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UNSTRUCTURED ABSTRACT  

Inherited cardiomyopathies are commonly occurring myocardial disorders that are associated 

with substantial morbidity and mortality. Clinical management strategies have focussed on 

treatment of heart failure and arrhythmic complications in symptomatic patients according to 

standardized guidelines. Clinicians are now being urged to implement precision medicine, but 

what does this involve? Advances in understanding of the genetic underpinnings of inherited 

cardiomyopathies have brought new possibilities for interventions that are tailored to genes, 

specific variants, or downstream mechanisms. However, the phenotypic variability that can 

occur with any given pathogenic variant suggests that factors other than single driver gene 

mutations are often involved. This is propelling a new imperative to elucidate the nuanced 

ways in which individual combinations of genetic variation, co-morbidities and lifestyle may 

influence cardiomyopathy phenotypes. Here in this third of a 5-part precision medicine 

seminar series we review the current status and future opportunities for precision medicine in 

the inherited cardiomyopathies.  
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CONDENSED ABSTRACT  

To date, the clinical management of individuals with cardiomyopathy has been based on 

consensus practice guidelines that are largely genotype agnostic. Expanded cohorts of 

genotyped patients and new functional genomics tools are now providing a wealth of 

knowledge about the effects of genotype on disease outcomes and mechanisms. In parallel, 

there is increasing awareness of patient-related factors as phenotype modifiers and increasing 

sophistication of cardiac phenotyping tools. In this third of a 5-part seminar series on 

precision medicine, we review how these advances are providing a framework for novel 

precision approaches to the management of cardiomyopathy patients and their families.  
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ABBREVIATIONS 

ACM  Arrhythmogenic cardiomyopathy 

ARVC  Arrhythmogenic right ventricular cardiomyopathy 

CMR   Cardiac magnetic resonance imaging 

DCM  Dilated cardiomyopathy 

GWAS  Genome-wide association studies 

HCM   Hypertrophic cardiomyopathy 

ICD   Implantable cardioverter-defibrillator 

PRS   Polygenic risk score 

TTNtv   Truncating TTN variant 

VUS  Variant of uncertain significance  
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The past three decades have witnessed an incredible journey for the field of inherited 

cardiomyopathies that began with the discovery of the first disease-causing gene mutation in 

1990 (1). Advances in sequencing techniques have expedited mutation detection and now 

allow a person’s entire genome to be evaluated in a single test. Variants in hundreds of genes 

have been identified and genetic testing has moved from research laboratories into routine 

clinical care. In parallel with this technological revolution, there has been a conceptual 

evolution in our understanding of cardiomyopathy disease pathogenesis.  New insights have 

been gained not only into the genetic triggers of disease but also in the downstream responses 

that accelerate or compensate for myocardial dysfunction. These findings have led to a new 

generation of clinical trials of small molecules and pharmacological agents devised to 

directly target causative disease mechanisms. Although inherited cardiomyopathies are 

fundamentally monogenic disorders, there is increasing appreciation that the effects of single 

driver rare variants may be modified in different ways within the context of each individual’s 

genetic background, co-morbidities, and lifestyle.  Here in this third of a 5-part seminar series 

we review the state-of-the-art for diagnosis and management of adult patients with inherited 

cardiomyopathies, with a specific view toward emerging and future precision medicine 

approaches. Our focus is on the three major cardiomyopathy sub-types: hypertrophic 

cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmic right ventricular 

cardiomyopathy (ARVC). The pathogenesis and clinical course of pediatric-onset 

cardiomyopathies differ in many important ways to those of adults and are reviewed 

elsewhere (2).  

 

ESSENTIAL FACTS ABOUT DISEASE PATHOGENESIS  

Inherited cardiomyopathies are Mendelian disorders that are usually transmitted as autosomal 

dominant traits. Studies to identify causative rare variants have resulted in numerous 
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suspected disease genes for HCM, DCM, and ARVC (see Online Table 1 for full gene lists). 

In recent years, critical reappraisal of these data has revealed that the weight of evidence for 

roles in disease pathogenesis is quite variable (3,4). Genes for which there is moderate to 

high levels of confidence are shown in Table 1. It is important to note that gene classification 

is an iterative process responsive to emerging clinical and functional data. High-confidence 

genes are those in which there are multiple examples of variants that co-segregate with 

disease or de novo cases and there is usually robust support from cell or animal models that 

gene dysfunction is relevant to the phenotype in question. Within the moderate- and low-

confidence genes, some will be bona fide disease genes that have few published reports while 

in others, disease associations may be spurious.  Gene curation efforts have facilitated 

interpretation of genetic testing results and provided clarification of the principal underlying 

myocardial defects.  

The high-confidence genes for typical adult-onset HCM encode proteins in the thick 

filaments (MYH7), thin filaments (ACTC1, TNNT2, TNNI3, TPM1) and interacting 

components (FHOD3, MYBPC3, MYL2, MYL3) and this has given rise to the notion that 

HCM is mainly a disease of the sarcomere (Figure 1).  For some mutations, myocardial 

dysfunction is characterized at the single molecule level by increased force generation, ATP 

hydrolysis and actin-myosin sliding velocities (5-7).  Elegant modeling studies have revealed 

that the fundamental cause of contractility and relaxation defects in HCM is an imbalance of 

the proportion of myosin heads that are in a disordered or super relaxed state (8). These 

sarcomeric defects are energy requiring and result in increased energy consumption and 

metabolic demands (9).  Functional analyses of HCM mutations have also demonstrated 

abnormalities of myocardial calcium homeostasis (10). Collectively, these mechanical and 

calcium-induced changes activate signaling cascades that culminate in myocardial 

remodeling with the development of pathological hypertrophy and fibrosis (5).  
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Genetic studies of ARVC show this to be primarily a disease of the desmosome with 

five of the seven high-confidence disease genes encoding the desmosomal proteins 

desmocollin (DSC2), desmoglein (DSG2), desmoplakin (DSP), plakoglobin (JUP), and 

plakophilin (PKP2) (Figure 1). These proteins form a lattice that links the sarcolemma to 

cytoskeletal intermediate filaments. When the structural stability of this lattice is 

compromised by abnormal mutant protein, there is disruption of intercellular junctions and 

cardiomyocyte detachment (11). This is particularly likely to occur under conditions of 

increased mechanical stress such as vigorous exercise (11). A further consequence of 

desmosomal dysfunction is the translocation of plakoglobin from intercellular junctions into 

the cytosol and nucleus (12,13). This pattern is also seen with ARVC-associated variants in 

the cell membrane protein, TMEM43, and the sarcoplasmic reticulum protein phospholamban 

(PLN) (13). Once in the nucleus, plakophilin alters activation of canonical Wnt--catenin and 

Hippo signaling pathways, resulting in a transcriptional switch from myogenesis to 

adipogenesis and fibrosis (13). Other factors that have been implicated in ARVC 

pathogenesis include altered connexin 43 expression and gap junction remodeling, and 

abnormalities of cardiac sodium channel activity and calcium handling (13). There is also 

emerging evidence that auto-immunity and myocardial inflammation may contribute to 

disease progression (13).  

Unlike HCM and ARVC, there is no single disease paradigm for DCM (Figure 1). 

Variants in sarcomere protein genes are a frequent cause of DCM (TTN, MYH7, TNNT2, 

TNNC1, TPM1), however in contrast to HCM, these result in depression of ventricular 

systolic contraction and impaired force generation. DCM-causing variants can perturb diverse 

additional aspects of cardiomyocyte function including force transmission, mechanical stress 

sensing and signaling (DES, DMD, DSP, FLNC, LDB3), nuclear structure and function 

(LMNA, RBM20), ion channel activity (SCN5A), protein turnover (BAG3), and calcium 
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homeostasis (PLN) (14,15). The extent to which these pleiotropic defects might converge on 

common downstream pathophysiological processes remains to be determined.  

 

ESTABLISHING A CLINICAL DIAGNOSIS 

Patients with inherited cardiomyopathies can present with a range of cardiac symptoms that 

are often associated with heart failure or arrhythmias. The basic work-up includes a detailed 

medical history, physical examination, laboratory tests (hematological and biochemical 

screens), 12-lead ECG, and assessment of ventricular size and function with either 

transthoracic echocardiography or cardiac magnetic resonance imaging (CMR), depending on 

availability and local expertise (Figure 2 & Central Illustration). Construction of a three-

generation family history is essential, with attention paid to cardiomyopathy diagnoses, 

arrhythmias, conduction abnormalities, procedures (arrhythmia ablation, cardioversion, 

pacemaker or defibrillator implantation, valve surgery, heart transplantation), extra-cardiac 

syndromic features, or unexplained sudden deaths (16).   

 

Left ventricular hypertrophy 

HCM is defined by the presence of left ventricular hypertrophy in one or more myocardial 

segments that is not attributable to abnormal loading conditions. The phenotype is most 

commonly caused by mutations in sarcomeric protein genes, but phenocopies caused by rarer 

genetic variants in non-sarcomere genes as well as acquired disease mimics such as 

amyloidosis are not infrequent (17,18). Sarcomere protein gene variants typically have 

characteristic echocardiographic features such as marked asymmetric hypertrophy of the 

interventricular septum that is often associated with left ventricular outflow tract obstruction 

and mitral valve abnormalities. However, the extent and pattern of hypertrophy can be quite 

variable and the diagnosis is not always straightforward (19).  In these situations, the 
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presence of other cardiac or extra-cardiac traits and an integrated approach to the assessment 

of ECG, cardiac imaging and biochemical data often points towards specific disease 

phenocopies (Figures 2 & 3).  The age of the patient may provide clues, with conditions such 

as congenital heart abnormalities and myocardial storage disorders being relatively more 

common causes of ventricular hypertrophy in the young and amyloidosis or hypertension in 

the elderly (18). Obesity is associated with both hypertension and left ventricular hypertrophy 

(20). In individuals who have a history of competitive sports activity, ventricular hypertrophy 

may be part of a spectrum of athletic-induced myocardial remodeling but is usually 

distinguishable from pathological hypertrophy by careful assessment of the type of athletic 

participation, family and personal history, and imaging data (21).  In the clinical examination, 

a number of diagnostic clues or “red flags” may point to specific multi-system disorders that 

require targeted investigation and treatment (18). These include intellectual disability, 

sensorineural deafness, visual impairment, palpebral ptosis, skeletal myopathy, gait disorders 

or skin changes that may be indicative of metabolic disorders (eg. Anderson Fabry disease, 

Danon disease), mitochondrial diseases, neuromuscular disorders (eg. myotonic dystrophy, 

Friedreich’s ataxia, myotonic dystrophy), or malformation syndromes (eg. 

Noonan/LEOPARD syndrome). Cardiac amyloidosis caused by deposition of transthyretin or 

immunoglobulin light chains is important to recognize as effective therapies that impact on 

prognosis are available. Cardiac amyloidosis may be suspected from the history (e.g. bilateral 

carpal tunnel syndrome, lumbar spinal stenosis, vitreous opacities, or spontaneous biceps 

tendon rupture) or from ECG and imaging features on echocardiography, CMR or bone 

scintigraphy (the latter highly sensitive for transthyretin-related cardiac amyloidosis) (22).  

 

Dilated cardiomyopathy 
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There are numerous causes of DCM and newly diagnosed patients need to be thoroughly 

evaluated for acute or chronic exposure to factors that promote ventricular chamber dilatation 

and/or systolic dysfunction (Figure 2). These include common cardiac pathologies such as 

myocardial ischemia, valve dysfunction, myocarditis, arrhythmias, multi-system pathologies 

(eg. anemia and endocrine), drug exposure (eg. anthracyclines), and toxins (eg. alcohol, iron 

overload, cocaine). Many of these conditions are potentially treatable and reversible (23-25).  

It has been estimated that 50% of patients have an identifiable cause and in the 

remaining 50%, DCM is often called “idiopathic” (IDCM) (26). This term is somewhat 

misleading since at least 25% of these individuals have a positive family history and an 

expected genetic cause of disease (“familial” DCM [FDCM]) (27).  The extent to which 

genetic factors are involved in apparent sporadic IDCM is not fully understood but is likely to 

be  25%. By definition, probands are the first individuals to present with DCM in a family 

and a potential genetic cause may not be suspected until additional relatives become affected. 

A positive family history might also be unrecognized if relatives have clinical features other 

than DCM, such as arrhythmias, conduction abnormalities, sudden death, or extra-cardiac 

defects.  Some sporadic cases are likely to be explained by de novo gene mutations but 

another possible scenario is that potentially deleterious rare genetic variants remain silent 

until unmasked by interactions with other genetic and acquired factors.  Unlike HCM and 

ARVC, “DCM” is not specific for a primary genetic cardiomyopathy.  In this review, we 

have used the term “genetically-mediated DCM” (G-DCM) to refer to this DCM subtype. In 

these individuals, CMR imaging and 24-hour ambulatory Holter monitoring are useful to 

clarify the phenotype and to improve prognostic stratification of arrhythmias. 

 

Uni/biventricular dilation with contractile dysfunction and arrhythmias   
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Classical ARVC is characterized by global or regional right ventricular dysfunction and 

dilation in association with ventricular arrhythmias (Figure 4) (11).  Advances in the 

understanding of the clinical, pathological, and genetic architecture of ARVC have informed 

consensus diagnostic criteria which have proved to be sensitive but not entirely specific for 

the disease (28). More recently, clinical and genetic data from families and the recognition of 

a much broader spectrum of structural disorders affecting both ventricles, has led to the use 

of the term arrhythmogenic cardiomyopathy (ACM) to describe a family of diseases (29).  

While precise definition for ACM is challenging, the concept includes the following: 

heritable ventricular arrhythmia in the form of frequent ventricular ectopy from either 

ventricle, sustained or nonsustained ventricular tachycardia, or unexplained cardiac arrest, 

and abnormalities of myocardial structure and function. In all cases of ACM, it is important 

to exclude mimics of the ACM phenotype such as congenital defects, pulmonary 

hypertension, sarcoidosis and myocarditis. One consequence of this definition is an overlap 

between ACM and DCM, some forms of which are highly arrhythmogenic.  

 

Phenotype plasticity 

All cardiomyopathy phenotypes are dynamic, in that they evolve over time.  As an example, 

individuals with LMNA mutations may initially present with cardiac conduction 

abnormalities or arrhythmias (atrial and ventricular) that precede overt DCM by several 

decades (30). Once DCM is established, ventricular dysfunction may be exacerbated by a 

variety of factors including paroxysmal tachyarrhythmias, myocardial ischemia and alcohol 

excess, or, it may be normalized by effective medical therapy (25). In patients with HCM, 

systolic left ventricular dysfunction may develop and dominate the later stages of the disease 

(31). Dissecting out the effects of the main driver gene mutation from other factors that 

contribute to the phenotypic manifestations of disease in individual patients is both the 
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challenge and goal of precision medicine. These issues are discussed further in subsequent 

sections.  

 

FINDING THE GENETIC CAUSE OF DISEASE 

Genetic testing is used to define the underlying cause of inherited cardiomyopathy, but the 

diagnosis of these disorders is primarily based on the clinical presentation. As shown in 

Table 1, variants in the same gene can give rise to different disorders and thus a positive 

genetic test result alone cannot be used to infer either the presence or type of 

cardiomyopathy. Genetic testing does not replace careful clinical evaluation and is generally 

undertaken only once this has been performed (Figure 2). ARVC is an exception in that 

genetic testing is considered a diagnostic criterion in the family history component of the 

Task Force recommendations (28). A positive genetic test result allows patients to understand 

why their disease developed. This has immediate psychosocial benefits and can inform 

reproductive choices. A positive test result also enables predictive cascade testing and 

genetics counselling to family members.  

 

Who needs genetic testing?  

Genetic testing is recommended for all patients with HCM and for those with suspected 

ARVC/ACM (Figure 2) (18,29). In patients with DCM, genetic testing is recommended for 

those with a positive family history and should be considered in sporadic cases if there is a 

young onset of DCM or if there are clinical features such as conduction defects or skeletal 

myopathy that suggest specific genetic etiologies (32). As a general rule, the individual who 

has the youngest onset and/or most severe phenotype in the family is selected for 

comprehensive genetic testing. If a clinically actionable pathogenic or likely-pathogenic 

variant is found in the index case, then adult family members can be tested to determine 
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whether or not they carry this specific variant. This can be done using targeted Sanger 

sequencing and repeating the full panel testing is not needed. Variants that are annotated to 

have uncertain significance (VUS) are not clinically actionable and cascade testing of these 

variants in family members is not recommended. In the research context, family genotyping 

may be undertaken in order to further investigate the potential effects of VUS.  The age 

threshold for genetic testing of children and adolescents depends on a number of factors 

including the typical age of disease onset in the family and the impact that a positive result 

might have on medical surveillance and lifestyle choices. Recent data in families with HCM 

suggest that phenotype expression may occur in preadolescent children that carry pathogenic 

sarcomeric protein gene mutations (33).  

 

Which test to use?  

There are a number of genetic testing options for family probands, including gene panel 

sequencing, exome sequencing and genome sequencing. Each of these methods has its 

advantages and disadvantages and the choice depends on factors such as local expertise and 

cost. Gene panel sequencing is widely used for clinical genetic testing and even with exome 

and genome sequencing, data interpretation is usually based on the same sets of disease-

specific genes that are included on panels. Whether gene panels should be inclusive of all 

disease-associated genes or restricted to the small number of genes that have been shown to 

be definitively causal is debated, but the latter may be preferable in the clinical setting to 

reduce the chance of false-positive results.  

 

Interpretation of genetic test results 

The aim of genetic testing is to identity the single rare variant that is likely to be the cause of 

disease in each family. This is not always straightforward and prioritizing the hundreds of 
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variants that arise in every test is a major challenge. To facilitate variant interpretation, the 

American College of Medical Genetics and Genomics has devised a scoring matrix that 

utilizes variant-based and gene-based parameters to rank potential effects (34). Variants have 

a greater chance of being classified pathogenic/likely pathogenic if they have been previously 

seen in affected patients, occur in genes in which pathogenic/likely pathogenic variants have 

been found in multiple families, and if animal models recapitulate the same disease.  These 

stringent criteria reduce the chance of false-positive findings and delivery of potentially 

harmful incorrect results to patients and their families. Many variants fail to meet the 

threshold for pathogenicity because of lack of evidence upon which to make a decision, and it 

can be expected that at least some variants in the gray zone of “uncertain significance” may 

in fact be deleterious. Periodic re-annotation of variant classification is needed, as this may 

change over time as new family members become affected, clinical databases expand, or 

functional genomics data are generated. Thorough and repeated clinical phenotyping of 

patients and families is essential in the process of ascribing pathogenicity to variants of 

unknown significance. 

 

RARE VARIANTS, COMMON VARIANTS, CO-MORBIDITIES AND LIFESTYLE 

FACTORS: PUTTING ALL THE PIECES OF THE PUZZLE TOGETHER 

The clinical manifestations of inherited cardiomyopathies can differ from gene to gene, and 

for any single gene, there is often variability between families and within members of the 

same family. Variable expressivity (i.e. the range of clinical features) and penetrance (i.e. the 

proportion of variant carriers who show signs of disease) have been considered as 

characteristics of the genes in which the main driver rare variants are found. As precision 

medicine dictates a focus on the whole patient, there has been increased interest in looking at 

how the effects of a gene mutation might be uniquely modified by personal milieu (Figure 5). 
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The relative contributions of background genetic and environmental factors will differ in 

every patient and the overall impact on the cardiac phenotype will depend on the balance of 

exacerbating and protective effects (Figure 6). 

   

Additional rare variants  

As the numbers of genes on testing panels has expanded, it is not uncommon to find families 

in which there are two or more deleterious rare variants (4,35-41).  These result in a number 

of potential scenarios, including (i) only one of the identified variants is the bona fide cause 

of disease; (ii) several rare variants may collectively be required for disease to be manifest; or 

(iii) disease severity may differ according to the total number of variants carried by each 

family member. There are now accumulating reports of patients with multiple mutations who 

have earlier onset and more severe disease than those with single gene mutations, suggesting 

that deleterious variants can have additive effects (36-40). With this in mind, it is important 

that genetic test results are comprehensively evaluated and not prematurely terminated once 

one candidate variant is found. “Rare” variants are defined by the frequency in which the 

minor allele is seen in the general population, with threshold levels of <1% often used.   In 

recent years, there has been increasing interest in also looking at “low frequency” variants 

(minor allele frequencies ranging from 1% to 5%) as potential disease modifiers in families.  

 

Common variants 

Variants that are commonly occurring (minor allele frequency >5%) in the general 

population) can affect susceptibility to many human disorders. Relevant variants are typically 

identified by genome-wide association studies (GWAS) in large cohorts of affected cases and 

control subjects. To date, very little is known about the role of common variants as possible 

disease modifiers in the inherited cardiomyopathies, although there are emerging data linking 
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GWAS loci with echocardiographic traits such as ventricular hypertrophy, diameter, and 

contractile function, and with clinical endpoints such as heart failure (Table 1, Online Table 

2) (42-53). Significant GWAS loci are often located in non-coding regions that are thought to 

harbor regulatory sequences that influence gene expression. The target genes are often 

presumed to be in close proximity to the GWAS loci but may also be located more distantly 

or on other chromosomes.  It is notable that many of the genes implicated in GWAS loci for 

heart failure have also been shown to carry rare cardiomyopathy-causing variants (Table 1). 

These findings raise the possibility that at least some of the common variants identified by 

GWAS could be phenotype modifiers in cardiomyopathy patients. To better define high (and 

low) risk subgroups of patients, polygenic risk scores (PRS) have been derived using suites of 

top-scoring GWAS variants. PRS for cardiovascular disorders such as coronary artery disease 

and atrial fibrillation have been extensively studied and shown to provide incremental 

information over clinical factors for risk stratification (54-57). At present, PRS have mainly 

been used in genetic epidemiological studies and have not yet entered the clinical setting.  

 

Co-morbidities and lifestyle factors 

Many patients with cardiomyopathy have both an inherited cardiomyopathy and commonly 

occurring clinical conditions such as hypertension or coronary artery disease that could 

influence the disease phenotype (Figure 2). Furthermore, there is emerging evidence that 

lifestyle factors are also potential disease modifiers (Figure 2). Obesity is one example. In a 

recent analysis of 3282 patients with HCM in the Sarcomeric Human Cardiomyopathy 

Registry (SHaRe), almost one third of participants were obese (58). These individuals were 

more symptomatic, more often had left ventricular outflow obstruction, and were more likely 

to develop heart failure or atrial fibrillation when compared to normal-weight and pre-obese 

participants. In general, obesity promotes heart failure, but once heart failure develops, obese 
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patients have better survival than those who are underweight (the obesity paradox) (20). 

There are few data on the effects of obesity in ARVC but myocardial fat replacement in 

obese subjects may confound interpretation of CMR imaging (59). In all patients with 

inherited cardiomyopathies, there may be a vicious circle with restriction of physical activity 

offset by increased obesity.  

 Patients with cardiomyopathy gene mutations might be more susceptible to 

myocardial depressant effects of cardiotoxins, such as alcohol and anthracycline 

chemotherapy (60-62). Both of these agents are independent causes of DCM and this is 

typically dose-dependent (63-65). However, the development of cardiotoxicity at lower doses 

has suggested that some patients could have a genetic predisposition. This is particularly the 

case for truncating TTN variants (TTNtv), that have been found in 10% and 7.5% of patients 

with alcoholic cardiomyopathy and anthracycline-induced cardiomyopathy, respectively (60, 

62). These prevalence rates are similar to those for TTNtv in sporadic DCM cohorts (66) and 

therefore it is uncertain whether there is a true gene-environment interaction. It seems likely 

however, that the addition of an environmental stressor such as excessive alcohol, might 

bring forward the age of onset of DCM, or worsen its severity, in TTNtv carriers.  

  In general, competitive sports are contra-indicated in patients with definitive HCM, 

DCM and ARVC (67,68) but the pendulum is swinging to some extent in HCM, with several 

studies suggesting that moderate and even vigorous exercise can be both safe and beneficial 

(69-71). In ARVC, disruption of intercellular junctions between adjacent myocytes is a key 

pathophysiological feature and this can be exacerbated by hemodynamic stress (11). There is 

some evidence that participation in competitive sport and endurance sports accelerates 

disease progression, with a higher penetrance of clinical manifestations, earlier onset of 

symptoms, and increased risk of ventricular arrhythmias, heart failure, and need for cardiac 

transplantation (72-75). In one large study of ARVC patients, competitive sport was 
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associated with a two-fold increase in ventricular tachycardia or death, while the outcomes of 

patients who participated in recreational sport were similar to those of inactive patients (74). 

Exercise appears to be a particularly important modifier in genotype-negative patients with 

ARVC who lack a family history (75). Although there are concerns about adverse effects of 

exercise in cardiomyopathy patients, these need to be balanced with the potential cardiac and 

overall health benefits of improved cardiorespiratory fitness.  

 

Ethnicity 

Ethnicity may also have an effect on disease expression and clinical outcomes in 

cardiomyopathy.  A recent study of 2467 patients with HCM highlights several important 

points (76). In that series, black patients were younger and more symptomatic than white 

patients at the time of diagnosis and had more heart failure episodes. At least some of these 

differences can be attributed to genetic factors, since the black patients had a lower 

prevalence of disease-causing sarcomeric gene mutations, and profiles of background genetic 

variation vary from those of white patients. However, black patients were also found to have 

lower rates of genetic testing and septal reduction procedures, suggesting that differential 

access to healthcare services and clinical management strategies might be contributing 

factors. Much of what is currently known about the genetic architecture and natural history of 

inherited cardiomyopathies is based on studies of white-predominant cohorts and 

interpretation of existing data is confounded by the paucity of ethnic diversity in genetic 

testing repositories and reference cohorts. Expanding these types of studies to patients with a 

broader range of ethnic backgrounds is a research priority.  

 

PRECISION APPROACHES TO HCM, DCM and ARVC 
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In general, patients with HCM, DCM and ARVC, are treated according to the severity of 

symptoms, the predicted risk of a sustained ventricular arrhythmia (77-79), and the extent of 

myocardial dysfunction (Table 2). Comprehensive clinical practice guidelines are provided 

elsewhere but therapy involves pharmacologic agents (eg. -blockers, angiotensin II 

receptors blockers, anti-arrhythmic drugs), devices (eg. implantable cardioverter-

defibrillators [ICD], pacemakers and resynchronization therapy, left ventricular assist 

devices), catheter ablation of ventricular tachycardia, or surgery (myectomy, heart 

transplantation) (17,18,23,24,29). Most therapies are based on an implicit assumption that all 

patients have the same or similar phenotype, often defined by a single variable of interest 

(e.g. left ventricular ejection fraction or wall thickness). This simplification is useful for trial 

design and in the creation of general management frameworks that assist in the translation of 

evidence-based medicine into clinical practice. However, a goal of precision medicine is to 

refine or sometimes redefine clinical presentations into new endophenotypes that link more 

closely with mechanisms of disease and as a consequence, more precise therapeutic 

strategies. Scientists and clinicians are pursuing this goal through the application of new tools 

in genomics and proteomics, and novel analytics such as artificial intelligence. However, 

clinicians can already make more precise “multiparametric” diagnoses based on routine 

clinical methods that influence disease management.  

 

Genotype-positive affected index patients and relatives 

To date, genotype information has had a limited role in drug treatment choices for 

symptomatic patients. One example where medical therapy has directly changed as a result of 

insights in the functional effects of a specific variant is the p.R222Q missense variant in the 

SCN5A gene. This variant has been identified in several families and gives rise to a 

distinctive phenotype with multifocal ventricular ± atrial ectopy and DCM that are caused by 
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gain-of-function effects on cardiac sodium channel activity (80-85).  Affected variant carriers 

are effectively treated by drugs that have sodium channel-blocking effects, such as flecainide, 

amiodarone, and quinidine (80,84,85). Although variant-directed therapies like this are 

extremely useful for selected families, the need for experimental evaluation of each variant 

limits the scalability of this approach (86). Targeted genome editing approaches to correct 

primary disease-causing variants are under investigation in animal and cell models and may 

be feasible for clinical applications in the future (86).  

An alternative option is to target key, common pathophysiological processes that are 

perturbed by defects in one or more genes (86). Examples of this include mitogen-activated 

protein kinase inhibitors in patients with severe DCM due to LMNA mutations (87,88; 

NCT02057341/NCT02351856, results pending), and myosin inhibitors (or activators) for 

patients with HCM (or DCM) due to sarcomere gene mutations (89-91). For the most part, 

these agents are still in early phase investigation. However, data from clinical trials published 

this year (EXPLORER-HCM, MAVERICK-HCM) have shown highly promising results for 

mavacamten, a selective allosteric inhibitor of cardiac myosin ATPase, which reduces actin-

myosin crossbridge formation, in patients with symptomatic obstructive and non-obstructive 

HCM (92,93). Whether this therapy might preferentially benefit patients with sarcomere gene 

mutations or have more universal application in patients with HCM due to any cause remains 

to be determined.   

 Arrhythmic risk stratification and indications for ICD implantation are mainly based 

on history (especially recent cardiac syncope), ECG, electrocardiographic monitor results 

(frequency of ventricular ectopy, nonsustained ventricular tachycardia) and imaging 

parameters (Table 2) (77-79,94). CMR may enable risk predictions in HCM, DCM, and 

ARVC to be refined, with strong correlations seen between the extent of late gadolinium 

enhancement and adverse outcomes such as ventricular tachycardia and sudden cardiac death 
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(95,96). There is increasing evidence that some genes are associated with a high arrhythmia 

propensity and this may influence ICD decision-making (Table 2). A meta-analysis of >7000 

HCM patients showed that sarcomere gene mutation carriers had an earlier onset of disease 

and higher rates of sudden cardiac death than non-carriers (97). CMR studies have shown that 

sarcomere gene mutation carriers are more likely than non-carriers to have late gadolinium 

enhancement, which may contribute to differences in arrhythmic outcomes (98).  Similarly, a 

study of 1001 ARVC patients and at-risk relatives showed patients with pathogenic 

desmosomal variants had earlier onset disease and ventricular arrhythmias than those in 

which a pathogenic variant could not be identified (41). Genes such as LMNA, SCN5A, 

FLNC, RBM20, PLN, DSP, DES, and TMEM43 can be associated with arrhythmic forms of 

DCM or ARVC/ACM and the threshold for ICD implantation may be lower than for routine 

primary prevention (30,79-85,99-107). Genotype-phenotype studies may help to further 

stratify risk within these patient subgroups. As an example, a recent CMR study in 89 

patients with G-DCM found that a distinctive ring-like pattern of subepicardial late 

gadolinium enhancement was present in 78% of DSP or FLNC mutation carriers and in none 

of the patients with other genetic causes of DCM (108) (Figure 7). The DSP and FLNC 

mutation carriers had a greater prevalence of regional wall motion abnormalities than the 

other genotype groups, although the latter had overall lower left ventricular ejection fraction 

and more impaired global longitudinal strain. These findings point to different mechanisms 

for ventricular arrhythmias and contractile dysfunction between these mutation types. It is 

important to note that not all variants in these arrhythmic genes will be equally deleterious 

and that for any single variant, the phenotype severity may differ within families. Families 

with TTNtv demonstrate this point, with some individuals showing severe DCM and early-

onset arrhythmias, while others have normal cardiac function until late in life (109,110).  As 

longitudinal studies in large cohorts of genotyped patients become available, further insights 
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will be gained into the natural history and penetrance of disease associated with different 

cardiomyopathy genes and this will help to further define high- and low-risk subgroups.  

 

Genotype-positive unaffected relatives 

A major goal of genetic testing is identification of genotype-positive, phenotype-negative 

family members in whom pre-emptive strategies to delay or prevent disease onset might be 

possible. These individuals need regular cardiac monitoring with ECG (± 

electrocardiographic monitor) and echocardiography (Table 2). The age at which monitoring 

should commence is not clearly defined, and factors such as the type of gene mutation and 

the typical age at diagnosis (and onset of complications including death) in other family 

members need to be taken into consideration. The frequency of follow-up is also variable and 

depends on cardiomyopathy type, patient age, appearance of new symptoms, or borderline 

echocardiographic findings.  

 Ideally, periodic monitoring allows detection of preclinical disease and many efforts 

have been made to leverage novel imaging techniques to inform early detection of phenotypic 

expression.  In G-DCM, left ventricular dilation has been investigated as a marker of early 

disease, but the lack of specificity limits its prognostic utility (111,112). Echocardiographic 

deformation studies suggest that abnormalities of myocardial strain precede overt evidence of 

ventricular hypertrophy or contractile dysfunction in HCM, G-DCM and ARVC (113-120). A 

range of CMR-based methods that evaluate deformation characteristics and fibrosis have also 

been proposed as sensitive ways to identify diseased myocardium (33,121-125).  Although 

these imaging studies can show differences between groups of affected family members, 

unaffected family members and control subjects for various parameters, the threshold levels 

for transition to pathogenicity in individual patients remain to be clearly defined.  Apart from 

imaging, clinical indices and biomarkers have also been used to evaluate preclinical disease. 
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In a recent study of asymptomatic sarcomere gene mutation carriers, male sex and baseline 

ECG abnormalities were associated with a higher risk of HCM development over a 15-year 

period (33). Biomarkers such as N-terminal pro-B-type natriuretic peptide, high-sensitivity 

troponin I, or pro-fibrotic peptides have been shown to detect mechanical stress and 

myocardial injury in patients with established disease but have variable efficacy in predicting 

early disease (98,112,126,127). Other biomarkers such as circulating microRNAs and 

autoantibodies remain under investigation (128-131). At present, there are no definitive 

guidelines for when, and how to initiate preventative interventions in genetically-predisposed 

individuals beyond limiting exercise in pathogenic desmosomal mutation carriers (132).   

 

Genotype-negative relatives in families with an identified gene mutation 

For autosomal dominant forms of HCM, DCM and ARVC, 50% of relatives on average will 

not carry the family gene mutation. Current guidelines indicate that these individuals can be 

released from ongoing clinical screening. Caution is needed however, if there are multiple 

potentially deleterious variants or other causes of cardiomyopathy in the family that may give 

rise to apparent lack of cosegregation or incompatible phenotypes in relatives.   

 

Families without an identified gene mutation 

The yield of genetic testing differs according to cardiomyopathy type, with estimates ranging 

from 30-60% for HCM, 10-40% for DCM and 40-65% for ARVC (13,16). This means that 

many families will not get a positive result in the initial test report. When one or more VUS 

has been identified, re-interpretation of these variants is warranted from time to time and this 

may enable some variants to be upgraded to pathogenic or likely pathogenic. Symptomatic 

individuals in families with no identified gene mutation should be treated according to 
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standard guidelines and all unaffected individuals need serial monitoring (similar to 

unaffected genotype-positive individuals).  

 

Managing modifiers 

Reversible co-morbidities and lifestyle factors that might accelerate progression should be 

identified and treated promptly, especially in patients with HCM and DCM (Table 2). 

Exercise is an important component of patient management, but optimal exercise doses for 

patients with inherited cardiomyopathies, and in ARVC for genotype-positive relatives, are 

still evolving (132,133). Current knowledge suggests that exercise prescriptions should be 

individually tailored according to patient-related factors (such as cardiomyopathy type, 

symptoms and severity of cardiac dysfunction, presence/absence and type of arrhythmic gene 

mutation, age, and general health) and exercise-related factors (such as sports type, intensity, 

and duration) (Figure 8).  

 

FUTURE DIRECTIONS 

In coming years as more people undergo genome sequencing, increasing numbers of 

cardiomyopathy gene variants will be identified in patients and the general population, and 

classification of variant pathogenicity will be an ongoing challenge. Patient genomes will 

also be mined for clinically useful information in addition to causative rare variants, 

including assessment of genetic risk of co-morbidities and cardiac complications by PRS, and 

identification of variants that may be amenable to specific pharmacologic or other therapies 

(134).  Expanded opportunities will arise for genotype-phenotype studies at the whole heart, 

cellular and molecular levels and much will be learned about the basic mechanisms of 

disease, using patient-derived cell systems, animal models, and multi-omics analyses of 

human heart tissues, paving the way for development of novel biomarkers, new disease-
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modifying therapies and clinical trials. New methods for cardiac phenotype assessment and 

monitoring are expected to emerge from machine learning analyses and ongoing refinement 

of imaging tools. Clinical management is likely to increasingly involve patient-derived 

measures, with arrhythmia detection and therapeutic monitoring informed by dynamic input 

of biological data from wearable devices. As a collective result of these changes, we will also 

see a progressive reappraisal and refinement of our disease classification systems, such that 

these systems also take into account specific genes and disease pathways, rather than merely 

grouping together patients because they have a superficially similar clinical phenotype (i.e. 

reduced left ventricular ejection fraction in DCM). This theme of the refinement of disease 

classification as we progressively implement precision medicine approaches is covered in 

depth in the final article in this JACC series (ref xx). 

 

CONCLUSIONS 

Advances in genome sequencing, cardiac imaging techniques, and experimental model 

systems are laying the groundwork for a new era of precision medicine in the inherited 

cardiomyopathies. This should not only have health benefits for adult cardiomyopathy 

patients and their families but also for subsequent generations of children at risk. While 

valuable information can be gained by these approaches, precision medicine dictates a shift in 

focus back to the individual patient, and for clinical practice to move away from a ‘one-size-

fits-all’ approach. It relies on a comprehensive evaluation of every cardiomyopathy patient to 

identify factors that contribute to disease causation and to assess the impact that these factors 

have on myocardial structure and function. Accordingly, individualized approaches to 

clinical management may encompass targeted disease-modifying interventions or the more 

directed use of established heart failure and anti-arrhythmic therapies. These factors appear 

likely to shape the way medicine and cardiology are practiced, as it appears unlikely that the 
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existing workforce of cardiologists in the USA and globally will be able to take on the 

significant increase in time commitment that will be required to investigate, understand and 

treat each individual patient and their families. However, the prospect of tailored, more 

effective precision medicine therapies based on a comprehensive evaluation of 

cardiomyopathy phenotype, genotype and environmental factors is driving the field forward 

at an unprecedented pace, and we eagerly await the clinical revolution that will ensue.  
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HIGHLIGHTS:  

- Much has been learned about genetic causes of inherited cardiomyopathy. 

- However, translation of this knowledge into patient management has been limited.   

- Comprehensive patient evaluation is needed to identify relevant genetic and environmental 

factors and provide detailed phenotype assessment.  

- Precision medicine promises to leverage data on the individual patient to implement 

personalized approaches to disease management 
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FIGURE LEGENDS 

Central Illustration. Key steps for implementing precision medicine in cardiomyopathies. 

For patients with suspected inherited cardiomyopathies, it is important to first establish a 

clinical diagnosis. Patients need to undergo comprehensive assessment to identify all the 

factors that may be contributing to disease and to evaluate the cardiac phenotype. Risk 

stratification and precision management will increasingly involve therapies targeted towards 

the causes of disease as well as alleviation of symptoms.  

 

Figure 1. Location of cardiomyopathy disease genes. Schematic showing cardiomyocyte 

subcellular architecture and location of key disease genes.  For HCM and ARVC, these genes 

are clustered in the sarcomere (central inset) and desmosomes (right inset), respectively. 

DCM disease genes are found in these regions and also along an axis of force transmission 

that links the sarcolemma and extracellular matrix to cytoskeletal components and the 

nucleus (left inset).  

 

Figure 2. Pipeline for establishing a clinical diagnosis for patients with suspected 

cardiomyopathies. ACM = arrhythmogenic cardiomyopathy; ARVC = arrhythmogenic right 

ventricular cardiomyopathy; AS = aortic stenosis; CMR = cardiac magnetic resonance 

imaging; DCM = dilated cardiomyopathy; G-DCM = genetically-mediated DCM; HT = 

hypertension; LV = left ventricle; LVH = left ventricular hypertrophy; RV = right ventricle. 

 

Figure 3. Three cases with a hypertrophic phenotype and different diagnosis. Transthyretin 

(TTR) cardiac amyloidosis: ECG shows first degree AV block and left bundle branch block, 

(A), with concentric hypertrophy (B), widespread non-ischemic late gadolinium enhancement 

(C) and markedly increased native T1 (MOLLI 1206ms @ 1.5T, D) seen on CMR. 
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Sarcomeric HCM: ECG shows left ventricular hypertrophy (E), and CMR shows asymmetric 

hypertrophy (F), non-ischemic late enhancement in the hypertrophied septum, particularly at 

the right ventricular insertion points (G) and native T1 is mildly raised (MOLLI 1098ms @ 

1.5T, H). Anderson-Fabry disease: ECG shows borderline PR duration, broad left bundle 

branch block, and left ventricular hypertrophy (I), CMR shows asymmetric hypertrophy (J), 

basal infero-lateral non-ischemic late enhancement (K) and reduced native T1 (MOLLI 

893ms @ 1.5T, L). 

 

Figure 4. Characteristic CMR features of ARVC. (A) Right ventricular (RV) dilation seen on 

short axis images. Diastolic (B) and systolic (C) images in the RV outflow plane showing RV 

anterior wall akinesis (arrows) and inferior wall dyskinesis (arrowheads). (D) Focal areas of 

dykinesis (microaneuryms; arrowheads) in the RV free wall seen on axial cine image. (E,F) 

Foci of late gadolinium enhancement (arrowheads) in a non-vascular distribution. (G) RV 

free wall longitudinal strain assessed using feature tracking CMR software. When compared 

to a normal study (H), there is a reduced magnitude of global strain (-20 vs -33) and 

increased dispersion (arrowheads), with widening and reduced coordination of the segmental 

peak strains in a patient with ARVC (I).  

 

Figure 5. Factors that contribute to cardiomyopathy phenotypes. The clinical manifestations 

of any given deleterious rare variant will be determined by the effects of the variant itself and 

the patient context.  

 

Figure 6. Myocardial phenotype “wheel of fortune”. Cardiomyopathy phenotypes (P) such as 

left ventricular ejection fraction or wall thickness are continuous variables (outer colored 

circle). Inner circles represent variable effects (gradations of color) of background rare 
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variants (Rv), common variants (Cv), co-morbidities (Co), lifestyle factors (L) and ethnicity 

(Eth). For any given value of P (arrow), the relative contributions of a primary gene mutation 

and modifying factors will differ in individual patients.  

 

Figure 7. Distribution of left ventricular scar using contrast enhanced CMR for different 

genetic subtypes of arrhythmogenic left ventricular cardiomyopathy (ALVC) versus DCM. 

DSP and FLNC genotypes show a characteristic subepicardial, ring-like scar pattern (yellow 

arrowhead) whereas non-DSP/FLNC genotypes are more heterogeneous, but with overall less 

scar and lower left ventricular ejection fraction. DSP/FLNC genotypes have more regionality 

in LV impairment. Adapted from (107). LGE = late gadolinium enhancement; RV = right 

ventricle.  

 

Figure 8. Exercise recommendations for patients with inherited cardiomyopathies. Exercise 

prescriptions will ideally be individually tailored and take patient-related and exercise-related 

factors into account.  
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TABLE 1. Moderate- and high-confidence cardiomyopathy disease genes and phenocopies  

 

Gene Protein Rare variants* Common 

variants† 

(trait) 

Notes 

HCM G-DCM ARVC 

/ACM 

ACTC1 Actin alpha cardiac muscle +++ ++ 
 

 Sarcomeric protein. Strongly associated with 

HCM. DCM/LVNC often co-occur. Also 

associated with RCM and CHD.   

ACTN2 Actin alpha 2 ++ ++ 
  

Skeletal sarcomeric protein. Mixed phenotypes 

described within families including HCM, 

DCM, LVNC and arrhythmias.  

ALPK3 Alpha kinase 3 +++ ++ 
 

Y 

(DCM) 

Nuclear kinase protein. Biallelic variants cause 

pediatric DCM transitioning to HCM in 

adulthood with dysmorphic features. 

Heterozygous rare variants may cause mild 

cardiomyopathy.  

BAG3 BAG cochaperone 3 
 

+++ 
 

Y 

(DCM, LV 

EF/EDV/ 

ESV, HF) 

Chaperone protein. Strongly associated with 

DCM. Also associated with AD myofibrillar 

myopathy which can present with concomitant 

HCM/RCM. 

CSRP3 Cysteine and glycine rich 

protein 3 

++ + 
 

Y 

(LV EF/ESV) 

Cytoskeletal regulatory protein. Moderate 

association with HCM. Weakly associated with 

DCM.  

DES Desmin 
 

+++ ++ 
 

Cytoskeletal protein. Associated with DCM 

and ACM overlap phenotypes that can co-occur 

with variable CD and myopathy. Rarely 

associated with RCM.  

DMD Dystrophin  +++   Cytoskeletal protein. Associated Duchenne and 

Becker muscular dystrophy (skeletal ± cardiac 

involvement), can present as isolated X-linked 

DCM.  
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DSC2 Desmocollin 
 

+ +++ 
 

Desmosomal protein. Strongly associated with 

ARVC. Rare cases of isolated DCM.  

DSG2 Desmoglein 
 

+ +++ 
 

Desmosomal protein. Strongly associated with 

ARVC. Rare cases of isolated DCM. 

DSP Desmoplakin 
 

+++ +++  Desmosomal protein. Strongly associated with 

ACM with dominant right or left ventricular 

presentations. Can present as DCM. Flares of 

inflammation can present like myocarditis. 

Rarely associated with LVNC. Autosomal 

recessive disease causes cardio-cutaneous 

syndrome. 

FBXO32 F-box only protein 32 
 

++ 
  

Autophagy protein. Associated with severe 

autosomal recessive DCM. 

FHOD3 Formin homology 2 

domain containing 3 

+++ + 
 

Y 

(DCM, LV 

EF) 

Sarcomeric function protein. Emerging strong 

evidence for association with HCM. Rare 

reports in DCM.  

FLNC Filamin C ++ +++ ++ Y 

(DCM, LV 

EF/ESV) 

Cytoskeletal protein. Primary association is 

with arrhythmic DCM. Moderate association 

with HCM and ARVC. Also associated with 

RCM, LVNC, CHD, arrhythmias and 

myofibrillar myopathy.  

GLA Galactosidase alpha +++  
  

Galactosidase protein. Associated with Fabry's 

disease. HCM phenocopy. 

JPH2 Junctophilin 2 ++ + 
  

Cytoskeletal protein. Primary association is 

with HCM. Isolated cases of AR/AD DCM. 

Also associated with atrial fibrillation.  

JUP Junction plakoglobin   +++ 
 

Junctional plaque protein. Strong association 

with ARVC.  

LAMP2 Lysosome associated 

membrane protein 2 

+++ ++ 
  

Membrane glycoprotein. Associated with X-

linked Danon disease. Female carriers can 

present with isolated DCM or LVH. HCM 

phenocopy.  



 50 

LDB3 Lim domain binding 3 + ++ 
  

Sarcomeric stabilization protein. Moderate 

association with DCM. Weak association with 

HCM and LVNC. Also associated with late 

onset myofibrillar myopathy.  

LMNA Lamin A/C 
 

+++ +  Nuclear lamina protein. Strong association with 

DCM which co-occurs with CD and atrial and 

ventricular arrhythmias. Weakly associated 

with ARVC and LVNC. Also associated with 

AD Emery-Dreifuss muscular dystrophy.  

MYBPC3 Myosin binding protein C +++ + + 
 

Sarcomeric protein. Strongly associated with 

HCM. Weakly associated with DCM, LVNC 

and ACM.  

MYH7 -myosin heavy chain  +++ +++ + 
 

Sarcomeric protein. Strongly associated with 

HCM. Less common association with 

DCM/LVNC, ACM and CHD. Also associated 

with Laing distal myopathy.  

MYL2 Myosin light chain 2 +++ + 
  

Sarcomeric protein. Strong association with 

HCM. Rare cases of isolated DCM.  

MYL3 Myosin light chain 3 +++ + + 
 

Sarcomeric protein. Strong association with 

HCM. Rare cases of isolated DCM or ACM.  

NEXN Nexilin + ++ 
  

Actin binding protein. Moderate association 

with DCM. Rarely associated with HCM and 

CHD.  

NKX2.5 NK2 homeobox 5 
 

++ 
 

Y 

(DCM/SV) 

Transcription factor. Associated with DCM 

with variable AVB and CHD (ASD). 

PKP2 Plakophilin 
 

+ +++ 
 

Desmosomal protein. Strongly associated with 

ARVC. Rarely reports of isolated DCM.  

PLN Phospholamban + +++ +++ Y 

(LV 

EDV/ESV 

/SV) 

Regulates sarcoplasmic reticulum 

Ca2+/ATPase. Strongly associated with DCM 

with arrhythmias, ARVC and overlap 

phenotypes.  
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PPP131RL Protein phosphatase 1, 

regulatory subunit 13 like 

 
++ 

  
Desmosomal protein. Associated with severe 

pediatric AR DCM. 

PRKAG2 Protein kinase AMP-

activated non-catalytic 

subunit gamma 2 

+++  
 

 Protein kinase. Associated with glycogen 

storage disease. Often co-occurs with 

ventricular pre-excitation, conduction block 

and atrial arrhythmias. HCM phenocopy. 

RBM20 RNA binding protein 
 

+++ 
 

Y 

(LV EF/ESV) 

RNA binding protein. Strongly associated with 

severe arrhythmic DCM. 

SCN5A Voltage gated sodium 

channel 5A 

 
+++ + 

 
Voltage gated sodium channel subunit. 

Strongly associated with DCM with either 

tachy- or brady-arrhythmias or arrhythmias 

without DCM. Also associated with Brugada 

syndrome and Long QT syndrome. 

TAZ Tafazzin + +++ 
  

Mitochondrial protein. Associated with 

DCM/LVNC in Barth syndrome. Also reported 

in isolated infantile DCM/LVNC.  

TMEM43 Transmembrane protein 70 
 

++ +++ 
 

Nuclear membrane protein. Newfoundland 

founder mutation causing ACM with right or 

left dominant subtypes. 10-15% of cases meet 

criteria for DCM.  

TNNC1 Troponin C1 ++ ++ 
  

Sarcomeric protein. Moderate association with 

both DCM and HCM.  

TNNI3 Troponin I3 +++ ++ 
  

Sarcomeric protein. Strong association with 

HCM and RCM overlap phenotypes. Also 

associated with DCM.  

TNNI3K Troponin I3 interacting 

kinase 

 
++ 

 
 Protein kinase. Several reports of families with 

DCM co-occurring with CD and ventricular 

arrhythmias. 

TNNT2 Troponin T2 +++ +++ 
 

 Sarcomeric protein. Strongly associated with 

both HCM and DCM. Also associated with 

LVNC and RCM.  
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TPM1 Alpha tropomyosin +++ +++ 
  

Sarcomeric protein. Strongly associated with 

both HCM and DCM. Also associated with 

LVNC and RCM.  

TTN Titin + +++ + Y 

(DCM, LV 

EF/EDV/ 

ESV/mass) 

Sarcomeric protein. Strongly associated with 

DCM. Weakly associated with HCM and 

ACM. Also associated with AR myopathy. 

TTR Transthyretin +++ + 
  

Transport protein. Associated with systemic 

amyloidosis. HCM phenocopy. 

VCL Vinculin + ++ 
  

Cytoskeletal protein. Moderate association with 

DCM. Weakly associated with HCM.  

 

*Classification of genes according to level of human genetic evidence for roles in disease causation: +++  Gene has been associated with 

primary presentation of cardiomyopathy in multiple cases in the literature, with at least 5 instances of family segregation or de novo mutations; 

++  Primary cardiomyopathy phenotypes reported in more than 10 individual cases, or 3-5 instances of family segregation or de novo cases (or 

2-3 instances if recessive inheritance); +  Gene of uncertain significance; primary cardiomyopathy phenotypes reported in up to 10 individual 

cases, 1-3 instances of family segregation or do novo cases, OR cardiomyopathy is reported primarily in cases with syndromic features or 

skeletal myopathy.  

†Target genes implicated in genome-wide association studies (GWAS) of heart failure, DCM, or echocardiographic/CMR parameters of cardiac 

structure and function.   

ACM = arrhythmogenic cardiomyopathy; AD = autosomal dominant; AR = autosomal recessive (includes biallelic inheritance); ARVC = 

arrhythmogenic right ventricular cardiomyopathy; AD = atrial septal defect; AVB = atrioventricular conduction block; CD = conduction disease; 

CHD = congenital heart disease; DCM = dilated cardiomyopathy; EDV = end-diastolic volume; EF = ejection fraction; ESV = end-systolic 

volume; HCM = hypertrophic cardiomyopathy; LV = left ventricular ; LVNC = LV non-compaction; RCM = restrictive cardiomyopathy; SV = 

stroke volume; Y = yes.  
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TABLE 2. Key aspects of clinical management in gene mutation carriers  

 

 HCM G-DCM ARVC/ACM 

Affected (phenotype-positive) individuals 

 

Pharmacological therapy 

 

 

 

 

-blockers, non-dihydropyridine 

calcium antagonists, and 

disopyramide for LVOT 

obstruction. Avoidance of excess 

diuresis, vasodilators, digoxin.  

Prophylactic anticoagulation with 

VKA or DOAC in patients with 

AF or atrial flutter.  

-blockers +ACE/ARB.  

Consider sacubutril/valsartan, 

aldosterone antagonists, SGLT2 

inhibitors, ivabradine, diuretics.  

Prophylactic anticoagulation with 

VKA or DOAC in patients with 

AF or atrial flutter. 

-blockers for all. 

ACE/ARB if reduced RV or LV 

function. 

Sotolol or flecainide is 

symptomatic PVCs / NSVT or 

sustained VT. 

Amiodarone if sotolol and 

flecainide fail and catheter 

ablation not preferred. 

SCD risk prediction/ICD 

indications 

For primary prevention, risk 

markers include age, LV wall 

thickness, NSVT, LA diameter, 

LVOT gradient, family history of 

SCD, unexplained syncope.  

Patients with LV systolic 

dysfunction also at higher risk of 

SCD. 

Personal history of cardiac 

arrest/VF or sustained VT.  

For primary prevention if 

LV EF <35% with NYHA II-III 

and expected survival >1 year.  

Consider lower threshold for ICD 

with highly arrhythmic gene 

mutations eg. LMNA, SCN5A, 

FLNC, RBM20, PLN, DSP, DES, 

DSG2, TMEM43 variants. 

Personal history of cardiac 

arrest/VF or sustained VT.  

For primary prevention risk 

markers include extent of RV ± 

LV dysfunction, PVC burden, 

male gender, extent of T wave 

inversion, exercise plans. 

Consider lower threshold for ICD 

with multiple desmosomal gene 

mutations or TMEM43 

Newfoundland founder mutation 

(ARVC) or highly arrhythmic 

gene mutations eg. LMNA, 

FLNC, RBM20, PLN, DSP, DES, 

variants (ACM). 

Invasive procedures Alcohol septal ablation for 

reduction of LVOT obstruction. 

Dual chamber RV pacing in 

Cardiac re-synchronization 

therapy if LV EF <35%, 

EPS can play a role in risk 

stratification.  
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selected patients with LVOT 

obstruction. Catheter ablation in 

selected patients with AF or 

sustained ventricular arrhythmia. 

NYHA >II and LBBB 

(QRS>120ms) 

VT ablation is recommended if 

recurrent VT or ICD shocks 

despite antiarrhythmic therapy. 

Treat key co-morbidities and 

lifestyle risk factors 

Treat hypertension. Avoid 

obesity.  

Patients with LVOT obstruction 

should avoid excess alcohol, 

stimulants, dehydration, 

temperature extremes. 

Restrict alcohol. Promptly treat 

arrhythmias. Monitor during 

anthracycline chemotherapy. 

Carefully manage other 

cardiovascular risk factors. 

 

Exercise recommendations Athletes: competitive sports 

contraindicated if symptoms, 

history of cardiac arrest, exercise-

induced VT, LVOT gradient >50 

mmHg, abnormal blood pressure 

response to exercise.  

Recreational sports: permitted but 

only after careful assessment in 

expert centers. 

Athletes: competitive and 

endurance sports not advisable if 

symptoms, unexplained syncope, 

LV EF <40%, extensive LGE on 

CMR, frequent/complex VA, 

family history of SCD, 

arrhythmic gene mutation (eg. 

LMNA, FLNC). 

Recreational sports: permitted 

Athletes: avoid competitive and 

endurance sports.  

Recreational sports: permitted at 

low levels. 

Unaffected (phenotype-negative) individuals  

 

Monitoring method 

 

ECG, echo. ECG, echo. ECG, Holter, echo or CMR. 

Frequency of monitoring From mid-adolescence, 1-5 

yearly. 

From mid-adolescence (if adult 

onset DCM in other family 

members), 1 to 5-yearly 

From 10-12 years age, 

ECG/Holter - yearly, imaging 2- 

to 3-yearly. 

Treat key co-morbidities and 

lifestyle risk factors 

Treat hypertension. Avoid 

obesity.  

 

Advise limits to alcohol. 

Promptly treat arrhythmias. 

Monitor during anthracycline 

chemotherapy. Carefully manage 

cardiovascular risk factors. 
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Exercise recommendations Competitive sports: permitted. 

Recreational sports: permitted.  

Competitive sports: permitted, 

needs annual review. 

Recreational sports: permitted 

Athletes: avoid competitive 

sports. 

Recreational sports: permitted at 

low levels. 

 

ACE/ARB = angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers; AF = atrial fibrillation; CMR = cardiac magnetic 

resonance imaging; DCM = dilated cardiomyopathy; DOAC = direct-acting oral anticoagulants; EF = ejection fraction; EPS = 

electrophysiological studies; ICD = implantable cardioverter-defibrillator; LA = left atrial; LBBB = left bundle branch block; LGE = late 

gadolinium enhancement; LV= left ventricular; LVOT = outflow tract; NSVT = non-sustained ventricular tachycardia; NYHA = New York 

Heart Association; PVC = premature ventricular contractions; RV = right ventricular; SCD = sudden cardiac death; SGLT2 = sodium-glucose 

transport protein 2; VA = ventricular arrhythmias; VF = ventricular fibrillation; VKA = vitamin K antagonist; VT = ventricular tachycardia. 

 

 

 

 

 

 

 

 

 

 

 


