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Abstract

Ecosystems are subjectdd awide range of stressors, many of which are anthropogenic in
origin. However, far from being impacted by isolated threats, these ecosystems are affected
by multiple ceoccuring stressors. @rently, there is little understanding of how, or whether,
these stressors interact to affect individuals, populations, or communities. Indeed, studies
vary in whether they find coccurring stressors to interact in an additive, antaganjsbr
synergisic manner. However, attempts to determine general ecological covariables which
may explain these disparate findings have so far failed to do so. Here, | usenadyécal

and theoretical approaches to better understand how stressors @axpected to iteract,

with a particular emphasis on freshwater ecosystems. Firstly, | simulate food chains which are
subjected to ceoccurring stressors and compare these results to the findings of the largest
multiple stressor metanalysis, here focusy on freshwaterdensities. Both approaches
illustrate that null (i.e., additive) classifications dominate for individual interactions; although,
overall stressors interact to affect density in an antagonistic manner. Secondly, |esthalys
statistical twls frequently sed to classify multiple stressor interactions. | illustrate that many
results which are ascribed ecological importance instead arise due to statistical artefacts of
these tools. In turn, | highlight that many experimahtlesigns, commonpkte to multiple
stressor ecology, lack the statistical power necessary to detect the interactions-of co
occurring stressors. Thirdly, | collate and analyse the datasets of seven aquatic multiple
stressor metaanalyses under a single consistent frameworkluktrate that the current
absence of generalities from multiple stressor matalysesprimarily arises due to
methodological, not ecological, variation. In turn, removing methodological differences
results in generalities becoming apparent. Finaltgpllate the findngs of the above chapters

and outline the potential implications for multiple stressor ecology. In doing so, | explore

current challenges facing the field alongside future directions.
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Impact statement

Given that multiplestressors affect nearly all esgstems, it is imperative that the interactions

of these stressors are understood. However, there is currently limited knowledge of stressor
interactions, with similar studies often finding highly disparate results. Accdydlititere is

an absence of comgent generalities apparent across multiple stressor ecology. This has
ramifications both for the field and the insights which multiple stressor ecology can provide

to allied disciplines (e.g., conservation science).

This thesis utilises a range of diffemt approaches to provide novel insights into the
interactions of ceoccurring stressors. Ultimately, all of the chapters of this thesis seek to
answer the question of how stressors interact. Here, | implement various emipiric
theoretical, and analyticapproaches to address this question, often from new perspectives.
Indeed, | consider how ecological, experimental, and methodological properties may
influence the conclusions researchers reach regarding interacting stresQoesall, the
findings of thighesis have implications for experimental designs, analytical choices, and the
interpretation of any results. In turn, such findings nagobe subsequently considered by
conservationists, as understanding how stressor&rent is crucial when implemeinty

management actions.

Each of the chapters of this thesis substantially builds on existing research. For example,
Chapter Two (recently published @lobal Change Bioloygombines metanalytical and
theoretical approache® better understand stressanteractions. In doing so, | highlight the
value of implementing ecological theory within multiple stressor ecology, a currently under
utilised approach. Likewise, Chapter Three is the first substantial exploration of trsticsh

tools frequently usedo classify stressor interactions. In doing so, | illustrate that the design
of many (if not most) experiments within multiple stressor ecology is inadequate when
seeking to determine whether, or how, stressors interact. Rm&hapter Four is the first
analysis in which the results of different multiple stressor matalyses are compared. This
analysis has revealed that methodology, not ecology, is likely responsible for the absence of
generalities within multiple stressoecology. As such, this chaptéras wideranging

consequences for the field of multiple stressor ecology. Indeed, | illustrate that an advanced
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ecological understanding of multiple stressor interactions can only be gained once analytical

methods are undetsod and correctly implemented.
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Thesis outline

ChapterOne- Introduction

This chapter provides background information on the current understandf how stressors
interact to affect ecosystemditerature gaps and questions in the field of multiple stressor
ecology are highlighted alongside the aims of thissis. This chapter is primarily general or

freshwatercentric in its focus.

Chapter Two - Classifying ecosystem stressor interactions: Theory highlights the data

limitations of the additive null model and the difficulty in revealing ecological susprise

In this chapter, | combine theoretical ecology with a lasgale freshwater metanalyss to
better understand multiple stressor interactions and determine whether general insights
could be determined from across these different approaches. This woskoeaducted in
collaboration with David Murrell, Drew Purves, and Georgina Mace. The wsaglgonceived

by myself and DM; | conducted the analysis and wrote the first draft. All collaborators
contributed to the editing of this chapter and manuscrigiork from this chapter has been
presented at various conferences including multiple Britistoldggcal Society (BES)
conferences and BES Aquatic Special Interest Group meelkimghapter has been recently
published inGlobal Change Biologyd in subsequdrchaptersmay be referred t@as Burgess

et al., (2021).

Chapter Three Multiple stressonull models frequently fail to detect interactions due to low

statistical power

In this chapter, | examine the additive and multiplicative null models from a titalis
perspective, determining how the results of these approaches may vary under expégiipe
relevant conditions (e.g., sample sizes). This work was conducted in collaboration with DM

and Michelle Jacksquniversity of Oxford)Myself and DM conceivete idea for this project

11
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and designed methods. | conducted the analysis and wrote tlgtehn with input from DM

and MJ.

Chapter Four Methodological variation obscures generalities across multiple stressor meta

analyses

In this chapter | analyse thafluence which differing methods have upon the conclusions of
seven multiple stressor metanalyses. In doing so, | attempt to outline whether this source

of variation is responsible for the absence of generalities to emerge from these studies. This
work was primarily conducted in collaboration with DM, MddCharlie Loewen, with DP and

GM adlitionally providing advice. Data for this analyses was also provided by MJ, Kristy
Kroeker, Ben Halpern, Rachel Przeslawski, Ben Harvey, and Kristina Lange dyhsastu
conceived by myself, DM, and MJ. | conducted all analyses following discussioB$Ayi¥1J,

and CL. I wrote this chapter with input from DM.

Chapter Five Discussion

This chapter collates the findings of this thesis and evaluates the contnibiitimakes to
multiple stressor ecology. Furthermore, this chapter outlines future dioestifor the field

and current obstacles that must be overcome.

12
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Chapter One; Introduction

Humanshave altered both ecological and environmental systems over many hundreds of
years (Lewis & Maslin, 2015), leading to wigeead impacts to ecosystems across the globe
(Dirzo et al., 2014). However, following a recent intensification of anthropogenicitadi
ecosystems are subjected to a plethora of different stressors (Best, 2019; Brook et al., 2008;
Halpern et al., 2015). Stressors (sensu drivers, factors, or thiaatgkternal drivers that can

affect both biodiversity and ecosystem functioningr(ét al., 2020). Although stressors may
occur due to natural processes, they are frequently anthropogenic in origin (Beauchesne et
al.,, 2021). Furthermore, the impacts ofhetse stressors can be severe. Indeed,
anthropogenically induced climate changeikely responsible for increasing the extent of
forest fires (Abatzoglou & Williams, 2016), while ocean acidification has been shown to enable
coral reefs to be dominated hyacroalgae (Enochs et al., 2015). Similarly, water abstraction
has resulted in thehrinking of the freshwater Aral Sea (Dudgeon, 2019), while mass mortality
events are occurring, across realms, at an increased frequency as a consequence of a variety
of stressors (Fey et al., 2015). However, since the 1990s there has been an apprel&ttion

not only do stressors damagmture (e.g., hatural habitat intactness) but also the goods and
services which ecosystems provide (Mace, 2014). These services areassmtiding crop
pollination (Rader et al., 2014) and the provisioning of f@dir2 dzNOSa 6. SNY K| NR
2021).

2 KAES O20SNAY3I Hox: 2F (KB 2004) MidK@riainirg dzZNJF | O
approximately one third of all vertebrate species Khier et al., 2020), freshwater ecosystems

are some of the most threatened on theaplet (He et al., 2019). On average, freshwater

species have experienced a decline in population abundances greater than those of species

in either the terrestrial or maringealms (Reid et al., 2019; Sala et al., 2000; WWF, 2020).
Furthermore, population lbbundances of freshwater megafauna have declined by up to 99%

in some regions (He et al., 2019). As such, freshwater ecosystems are subjected to a wide
range of anthropogenally induced stressors (Dudgeon et al.,, 2006; Reid et al., 2019).
Examples of sucthreats include global stressors such as climate change (Heino et al., 2009;

Knouft & Ficklin, 2017), and more localised stressors including pollution (Malaj et al., 2014;

14
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Woodward et al., 2012), nenative species (Es et al., 2020; Gallardo et al., 2Q16abitat
alteration (Grill et al., 2019; Reidy Liermann et al., 2012) or infectious diseases (Fisher &
Garner, 2020; Johnson & Paull, 2011). Indeed, stressors are cayatifecting all levels of
ecological organisation, from organisms through to estmys and their functioning (Li et

al., 2020; Woodward et al., 2010). Similarly, stressors may act through differing physiological
pathways (Segner et al., 2014), though Wihexdlge of mechanisms through which stressors act

is often limited (Spears et al.021). Whilst the majority of research has, to date, focussed on
GKS STFSOGA 2F AYRAQDARdIzZEE adiNBaazNE owr Olazy
evident that aquatic ecosystems are predominately acted upon by multipl@courring
stressors (Ormerod et al., 2010; Halpern et al., 2015; Reid et al., 2019). Indeed, 50% of
European surface freshwater bodies are affected by multiple stressors (EEA, 2018k thoug
these stressors may induce either a positive or negative effect upon a spemekdKet al.,

2017). For instance, nutrient enrichment (i.e., eutrophication) may increase the biomass of
algae (i.e., a beneficial effect for algal species) (Wurtsbaugth.,e2019), though this algal
bloom may subsequently increase the mortality of ethspecies (e.g., fishes) through a
reduction in oxygen levels (i.e., a detrimental effect for fadgal species) (Anderson, 2009;
Breitburg et al., 2018).

The presence of nitiple stressors gives rise to a number of serious issues. Firstly, how do
ecosyseéms respond to the presence of multiple stressors? For instance, can the effect of two
co2 O0OdzNNA Y3 aidNBaazNa 2y | alLlSOASaQ ByaArde
each stressor individually? The assumption of additivity regarding streffeatsehas been

widely adopted, with any subsequently observed deviation from additivity being termed an
WSO2t 23A0F T &adzNLINA&SQ 6 aSy aowitglevid¢nSe tifatisuch f @3 v
ecological surprises are more widespread than previatnglyght (Jackson et al., 201&ith

such ecological surprises capable of manifesting in three different ways (Figure 1.1). Firstly,
the effects of multiple stressors care lgreater than anticipated under the assumption of
additivity (hence termed the adtive null model), with asynergisticinteraction occurring
between stressors. Secondly, the combined effect ebcourring stressors can be less than
anticipated by the aditive null model, with arantagonisticinteraction occurring between
stressors. Finally, there may be instances where the observed effect of multiple stressors is

of a different polarity to the expected effect under the additive null model (e.g., thetiaddi

15
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null model predicts that the combed effect of two stressors will have a negative effect on a
population, but the observed effect of the @xcurring stressors is instead positive). In such
a situation, areversalinteraction is occurring between th&tressors. Where the assumption
of addtivity is met, this is referred to asraull interaction (although this may be referred to

as anadditiveinteraction elsewhere, e.g., Jackson et al., 2016; Orr et al., 2020).

1004

754

P
| g

Survival (%)
3

254

Control Temperature  Heavy Metals Null Synergisitc Antagonistic Reversal
(i.e., Additive)

Figure 1.1: Graphical illustration witeraction classifications for the ngsnse metric of survival. The
white bar denotes the survival rate of a given species under control conditions (i.e., absence of
stressors). The dark red (red) bar denotes the survival rate of the given speciesherstezdsor of
temperature (heavy meta), with arrows illustrating the relative change in survival from that under
control conditions. Orange bars illustrate examples of the four different interaction classifications: null

(i.e., additive), synergisticngagonistic, and reversal interactions.

Given the potential for stressstto combine in numerous different ways, there are many
guestions regarding multiple stressor interactions that are important to answer. For instance,
how often can we expect the adive null model predictions to be metdow frequently do
ecological surprises occur? Are some interaction classifications more prevalent than others?

Accordingly, with freshwateecosystems, there has been an increasing quantity of research

16



Benjamin JoshuBurgess; Doctoral thesis

which seeks to adfress these questions. Such freshwatesearch may be empirical, seeking

to determine how a particular combination of stressors affects a specific system (e.g., Juvigny
Khenafou et al., 2021, Richardson et al., 2019); theoretical, using fundamental ye¢olog
attempt to explain stressor intertions (e.g., Belarde & Railsback, 2016; Galic et al., 2018); or
meta-analytical, attempting to find generalities in stressor interactions across multiple
different experiments (e.g., Bancroft et al., 2008, Jacksoralet 2016). Indeed, such
generalitiesare important to determine as they may allow for the prediction of stressor
interactions which cannot be (or are not) measured. However, to date, the focus of multiple
stressor research has primarily been on determghow stressors interact; although the is

an increasing appreciation for the need to understamvitly stressors may interact in a given

way.

One of the main implications of multiple stressor research, is its potential to aid in the
conservation or manageent of ecosystems affected by -cecuring stressors. Indeed, an
understanding of stressor interactions can inform management practitioners when to
implement any conservation measuret€ et al., 2016; Kath et al., 2018 urthermore, it

has previouslybeen shown that a failure to consideoWw stressors interact can lead to
management actions having a limited, negligible, or even detrimental impact on the
ecosystems they are intended to conserve (Brown et al., 2013). However, at present, there
have beemo studies which have used knowledgehaiw stressors interact to successfully
remediate two, or more, c@ccurring stressors in a freshwater ecosystem (Spears et al.,
2021). As such, despite potential benefits for conservation, predicting multiple stresso
interactions is distinctly complex @dgson & Halpern, 2019), which potentially prevents
management planning from incorporating knowledge of stressor interactions. Ultimately,
understanding how multiple coccurring stressors interact represents one betgrand

challenges currently facing @ogists (Fleishman et al., 2011; Hodgson et al., 2017).

1.1 Stressor effects across organisation levels

While the overall aim of multiple stressor research may be to determine heaccorring
stressors interact t@ffect ecosystems, it is neverthelessportant to consider the effects

which an individual stressor is capable of inducing. Importantly, it has also been suggested

17
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that the manner in which stressors interact is in part due to the ecological mechanisiets wh
the individual stressors affect (g, Galic et al., 2018). As such, stressors are capable of
affecting individuals, populations, or even entire communities (Jackson et al., 2016).
However, these differing levels of ecological organisation are notctafflein isolation
(Woodward et al., 200), with effects at one organisation level capable of transitioning to
other levels. Firstly, stressors predominately act at the individual level (Maltby, 1998e6ch

& Piggott, 2018), with stressor impacts at tHevel broadly able to be grouped into
behavioural, physical, and physiological effects. Behavioural impacts include changes to anti
predator behaviours (e.g., Johansen et al., 2017), while physical effects may include body size
alterations (e.g., Shrimptoet al., 2007; Yvoidurocher et al., 2D1) or an increased likelihood

of developmental abnormalities (e.g., Reeves et al., 2010). In contrast physiological impacts
include changes in metabolic rate (Jackson et al., 2021) or disruption to the endocrim® syst

(Besson et al., 2020; Roccuzzo et2021).

Species populations are similarly able to be affected by stressors, with these effects
manifesting in a myriad of different ways. At the population level, perhaps some of the most
commonly observed stressanpacts are changes in the abundancegensity, of a species

(e.g., Mebane et al., 2017). Indeed, the relative declines in the abundances of many species
due to climate change and other stressors are now well known (WWF, 2020). Furthermore,
stressors arecapable of affecting many response mes at the population level. As such,
population survival (Bancroft et al., 2008), reproduction (e.g., Muyssen et al., 2010) or growth
rates (Seifert et al., 2020) may likewise be affected by stressors; althoughngecin one
response metric (e.g., deitg) doesnot preclude a change in another (e.g., survival) from
occurring. Stressors are similarly capable of impacting communities (Bruder et al., 2019). Such
effects may be declines in the species richness of conitye.g., Kratina et al., 2012) or
alterations to the interactions between species (e.g., feeding rates; Shears & Ross, 2010).
Stressors are also capable of affecting other community level metrics such as biomass (e.g.,
Zhao et al., 2013). As such, itynae assumed that declines in individspecies biomasses,

or abundances, will be mirrored at the community level. However, compensatory effects
between individual species may mean that a decline in the biomass of one species may be
offset by an increasén the biomass of another (lves & Canale, 2004). For example,

Christensen et al. (2006) found that freshwater zooplankton community biomass increased in

18
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the presence of stressors, though this increase in biomass was driven by a single stress

tolerant species, whereas all other zooplanktonegies experienced biomass declines.

As alluded to above, it is likewise important to note that a single stressor is capable of inducing
multiple different effects, either directly or indirectly, across multiple dife organisation

levels. For examplefpllowing the metabolic theory of ecology (Brown et al., 2004), an
AYONBIAS Ay GSYLISNI GdzNB YlLeée y2aG 2yfteée | F¥FSOu
HAnNnMOX odzi AAYAL NI @& A yiehdaOeSa poglatigrdeyel respohsel & LIS
metric) (Gillooly, 2000; Jackson et al., 2021). Furthermore, different stressors are capable of
affecting the same response metrics, albeit through contrasting ecological mechanisms. For
example, sertraline (a pharmagtcal product) may increase the moriigl rate of species X.

In contrast, cadmium may have no direct effect on species X, but instead greatly increases the
mortality of species Y, which species X predates upon. Overall, both stressors result in declines
iy AaLISOASA - Qa | o diyoRgh drOifcredSed imiiriality raeA dvIhidréctlye
through an absence of available food resources. As such, what is the expectation for the
combined effect of these stressors on species X if they act simultanedlrsi? the additive

null model, we wouldexpect the overall effect on the abundance of species X to be equal to
the sum of the effects of the individual stressors in isolation. However, this may not
necessarily be the case. It could be that sertraline redube abundance of species X, which

in turn means that there are fewer individuals competing for fewer food resources (i.e.,
reduced intraspecific competition). In such a scenario, sertraline may lessen the effect of
Ol RYAdzY 2y &aLJSOA Sulting inGaa antagbnisgicRitteyaCliSnEourmil. s\s

such, species interactions have been viewed as having a crucial role in determining the effects
of stressors, and their interactions, within communities (Bruder et al. 2019; Seibold et al.,
2018).

The ectogical phenomena outlined here are nedy examples of the wideange of processes
that occur within any ecosystem; however, they illustrate the complexity of these systems
and the plethora of direct, and indirect, effects that a stressor is capable afdnavurther
complexity arises from theffects of stressors at the cellular level (Sinclair et al., 2009;
Sokolova, 2021), with there being calls for toxicology to be better incorporated within
multiple stressorecology(Orr et al., 2020). However, cebulapproaches to understanding

stressorinteractions requires detailed knowledge of the physiological mechanisms which
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stressors affect; although for the vast majority of stressors and organisms, this information is

simply not known (Spears et al., 2021).

1.2  Current approaches in multipletsessor ecology

Of the empirical, metanalytical, and theoretical approaches to investigate multiple stressor
interactions, the latter perhaps represents the most underutilised approach within
freshwater ecosystemdiheoretical approaches to understanding multiple stozssnpacts

have instead been more widely implemented in general (e.g., Fronhofer et al., 2018; Sentis et
al., 2021; Thompson et al., 2018a) or marine environments (e.g., Beauchesne et al., 2021;
Brownet al., 2013; Fu et al., 2018). To date, most theoattfceshwater studies consider
aAy3tsS aiNBaazNI STFFSOGta oSoeadxr | F NBSe Sa fd
few freshwater studies implementing theoretical ecology to understand impacts of
multiple stressors. Furthermore, those $tewater theoretical studies which do consider
multiple stressors often implement disparate models and address-vadging hypotheses
making direct comparisons between them difficult. For example,rBel& Railsback (2016)

use ecological theory to invegtte the effects of habitat alteration and a nomative species

on the growth and survival of a freshwater piscivorous fish. Overall, Belarde & Railsback
(2016) conclude that while stressor interactisnpredominately matched null model
predictions, enviromental factors had a substantial impact on the prevalence of antagonistic
interactions. In contrast, Galic et al. (2018) implement a theoretical model of freshwater
amphipods and leaf litter (see Gabt al., 2017) to determine how eoccurring stressors
interact to affect various ecosystem properties. Within these simulations, the observed
interaction was found to be dependent on both the response variable and the modes of action
of both stressors (G& et al., 2018). As such, there is limited scope t@rdcomparisons
across theoretical, freshwater, multiple stressor studies. However, there is substantial
potential for this freshwater theoretical ecology to expand and fill an obvious gap in the

multiple stressor literature.

To date, empirical multiple stssor research in freshwater systems has predominately
focussed on microcosm, or mesocosm, studies (e.g., Archer et al., 2020; Cambronero et al.,

2018; Richardson et al., 2019), although there are ieicgd studies considering multiple
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stressors effectstagreater geographic scales (e.g., Birk et al., 2020; Ryo et al., 2018). Such an
approach builds upon the use of mesocosms in single stressor experiments (see Stewart et
al., 2013); but within a multie stressor context, experiments are usually condudtec
factorial design, with treatments for i) control conditions, ii) only the first stressor present, iii)
only the second stressor present, and iv) both stressors present. The benefit of this dpproac
is that the effect of cebccurring stressors can bempared to a null model prediction (e.qg.,

the additive null model) given that a response metric (e.g., biomass or survival) can be
measured under all four treatment conditions. However, this experiraeapproach is not
without limitations, and may be reswce intensive (Boyd et al., 2018). Indeed, decisions
regarding the number of stressors and the number of replicates per treatment are required.
For example, a fully factorial design with two stressamd four replicates would require 16
experimental unis (e.g., mesocosms). Howeveagftilly factorial design is implemented with
three or four stressors (each with four replicates) then 32 or 64 experimental units would be
required respectively. Suchdreases in the required numbersefperimental units are even

more stark if multiple intensities of each stressor are required. As such, as found by several
meta-analyses (e.g., Gomez Isaza et al., 2020; Seifert et al., 2020) the majority of multiple
stressor experiments frequently havewo(i.e., less than five) numbers of replicates per
treatment, potentially to navigate some of the limitations surrounding experimental design.
Accordingly, resource considerations may limit the scope of any experimgsrtscularly

where large, or specisk, experimental units are required. However, as with the results of
theoretical studies, the findings of multiple stressor experiments are likewise divergent.
Conclusions may differ between experiments (or potentiallgn within a single experiment)
asfunctionally, or taxonomically, similar organisms may respond toamurring stressors in
disparate ways (e.g., Christensen et al., 2006; Piggott et al., 2012). As such, simple qualitative
comparisons between experimentare often difficult to reliably mee. Instead, other
analytical approaches are needed to draw general conclusions from across multiple stressor

experiments (e.g., metanalyses).

Meta-analyses are an area of multiple stressor research which are becanurepsingly
prevalent, particularlythose exclusively, or partially, considering stressor interactions in
freshwater environments (Figure 1.2). In brief, meataalyses collate data from multiple

experiments which are then aggregated and analysed to datexra single aggregated metric
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(see Gurevitch et al., 2018). For multiple stressor matwlyses, null models (e.g., the
additive null model) can again be implemented, being used to classify interactions both for
individual experiments, and the overall aggated metric. In total, there havgeensix meta
analyses (published before 2021) exclusively considering multiple stressors in freshwater
environments; although Lange et al. (2018) expands upon the dataset first used by Matthaei
& Lange (2016). The cdosions of these metanalyses can rgatly differ, with no
generalities apparent for the frequency of interaction classifications for individual
experiments or the overall interaction classification assigned to the aggregated metric. For
individual experirents, antagonistic (Jackson et &016) and null (Lange et al., 2018)
interactions have separately been found to dominate, while roughly equal frequencies of
antagonistic, synergistic, and null interactions have also been reported (Gomez Isaza et al.,
2020). For the interaction clagigation of the aggregated metric, metanalyses have likewise
diverged and reported an overall interaction class of null (E3@@ano et al., 2012),
antagonistic (Jackson et al., 2016; Lange et al., 2018), or synergistardB et al., 2008)
interactions.The disparate results across multiple stressor rraatalyses are unexpected,
with it anticipated that the results should align to a far greater degree. At present, the absence
of generalities across multiple stressor metnalyses (for all realms) is undximed, with
ecological rationale failing to explain these disparitiedté@t al., 2016). Indeed, ecological
variables such as response metric, organisation level, or feeding group have all been
suggested as being imgant, or unimportant, covariablesniexplaining multiple stressor
interactions, with there being no consistency across naatalyses (&é€ et al., 2016). As
such, an explanation for the absence of any generalities in multiple stressoranatgses

remairs undetermined but is urgently reqeid.
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1.3  Furthering understanding of stressor interactions

Despite being a relatively new field, there has been a surtfeeinumber of multiple stressor

papes (both overall and those considering freshwater environments) recently published

(Figure 1.3). However, questions remain as to what is required in order to better understand

multiple stressor interactions. From one geective the answer is obvious, withgreater

guantity of empirical data being required. For instance, this can take the form of testing new

combinations of stressors against previously unconsidered ecological communities or the

replication of previous eeriments. However, alongside aninased quantity of data, other

developments are nonetheless required. For example, multiple stressor ecology requires an

increased understanding,

and appreciation,

of the statistical

methods commonly

implemented, alongsle a greater emphasis on the devetopnt of ecological theory. These

necessary developments, alongside others, are discussed below.
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Figure 1.3: Number of studies published by year (up to, and including, 2020) which consider the effects
of multiple stresors. Searches were conducted in WWéBcience, with separate searches conducted

for all multiple stressor papers (including freshwater studies) (grey line), and those which were specific
to the freshwater realm (blue line). Search tenveye based on thee of Orr et al. (2020) (Appendix

Ore).

Within multiple stressor ecology, the additive and multiplicative null models (see Folt et al.,
1999; Sih et al., 1998; Soluk & Collins, 1988), are the most commonly used approaches for
classifying stressor interions. Indeed, although these two Humodels are widely
implemented, there is relatively little knowledge of their statistical properties. For instance,
both Folt et al. (1999) and Sih et al. (1998) describe (using verbal arguments) how the additive
null model may be biased towards reporgjrantagonistic interactions given that it can make
ecologically unfeasible predictions (e.g., a mortality rate of over 100%). However, there have
been no attempts to determine whether other sources of bias are occuwittgn either the
additive or multigicative null models. As such, it may be that these null models are being

widely-implemented and interpreted without an appreciation of the nuances or limitations
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of these approaches. Furthermore, the results of studiesnetaanalyses, which implement
these contrasting null models are often compared (e.gte@t al., 2016), yet these null
models employ differing underlying assumptions and as such may not be directly comparable.
Indeed, there is definitely a need t@tkrmine the conditions under whichie can expect the
results of these two null models to align or differ, with only Stephens et al. (2013)
implementing both null models on the same dataset. For example, an interaction may be
assigned an antagonistic intestion classification by the multiphtive null model, but a
synergistic interaction classification by the additive null model. Ultimately, it is important to
determine whether there is a statistical, in addition to ecological, rationale for implementing

one null model over the other.

As described above, the additive and multiplicative null models are the most widely adopted
approaches when considering stressor interactions. Many studies determine, and classify,
interactions through the calculation of effe sizes which correspond to the atide (e.g.,
Gurevitch et al., 2000) and multiplicative (e.g., Lajeunesse, 2011) null models (approaches
that are subsequently builon throughout this thesis). Furthermore, while not necessarily
widely appreciated (Schér & Piggott, 2018), these null models may also be implemented
through analysis of variance or generalised linear models (e.g., Birk et al., 2020). However,
alongsidethe widelyimplemented additive and multiplicative null models, an increasing
number of null models are being developed. Recently presented null models include the
compositional null model (Thompson et al., 2018b) and the Rescaled Bliss Independence
Model (Tekin et al., 2020). However, it is currently unclear when, or whether, such novel
approaches should be implemented. Furthermore, there are currently no, or limited,
comparisons to the established null model approaches. For instance, Tekin et al. (2020)
compare the Rescaled Bliss Independence Model to analysis of variance, but not more
commaplace additive or multiplicative null model approaches. Similarly, Thompson et al.
(2018b) compare the compositional null model to versions of both the additive and
multiplicative null models, though potential issues with this novel null model have been
highlighted (see Orr et al.,, 2021a). Ultimately, it is unclear whether these new methods
represent an upgrade on the existing null model approaches. As outlined abth@pagh

understanding of the existing null model approaches (including their bersafddimitations)
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is required. Such an understanding would hence allow novel null models to be benchmarked

against the established methods.

As with most ecological digtines, multiple stressor ecology faces data limitations. Indeed,
there are limitationssurrounding both the number of studies considering a specific question
and the quantity of data generated by any given experiment. As discussed above, most
multiple stressor experiments have limited numbers of replicates per treatment as a way of
mitigating resource limitations. However, there is little (if any) knowledge of the statistical
implications of limited sample sizes upon the ability of the null models to deten-null
interactions (i.e., ecological surprises). For instance, should we expegpariment with ten
replicates per treatment to be better able to detect an interactionrlan experiment with

three replicates per treatment? If so, what is the rélatbenefit in increasing sample sizes
from three to ten replicates per treatment? Odternatively, what sample size provides the
best tradeoff between statistical power and resource management? In many cases, decisions
on sample sizes are simply based heuristic rationale, with little consideration of the
statistical implications of siica decision. Indeed, it may be that current experimental designs
are only able to determine whethea non-null interaction is occurring if the interaction is
exceptiorally strong. As such, understanding the implications of an experimental design, in
relation to the implemented null model, will be required in order for multiple stressor ecology

to fully interpret existing results.

As described above, one of the pressiugestions facing multiple stressor researchvighy

do multiple stressor metanalysesfail to determine consistent generalitie$deed, this
guestion applies to all multiple stressor medaalyses not just those solely considering
freshwater stressor iteractions. As discussed previously, explanations for the absence of any
consistent genmlities have almost entirely focussed on ecological rationale for this disparity
(see ©teé et al., 201% However, given this has so far failed to provide any expiamat may

be that other factors are instead responsible. One such factor could baiffeeent methods
employed by metaanalyses (see Hungate et al., 2009). Some methodological differences,
such as whether a metanalysis implements an additive or mplicative null model, are
easily apparent. However, there may also &droader suite ofsubtler methodological
differences which are driving these disparities yet are currently overlooked. For instance,

there are various different iterations of both thedditive (e.g., Darling & Gté, 2008;
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Hillebrand, 2002Siviter et al., 2021Zhou et al., 2016) and multiplitee (e.g., Gomez Isaza
et al., 2020; Harvey et al., 2013) null models, though how these different null model variants

may affect any metanalytical results is currelytunknown.

Within multiple stressor ecology, theoretical and empirical analyses adersetonducted in
tandem. However, it is possible for theoretical ecology to generate expectations, regarding
the effects of stressor interactions, which could then beght to be proved, or disproved,

by empirical analyses. For instance, theoretical egploas generated predictions regarding
how stressor interactions, in a given system, are dependent on stressor modes of action and
measured response variables (Galicaét 2018) or how conservation effectiveness can be
determined by stressor interaction@rown et al., 2013). Such examples illustrate the
potential for theory to help inform and direct empirical analyses; although, inversely,
empirical analyses could algenerate predictions which are then tested by ecological theory.
Either way, a greatemphasis on a combined empirical and theoretical approach may further
multiple stressor ecology by allowing ecological observations to be contrasted against a

potentially mechanistic understanding of stressor interactions.

1.4 Thesis aims

The research dlined within this thesis centres on several core aims. These aims are stated

below, before being described in the following section.

i. Determine whether ecological suiipes (i.e., antagonistic, reversal, and synergistic
interactions) are more prevalent timecurrently expected.
ii. Determine whether ecology, or methodology, are responsible for the conclusions of
previous multiple stressor research.
iii. Determine the causes respsible for the absence of consistent generalities across
multiple stressor metaanalyses.
iv. Determine what covariables (e.g., feeding group or response metric) are important in

determining how stressors interact aquatic ecosystems
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1.5 Thesisoutline

In this thesis, | focus upon null model approaches to understand the interactions ofosress
While alternative approaches have been suggested (e.g., De Laender, 2018; Spears et al.,
2021), these null models remain the most popular choice fasifiging the interactions of
multiple stressors with there similarly being established statisticedthods for their
implementation (e.g., Gurevitch et al., 2000; Lajeunesse, 2011). However, despite their
popularity, these null models are not necessarilgivunderstood, an issue which | attempt

to remedy.

In Chapter Two, | combine theoretical and meataalytical approaches to better understand
how multiple stressors can interact to affect freshwater ecosystemsigher levels of
ecological organisatiordmulations of food chains are used to determine how both the
frequency of individual interactionlassifications and overall me&nalytical metris vary

under ecologically relevant conditions. These findings are then compared to the results of a
largesale metaanalysis focussing on the effects of multiple stressors, on biomasses or
densities, in frehwater environments. In Chapter Three, | address the limited understanding
of the additive and multiplicative null models. Here, | build on the method$hapt@r Two,
determining how these null models respond to ecologically relevant levels of observatio
error and sample sizes, and determining the conditions under which the results of these null
models align or differ. | similarly determine whether someultss frequently reported by
multiple stressor studies, are indeed due to ecology or are simpdjaantis of these statistical
tools. Penultimately, in Chapter Four, | address the issue identifiedbt®yeC al. (2016) of

why multiple stressor metanalyse have so far failed to determine consistent generalities.
Here, | focus on methodological explaivats for these disparities, building upon the findings

of the previous chapters. In doing so | collate, correct, and reanalyse datasets from seven
publishedmultiple stressor metanalyses using a single consistent statistical framework. |
determine whethe the contrasting implementation of null models, across matealyses, is
responsible for these differences that have often been attributed to underlyindogaal
variation. Finally, in Chapter Five, | collate the findings from each of the above chapters
examine the key messages from across this thesis. In doing so, | summarize current issues

within the field of multiple stressor ecology and outline pati@l avenues for future research.
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Chapter Twog Classifying ecosystem stressor interactions: ©he highlights
the data limitations of the additive null model and the difficulty in revealing

ecological surprises

2.1 Abstract

Understanding how mitiple cooccurring environmentalstressors combine to affect
biodiversity and ecosystem services is angomg grand challenge for ecology. Currently,
progress has been made through accumulating large numbers of sraadr empirical
studies that arethen investigated by metanalyses to detect general patterns. There is
particular interest in detecting, iRSNAR Gl YRAY3IZ YR LINBSRAOGAY 3
stressors interact in a neadditive (e.g., antagonistic or synergistic) manner, but sdeiar
general results have emerged. However, the ability of the statistical tools to recover non
additive irteractions in the face of data uncertainty is unstudied, so crucially, we do not know
how well the empirical results reflect the true stressor inteffans. Here, we investigate the
performance of the commonly implemented additive null model. A ratalyss of a large

(545 interactions) empirical dataset for the effects of pairs of stressors on freshwater
communities reveals additive interactions darate individual studies, whereas pooling the
data leads to an antagonistic summary interaction class. Hewewalyses of simulated data
from food chain models, where the underlying interactions are known, suggest both sets of
results may be due to obseation error within the data. Specifically, we show that the
additive null model is highly sensitive to obgation error, with noradditive interactions

being reliably detected at only unrealistically low levels of data uncertainty. Similarly,
plausible leels of observation error lead to metnalyses reporting antagonistic summary
interaction classificationsven when synergies etominate. Therefore, while our empirical
results broadly agree with those of previous freshwater ratalyses, we conclude ¢se
patterns may be driven by statistical sampling rather than any ecological mechanisms. Further
investigdion of candidate null models used to define strespair interactions is essential,

and once any artefacts are accounted for, theGo f £ S RA OHSO 2% BNHLINA &4 S & Q

frequent than was previously assumed.
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2.2 Introduction

Ecological communitiesre being subjected to a wide variety of external stressors (Halpern

et al., 2015) that act across terrestrial, freshwater, and marine biomes arnshtém
ecosystems and their services (Scheffers et al., 2016). These stressors, also termed drivers,
factors, or perturbations (Orr et al., 2020), are frequently anthropogenic in origin (Vérésmarty
et al., 2010; Geldmann et al., 2014), but are capablesoidabiotic or biotic (Przeslawski et

al., 2015), and are able to act at the local to global scales (Bdn 2014; Franca et al., 2020).
While individual stressors (e.g., climate change, habitat alteration, or pollution) are
themselves capable of inding changes in biodiversity or ecosystems and their services (Dirzo
et al., 2014; Tittensor et al., 201Kewbold et al., 2015), ecosystems are frequently, if not
predominately, acted upon by multiple stressors simultaneously (Crain et al., 2008). Despite
the negative connotations surrounding the tersiressor stressors are capable of inducing
effects that ae either beneficial or detrimental to the affected ecosystem (Kroeker et al.,
2017). One of the grand challenges facing ecologists is to be abé&tdctdunderstand, and
predict how these different types of ecosystem stressors interact to affect bicgliyeand
ecosystem services (Hodgson & Halpern, 2019); although the challenge is more difficult since
the observed interactions can substantially ggg from what is anticipated (Christensen et

al., 2006). Ultimately, knowledge of how stressors interastimportant in guiding
conservation and management initiatives, and in helping to prevent remediation measures
from being ineffective, or even poteiaily harming those ecosystems they are intended to

preserve (Brown et al., 2013; C6té et al., 2016).

Aquaic ecosystems and communities are particularly threatened by multiple stressors (Birk
et al., 2020). For instance, Halpern et al. (2008) describedwany marine area is subjected

to human influence, with 41% of these areas being impacted by multiplessirse. Moreover,
freshwaters represent some of the mostiagk ecosystems and are frequently exposed to a
wide range of stressors (Hecky et al., @00rmerod et al., 2010; Woodward et al., 2010; He
et al., 2019), with freshwater biodiversity decliningates exceeding even those of the most
impacted terrestrial ecosystems (Sala et al., 2000), and potentially endangering vital
ecosystem services (Mg et al., 2014). While stressors often interact to impact freshwater
ecosystems (Birk et al., 2020), thgiresence in freshwater ecosystems is not a new

phenomenon, with some freshwater bodies having been subjected to stressors for several
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centuries (Ddgeon et al.,, 2006). However, the stressors that freshwater systems are
currently facing has expanded, witkthe introduction of novel stressors, such as
nanomaterials, while existing ones are continuing to have severe impacts (Reid et al., 2019).
The cumuktive impact of multiple stressors has been identified as one of the most pressing
and emerging threats tfreshwater biodiversity, but despite this, our current understanding

of both how stressors interact, and the severity of their effects, is poor @eid, 2019).

The termecological surprisésensuPaine et al., 1998is often used to describe the chges

in a biological response variable that contrast those anticipated when multiple stressors
interact (e.g., Christensen et al., 2006; Jackson.e2@al6). Although an ecological surprise
may be defined as an interaction that is either greater thanless than, the expected
magnitude from a null model, particular focus has been on interactions of stressors which
interact synergistically; i.e., whe the combined effect is greater than the sum of the
individual effects. Synergistic interactions of muiki stressors are important to document,
firstly due to their potential to have a dramatic effect on ecological communities, and
secondly because th@resence of a synergistic interaction means management strategies can
potentially have a large effect byingating against just one of the interacting stressors
(Brown et al., 2013C6té et al., 2016; HalldBull & Bode, 2019 Because of their potential
impact there has been a great deal of effort in recording the frequency of synergy in stressors
across dfierent ecosystems and communities (C6té et al., 2016). However, there is always a
danger that an emphasis on their importance could lead to @stimating the frequency of
synergisms or other forms of ecological surprise (e.g., antagonisms) within theleul
stressor literature and, as highlighted by Coté et al. (2016), there is little evidence to suggest
that stressors predominately interact in grergistic manner. A pertinent question which has
yet to be addressed is whether ecological surprises shbwl expected, or whether the
prevalence of these interactions are skewed in some way by reporting biases, statistical

sampling, or both.

There is reatively little ecological theory that generates expectations of when and how often
the cumulative effect®f pairs of stressors should be synergistic, or indeed any other type of
interaction. This is in contrast to other ecological interactions, suchasffects of multiple
predators on prey density and biomass, where a much richer body of theoretical éahgsvl

has been used to generate a number of hypotheses for testing (Sih et al., 1998; Schmitz,
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2007). Instead, progress on ecosystem stressor intemasthas been made largely by meta
analyses across a humber of experiments, realms, trophic levels, measaits, taxonomic
groups, and stressor types (e.g., Crain et al., 2008; Darling and Coété, 2008; Wu et al., 2011;
Jackson et al., 2016). Within egstem stressor research, the most popular approach is to
use the additive null model where the stressorardction is predicted to be simply the sum

of their individual effects (e.g., Crain et al., 2008; Darling & C6té, 2008; Strain et al., 2014;
Jacksoret al., 2016), although the multiplicative null model, the-tognsformed version of

the additive model,d also relatively common (e.g., Bancroft et al., 2008; Gruner et al., 2008;
Harvey et al., 2013; Rosenblatt & Schmitz, 20T#ese null models clagg interactions as
either being null (i.e., the additive or multiplicative effect of interacting stregssgmergisms

(i.e., greater than the null), or antagonisms (i.e., less than the null). While distinctions are
increasingly being made for variougrts of antagonistic interactions in this simple scheme
(e.g., Jackson et al., 2016), there exists a rarfgatteer classification schemes (Orr et al.,
2020), and these have been implemented across a number of studies (e.g., Tredletset

al., 2014, Pigott et al., 2015). The profusion of null models can make it difficult to generalise
results across diffe¢i  a G dzZRASad® | WaeySNBAAGAOQ 2N WI
contrasting definitions depending on the scheme being used leading to the saenadtibns

being labelled differently under contrasting schemes; hence the biological and statistical
interpretation is therefore dependent on the null model being applied. One way round this
issue is to pool published data together to harness increasdstal power and conduct a
meta-analysis to search for generalities under a particular null model (exetipted in C6té

et al., 2016). However, despite their potential, these matamlyses have to date not
identified any general covariates capablesmplaining the broad patterns of multiple stressor
interactions, meaning we still lack general predictiasfsthe consequences of multiple

stressors (Co6té et al., 2016).

Given the lack of consistent generalities from empirical studies, the developmeooloiggcal
theory within multiple stressor research may represent an approach capable of providing
novel insghts. Some theory has been developed for particular case studies (e.g., Brown et al.,
2013; Galic et al., 2018), but only a few studies (e.g., Hallé & Bode, 2019) have so far
investigated more general insights. Of primary interest is the generafidineory which can

provide a mechanistic underpinning to the field, and potentially allow for an increased

32



Benjamin JoshuBurgess; Doctoral thesis

understanding of multiple stressor intezgons, compared to that provided solely by a null
model approach (De Laender, 2018). However, theory caldd be used to better
understand the results obtained from the null model approach to empirical classification of
stressor interactions. In partitar, we know of no study that has investigated how robust the
null models are to noisy data (i.e., samplingcertainty and/or process variation); yet
understanding this is important before we can draw strong conclusions from the empirical
analyses. Thisnlowledge is also important for evaluating the relative performances of the
profusion of null models, and therefore something which may help guide the easkr to
decide which null model may be both appropriate and likely to yield important result®in th

face of what is often noisy and/or limited data.

Here, we begin to close these gaps in understandingebtirtg for the prevalence of nen
additive effects of capccurring pairs of stressors in freshwater ecosystems. We first develop
classical communitya®logy models based on Lotk@lterra consumeresource dynamics in
order to simulate data from biologicglsimple food webs impacted by pairs of stressors. This
LINE DA RSA dza oA U0K QRI Gl Q ¢ KpaiNBeragtiSns W then useK S
this simulated data to investigate the ability of the additive null model to recover interactions
under a ange of different levels of data uncertainty which we model as observation error.
With a better understanding of the statistical null model we thewiew the experimental
literature to compile and analyse the largest (in terms of the number of interas}idataset

for the effects of ceoccurring stressor interactions on the biomasses and densities of
freshwater organisms. In particular, we ask whetlezological surprises are common in
freshwater stressor interactions. The simulation experiments allovsid@nable insights into

our empirical analyses and help prevent cugerpretation of our results.

2.3 Methods
Theoretical models

In order to provide a better understanding of the empirical results that follow, we built food
chain models based on thdassical Lotkd/olterra consumer resource equations (Heath et
al., 2014). We chose these models since we believe stressors mayeatiydan population

and trophiclevel patterns, but also indirectly via trophic cascades (e.g., a species may be
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indirectly affected if its primary resource is directly affected by a stressor). This approach is
also broadly in line with our empirical datdnich focuses on population and communigvel
metrics as the responses to stressor treatments (see below). To inctieasebustness of

our conclusions we considered two forms of the model; one where (within trophic level)
density dependence affects ¢hdeath rates of each trophic level, and the other where
consumer uptake is density regulated (Table 2.1). Both theseasosnwere analysed by
Heath et al. (2014) to investigate the roles of different types of density dependence on trophic
cascades (sedetails therein). In both models the basal level of the chain describes the
dynamics of a key nutrient that limits the mtoctivity of the food chain, and we assumed
YdziNASyGa FNBE FRRSR Fd | O2yadlyd NI héz
describes a different type of consumer. The first level is wholly dependent on the nutrients
and may represent a prinmg producer such as an algal species that requires a key mineral
such as silica. The second level consumes the first trophic levés antlirn consumed by a
third trophic level, and so on until the apex consumer is reached. In the density dependence
model (Equatior2.1; Table 2.1), the consumer (trophic leyetxploits the resource (trophic
level i ¢ 1) with a constant consumptionteack rate,| , and the conversion efficiency
parameter,- , determines the proportion of the consumed resource that is converted into
new consumers (Heath et al., 2014). Under density dependence, the consumer-is self
regulated by the intraspecific deity dgpendence parameter , which leads to an increase

in death rate as the consumer density increases (Heath et al., 2014). In contrast, the consumer
uptake regulation model (Equatio2.2; Table 2.1), assumes the effect of increasing
consumers is tolsw down the consumption of the resource, perhaps due to increased
interference (Heath et al., 2014). In this case, the paramatedetermines the consumer
density at which the maximum per capita uptake rate is halved, defined as the density
@ 1/u (Heath et al., 2014)
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Table 2.1: Equations used to establish theoretical fdwins. The equations, sets, and a brief

description of the equivalent ecological troplaeelare shown.

Equation Type| Equation Description
2.1.1 | Density g e b 1 h Change in density of Ape
Qo ;
Dependence Consumerd )
2.1.2 | Density (o o o . . Change in density of Nel
Y | -0 @ | ww T
Dependence Apex Consumety
2.1.3 | Dersity [0 - Change in density ¢
oo | e®
Dependence Nutrients ()
2.2.1 | Consumer | -0 o e Change in density of Apg
9 5 oo
Uptake °© P HO® Consumerd )
Regulation
2.2.2 | Consumer | e w W Change in densitpf Non
X - -
Uptake °© b oEB P B0 Apex Consumety
Regulation
22.3 | Consumer ) | 0w Change in density @
T - _
Uptake © P8O Nutrients (v )
Regulation

Using these equations, we established fedthins comprising either three, four, or five
trophic levels, and the equation for each trophic level models how the biomass or density
changed over time. For simplicity we assumed all key parameters (nutriediziinp . T
consumption rates ; conversion efficiencies; uptake regulators Ndensity independent

1 hand dependent death rates, for trophic levei) do not vary over time, and we investigated

the effect of stressors on equilibrium biomasses/densities. The models also ignore spatial
structure in the community, which algemain closed to immigration from outside apart from

the constant input of the nwient. Hence these models represent the simplest form of
community dynamics that can be used to investigate the effects of multiple stressors as well

as the manner in whicthey interact.

Stressors to the food chains were modelled by changing the vdareparameters and

comparing the resultant equilibrium densities across all trophic levels to the equilibria for a
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set of baseline parameter values. Equatidh$ and 2.2 are not mechanistic models for
specific stressors (e.g., pollution, temperature) mdtead capture the net effect of stressors

on the ecological processes of the food web species. For simplicity, we assumed each stressor
had either a positive or negativéfect on one model parameter (i.e., ¥ ,- , or] ), and we
investigated hav pairs of stressors interact to affect community densities. The baseline
parameters were drawn from uniform distributions with ranges given in Table 2.2. Therefore,
for a given food chain, the basedi parameters for all trophic levels were independently
sampled from the distribution of values given in Table 2.2. Similarly, the processes
(parameters) affected by each stressor were randomly selected from the possible candidates,
and the intensity of & effect on the baseline rate was drawn from a uniforistribution with

the ranges shown in Table 2.2. The baseline parameter set therefore represented the control
community, and as in experimental studies that employ the factorial design approach (e.qg.,
Matthaei et al., 2010; Davis et al., 2018), we manipdabur model communities by
investigating the effect of each stressor acting alone, as well as the stressors acting in
combination. From these cases, we then computed the type of stressor interatimow

they combined to alter the community densitiese€ below for definitions of how stressor
interactions are computed). We therefore chose one trophic level at random from the entire
food chain, excluding the nutrient level. We focused on this pdmri&rophic level and
mirrored it in our selection of mpirical data (see below). This also means the species or
trophic levels under scrutiny were not always directly affected by the stressor but could be
affected solely due to a trophic cascade effdttis also important to note that a stressor
could havded to either an increase or a decrease in parameter value relative to the baseline;
and that multiple stressors could have acted on the same, or a different trophic level. We
chose to model the scenia where each stressor affected only one parameter (dretefore

one biological process); hence within our model communities, stressors did not interact at
the parameter level. However, relaxing this assumption to allow two stressors to affect a

single pocess (parameter) did not alter our results (Appeniio).
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Table 2.2: Explanation of the different parameters within Equattoh&ind2.2, with the mechanism

they reflect, alongside the minimum and maximum values for the ranges of baseline parareter va
Parameter values were drawn from a uniform digitibn U~(a, b) with lower limit, a, and upper limit,

b, with the limits differing between the baseline and stressed parameters. The method for determining

stressed parameter values is detailed in ApgpeTwo

Parameter| Ecological Mechanism Baseline Valu&Range | Stressed Value Rang

h The rate at which a trophic levg hp=U~(0.25, 0.75) U~(0.01, 0.99)
predates upon the trophic leve
directly below.

8 The efficiency at which a trophic lev| ¥, = U~(0.25, 0.75) U~(0.01, 0.99)

can transform consumed matter int

new individuals.

1 The density independent mortalit] 1»= U~(0.25, 0.75) U~(0.01, 0.99)

rate of a trophic level.

The constant rate at which a resourq - b= U~5, 75) U~(1, 99)

(@) is input into the food chain.

< The density dependemmortality rate | <pb= U~(0.00625, 0.025)| The parameter was no
of a trophic level. under selection for

alteration by a stressor

A A limit to the uptake rate of g Ap=U~(005, 0.15) The parameter was no
consumer through a traitnediated under selection for
response, thatmay be behavioural o alteration by a stressor
otherwise.

Overall, 1,320,000 different combinations, of equations, fabdin lengths, stressor pairs,

and randomly selected baseline values were generated. Equilibrium densitiesadioro¢

these combinations, were calculated using Mathematica 10.4 (Wolfram Résdac., 2016).

We only considered cases where the equilibria were all stable, and feasible (i.e., all densities
were positive), and only equilibrium densities for trophiedksx; and above were included

in the stressor interaction results (i.e., we &xed the nutrient level from our stressor
interaction analyses). Stability was assessed by determining the Jacobian matrix for each
community and calculating the correspondineigenvalues. For every community, all

eigenvalues had a negative real part witie equilibria being point attractors.
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Across all 1,320,000 combinations, 79.9% of the parameter sets resulted in the determination
of equilibrium densities that were both @lble and feasible, with the discarded 20.5#
parameter sets resulting in at least one biologically unfeasible density. From the full set of
stable and feasible communities, we randomly selected 360,000 theoretical interactions, and
for each community werandomly selected a single trophic level foretliocus of our
estimation of the stressor interaction. All subsequent analyses of the theoretical data were
performed on this group of 360,000 theoretical interactions. This subsetting was required as
there was a negative relationship between the numberttmiphic levels and the likelihood of

the community being both stable and feasible, which biased the full dataset towards
communities with only three trophic levels. The final 360,000 stressor interactions wer
selected with weighted probabilities to ensuapproximately one third (i.e., ~120,000) were
from each of the three food chain lengths, and that each model (Table 2.1) was also

approximately equally represented.

Unlike the empirical studies used in theeta-analyses below, the food chain models are
purely deterministic, meaning that there are no random fluctuations around the equilibrium
densities. In effect, for any given pair of stressors, there is no uncertainty (observation error)
in the theoretical @dta. Clearly, this differs from the empiricadtd where observation error
leads to an estimate of the densities/biomasses under investigation in the control and
treatment replicate communities, and this observation error may lead to some stressor
interactions being misclassified. For a better compamisvith the empirical data, and to test
the robustness of the additive null model to observation error, we modelled observation error
by taking the 360,000 theoretical interactiofiem our original analyseshd then multiplying

the density of each trophitevel by a random number drawn from a Gaussian distribution
with a mean of 1.00 and standard deviatioh, . This process was repeated between three
and six times for each treatment, analogous to the number of replicates per treatment found
in our empircal data (see below). Thus, larger values, ftad to larger deviations around the
equilibrium biomassesnd therefore a larger observation error, with an increased likelihood
that the stressor interaction was misclassifi&tandard deviations, , were from one of 50
different levels, ranging from 1x®@o 5x10%, in consistent logarithmic increments (g.§x10

6, 9x10°, 1x10°, 2x1C°, etc.). The interpretation af is straightforward, as we would expect

99.7% of all observations to fall withio, Q2 F G(KS WiNHz2SQ aiGNBaazN
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biomass/density in the absence of any observation error). Agdpelwodetails a complete

overview of how observation error was incorporated into the theoretical data.

Collation of empirical data

Through Web bScience we searched the primary scientific literature, for papers published
before T January 2019, whitinvestigated the impacts of multiple stressors on freshwater
communities. In order to be incorporated, papers needed to report results where thase

a factorial design, namely: (i) a control (without stressors); (i) each stressor acting
individually;and (iii) the stressors acting simultaneously. We required papers to report the
mean value of the response, the number of replicates, and standavaiilen or standard
error for each treatment in the factorial design; failure to report any of this infaromaled

to the study being excluded from our analysis. Additionally, papers were required to report
at least one of the following untransformed mets: biomass, abundance, density, or
chlorophylta of one or more groups of organisms within the stressmadmunity. Hence, and

in line with our trophic models, the focus of our effort was directed towards studies that
report the effects of stressors actimat the population and community levels. Papers often
reported the impacts of stressors on multiple di#éat groups of organisms within a
community; when this occurred, the responses of all different groups of organisms were
included within the overall ataset. The different groups of organisms could comprise:
populations of a single species (e[@aphnia plex); a group of organisms within the same
feeding guild (e.g., herbivores); a group of taxonomically similar organisms (e.g., taxa within
the generaEphemeropteraPlecoptera, and Trichopteraor a group of similar organisms
(e.g., macroinvertebrates oalgae). To be included within our dataset, papers had to
investigate communities comprising a minimum of two different groups of organisms. Studies
investigated a wide range of different stressors, although these were subsequently grouped

into broader strasor categories, such as temperature, contamination, and habitat alteration.

Previous analyses have frequently focused on collating data for oelygtbatest single
intensity of a stressor (e.g., Jackson et al., 2016). In contrast, where studies refieeted
responses of communities to multiple intensities of different stressors, data for all of the

different intensities were collated. All interactie considering the different intensities of
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stressors were included in the overall dataset, although catian in data due to repeated
experiments across different stressor intensities was accounted for in the finalanetlsses

(see sectiorbelow).

Same studies reported multiple different response metrics for the same group of organisms,
included the samespecies within multiple different groups, or reported data for the same
experiment over multiple different time points. Accordingly, in order to regluthe
correlation/covariance within the overall dataset, these interactions were removed from our
analysesFor instance, where the effects of stressor interactions on multiple different traits
were reported, those considering density as the biologicapomse metric were prioritised
over abundances, which were in turn prioritised over biomasses, or thossid=rmng
chlorophylta, respectively. Similarly, where papers reported data for stressor interactions
over multiple different time points, only therfal time point was used as this best matched

our equilibrium assumption for the theoretical models.

Appendx Twogives a complete overview of the different search terms used to find studies,
the method used to determine whether the data for a study cdagdcollated, the processes
for extracting and collating the data, and the process for removing interactmmpsevent

covariance.

The determination of effect sizes and the classification of interactions

Across both the theoretical and empirical datasets, used the same method to determine

the classification of an interaction, using the factorial form of & FSOG &A1 S Y S N&R
doDdzNB @A G OK S disfregently used tolin®estigsieR g 8npaRts of multiple
stressors as it estimates the standardised mean difference between the means of stressed

and control samples and is unbiased by 8nsample sizes (Hedges & Olkin, 1985). It is
calculated by compang the effect of the interaction on ecological communities to the sum

of effects of the stressors acting individually; namely, an additive null model. In line with
current methods, we inveéed the sign of the interactions when the expected effect of the

additive null model was negativelgckson et al., 201®iggott et al., 2015). This method

allowed for interaction effect sizes to be compared regardless of their directionality. We

therefore focused on the classification of the interaction as opposed te #bsolute
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magnitude/polarity of the effects. AppendiXwo gives a complete breakdown of the
Slidzr G6A2ya dzaSR TFT@&NJ OFf OdzE I GAy3 |1 SRAISaAQ

hy OS | &fBrxSi&en interaction of stressors waalculated, we then classified the
interaction into one of foutypes as illustrated in Figure 2.1 and following the convention of
Jackson et al. (2016). In brief, the four interaction classifications wefadi)ive where the
effect of the additivenull model was statistically indistinguishable from the effeatlo$erved
interaction; (i)Synergisticwhere the observed interaction effect was greater than the effect
of the additive null model; (iilAntagonisti¢ where the observed interaction effewas less
than the effect of the additive null model, but bothfefts had the same polarity; and (iv)
Reversalwhere the observed interaction effect was less than the effect of the additive null
model, but the observed and expected effects had contrasfpolarities. The distinction
between antagonistic and reversakeractions is relatively recent (e.g., Travdi®let et al.,
2014; Jackson et al., 2016), with most research still continuing to use the appellation of
antagonistic to refer to both antagustic and reversal interactions (e.g., Velasco et al., 2019;

Gome Isaza et al., 2020).
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Figure 2.1: Graphical depicti@f interaction types using population density as a response metric.
White and grey bars denote densities under control and siiggesers, respectively. The black bar
denotes the additive (Addinteraction classification (i.e., the sum of the effects for the individual
stressors shown by the black arrows). The yellow bar denotes a synergistic (Syn.) interaction
classification (i.¢.a decrease in population density greater than the additive gffétie green bar
denotes an antagonistic (Ant.) interaction classification (i.e., a decrease in population density less than
the additive effect). The purple bar denotes a reversal (Reéeraction classification (i.e., a change in

population density itthe opposite direction to that of the additive effect).

Ly 2dzNJ Y S Kews poditive, theSrieEa&iéntvas classed as synergistic, and if
negative, the interaction was classed &ither an antagonistic or reversal interaction,
although this cald only be determined by comparing the effect of the additive null model to

GKS 204SNIWWSR STFSOG ol & 2 dzidthddye@rBspohding %0 ® 9 |
confidence intervals; iftese confidence intervals incorporated 0, then an interaction was
deemed to be additive. The classification scheme outlined above is one of a number of
possible choices (e.g., Crain et al., 2008; Jackson et al., 2016), and Appeoditails a

comparisorof how these different schemes contrast each other.
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Vote-couning

Following the classification of all interactions, we implemented a -cotenting method to
determine the relative proportions of the interaction classes across both the theoretical and
empirical datasets. To consider the effect of different strengihebservation error on the

FoAfAdGe (2 RSGSOG GKS WiNXzSQ aidNBaazNI AyasSHh

frequency of interaction types for each level of observation error ingastd.

Summary effect sizes

Alongside the voteounting method,we calculated summary effect sizes across both the
theoretical and empirical datasets. The calculation of summary effect sizes represents one of
the key components that defines a formal metnalysis (Koricheva & Gurevitch, 2014),
allowing for the collatia of the individual effect sizes of multiple independent experiments

or studies and determining a single summary effect. Pooling the data in this way increases the
statistical power of our malyses, and therefore leads to a greater probability of correctly
rejecting the null hypothesis that stressor interactions are additive. Metalyses and
summary effect sizes are both useful and vestablished within the field of multiple
stressors (., Crain et al., 2008; Jackson et al., 2016; Seifert et al.), 2820 give higher
weightings to individual effect sizes with lower uncertainties (i.e., lower variances) which lead

to more precise estimates of the overall summary effect size (Korichévar&vitch, 2014).

For the empirical analysis, summary effecesiwere determined by using a weighted random
effect model and implemented in themetafor package (Viechtbauer, 2010) in R. Random
effects were specified as being the identity (ID) of thedgtgroup of organisms nested within

the ID for study. The randoeffects were specified in order to account for both withand
betweenstudy variation contained within the empirical dataset. Additionally, some empirical
studies considered multiple intesiities of one or more stressors, and as such, calculations of
the interaction class for each intensity of stressor used the same control. To account for any
covariance between the different intensities of a single stressor, we incorporated covariance
variance matrices within the metanalytical models. For the empiriaitaset, mixed effect
models were also conducted with the fixed effects of stressor pair or organism group,

alongside the previously described random effects (see Appdmddx. The summargffect
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size for the theoretical dataset was also determined usisgmilar process. However, due to
computational limitations caused by the number of interactions under analysis (360,000
interactions at each level of observation error), fixed effect medel the theoretical data
were fitted using thdm function. Themodels applied to both the theoretical and empirical
datasets are explained in further detail within Appendixo. While we detail the results of
both the votecounting and summary effectz@ methods, our results primarily focus on
summary effectsizes, in line with recommendations for metaalyses (Gurevitch et al.,

2018).

The overall effect from a metanalysis needs to be checked for consistency among effect
sizes, termed as heterogengi{Nakagawa et al., 2017). We used thstatistic, whichis
bounded between 0% and 100%, with 25%, 50%, and 75% being suggested as levels for, low,
medium, and high heterogeneity, respectively (Higgins et al., 2003). Ecologicahnadyaes

often reporthigh levels of heterogeneity (Senior et al., 2016), ppshdue to the variation in

study organisms common to the questions being addressed, and we may have expected a
high value here due to both range of study organism and range of stressor type. deeexpl
the potential causes of heterogeneity within the empal metaanalysis, we conducted
separate metaanalyses on a sufproup of the dataset, a similar process to running a meta
regression (Nakagawa et al., 2017), using organism group (i.e., produz@isumer) as the
categorical moderator to explore heteregeity (see AppendiXwo). We also considered
publication bias (see Appendikwo); although it should be noted that common tests for
publication bias within metanalyses can be limited by high hedgeneity (Nakagawa et al.,
2017).

2.4 Results
Stressor interactions within theoretical data

We found no strong difference between the classification of stressor interactions from either
form of food chain model (Table 2.1), or between the different teagthree, four, five
trophic levels) of food chins (see Appendikwa), showing that the frequencies of interaction
classifications were robust to these details of the models. For the entire theoretical dataset

of 360,000 stressor interactions (comprigiboth Consumer Uptake Regulation and Density
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Dependence Equations, and across food chains of three, four and five levels) without
observation error, antagonistic and synergistic interactions were the most frequently
assigned (0.483 and 0.480, respectiyefpllowed by reversal (0.0288), and finally ane
AYGSNIOGA2ya 6ndnnypco® ¢KSaS FTNBIjdzSyOASa
additive null model, under no data uncertainty. However, the ability of the additive null model
to recower these interaction frequencies is very sengtiw observation error. Increasing
observation error led to more interactions being classified as additive (the null model) and at
higher levels additive interactions were clearly dominant (Figure 2.2a pHitiern could be
generated if our theoreticalnteractions only weakly deviated from additivity, but checks
confirmed that this was not the case, and that over 50% of interactions deviated from

additivity by more than 5% (see Appendiwo).
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Figure 2.2The effect of observation error)(on the stresor interaction categorisation, and summary

meta-analytic effect sizes in the theoretical data. a) Frequency of the different interaction classes for

the 360,000 theoretical stressor interactions at each level of observation error: Dodteld Ilvle

denotes additive interactions; green shataished line indicates antagonistic interactions; yellow{ong

dashed line denotes synergistic interactions; and purple line indicates reversal interactions. b)

Summary effect sizes for the 360,000 theaadtistressor iteractions, at each level of observation

error - Black line denotes summary effect sizes; and red lines denote 95% confidence intervals. c) The

ratio of positive to negative summary effect sizes at each level of observation error.
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The summey effect size,and summary interaction class as generated from the meta
analytical framework also showed high sensitivity to observation error, although in these
analyses the outcome was rather different (Figure 2.2b). For low levels of observation error,
the 95% confidnce intervals of the summary effect size overlapped zero, indicative of an
additive summary interaction class. This occurred because the frequency and magnitudes of
synergistic (positive effect size) and antagonistic/reversal (negativetedizes) integictions

were approximately equal for low observation error (Figure 2.2a), effectively cancelling one
another out, and the large confidence intervals were caused by the underlying large variance
in effect sizes (See Appendiwog). However, wth increasing observation error, the summary
effect sizes became increasingly more negative, and confidence intervals for these summary
effect sizes did not overlap zero, indicating an antagonistic/reversal summary interaction
class.This result may seemugorising since, similar to the case of individual interactions
(Figure 2.2a), we may expect increased observation error to lead to summary effects with
fI NBESN) O2yFTARSYOS AyuSNBFfa GKIFIG 20SNI I LILISR
stressorinteractions (i.e., in the absence of observation error) were roughly equally divided
between synergy and antagonism, the summary effect became increasingly more negative as
observation error increased, indicating observation error affected synergistic and
antagonistic interactions asymmetrically. Further inspection showed an increase in the
proportion of negative effect sizes as observation error increased (Figure 2.2c¢), with this being
mirrored by a decreasing summary effect size (Figure 2.2b). Althootgéorobvious due to

the dominance of additive interactions, a similar trend could be observed in the frequencies
of interaction classes at higher observation errors, with synergistic interactions heading
towards O frequency faster than antagonistic intetians (Figure 2.2a). Hence, analyses of
our model results with varying levels of observation error suggested synergies in pairs of

ecosystem stressors may be undeported in many empirical studies.

Theoretical expectations

In summary, our theoreticalralyses led us to conclude that at biologically plausible levels of
observation error (i.e., >0.01), we should expect (i) the empirical data to be dominated by
additive interactions for individual interactions (Figure 2.2a), but (ii) in contrast the suynmar

effect sizes computed across a large body of such studies may indicate a dominant role for
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antagonistic, or reversal, interactions. Both of these results may occur even if, as in our

AAYdz I SR RIFIGFSY a@ySNHASA | NBcaiosYY2y F2NJ (KS

Stressor interactions within freshwater empirical data

Our literature search within the Web of Science yielded 1805 papers that met our search
criteria, 58 of which met our criteria for inclusion. They included 545 interactions summarised
in Fgure 2.3 to illustrate the frequency of different interaction classifications and the overall
summary effect sizes and interaction classes. Additive interactions were the most frequent
(0.829), followed by antagonistic (0.0991), reversal (0.0477), antyfsyaergistic (0.0239)
interactions (Figure 2.3a). Additionally, the summary effect size for the entire dataset was
negative with 95% confidence intervals that did not overlap zéd&82+ 0.260Q, indicative

of an antagonistic/reversal summary interamt class (Figure 2.3b).
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Figure 2.3: Comparisons of the analyses of the freshwater stressor interaction dataset (545
interactions) with the full theoretical stressor interaction dataset for different levels of observation
error, * (given in parenthesesn the xaxis). Comparisons are for: ajoportions of the different
interaction classes; and b) summary effect sizes for the empirical and theoretical dataset. Figure 2.3a;
white circles denote additive interactions, green squares denote antagonigi@dtons, yellow
diamonds denote synergistic interactions, purple triangles denote reversal interactions. Figure 2.3b;
closed circles denote significant summary effect sizes (i.e., 95% confidence intervals do not overlap
zero), and open circles denote rsignificant summary effect sizes (i.e., 95% confidantervals

overlap zero).
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Our metaanalysis showed mediutevel heterogeneity ¢l = 48.5%) although this was
considerably lower than the mean heterogeneify/<191.7%) found in an analysis of pre\dou
ecological metaanalyses (Senior et al., 2016). Furthermore, two additional rae&lyses
were conducted on sugroups of the empirical dataset, with the categorical moderator of
organism group used to explore this heterogeneity (Nakagawa et al., 20&%gver, these
additional metaanalyses failed to uncover any source of this heterogeneity, with the meta
analysis for consumers reporting meditlavel heterogeneity {I= 42.5%) and the producer

meta-analysis reporting higlevel heterogeneity tI= 67.7% (see AppendiXwo).

Comparison of empirical and theoretical interaction classifications

Overall, we found close agreement between our theoretical models with biologically
reasonable levels of observation error and the freshwater empirical (Fture2.3). Vote
counting results highlight how individual interactions tended to return an additive
classification in the empirical dataset, and that this is expected in the theoretical data when
estimates of metrics used to classify the interactions lswostlywithin 10% of the true value
(Figure 2.3a). Similarly, summary effect sizes were negative in the simulated data under even
a very small level of observation error (Figure 2.3b) despite synergies and antagorisms co
R2YAY Ll GAY 3 G KSs. ThisiNgies the dugimabyNeHebtisike2rgported in the
empirical data for freshwater communities (Figure 2.3b) may not necessarily be

NBELINB&ASYUldA@GS 2F GKS dzyRSNI eAy3a WiINHZSQ aiNS

2.5 Discussion

There has been much interest in undemstiing ard cataloguing the joint effects of stressors

on ecological communities and ecosystems (Coté et al.,, 201@&febch Piggott, 2018;
Thompson et al., 2018b), but to date there has been relatively little guidance from ecological
theory. Similarly, w&now ofno demonstration of the abilities of the statistical tools used for
classifying interactions to recover known interactions in the face of data uncertainty. Here,
our aim was to test the statistical tools used to define stressor interactions ustey d

simuated from ecological theory in order to gain a deeper understanding of a freshwater
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dataset. Our empirical analyses generate two main results: (1}amiating analyses suggest
additive interactions to be by far the most dominant stressor inteaactypes in freshwater
community experiments (Figure 2.3a); but (2) our matelysis shows antagonism to be the
summary interaction class (Figure 2.3b). However, the analyses of the simulated data suggest
both results should be expected under plausileleels d observation error (i.e., >0.01) in the

data (Figure 2.3), and that only under unrealistically low levels of precision should we expect
G2 NBO2PSNI {4 interacNdisSOeitherindi&dua stidies or meataalyses
(Figure 2.2). Weébelieve that once these statistical aspects are considered, theated

WS 02t 2 3A OlsdnsuRaiteNdt A 1898ty 6 fact be more prevalent in both our

freshwater dataset, and more widely.

Null model sensitivity to observation error

The cloice ofthe null model is hotly debated within ecological stressor reseasch§fer&
Piggott, 2018), and it has been argued that null models should be able to accurately predict
the combined effects of stressors (Orr et al., 2020). Our results (FigRyeate he first
attempt to quantify the degree of accuracy for the most commonly used null model, and we
conclude that for all but the very lowest levels of observation error it is difficult to correctly
reject the additive null interaction (Figure 2.2#). other words, we find weak statistical
power to recover the underlying stresspair interactions. On this basis, and given that most
experiments have low sample sizes (we report a mean of 3.83 with a maximum of 16 per
treatment in our empirical datajve consiler it premature to conclude that most stressor
interactions aretruly additive in the freshwater data we collected. Instead, we should be
careful to conclude that in the majority of cases we do not have sufficient evidence to reject
the null (addiive) interaction. However, it means that we should take notice whenever a non
null interaction is returned by the additiveull model, since only strong neadditive effects

are likely to be detected (see Appendiwo).

Perhaps more surprising is our fing thatmeta-analyses using the additive null model report
antagonism as the summary interaction classification when observation error is non
negligible, despite synergies -dominating in our simulation data (Figure 2.2b). A naive

expectation would be foincreased observation error to lead to summary effect sizes centred
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around zero with large confidence intervals making it difficult to rule out an additive summary
interaction in our simulation data. Smaller confidence intervals at higher levels ofvaltieer

error are easily explained by the effect sizes becoming more similar due to the high variances
of the response metrics (Appendixvo). Additionally, it is clear that observation error has an
asymmetric effect on antagonisms and synergies, withlgadingto a shift towards negative
effect sizes dominating the distribution of simulated effect sizes (Figure 2.2c). Hence,
although the return of an antagonistic summary interaction for our empirical dataset is
mirrored in previous analyses of freshwastressa experiments (Jackson et al., 2016; Lange
etal., 2018), we cannot conclude that this is strong evidence for the dominance of antagonism
in freshwater ecosystems. The simulation data therefore adds valuable interpretation of our
empirical data thawould otherwise be missed, and in twing highlights the importance of

benchmarking statistical tools against data with known attributes.

The high sensitivity to estimation uncertainty may be key reasons why stressor synergies are
not as often reportechs maybe expected (Darling and C6t€, 2008; Cété et al., 2016), although
other reasons may also contribute, and we can also not rule out that the empirical results do
truly reflect the underlying interactions. However, we believe our finding of high teatysi

to observation error in the null model is more general than either our theoretical results, or
our freshwater dataset, and we suggest future studies should investigate other null models
for their robustness to observation error and sample sizesh Sumalygs would build on
previous descriptions of the null models (e.g., Sih et al., 1998; Folt et al., 1999; Sih et al., 2004)
and would be particularly useful if analyses considered the effect of sample size on statistical
power, as this will help guidieiture empirical studies to improve the detection rate of ron

null stressor interactions.

Theoretical expectations for interaction frequencies

Our food chain models imply that, given adequate sample sizes (see above), we should expect
synergistic and antagonistinteractions to cadominate at the population and trophic levels,
whereas additive interactions and reversals should be relatively tansay well be the case

that our models are not good descriptors of the data we analyse; certainly, we ignore much

important detail that is likely a feature in the data, such as spatial structure and temporal
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variation in parameters caused by externalrjpebations not linked to the stressors, and
more complex food web structure involving omnivory or parasitism. Unfately, the null
model sensitivity to observation error implies we do not yet have the tools with which to
discern the relative abilitiesf different theoretical models to capture the empirical data.
However, our key theoretical finding for the relatiwerity of additive interactions appears to

be echoed in the few other theoretical studies on stressor interactions in ecological
communities (e.g., Travergrolet et al., 2014; Thompson et al., 2018a; Helall & Bode,
2019). This agreement is despite ariety of key differences in the model assumptions. In
particular, HalleiBull and Bode (2019) focused on populations rather than mulisse
communities, but found dominant roles for synergistic and antagonistic interactions, with
additive interactions ocurring most frequently for stressors affecting the carrying capacity.
Similar to our model, Thompson et al. (2018a) also focused onspedties communities, but
they assumed biological interactions were constant, whereas we allow interactions
(consumpton and conversion rates) to be modified by stressors, an assumption that seems
likely to be met on a regular basis. For example, stressave been shown to influence
resource competitionKroekeret al., 2013); susceptibility to parasitism in oystersi(han et

al., 1999); and modify the flow of energy through aquatic food webs by inducing changes in
trophic links (Schrama et al., 201 Despite this difference, Thompson et al. (2018a) found
additive interactions were most prominent when species fadéitieeach other (i.e., positive
species interactions), but that synergy or antagonism in combined stressor effects on species
richness or ammunity biomass were more common when species interactions are negative

(competition or resource use).

The apparentarity of additive interactions in all of these models may appear at odds with
the possible interpretation that two stressors acting offafient species within a community
could lead to an additive joint effect (Jackson et al., 2016). However, feedlmaties fiood

web, like those found in our models, mean that even if a species is unaffected directly by a
stressor, it is highly likely th&édp-down or bottomup effects will lead to indirect interactions

for many species, and as a result, additive inteacs are extremely unlikely in the absence

of uncertainty (e.g., observation error). Indeed, we anticipate that additive interactions may
only truly occur in scenarios where species in different and very weakly interacting sub

communities are affected byifferent stressors, or, as found by Thompson et al. (2018a),
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where species interactions are predominantly positive. We believe therbevdh increasing
role of theory in generating hypotheses for the ways in which stressors interact (De Laender,
2018),and the most progress will be made when the theory is developed so it can be directly

compared against empirical data, much as we havesdwre.

Mechanistic understanding of multiple stressors

In this study, we sought to address the questionhofv multiple stressors interact. This
approach, when applied across both theoretical and empirical datasets can allow us to discern
what may be exgcted across the interactions of multiple stressors. Future research may seek
to address the question ofvhy multiple stressors interact in the manner that they do.
Undoubtedly, these two questions are entwinned, with the answers to each of these
guestionshighly likely to be dependent on the other. However, while the use of null models
is essential in determining the cdmmed effect of multiple stressors (Thompson et al., 2018b),
the adoption of a mechanistic approach to investigating multiple stressoyspravide novel
insights which address these joint questions (De Laender, 201&e8&nhPiggott, 2018). For
instance a mechanistic understanding may allow for responses such-tdezance or ce
susceptibility (Todgham & Stillman, 2013) to stressorbdomore thoroughly understood
from an ecological perspective. Ultimately, as our results imply, such an understaading
likely to require a large amount of empirical data to fully understand; however, there is ample
scope for theoretical ecology to hefipl this gap in our collective understanding of multiple
stressors, and to generate specific hypotheses to be tesfidiilarly, a mechanistic
understanding of multiple stressor interactions would prove invaluable when mitigating the

effects of stressorsr implementing conservation initiatives.

Future developments

Our analysis represents a novel approach combining Hwtoretical and empirical methods.
While this analysis provides a solid foundation, there are several aspects that could be
adjusted in future research. Firstly, there is a clear need to better utaleishe limitations

and data requirements of the nuthodels (e.g., Gurevitch et al., 2000; Lajeunesse, 2011;
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Thompson et al., 2018b) that are used to classify stressor interactions. Such knowledge would
be very useful in guiding experimental design theduld maximise the probability of
uncovering nomull stressor interactions and would therefore provide a better
understanding of their true prevalence. Knowing how many data points are required before
we can realistically hope to detect a particular typé pattern, in this case a stressor
interaction type @ a given strength, is a critical component of experimental design. Moreover,
our work has also uncovered some hitherto undescribed biases that lead to-anatgses
potentially overemphasising antagesms, and it is important to investigate other null
models for this feature as well as looking for methods to reduce this bias. Secondly, the
theoretical communities manipulated here combine multiple populations each on a separate
trophic level. While thiuilds upon similar research conducted on a singleypation (Brown

et al., 2013; HalleBull & Bode, 2019), there is scope for this approach to be expanded to
consider more complex communities, for instance with multiple populations on a single
trophiclevel (e.g., Thompson et al., 2018a). Finally, themsaim which stressors interact at

the parameter or process level can occur in numerous ways, for instance either additively or
multiplicatively (HalleBull & Bode, 2019). However, whether a procesgparameter is
impacted in an additive or multiplicagvmanner, will cause a stressed parameter value to
change by differing degrees, with this in turn potentially resulting in contrasting frequencies
of interaction classifications at the population levélccordingly, the manner in which a
process or paramet (e.g., feeding rate, mortality) is impacted may be determined by the
individual stressors; for instance, if two simultaneously acting stressors are entirely
independent of one another then their effé on an ecological process may be additive
(HallerBul & Bode, 2019). Consequently, allowing stressors to impact the same process
undoubtedly represents an area for expansion, particularly when considering how impacts at

the parameter level affect poputian level properties.

Conclusions

Determining the wgs multiple stressors interact is key when attempting to mitigate their
effects, with the class of the observed interaction potentially outlining whether the removal
of a stressor will have a benefigiimited, or detrimental impact to an ecosystem (Broet

al., 2013Cobtéet al., 2016). Our results show the value of developing a theoretical framework
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which can aid in the interpretation of environmental stressor interactions, and we hope more
generaltheory that makes specific predictions based on eci@igmechanisms (e.g., De
Laender, 2018; Fu et al., 2018; Thompson et al., 2018a) will be develngegsted in future.
However, our results also highlight the urgent need to better understand trengths and
limitations of the null models that are uddo classify the cumulative effects of community
stressors, and we also believe a unified approach to the raatdyses of individual studies

will increase our understanding of how environmental sto¥sscombine.
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Chapter Three¢ Multiple stressor null models frequently fail to detect

interactions due to low statistical power

3.1 Abstract

Ecosystems across the globe are being impacted by multiple anthropogenic drivers. One
pressing question facingcelogists is understanding how these multiple stresdateract to
impact ecosystems. Predominately, studies have investigated the interactions of stressors
using null models, with the additive and multiplicative null models being those most widely
applied. Such approaches classify interactions as beingrgigtie, antagonistic, reversal, or
null. Despite their widespread use, there has been no thorough analysis of these null models,
nor a systematic test of the robustness of their results to sampleasizgampling error in the
estimates of stressor effest Using simulated food web models, we demonstrate that the
additive and multiplicative null models are not directly comparable, illustrated by the null
models assigning over a third of all interactiatifferent classifications. We highlight that
both nul models have weak power to correctly classify interactions at commonly
implemented sample sizes (i.el§ replicates), unless data uncertainty is unrealistically low;
hence the majority of interactionsaare assigned a null classification given they are
indistinguishable from themplementednull model. Using mathematical approximations and
simulations, we demonstrate that increasing sample size increases the power to detect the
true interactions; howeverpower only slowly increases with sample size. We aestrate

that for common experimental sample sizes, only exceptionally large effect sizes are able to
be assigned a nenull classification. Ultimately, our results may aid researchers in the design
of their experiments, and the subsequent interpretatiohtbeir results. Overall, our results
show no clear statistical advantage of using one null model over the other, although we
conclude that it is not possible nor even meaningful to compare interadiipes under
different null models. Furthermore, theostatistical power of commonly used null models

means we are likely missing many synergistic and antagonistic stressor interactions.

57



Benjamin JoshuBurgess; Doctoral thesis

3.2 Introduction

Globally, ecosystems are being impacted hylethora of external anthropogenic stressors
(sensudisturbances, drivers, factors, or pressures) (Blowes et al., 2019; Christensen et al.,
2006), with such stressors encompassing a wide range of environmental or biotic changes
including laneuse changenvasive species, climate change, and pollution (Broai e£2008;

Dirzo et al., 2014; Hillebrand et al., 2020; Jackson et al., 2020). As such, an individual stressor
is capable of having impacts upon biodiversity, species abundances, and ecosysteeas servic
(Newbold et al., 2015; Sala et al., 2020; Tittensaalet2014; Vinebrooke et al., 2004), with
ecosystems within freshwater, marine, and terrestrial realms all at risk (Beaumelle et al.,
HAHMT hQIFNFY SO It dZ unuMTnsarsSiedendysubjediedts H 1 M
multiple stressors, undetanding how these concurrently acting stressors interact is difficult,

with the combined effects of these stressors frequently unknown (Hodgson & Halpern, 2019).
Accordingly, understanding, predicginand mitigating the effects of multiple interacting
stressors upon various ecosystem properties represents one of the major, yet urgent,
challenges to be confronted by ecologists and conservationists (C6té et al., 2016; Jackson et

al., 2021; Lindenmayest al., 2020).

At present, the inferred effects of muttie interacting stressors are predominately
determined through the implementation of null models (De Laender, 2018), where the
observed response is compared to an expectation that the stressorsoarenteracting. Of
these null models, the additive nulladel (Gurevitch et al., 2000) is the most widely applied
(e.g., Crain et al., 2008; Jackson et al., 2016) and suggests that the overall effect of the multiple
interacting stressors is equal to themuof the effects of the stressors acting individually.
While it has been previously assumed that the majority of interactions are able to be
explained by the additive null model, there is growing evidence that substantial numbers of
stressor interactions e effects different to those predicted by the additivell model (C6té

et al., 2016). Increasingly, studies are illustrating the prevalence of interactions with effects
that are: i) greater than anticipated by the additive null modsheérgistic interations); ii)

less than predicted by the additive null meldantagonistic interaction iii) opposite to that
suggested by the additive null modeéyersal interactions Frequently, these neadditive

interactions are considered to kecological surpriss(sensuPaine et al., 1998), namely that
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they deviate fom the expectation of the additive null model. Comparisons of the different

interaction classes are illustrated by Figure 3.1.
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Figure 3.1: Comparison of the additive and multiplicative null models, illustrating the conditions under
which the differeninteraction classifications are observed. Individual Stressors: Grey bars represent
the change in a measured response due to argsteessor (Stressor 1 or Stressor 2). Null Model
Expectations: Yellow bar represents the expected response under aneadditimodel; Purple bar
represents the expected response under a multiplicative null model. Interaction Class: Arrows denote

how aninteraction would be classified for a given observed response. Blue arrows denote synergistic
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interactions; Pink arrows dete antagonistic interactions; Orange arrows denote reversal
interactions. For the additive and multiplicative null models, a nidraction is shown by the purple

and yellow lines respectively. When comparing between the additive and multiplicativeaudls,

the black line denotes the range of observed responses where the additive and multiplicative null
models classify interacns differently (i.e., the interaction class is null model dependent). Whether an
interaction class varies between null nete] or not, is inherently explainable by the underlying algebra

of the null models (see Appendilreq. a) Both Stressor 1 and Stser 2 act upon the response in the

same direction. b) Stressor 1 and Stressor 2 act upon the response in contrastti@ndirec

While the majority of studies currently apply the additive null model there is a growing body
of literature suggesting alteative null models (e.g., Tekin et al., 2020; Thompson et al.,
2018) that may potentially be more appropriate when investigg the impacts of multiple
stressors (Dey & Koops, 2021; Schafer & Piggott, 2018). Frequently, this argument aentres o
the parsimonious nature of the additive null model which limits, or even prevents, any
mechanistic insight intthow stressors interat; with there similarly being calls for multiple
stressor research to focus on the mechanisms underpinning stressor interactiorest @rr
2020; Schafer & Piggott, 2018). Accordingly, the multiplicative null model (Hawkes & Sullivan,
2001; Lajeunesse(21) is the alternative which is most widely discussed (see Folt et al., 1999;
Morris et al., 2007; Sih et al., 1998) and implemented., Gomez Isaza et al., 2020; Harvey

et al., 2013). The simplest description of the multiplicative null model istiepresents the
logarithmic form of the additive null model. However, this numeric transformation results in
differences between the two null models including the fundamental assumptions
underpinning each approach (Schafer & Piggott, 2018). Given theseptions, it has been
suggested that the multiplicative null model may better reflect biological and ecological
systems (Kerkhoff & Enquist, 2009), with this being particularly pertinent when certain
responses are considered (e.g., mortality or survifdurnier et al., 2006). Furthermore,
while interactions under the multiplicative null model are capable of varying from the
expected effect in a similar manner to the additive null model, the classification assigned to
any given interaction (i.e., synesic, antagonistic, or reversal interactions) may also differ
between the two null models (Figure 3.1). For instance, an interaction classed as being
antagonistic by the additive null model may be deemed as being a synergistic interaction by

the multiplicaive null model.
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Ultimately, the differences between the two null models, outlined above, result in several
important ramifications. Firstly, when individual studies implement differing null models,
direct comparisons of these studies are decidedly difficindeed, as a result of the
contrasting assumptions underpinning each null model, the hypotheses they test are
different. Secondly, where the conservation or management of a particular ecosystem is
based on the results of a specific null model a défércourse of action may have been
adopted if an alternative null model was used. Furthermore, there are potential
consequences to incorrectly determining the interaction classification with conservation
strategies being rendered ineffective or even deteimtal Brown et al., 2013C6té et al.,
2016), and it is therefore imperative to understand how the additive and multiplicative null

models inherently relate to one another.

When planning an experiment, one fundamental criterion that ecologists shoulddsons
whether an experimental design is capable of detecting a biologically important effect (Steidl
et al.,, 1997). For the above null models, such prospective power analyses necessitate
knowledge of the sample sizes required to detect an effect of angsirength against a
backdrop of data uncertainty. In the particular case of stressor interactions, the aim of all null
model tests is to uncover an effect that shows a departure from the null hypothesis (i.e.,
observing an antagonistic, reversal, or sygistic interaction). Accordingly, there is a need to
understand how each of the three constituent components of the null model calculations
(treatment means, treatment uncertainty, and sample sizes) can influence the results of these
null models. Howeverwe are not aware of any previous analysis which attempts to
understand the role of each of these components, with this meaning that there is currently
minimal guidance for ecological experiments. Indeed, there is currently a distinct lack of
knowledge regrding how experimental design, or ecologically relevant levels of uncertainty
can impact the results of these null models, or even the conditions under which results differ
between the additive and multiplicative null models. Without knowledge on thelaites or
statistical power of these null models it can be very hard to make robust conclusions from the
results of model tests, or design experiments that are likely to yield results that reflect the
underlying effects of the stressors on the biologicgtem of concern. As examples, two
recent multiple stressor metanalyses (Gomez Isaza et al., 2020; Seifert et al., 2020) included

no experiments with more than six replicates per treatment, while a third (Burgess et al.,
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2021) found <1% of experimentsagsmore than eight replicates per treatment. Currently
there is no understanding of how these samples sizes might impact the power of either null

model.

Here, we focus on closing these gaps in knowledge about the additive and multiplicative null
models fa stressor interactions, outlining the role that treatment means, treatment
uncertainty, and sample sizes play in determining model results. To this aim, we simulate data
using an ecological model that has been shown to produce plausible distributions of
interaction types (Burgess et al., 2021), whilst allowing for full control over the sample sizes
and level of observation (measurement) error in the data. Using this simulated data, where

S 1y26 (GKS WiNHzSQ Ay dSNI Ol A zefof dbéehdfion®@A &S b3
sampling error), we are able to address the following questions:

Question one: What are the conditions under which the additive and multiplicative null models

agree, and disagree, and can we define these conditions from the modelderm

Question two: To what degree does treatment uncertainty (in the form of observation error)
NERdzOS GKS FoAfAGeE 2F 602GK GKS I RRAGAGS I yR
interaction classification?

Question three: What is thelegionship between the power to correctly reject the null models

and sample size, and are current ranges of sample sizes adequate to detect mosilnon

interactions?

3.3 Methods
Additive null model

Within multiple stressor research the form of the amdeé null model most commonly
implemented is the factorial iteration of the null model, (naméhS R 3 § & Rined by
Gurevitch et al., (2000). S R 3 S(Beficef&th referred to as the additive null model), is an
estimate of the standardised mean difeelce between the means of the control and
treatment samples, but also has the benefit of being unbiased by small sample sizes (Hedges
& Olkin, 1985). The additive null model is calculated by comparing the effect of the stressors

acting separately to the &fct of the stressors acting simultaneously. Within our analysis we
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also implement this form of the null model (Equation 3.1). The calculation of the additive null
model depends on three variables, (namely the mean response vAjietite number of
replicate measurementsNyx), and the standard deviation around the me&iX)), with each

of these variables being taken under the four different treatments, (Con@gltressor A
only @A), Stressor B onh\B], Stressors A & B))X. The calculation of the adve effect size,
(ES4dd), is shown by Equation 3.1.1, with the algebraic notation used as described above. The
pooled sampling standard deviation is denotedshyEquation 3.1.2); whilé(m)(Equation
3.1.3) is the small sample bias correction factdte used where there is a small number of
replicates per interaction (Borenstein et al., 2009). For each additive effect size a
corresponding varianceV{dd), standard error, $kdd, and confidence intervalsChadd), are
calculated by Equations 3.1¢43.1.6. Here, we sdhe significance level to 0.0%:(x & 1.96),

hence 95% confidence intervals are calculated.
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Multiplicative null model

We implement the form of the multiplicative null model detailed by Lajeunesse (2011).
Despite a somewhat similar appearance to the additive mdtel, the multiplicative null
model applies a logarithmic transformation to the measuresponse values (Equation 3.2.1)
and again incorporates measurements of the same variables for all four treatments used in
the additive null model (notation used ke same as above). The multiplicative effect size,
(ESwi), is calculated by Equation 312.while the corresponding variancé/mu), standard

error, (Sku), and confidence intervalsClu), are determined using 3.2@23.2.4. As above,
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we setthe siqificance level to 0.054 « & 1.96), hence 95% confidence intervals are

calculated.
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Interaction classifications

When using either the additive or multiplicative null models, individual interactions are able
to be classified into one of four classdepending upon both effect sizes (Equations 3.1.1,
3.2.1) and corresponding confidence intervals (Equations 3.1.64)3dsing the naming
conventions of (Orr et al., 2020), the classificati@ns: null, antagonistic,Synergistic, or
reversal interadbns (Figure 3.1). An interaction was classed as null, regardless of whether
the effect size was positive or negativetheé 95% confidence intervals for that interaction
overlapped zero. Interactions were classed as synergistie iéffect size was pasve and

the 95% confidence intervals for that interaction did not overlap zémteractionswere
classed as antagonistor reversal interactionsf the effect size was negative, and the 95%
confidence intervals did not overlap zero. Furthermore, foriateraction to be classed as
antagonistic, the expected and observed interaction effects had to both act in the same
direction (e.g., for an additive interactioX ¢ Xc> 0 & X + X6 ¢ 2X%> 0. In contrast, for an
interaction to be classed as reverstie expected and observed interaction effects had to
both act in differing directions (e.g., for an additive interacti®ig Xc< 0 & X+ X% ¢ 2X:> 0.
Finally, it is important to note tha null interaction classification does not necessarily mean
that stressors interact in an additive or multiplicative manner. A null classification denotes
interactions where it was not possible to reject the null hypothesis (i.e., null model), not that
the additive, or multiplicative, null model was accepted. Thetmod for classifying

interactions is explored more in Appendikree
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Theoretical framework

Described below is an overview of the framework used to simulate interaction data for our
analyses. Fofull details, including formulae and details of distrilauts, refer to Appendix
Three

Throughout our analysis we implement a theoretical framework (Burgess et al., 2021) to
generate population densities analogous to those from empirical experiments. Th
theoretical framework is based upon Lotk@alterra consumeresource equations (Heath et

al., 2014), enabling us to establish food chains of three, four, or five trophic levels and
determine the densities of populations at equilibrium. Regardless ofethgth of food chain
considered, the models contain threestinct types of trophic level. These levels are: i) basal
trophic level, equivalent to a pool of a limiting nutrient; ii) consumer trophic level, which only
predates the trophic level directly b®k, and is only predated upon by the trophic level
directly above; iii) apex consumer trophic level, which only predates on the trophic level
directly below, but is not predated upon itself. Both Heath et al., (2014) and Burgess et al.,

(2021) outline thes models to a greater degree with additional detailing fotinere.

In brief, the foodchain models (and therefore population densities) are governed by the
densities of the trophic levels and five key parameters; namely attack fratepnversion
efficiency, ¥; density independent mortality rate,; density dependent mortality rate; and

the basal (i.e., nutrient) input rate. The attack rate?;, denotes the rate at which trophic
leveli feeds upon a resource (trophic level). The conversion efficiery, ¥;, represents the
proportion of the consumed resource that is converted into new consumers within trophic
leveli. The density independent mortality rate;, represents the backgroungte at which

the density of trophic levellis reduced with each model timgtep. The density dependent
mortality rate, <, increases the mortality rate of a trophic level with increasing population
density. Finally, the basal input rate, represents the constant rate at which the basal trophic

level increases in density.

We aim to investigate how stressors interact to impact the equilibrium densities of trophic
levels within a theoretical food chain. As with empirical studies of multiple stressor
interactions, our theoretical framework similakynploys a factorial experimental design. For

the control treatment, the values of each of the above parameters (for each trophic level) are
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drawn from predetermined uniform distributions. Each of these parameters were randomly
drawn across all trophic lels; hence for example, the value for the conversion efficiency
parameter at trophic levadlis unlikely to be the same as that for trophic lejvétollowing the
method used by Burgess et al., (2021) we assume that all the previously described key
parameers do not vary over time, with the intention of this framework to explore how

stressors impact equilibrium densities.

Subsequently, within our theoretical framework, food chains are subjected to stressors by
altering the value for a single parameter (efg.2 ® X 1 X 2NJ . 0 F2NJ I anay
keeping all other parameters constant under control values. Within these simulations, all
parameters are equally likely to be selected to be stressed, although a single parameter is
only ever impacted by onstressor (i.e., two stressors cannot act on the same parameter).
For the interaction treatment of our experimental design, all parameters were under control
conditions, except for those which were stressed in the individual treatments which were
instead a&signed their stressed values. Accordingly, for each of the four treatments we
calculate the equilibrium densities of each trophic level within the food chain, and we use
these densities as our treatment means to classify the stressor interactions usinmgufih
models (Equations 3.1 and 3.2teraction classificationsectior). When determining how
stressors interact to impact populations, we randomly chose one trophic level from the entire
theoretical food chain, (with the exception of the basal/nutriémphic level which was never
selected). Accordingly, our subsequent analysis is centred on individual trophic levels rather
than entire communities; however, this approach means that the trophic level investigated
was not always directly impacted by aej stressor but was able to be indirectly impacted

through cascading effects.

Implementing the above approach, a dataset comprising of 100,000 interactions was collated.
These interactions represented approximately equal numbers of equilibrium densities f
populations from the three different lengths of food chain. The calculation of the equilibrium
densities for each food chain, across each of the four treatments, was conducted using
Mathematica v10.4 (Wolfram Research Inc., 2016). In line with the rdesh8urgess et al.,
(2021), the equilibrium densities of all 100,000 interactions were both stable and greater than
zero. These 100,000 interactions form the basis for each of subsequent analyses, detailed

below.
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Treatment means, treatment uncertainty, deample sizes

Question one centres around understanding the additive and multiplicative null models under
idealised conditions (e.g., in the complete absence of uncertainty, or with infinite sample
sizes). Such an analysis provides the clearest indicafitilow the null models differ from

one another, based solely upon the 100,000 treatment means described above, allowing the

WIiNHZSQ Of FaaAFTFAOIGAR2Y 2F lye AYyOISNI OtAaAzy (2

means allows the conditions under wh the results of the null models agree or disagree to

be better understood.

Given that the food chain models are solved to a given equilibria, there is an absence of
uncertainty at this stage. To mirror empirical experiments, we modelled treatment
uncertainty, in the form of observation error for the equilibrium densities recorded at each
treatment in each of the 100,000 interactions. In brief, we follow the method of Burgess et
al., (2021), with each equilibrium density being multiplied by a number dfesmma Gaussian
distribution with a mean of 1.00 and a standard deviatigmvith this process being repeated
four times per treatment; with the number of replicates used here mirroring those frequently
used within empirical experimentSmaller values of will result in a tighter distribution of
observed mean densities around the true population mean compared to larger values of
Our approach allows for an intuitive understanding ‘gfas we can expect 99.7% of all
observed treatment densities to fallithin 3" of the true value. We use 250 levels gthence
referred to as levels of observation error, ranging from 1.0%i®2.5x10" (see Appendix
Threefor more details). We then compute the probability of assigning the true interaction
classificatiorto each interaction undeevery level of observation error, thereby investigating
the ability of each null model to correctly classify interactions in the face of uncertainty

(Question two).

To addressQuestion three and investigate the role which sam@ige plays in the
determination of interaction classifications, a similar method was employed as for treatment
uncertainty (see Appendikhred. For three levels of observation error (0.001, 0.01, 0.1) the
number of replicates per treatment was varied beten three and 100, and for each
combination of sample size and observation error, we computed the frequency of
AYGSNI OGA2ya (GKIFIG 6SNB daaA3daySR GKS WiNHSQ

Treatment means As such, this analysis providesorm of power analysis quantifying how
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increases in sample size may improve the ability of empirical experiments to detect significant

interactions.

34 Results

Question one: What are the conditions under which thdataagdand multiplicative null mode

agree, and disagree, and can we define these conditions from the model formulae?

Despite testing differing hypotheses, both the additive and multiplicative null models report
similar frequencies of the different interaon classifications in the absemof any variation.

Both null models report that antagonistic interactions are the most prevalent (additive 0.493;
multiplicative 0.519), followed by a slightly reduced number of synergistic interactions (0.485;
0.462), maimal frequencies of reversal int&ctions (0.023; 0.020), and a complete absence
of null interactions (0.000; 0.000).

The frequencies of the interactions reported suggest a high degree of alignment between
both null models. However, when considering howlividual interactions are clas&tl by

both null models, it is evident that substantial differences exist (Table 3.1). While the majority
of interactions are assigned the same classification, over one third of interactions (33.6%) are
assigned classifitans which are null model depende This difference is predominately
explained by interactions being assigned a synergistic classification by one null model and an

antagonistic class by the other.

Table 3.1: Proportions of interactions classed diffdyenor the same, across additivand
multiplicative null models. Shaded boxes indicated the proportion of interactions where both null

models agree.

Additive Null Model
Synergistic  |[Antagonistic  |Reversal Null
Multiplicative  |Synergistic 0.299 0.158 0.005 0.000
Null Model Antagonistic ~ |0.181 0.328 0.010 0.000
Reversal 0.005 0.007 0.007 0.000
Null 0.000 0.000 0.000 0.000
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Question two: To what degree does treatment uncertainty (in the form of observation error)
reduce theability of both the additive and multiplicative null modél2 O2 NNB OGf & Ay T &

interaction classification?

As shown by Figure 3.2, both null models are sensitive to data uncertainty in the form of
observation error. The frequency of null intetans rapidly increases accounting for over
50% of all inteactions for both null models by~0.005 (i.e., when nearly all sampled
treatment means are within 1.5% of the true values). Hence even at small levels of
observation error both the additive and rtiplicative null models are frequently unable to

be correcty rejeced. Accordingly, under the levels of observation error considered here, it is
expected that the majority of interactions would be assigned a null interaction class. Indeed,
as shown for bth the additive (Figure 3.2a) and multiplicative (Figu2b3null models, the
frequencies of synergistic and antagonistic interactions rapidly decline with increasing levels
of observation error. However, the frequency of reversal interactions is velgticonstant,

regardless of the level of observation error.
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Figure 3.2: The effect of observation error on the frequency of interaction classifications, showing how
the proportions differed from those in the absence of observation error, usiadditive null model

(a) and multiplicative null model (b). Parpions of the different interaction classaefor the 100,000
simulated interactions at each level of observation erRink line indicates null interactions. Orange

line denotes reversahnteractions. Blue line indicates synergistic interactions. Red denotes

antagonistic interactions.

Question three: What is the relationship between the power to correctly reject the null models
and sample size, and are current ranges of sample adeguate to detect most nenull

interactions?

As shown by Fige 3.3, increasing sample size leads to a higher rate of correctly rejecting
both the additive and multiplicative null models (i.e., an increase in the true positive rate).
However, even forll NAS &t YLIX S aAil Sax AlG OF yera@iéh if RA T T A C
observation error is anything other than minimal. Moreover, at lower levels of observation

error (i.e., 0.001 or 0.01) the multiplicative null model is correctly rejected more @ity
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than the additive null model; however, the additive noibdel is correctly rejected, more
frequently, for the highest level (0.1) of observation error. Our results suggest that increasing
those sample sizes frequently observed in multiple strestadias, will result either null

model being correctly rejectechore frequently.

Figure 3.3Frequency of interactions that are correctly classified (i.e., true positive rate) for a range of
different treatment replicates. Three different levels of alaaton error are considered (0.001, 0.01,
0.1), with these beig indicated by longdashed, dashed, and dotted lines respectively. Yellow lines

denote use of an additive null model, purple lines denote use of a multiplicative null model.

By combining and rearranging Equations 34d.3.1.6, it is possible to expresset additive
effect size as a function of sample size (Inequality. This inequality shows that for a given
sample size, there is a minimum additive effect size value whicst be exceeded in order
for the interaction to be significantly different to ¢hnull model (i.e., critical effect sizeee

Lakens2021), and therefore be correctly classified as being-noih
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