would lead to greater reduction in the magnitude of the additive 

effect size compared to the reduction in the associated confidence intervals (hence increasing 

the likelihood that the interaction effect size will be non-significant). 

 

Level of significance 

As outlined in the discussion, the choice of significance level may be justifiably altered, to 

increase statistical power of an experiment, when alternatives (e.g., increasing sample sizes) 

are not possible. The potential impacts of increased significance levels upon the frequency of 

correctly classified interactions (across sample sizes and levels of uncertainty) are shown by 

Figure S3.4.2. Three different levels of significance (0.05, 0.10,0.20) are used. 
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Figure S3.4.2: Frequency of interactions that are correctly classified (i.e., true positive rate) for a range 

of different treatment replicates. The frequency of interactions correctly classified by the additive null 

model (a,b,c) are shown with yellow lines, the frequency of interactions correctly classified by the 

multiplicative (d,e,f) are shown with purple lines. Three different levels of observation error are 

considered: 0.001 (a,d), 0.01 (b,e), and 0.1 (c,d). The level of significance is denoted by the secondary 

colour of the dashed lines: α=0.05 – white dashed lines; α=0.10 – grey dashed lines; α=0.20 – black 

dashed lines. 
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Appendix Four 

 

Supplementary material for Chapter Four. 
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Categorial data 

Multiple stressor experiments are wide-ranging, considering a broad range of stressors, 

response metrics, and other covariables. As such, following the methods of previous multiple 

stressor meta-analyses (e.g., Crain et al., 2008; Jackson et al., 2016), we devise categories, 

which these covariables are subsequently grouped into. Here, we form categories for 

stressors, realm, response metrics, and organisation level. These categories (alongside 

examples where necessary) are outlined below. 

 

Stressor categories 

Multiple stressor experiments consider a diverse range of stressors. Accordingly, within this 

analysis, stressors have been grouped into the following nine distinct categories: 

i) Temperature   (e.g., temperature increase) 

ii) Light    (e.g., UVB radiation) 

iii) pH     (e.g., CO2 increase or acidification) 

iv) Salinity   (e.g., increased salinity or increased ionic load) 

v) Community alteration (e.g., predator removal or addition of invasive species) 

vi) Habitat alteration  (e.g., dredging or sedimentation) 

vii) Disease   (e.g., Batrachochytrium dendrobatidis) 

viii) Nutrients   (e.g., phosphate or ammonium nitrate) 

ix) Contamination  (e.g., sertraline or cadmium) 

 

Accordingly, when stressor combinations are determined, they are classed as a combination 

of two of the above categories (e.g., Contamination x Temperature, or Disease x Nutrients). 

 

Realm 

Within this analysis, data has been collated from seven different aquatic multiple stressor 

meta-analyses. Of these, four meta-analyses focus on freshwater environments, while three 

focus on marine ecosystems. As such, the vast majority of the data is assigned a realm of 
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either freshwater or marine. Such classifications reflect experiments that were conducted in, 

or on organisms from, either freshwater or marine environments (e.g., coastal environments, 

coral reefs, ponds, rivers, or lakes). A small minority of interactions were assigned a category 

of Other. This category reflects experiments conducted in, or on organisms from, 

environments which are exposed to both fresh and saline waters; examples of such 

environments include coastal lagoons or marshes. 

 

Response metrics 

The meta-analyses from which our data is collated, consider a wide-range of different 

response metrics. Here, we group these into twelve categories (shown below). Of these, some 

(e.g., biomass, density, and survival) are more prevalent than others. As outlined in the 

Section 4.3, within our analyses, survival data was expressed as proportions while biomass 

and density were required to be expressed in untransformed units (e.g., individuals per litre). 

 

i) Biomass  (e.g., biomass or chlorophyll-a) 

ii) Calcification (e.g., calcification rate) 

iii) Decomposition (e.g., decomposition rate) 

iv) Density  (e.g., abundance or density) 

v) Development (e.g., germination rate) 

vi) Diversity  (e.g., species richness) 

vii) Growth  (e.g., growth rate) 

viii) Physical  (e.g., length or height) 

ix) Physiological (e.g., photosynthetic rate or hormone concentration) 

x) Productivity (e.g., production rate) 

xi) Reproduction (e.g., reproduction rate) 

xii) Survival  (e.g., survival rate) 
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Organisation level 

Multiple stressor experiments are capable of being conducted at a range of levels of ecological 

organisation. Accordingly, we categorise interactions based upon the organisation level they 

consider. As such, interactions were categorized as being either organism (i.e., individual 

organisms were measured), population (i.e., an attribute of an entire population was 

measured), or community (i.e., an attribute of more than one population, such as 

zooplankton, was measured). 
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Vote-counting 

The frequency at which different interaction classifications are assigned to individual 

interactions (i.e., vote-counting results) for hypotheses two (Figure S4.2.1), three, and four 

(Figure S4.2.2) are shown below. 

 

 

Figure S4.2.1: Vote-counting results from the analyses for hypothesis two. The frequencies of null 

(white squares), synergistic (light-grey upward triangles), antagonistic (dark grey diamonds), and 

reversal interactions (black downward triangles) are shown. Numbers in brackets refer to the number 

of interactions for each response metric. 
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Figure S4.2.2: Vote-counting results from the analyses for hypotheses three (a-b) and four (c-e). The 

frequencies of null (white squares), synergistic (light-grey upward triangles), antagonistic (dark grey 

diamonds), and reversal interactions (black downward triangles) are shown. Numbers in brackets refer 

to the number of interactions for each group.  
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Model diagnostics 

As outlined in Section 4.3, we conduct model diagnostics through the use of �̂� (leverage), 

Cook’s Distance, and DFBETA to assess for potentially influential results which may 

significantly affect the conclusions of any analysis. The results of these analyses are shown for 

hypothesis two (Figures S4.2.3 – S4.2.5) and hypotheses three and four (Figures S4.2.6 – 

S4.2.8). This analysis revealed three influential data points (all for biomass data in the analysis 

for hypothesis four). As such, these data points were removed for this (and only this) analysis 

(Figure 4.5c). The data was compared to the original sources with no issues with the data 

apparent. Likewise, potential ecological rationale for these influential data points could not 

be found. 

 

Figure S4.2.3: �̂� values for the meta-analytical analysis of hypothesis two (Figure 4.4). X-axis is 

interaction number (i.e., no bearing on �̂� values). 

 

Figure S4.2.4: Cook’s Distance values for the meta-analytical analysis of hypothesis two (Figure 4.4). 

X-axis is interaction number (i.e., no bearing on Cook’s Distance values). 
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Figure S4.2.5: DFBETA values for the meta-analytical analysis of hypothesis two (Figure 4.4). X-axis is 

interaction number (i.e., no bearing on DFBETA values). Colour scheme same as in Figure 4.4. 

 

 

Figure S4.2.6: �̂� values for the meta-analytical analysis of hypotheses three (Figure 4.5ab) and four 

(Figure 4.5cde). X-axis is interaction number (i.e., no bearing on �̂� values). 
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Figure S4.2.7: Cook’s Distance values for the meta-analytical analysis of hypotheses three (Figure 

4.5ab) and four (Figure 4.5cde). X-axis is interaction number (i.e., no bearing on Cook’s Distance 

values). 

 

 

Figure S4.2.8: DFBETA values for the meta-analytical analysis of hypotheses three (Figure 4.5ab) and 

four (Figure 4.5cde). X-axis is interaction number (i.e., no bearing on DFBETA values). Colour scheme 

same as in Figure 4.5. 
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Heterogeneity 

I2 values were calculated as a measure of heterogeneity in meta-analytical models. The I2 

values are classed as high using the values suggested by Higgins et al., (2003); however, within 

ecological meta-analyses I2 values are frequently in excess of 90% (Senior et al., 2016). I2 

values are shown in Table S4.3.1. 

Table S4.3.1: I2 values for the meta-analytical models conducted on aggregated datasets. 

Dataset Fixed effect I2 

Aggregated dataset Response metric 95.8% 

Aggregated biomass dataset Feeding group 86.1% 

Aggregated density dataset Feeding group 74.8% 

Aggregated biomass dataset Expected direction of effects 87.4% 

Aggregated density dataset Expected direction of effects 82.7% 

Aggregated survival dataset Expected direction of effects 96.8% 
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Covariance-variance matrices 

All meta-analytical models were conducted using the rma.mv function from the metafor 

package (v2.1.0) (Viechtbauer, 2010) in R (v3.6.1). All of the datasets considered here included 

data from empirical studies which shared the same control. For instance, the same baseline 

may be used to compare multiple different combinations of stressors, or many intensities of 

the same stressors. Accordingly, covariance exists between these interactions where a control 

(or a control and a single treatment) are common across multiple interactions. As such, within 

these models we implement covariance-variance matrices, which allow the meta-analytical 

models to account for covariance between effect sizes. An example of a covariance-variance 

matrix is shown below (Equation S4.4.1) 

 

(

 
 
 

𝑣𝑎𝑟𝑎 0 0
0 𝑣𝑎𝑟𝑏 𝑐𝑜𝑣𝑏,𝑐
0 𝑐𝑜𝑣𝑏,𝑐 𝑣𝑎𝑟𝑐

    0        0        0    
0 0 0
0 0 0

   0       0        0    
0 0 0
0 0 0

𝑣𝑎𝑟𝑑 𝑐𝑜𝑣𝑑,𝑒 𝑐𝑜𝑣𝑑,𝑓
𝑐𝑜𝑣𝑑,𝑒 𝑣𝑎𝑟𝑒 𝑐𝑜𝑣𝑒,𝑓
𝑐𝑜𝑣𝑑,𝑓 𝑐𝑜𝑣𝑒,𝑓 𝑣𝑎𝑟𝑓 )

 
 
 

 

 

Equation S4.4.1: Example of a covariance-variance matrix. The major diagonal contains the 

variances (varx) for effect sizes a – f. Off-diagonals are either covx,y , indicating that effect sizes 

x and y share the same control, or 0, indicating no covariance between effect sizes. In this 

example, effect size a does not share a control with any other effect size. Effect sizes b and c 

share the same control as one another. Similarly, effect sizes d, e, and f all share the same 

control indicated by the relevant off-diagonal having a non-zero value. 
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Significance level 

Throughout our analyses, we set α = 0.05. While there is a discussion about the implications 

of multiple-testing (i.e., multiple comparisons) and Type I errors in meta-analyses, there is no 

consensus in how to account for this issue (Borenstein, 2009). As noted by Borenstein (2009), 

suggestions include: not adjusting α, but evaluating results in context; using a lower (yet still 

arbitrary significance criteria e.g. α = 0.01); or lowering α using a procedure such as the 

Benjamini-Hochberg correction. However, it is important to note that for meta-analyses, 

procedures such as the Bonferroni correction are unlikely to be an adequate solution to 

addressing issues with multiple comparisons (Bender et al., 2008).  

A recent review of meta-analyses in education and psychology (Polanin & Pigott, 2014) found 

that over 80% of studies did not implement a correction procedure to adjust α, while 93% of 

studies did not consider the implications of Type I error for their results. Similarly, Polanin & 

Pigott (2014) illustrated that correction techniques may reduce the instance of Type I errors 

occurring, but that the effects upon different statistical tests may vary.  

In this analysis, we follow the recommendation of O’Dea et al., (2021) who advise that all 

analyses are justified and determined prior to determining results. Here we formulate four 

hypotheses, each relating to biological or ecological mechanisms. As noted in Section 4.3, we 

have collated categorical data for several variables (stressor combination, organisation level, 

realm) that were not tested further. Given the potential ramifications of α adjustment 

techniques, we do not implement such a procedure here. 

Within ecology, many meta-analyses test all covariables in their dataset, under the premise 

that each of these could be ecologically relevant (Rothstein et al., 2013). However, this can 

lead to an increase in the instance of Type I error and the incorrect inference of an important 

explanatory variable (Rothstein et al., 2013). By taking the steps outlined above, we have 

attempted to limit the effects of Type I error upon our analysis. 
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 Multiplicative null model derivation 

The multiplicative null model represents an approach to determining the expected effects 

due to multiple stressors. Outlined by Sih et al. (1998) and Folt et al. (1999), the multiplicative 

null model can be calculated using Equation S4.7.1, with A, B, and C referring to response 

metric values under Stressor A, Stressor B, and control conditions respectively. 

𝑆4.7.1)              𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 =  
𝐴 ∙ 𝐵

𝐶
− 𝐶 

While Equation S4.7.1 represents the difference from the control value, the absolute value 

expected under the multiplicative null model can be calculated by Equation S4.7.2. 

𝑆4.7.2)              𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑎𝑙𝑢𝑒 𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 =  
𝐴 ∙ 𝐵

𝐶
 

 

Example 1: 

Condition value (C) = 100 

Stressor A value (A) = 70 

Stressor B value (B) = 80 

Expected difference (to the control) under the multiplicative null model is -44 

Expected absolute value under the multiplicative null model is 56. 

 

Example 2: 

Condition value (C) = 100 

Stressor A value (A) = 40 

Stressor B value (B) = 30 

Expected difference (to the control) under the multiplicative null model is -88 

Expected absolute value under the multiplicative null model is 12 
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In some situations, the multiplicative null model is described as Equations S4.7.3 or S4.7.4. A 

form of this equation is presented by Sih et al. (1998), where it is used the determine the 

proportion of a population which survive two stressors. 

 

𝑆4.7.3)                   𝐸𝑥𝑝.  𝑃𝑟𝑜𝑝𝑜𝑟𝑡.  𝐷𝑖𝑓𝑓.  𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖. 𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 = 𝑃𝐴𝑃𝐵 − 𝑃𝐴 − 𝑃𝐵  

 

In the example used by Sih et al. (1998), 𝑃𝐴 and 𝑃𝐵 correspond to the proportion of prey killed 

by stressor A (i.e. 
𝐶−𝐴

𝐶
) and stressor B (i.e. 

𝐶−𝐵

𝐶
) respectively. As such, Equation S4.7.4 

represents the difference from the control value, the proportional value expected under this 

form of the multiplicative null model. 

 

𝑆4.7.4)         𝐸𝑥𝑝. 𝑃𝑟𝑜𝑝𝑜𝑟𝑡. 𝑉𝑎𝑙𝑢𝑒 𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖. 𝑁𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 = 1 + 𝑃𝐴𝑃𝐵 − 𝑃𝐴 − 𝑃𝐵 

 

Examples using these forms of the multiplicative null model are shown by Examples 3 and 4. 

Importantly, this form of the multiplicative null model provides the same results as the form 

of the multiplicative null model discussed above (i.e. compare the results of Examples 1 and 

3, and Examples 2 and 4). 

 

Example 3: 

Condition value (C) = 100 

Stressor A value (A) = 70 

Stressor B value (B) = 80 

Expected proportional difference (to the control) under the multiplicative null model is -0.44 

Expected proportional value under the multiplicative null model is 0.56. 
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Example 4: 

Condition value (C) = 100 

Stressor A value (A) = 40 

Stressor B value (B) = 30 

Expected difference (to the control) under the multiplicative null model is -0.88 

Expected absolute value under the multiplicative null model is 0.12 

 

Finally, it is important to note that the form of the multiplicative null models provided by 

Equations S4.7.3 and S4.7.4 only applies where 𝑃𝐴 and 𝑃𝐵 correspond to the proportion of 

prey killed by stressor A (i.e. 
𝐶−𝐴

𝐶
) and stressor B (i.e. 

𝐶−𝐵

𝐶
) respectively. It does not apply where 

𝑃𝐴 and 𝑃𝐵 correspond to the proportion of prey which survive stressor A (i.e. 
𝐴

𝐶
) and stressor 

B (i.e. 
𝐵

𝐶
) respectively. If Equations S4.7.3 and S4.7.4 are used where 𝑃𝐴 and 𝑃𝐵 correspond to 

the proportions survived by Stressors A and B, then incorrect results will be returned by the 

null models.  
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Meta-analytical dataset reference list 

In total 209 published studies provided data for the analyses in Chapter Four. A full reference 

list for these papers is provided below. 
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