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Extracting causal relationships from observed correlations is a growing area in proba-

bilistic reasoning, originating with the seminal work of Pearl and others from the early

1990s. This paper develops a new, categorically oriented view based on a clear distinc-

tion between syntax (string diagrams) and semantics (stochastic matrices), connected via

interpretations as structure-preserving functors.

A key notion in the identification of causal effects is that of an intervention, whereby

a variable is forcefully set to a particular value independent of any prior propensities.

We represent the effect of such an intervention as an endofunctor which performs ‘string

diagram surgery’ within the syntactic category of string diagrams. This diagram surgery

in turn yields a new, interventional distribution via the interpretation functor. While in

general there is no way to compute interventional distributions purely from observed data,

we show that this is possible in certain special cases using a calculational tool called comb

disintegration.

We demonstrate the use of this technique on two well-known toy examples: one where we

predict the causal effect of smoking on cancer in the presence of a confounding common

cause and where we show that this technique provides simple sufficient conditions for

computing interventions which apply to a wide variety of situations considered in the

causal inference literature; the other one is an illustration of counterfactual reasoning

where the same interventional techniques are used, but now in a ‘twinned’ set-up, with

two version of the world — one factual and one counterfactual — joined together via

exogenous variables that capture the uncertainties at hand.

1. Introduction

Causality is about understanding the mechanics of the world around us. This world

presents itself in the form of streams of observations, in which statistical (in)dependencies

can be recognised. A big question, both in science and in daily life, is: how to distinguish

correlation from causation and recognise genuine causal relationships?

An important conceptual tool for distinguishing correlation from causation is the pos-

sibility of intervention, i.e. forcing some variable to take a specific value in a way that

is independent of the other variables being considered. For example, a randomised drug

trial attempts to destroy any confounding ‘common cause’ explanation for correlations

between drug use and recovery by randomly assigning a patient to the control or treat-

ment group, independent of any background factors. In an ideal setting, the observed

correlations of such a trial will reflect genuine causal influence. Unfortunately, it is not



Bart Jacobs, Aleks Kissinger, and Fabio Zanasi 2

always possible (or ethical) to ascertain causal effects by means of actual interventions.

For instance, one is unlikely to get ethical approval to run a clinical trial on whether

smoking causes cancer by randomly assigning 50% of the patients to smoke, and waiting

a bit to see who gets cancer. However, in certain situations it is possible to predict the

effect of such a hypothetical intervention from purely observational data, together with

an assumed underlying graph structure.

In this paper, we will focus on the problem of causal identifiability. For this problem,

we are given observational data as a joint distribution on a set of variables and we

are furthermore provided with a causal structure associated with those variables. This

structure, which typically takes the form of a directed acyclic graph or some variation

thereof, tells us which variables can in principle have a causal influence on others. The

problem then becomes whether we can measure how strong those causal influences are,

by means of computing an interventional distribution. That is, can we ascertain what

would have happened if a (hypothetical) intervention had occurred?

Note that this is distinct from the related problem of causal discovery, where a causal

structure is not given from the start, but must be discovered purely from the observa-

tional data, subject to certain well-behavedness assumptions [28]. Causal identifiability

assumes that the causal structure is already provided, either from previously doing causal

discovery or by making use of some additional knowledge about the problem at hand. In

particular, this means that causal identifiability is trivial when all variables are observed.

However, it becomes a difficult and important problem in the presence of confounding

variables (unobserved common causes) or selection bias (conditioning on common effects).

In this paper, we will focus on the former.

Over the past 3 decades, a great deal of work has been done in identifying neces-

sary and sufficient conditions for causal identifiability in the presence of confounding

variables, starting with very specific special cases such as the back-door and front-door

criteria [28] and progressing to more general necessary and sufficient conditions for causal

identifiability based on the do-calculus [17], or combinatoric concepts such as confounded

components in semi-Makovian models [34, 35].

This style of causal reasoning relies crucially on a delicate interplay between syntax

and semantics, which is often not made explicit in the literature. The syntactic object

of interest is the causal structure (e.g. a causal graph), which captures something about

our understanding of the world, and the mechanisms which gave rise to some observed

phenomena. The semantic object of interest is the data: joint and conditional probability

distributions on some variables. Fixing a causal structure entails certain constraints on

which probability distributions can arise, hence it is natural to see distributions satisfying

those constraints as models of the syntax.

In this paper, we make this interplay precise using functorial semantics in the spirit

of Lawvere [23], and develop basic syntactic and semantic tools for causal reasoning in

this setting. We take as our starting point a functorial presentation of Bayesian networks

similar to the one appearing in [12]. The syntactic role is played by string diagrams,

which give an intuitive way to represent morphisms of a monoidal category as boxes

plugged together by wires. Given a directed acyclic graph (dag) G, we can form a free

category SynG whose arrows are (formal) string diagrams which represent the causal
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structure syntactically. Structure-preserving functors from SynG to Stoch, the category

of stochastic matrices, then correspond exactly to Bayesian networks based on the dag

G.

Within this framework, we develop the notion of intervention as an operation of ‘string

diagram surgery’. Intuitively, this cuts a string diagram at a certain variable, severing

its link to the past. Formally, this is represented as an endofunctor on the syntactic

category cutX : SynG → SynG, which propagates through a model F : SynG → Stoch to

send observational probabilities F(ω) to interventional probabilities F(cutX(ω)).

The cutX endofunctor gives us a diagrammatic means of computing interventional dis-

tributions given complete knowledge of F . However, more interestingly, we can sometimes

compute interventionals given only partial knowledge of F , namely some observational

data. We show that this can also be done via a technique we call comb disintegration,

which is a string diagrammatic version of a technique called c-factorisation introduced by

Tian and Pearl [35]. Our approach generalises disintegration, a calculational tool whereby

a joint state on two variables is factored into a single-variable state and a channel, repre-

senting the marginal and conditional parts of the distribution, respectively. Disintegration

has recently been formulated categorically in [7] and using string diagrams in [6]. We take

the latter as a starting point, but instead consider a factorisation of a three-variable state

into a channel and a comb. The latter is a special kind of map which allows inputs and

outputs to be interleaved. They were originally studied in the context of quantum com-

munication protocols, seen as games [14], but have recently been used extensively in the

study of causally-ordered quantum [5, 30] and generalised [22] processes. While originally

imagined for quantum processes, the categorical formulation given in [22] makes sense in

both the classical case (Stoch) and the quantum. Much like Tian and Pearl’s technique,

comb factorisation allows one to characterise when the confounding parts of a causal

structure are suitably isolated from each other, then exploit that isolation to perform the

concrete calculation of interventional distributions.

However, unlike in the traditional formulation, the syntactic and semantic aspects of

causal identifiability within our framework are connected. Namely, we can give conditions

for causal identifiability in terms of factorisation of a morphism in SynG, whereas the

actual concrete computation of the interventional distribution involves factorisation of

its interpretation in Stoch. Thanks to the functorial semantics, the former immediately

implies the latter.

The interventional techniques in terms of string diagrams and their interpretations can

also be applied to counterfactual queries. There, we use two copies of the relevant string

diagram, one for the ‘actual’ and one for the ‘counterfactual’ world. These two copies

are connected via some shared states, which capture the sense in which random variables

should take the same value in the real and counterfactual world. This approach, which

is also described in functional form [2, 29], is elaborated here in terms of factorisation of

stochastic matrices into a deterministic part and an exogenous state. By sharing these

states between the two copies of the world, we are able to more effectively make use of

our knowledge of what did happen in order to predict what would have happened, had

some past detail been different. One standard example from the literature is elaborated

as illustration of how this works.
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To introduce our framework itself, we make use of a running example taken from

Pearl’s book [28]: identifying the causal effect of smoking on cancer with the help of an

auxiliary variable (the presence of tar in the lungs). After providing some preliminaries on

stochastic matrices and the functorial presentation of Bayesian networks in Sections 2 and

3, we introduce the smoking example in Section 4. In Section 5 we formalise the notion of

intervention as string diagram surgery, and in Section 6 we introduce the combs and prove

our main calculational result: the existence and uniqueness of comb factorisations. In

Section 7, we show how to apply this theorem in computing the interventional distribution

in the smoking example. In Section 8, we provide a more general version of the theorem,

which captures (and slightly generalises) the conditions given in [35]. In Section 9, we

focus on counterfactual reasoning, illustrating how it can also be modelled with string

diagram surgery. Finally, in Section 10, we summarise our results and describe several

avenues of future work.

This work is an extended version of the conference paper [19], which includes all the

missing proofs and a completely new part on counterfactuals (Section 9).

2. Stochastic Matrices and Conditional Probabilities

Symmetric monoidal categories (SMCs) give a very general setting for studying pro-

cesses which can be composed in sequence (via the usual categorical composition ◦) and
in parallel (via the monoidal composition ⊗). Throughout this paper, we will use string

diagram notation [33] for depicting composition of morphisms in an SMC. In this nota-

tion, morphisms are depicted as boxes with labelled input and output wires, composition

◦ as ‘plugging’ boxes together, and the monoidal product ⊗ as placing boxes side-by-

side. Identity morphisms are depicted simply as a wire and the unit I of ⊗ as the empty

diagram. The ‘symmetric’ part of the structure consists of symmetry morphisms, which

enable us to permute inputs and outputs arbitrarily. We depict these as wire-crossings:

. Morphisms whose domain is I are called states, and they will play a special role

throughout this paper.

A monoidal category of prime interest in this paper is Stoch, whose objects are finite

sets and morphisms f : A → B are |B| × |A| dimensional stochastic matrices. That is,

they are matrices of positive numbers (including 0) whose columns each sum to 1:

f = {f j
i ∈ R+ | i ∈ A, j ∈ B} with

!
j f

j
i = 1, for all i.

Note we adopt the physicists convention of writing row indices as superscripts and col-

umn indices as subscripts. Stochastic matrices are of interest for probabilistic reasoning,

because they exactly capture the data of a conditional probability distribution. That is, if

we take A := {1, . . . ,m} and B := {1, . . . , n}, conditional probabilities naturally arrange

themselves into a stochastic matrix:

f j
i := P (B = j|A = i) ⇝ f =

!

"""#

P (B = 1|A = 1) · · · P (B = 1|A = m)

.

..
. . .

.

..

P (B = n|A = 1) · · · P (B = n|A = m)

$

%%%&

States, i.e. stochastic matrices from a trivial input I := {∗}, are (non-conditional)
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probability distributions, represented as column vectors. There is only one stochastic

matrix with trivial output: the row vector consisting only of 1’s. The latter, with notation

as on the right, will play a special role in this paper (see (1) below).

Composition of stochastic matrices is matrix multiplication. In terms of conditional

probabilities, this corresponds to multiplication, followed by marginalization over the

shared variable:
!

B P (C|B)P (B|A). Identities are therefore given by identity matrices,

which we will often express in terms of the Kronecker delta function δji .

The monoidal product ⊗ in Stoch is the cartesian product on objects, and Kronecker

product of matrices: (f⊗g)
(k,l)
(i,j) := fk

i g
l
j . We will typically omit parentheses and commas

in the indices, writing e.g. hkl
ij instead of h

(k,l)
(i,j) for an arbitrary matrix entry of h : A⊗B →

C⊗D. In terms of conditional probabilities, the Kronecker product corresponds to taking

product distributions. That is, if f represents the conditional probabilities P (B|A) and

g the probabilities P (D|C), then f ⊗ g represents P (B|A)P (D|C). Stoch also comes

with a natural choice of ‘swap’ matrices σ : A ⊗ B → B ⊗ A given by σkl
ij := δliδ

k
j ,

making it into a symmetric monoidal category. Every object A in Stoch has three other

pieces of structure which will play a key role in our formulation of Bayesian networks

and interventions: the copy map, the discarding map, and the uniform state:
" #jk

i
:= δji δ

k
i

$ %
i
:= 1

" #i

:=
1

|A| (1)

Abstractly, this provides Stoch with the structure of a CDU category.

Definition 2.1. A CDU category (for copy, discard, uniform) is a symmetric monoidal

category (C,⊗, I) where each object A has a copy map : A → A ⊗ A, a discarding

map : A → I, and a uniform state : I → A satisfying the following equations:

= = = = (2)

CDU functors are symmetric monoidal functors between CDU categories preserving copy

maps, discard maps and uniform states.†

We assume that the CDU structure on I is trivial and the CDU structure on A ⊗ B

is constructed in the obvious way from the structure on A and B. We also use the first

equation in (2) to justify writing ‘copy’ maps with arbitrarily many output wires:
...

.

Similar to [3], we can form the free CDU category FreeCDU(A,Σ) over a pair (X,Σ)

of a generating set of objects X and a generating set Σ of typed morphisms f : u → w,

with u,w ∈ X! as follows. The category FreeCDU(A,Σ) has X! as set of objects, and

† CDU-categories are closely related to gs-monoidal categories, structured adopted in the categorical
description of resource sensitive algebraic theories [10]. The difference is that CDU-categories also

include uniform states and the corresponding equation. As we will see, this extra structure is

needed in order to account for causal intervention. A CDU category is also very much like a Markov
category defined in [13], but Markov categories do not have these uniform states either; additionally
in Markov categories the discard equation (3) holds for all maps.
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morphisms the string diagrams constructed from the elements of Σ and maps : x →
x⊗ x, : x → I and : I → x for each x ∈ X, taken modulo the equations (2).

Lemma 2.2. Stoch is a CDU category, with CDU structure defined as in (1).

f =

A

B

B (3)

An important feature of Stoch is that I = {"} is the fi-

nal/terminal object, with : B → I the map provided by the

universal property, for any set B. This yields equation (3) on the

right, for any f : A → B, justifying the name “discarding map”

for .

We conclude by recording another significant feature of Stoch: disintegration [6, 7].

In probability theory, this is the mechanism of factoring a joint probability distribution

P (AB) as a product of the first marginal P (A) and a conditional distribution P (B|A).

We recall from [6] the string diagrammatic rendition of this process. We say that a

morphism f : X → Y in Stoch has full support if, as a stochastic matrix, it has no zero

entries. When f is a state, it is a standard result that full support ensures uniqueness of

disintegrations of f .

Proposition 2.3 (Disintegration). For any state ω : I → A ⊗ B in Stoch with full

support, there exists unique morphisms a : I → A, b : A → B such that:

b
=

a

ω

A

A B

B

(4)

Note that equation (3) and the CDU rules immediately imply that the unique a : I → A

in Proposition 2.3 is the marginal of ω onto A: BA

ω
.

3. Bayesian Networks as String Diagrams

Bayesian networks are a widely-used tool in probabilistic reasoning. They give a succinct

representation of conditional (in)dependences between variables as a directed acyclic

graph. Traditionally, a Bayesian network on a set of variables A,B,C, . . . is defined

as a directed acyclic graph (dag) G, an assignment of finite sets to each of the nodes

VG := {A,B,C, . . .} of G and a joint probability distribution over those variables which

factorises as P (VG) =
&

A∈VG
P (A |Pa(A)) where Pa(A) is the set of parents of A in

G. Any joint distribution that factorises this way is said to satisfy the global Markov

property with respect to the dag G. Alternatively, a Bayesian network can be seen as

a dag equipped with a set of conditional probabilities {P (A |Pa(A)) | A ∈ VG} which

can be combined to form the joint state. Disintegration allows us to switch back and

forth between joint states and conditional probabilities and thus yields the equivalence

between these two perspectives.

Much like in the case of disintegration in the previous section, Bayesian networks have

a categorical description as string diagrams in the category Stoch. This perspective has
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been widely adopted — with some variations — in recent years [4, 9, 12, 13, 18, 20, 21].

We offer here a presentation inspired by functorial semantics of algebraic theories [24].

Let us start with an example. Here is a Bayesian network in its traditional depiction

as a dag with an associated joint distribution over its vertices, and as a string diagram

in Stoch:

A

B D

C E

P (ABCDE) =

P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

A B EC D

In the string diagram above, the stochastic matrix a : I → A contains the probabilities

P (A), b : B → A contains the conditional probabilities P (B|A), c : B ⊗D → C contains

P (C|BD), and so on. The entire diagram is then equal to a state ω : I → A⊗B⊗C⊗D⊗E

which represents P (ABCDE).

Note the dag and the diagram above look similar in structure. The main difference is

the use of copy maps to make each variable (even those that are not leaves of the dag,

A, B and D) an output of the overall diagram. This corresponds to a variable being

observed. We can also consider Bayesian networks with latent variables, which do not

appear in the joint distribution due to marginalisation. Continuing the example above,

making A into a latent variable yields the following depiction as a string diagram:

A

B D

C E

P (BCDE) =
!

A P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

B EC D

In general, a Bayesian network (with possible latent variables), is a string diagram in

Stoch that (1) only has outputs and (2) consists only of copy maps and boxes which each

have exactly one output.

By ‘a string diagram in Stoch’, we mean not only the stochastic matrix itself, but also

its decomposition into components. We can formalise exactly what we mean by taking a

perspective on Bayesian networks which draws inspiration from functorial semantics of

algebraic theories [24]. In this perspective, which mainly elaborates on [12, Ch. 4], we

maintain a conceptual distinction between the purely syntactic object (the diagram) and

its probabilistic interpretation.

Starting from a dag G = (VG, EG), we construct a free CDU category SynG which

provides the syntax of causal structures labelled by G. The objects of SynG are generated
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by the vertices of G, whereas the morphisms are generated by the following signature:

ΣG =

'
(

)

A

a

B1 Bk

. . .

******
A ∈ VG with parents B1, . . . , Bk ∈ VG

+
,

-

Then SynG := FreeCDU(VG,ΣG). The following result establishes that models (à la Law-

vere) of SynG coincide with G-based Bayesian networks.

Proposition 3.1. There is a 1-1 correspondence between Bayesian networks based on

the dag G and CDU functors of type SynG → Stoch.

Proof. In one direction, consider a Bayesian network consisting of the dag G and, for

each node A ∈ VG, an assignment of a finite set τ(A) and a conditional probability

P (A|Pa(A)). This data yields a CDU functor F : SynG → Stoch, defined by the following

mappings:

F ::

'
..(

..)

A ∈ VG '→ τ(A)
A

a

B1 Bk

. . .

'→
$
f j
i1...in

:= P (A = j|Pa(A) = (i1, . . . , in))
%

Conversely, let F : SynG → Stoch be a CDU functor. This defines a G-based Bayesian

network by setting τ(A) := F(A) and P (A = j|Pa(A) = (i1, . . . , in)) := F(a)ji1...in . It is

immediate that these two mappings are inverse to each other, thus proving the statement.

This proposition justifies the following definition of a category BNG ofG-based Bayesian

networks: objects are CDU functors SynG → Stoch and arrows are monoidal natural

transformations between them.

4. Towards Causal Inference: the Smoking Scenario

We will motivate our approach to causal inference via a classic example, inspired by the

one given in the Pearl’s book [28]. Imagine a dispute between a scientist and a tobacco

company. The scientist claims that smoking causes cancer. As a source of evidence, the

scientist cites a joint probability distribution ω over variables S for smoking and C for

cancer, which disintegrates as in (5) below, with matrix c = ( 0.9 0.7
0.1 0.3 ). Inspecting this

c : S → C, the scientist notes that the probability of getting cancer for smokers (0.3) is

three times as high as for non- smokers (0.1). Hence, the scientist claims that smoking

has a significant causal effect on cancer.

c

=

s

ω

S

S C

C

(5)

An important thing to stress here is that the scientist draws

this conclusion using not only the observational data ω but

also from an assumed causal structure which gave rise to that

data, as captured in the diagram in equation (5). That is,

rather than treating diagram (5) simply as a calculation on

the observational data, it can also be treated as an assumption about the actual, physical

mechanism that gave rise to that data. Namely, this diagram encompasses the assumption
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that there is some prior propensity for people to smoke captured by s : I → S, which is

both observed and fed into some other process c : S → C whereby an individual’s choice

to smoke determines whether or not they get cancer.

=
s

ω

S

S C

C
c

h

H
(6)

The tobacco company, in turn, says that the scientist’s as-

sumptions about the provenance of this data are too strong.

While they concede that in principle it is possible for smok-

ing to have some influence on cancer, the scientist should

allow for the possibility that there is some latent common

cause (e.g. genetic conditions, stressful work environment,

etc.) which leads people both to smoke and get cancer.

Hence, says the tobacco company, a ‘more honest’ causal structure to ascribe to the

data ω is (6). This structure then allows for either party to be correct. If the scientist

is right, the output of c : S ⊗H → C depends mostly on its first input, i.e. the causal

path from smoking to cancer. If the tabacco company is right, then c depends very little

on its first input, and the correlation between S and C can be explained almost entirely

from the hidden common cause H.

So, who is right after all? Just from the observed distribution ω, it is impossible to

tell. So, the scientist proposes a clinical trial, in which patients are randomly required

to smoke or not to smoke. We can model this situation by replacing s in (6) with a

process that ignores its inputs and outputs the uniform state. Graphically, this looks like

‘cutting’ the link s between H and S:

=
s

ω

S

S C

C
c

h

H
⇝ =: ω′

S

S C

C
c

h

H
(7)

This captures the fact that variable S is now randomised and no longer dependent on

any background factors. This new distribution ω′ represents the data the scientist would

have obtained had they run the trial. That is, it gives the results of an intervention at s.

If this ω′ still shows a strong correlation between smoking and cancer, one can conclude

that smoking indeed causes cancer even when we assume the weaker causal structure (6).

Unsurprisingly, the scientist fails to get ethical approval to run the trial, and hence

has only the observational data ω to work with. Given that the scientist only knows ω

(and not c and h), there is no way to compute ω′ in this case. However, a key insight

of statistical causal inference is that sometimes it is possible to compute interventional

distributions from observational ones. Continuing the smoking example, suppose the

scientist proposes the following revision to the causal structure: they posit a structure

(8) that includes a third observed variable (the presence of T of tar in the lungs), which

completely mediates the causal effect of smoking on cancer.

As with our simpler structure, the diagram (8) below contains some assumptions about

the origins of the data ω. In particular, by omitting wires, we are asserting there is no
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direct causal link between certain variables.

ω

S T C

=

s

S C

c

h

H

t

T

(8)

The absence of an H-labelled input to t says there is no direct causal link from H to T

(only mediated by S), and the absence of an S-labelled input wire into c captures that

there is no direct causal link from S to C (only mediated by T ). In the traditional ap-

proach to causal inference, such relationships are typically captured by a graph-theoretic

property called d-separation (see [28] for a standard and [21] for a categorical account)

on the dag associated with the causal structure.

We can again imagine intervening at S by replacing s : H → S by ◦ . Again, this

‘cutting’ of the diagram will result in a new interventional distribution ω′. However, unlike

before, it is possible to compute this distribution from the observational distribution ω.

However, in order to do that, we first need to develop the appropriate categorical

framework. In Section 5, we will model ‘cutting’ as a functor. In 6, we will introduce a

generalisation of disintegration, which we call comb disintegration. These tools will enable

us to compute ω′ for ω, in Section 7.

5. Interventional Distributions as Diagram Surgery

The goal of this section is to define the ‘cut’ operation in (7) as an endofunctor on

the category of Bayesian networks. First, we observe that such an operation exclusively

concerns the string diagram part of a Bayesian network: following the functorial semantics

given in Section 3, it is thus appropriate to define cut as an endofunctor on SynG, for a

given dag G.

Definition 5.1. For a fixed node A ∈ VG in a graph G, let cutA : SynG → SynG be the

CDU functor freely obtained by the following action on the generators (VG,ΣG) of SynG:

— For each object B ∈ VG, cutA(B) = B.

— cutA(
A

a

B1 Bk

. . .

) =
A

B1 Bk

. . .

and cutA(
B

b

C1 Cj

. . .

) =
B

b

C1 Cj

. . .

for any other
B

b

C1 Cj

. . .

∈ ΣG.

Intuitively, cutA applied to a string diagram f of SynG removes from f each occurrence

of a box with output wire of type A.

Proposition 3.1 allows us to “transport” the cutting operation over to Bayesian net-

works. Given any Bayesian network based on G, let F : SynG → Stoch be the correspond-

ing CDU functor given by Proposition 3.1. Then, we can define its A-cutting as the
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Bayesian network identified by the CDU functor F ◦ cutA. This yields an (idempotent)

endofunctor CutA : BNG → BNG.

6. The Comb Factorisation

Thanks to the development of Section 5, we can understand the transition from left to

right in (7) as the application of the functor CutS applied to the ‘Smoking’ node S. The

next step is being able to actually compute the individual Stoch-morphisms appearing

in (8), to give an answer to the causality question.

= =

In order to do that, we want to work in a setting where

t : S → T can be isolated and ‘extracted’ from (8). What is

left behind is a stochastic matrix with a ‘hole’ where t has

been extracted. To define ‘morphisms with holes’, it is convenient to pass from SMCs to

compact closed categories (see e.g. [33]). Stoch is not itself compact closed, but it embeds

into Mat(R+), whose morphisms are all matrices over non-negative numbers. Mat(R+)

has a (self-dual) compact closed structure; that means, for any set A there is a ‘cap’

∩ : A ⊗ A → I and a ‘cup’ ∪ : I → A ⊗ A, which satisfy the ‘yanking’ equations on the

right. As matrices, caps and cups are defined by ∩ij = ∪ij = δji . Intuitively, they amount

to ‘bent’ identity wires. Another aspect of Mat(R+) that is useful to recall is the following

handy characterisation of the subcategory Stoch.

Lemma 6.1. Amorphism f : A → B inMat(R+) is a stochastic matrix (thus a morphism

of Stoch) if and only if (3) holds, that is, if ◦ f = .

A suitable notion of ‘stochastic map with a hole’ is provided by a comb. These struc-

tures originate in the study of certain kinds of quantum channels [5].

Definition 6.2. A 2-comb in Stoch is a morphism f : A1 ⊗ A2 → B1 ⊗ B2 satisfying,

for some other morphism f ′ : A1 → B1,

f = f ′

A1

B1

A2

B2

A1

B1

A2

(9)

For this notion of 2-comb it is important to consider the map f with an explicit description

of the product ⊗ on its domain and codomain.

This definition extends inductively to n-combs, where we require that discarding the

rightmost output yields f ′ ⊗ , for some (n − 1)-comb f ′. However, for our purposes,

restricting to 2-combs will suffice.

Remark 6.3. Note that Definition 6.2 depends on the specific decomposition of the do-

main and codomain into a monoidal product of subsystems. For example, any stochastic

matrix is trivially a 2-comb with respect to the decompostion f : A⊗ I → B ⊗ I, where

I is the monoidal unit. Hence, the data associated with a 2-comb is actually a pair of

input/output types and a morphism: ((A1, B1), (A2, B2),f : A1 ⊗ A2 → B1 ⊗ B2). We

will supress this extra data when it is clear from context.
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The intuition behind condition (9) is that the contribution from input A2 is only visible

via output B2. Thus, if we discard B2 we may as well discard A2. In other words, the

input/output pair A2, B2 happen ‘after’ the pair A1, B1. Hence, it is typical to depict

2-combs in the shape of a (hair) comb, with 2 ‘teeth’, as in (10) below:

f

A2

B1

A1

B2

⇝ f

A1

B1

A2

B2

(10) f

A1

B1

A2

B2

g :=

f

A2

B1

A2

g

A1

B2

(11)

While combs themselves live in Stoch, Mat(R+) accommodates a second-order reading

of the transition ⇝ in (10): we can treat f as a map which expects as input a map

g : B1 → A2 and produces as output a map of type A1 → B2. Plugging g : B1 → A2 into

the 2-comb can be formally defined in Mat(R+) by composing f and g in the usual way,

then feeding the output of g into the second input of f , using caps and cups, as in (11).

Importantly, for generic f and g of Stoch, there is no guarantee that forming the

composite (11) in Mat(R+) yields a valid Stoch-morphism, i.e. a morphism satisfying the

finality equation (3). However, if f is a 2-comb and g is a Stoch-morphism, equation (9)

enables a discarding map plugged into the output B2 in (11) to ‘fall through’ the right

side of f , which guarantees that the composed map satisfies the finality equation for

discarding:

f

A1

B1

A2

B2

g =

f

A2

B1

A2

g

A1

B2

=

f ′

A1

B1

A2

g
=

f ′

A1

B1
= A1

(9) (3)(3)

Remark 6.4. An alternative formulation of the comb composition in (11) can be made

without leaving the sub-category of stochastic matrices. First, in Stoch, any stochastic

matrix satisfying (9) can be semi-localised, i.e. factored into two parts f1,f2 as follows:

f

A1

B1

A2

B2

=

f1

A1 A2

B2

f2

B1

X
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Then, one can show that the composition:

f1

A1

f2

B1

Xg

B2

A2

(12)

doesn’t depend on the particular choice of f1,f2. The latter can be seen by concrete

calculation, or by noting that (12), seen as a diagram in Mat(R+), can be deformed into

(11) by re-introducing the feedback loop on A2:

f1

A1

f2

B1

Xg

B2

A2

=

f1

A1

f2B1

X

g

=

f

A2

B1

A2

g

A1

B2

A2

A2

B2

See e.g. [22] for more details. As it is possible to freely pass between f and f1,f2, one

could equivalently define a comb as an equivalence class of pairs (f1,f2) which compose

to give f , much like those considered in the construction of completely positive maps

in [8].

With the concept of 2-combs in hand, we can state our factorisation result.

Theorem 6.5. For any state ω : I → A⊗B⊗C of Stoch with full support, there exists

a unique 2-comb f : B → A⊗C and stochastic matrix g : A → B such that, in Mat(R+):

f

A B C

gω

A B C

= (13)

Proof. The construction of f and g mimics the construction of c-factors in [35], using

string diagrams and diagrammatic disintegration. Starting with a full-support ω : I →
A⊗B⊗C, we apply Theorem 2.3 twice. First we can disintegrate ω as (ω′ : I → A⊗B, c :
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A⊗B → C) then further disintegrate ω′ into (a : I → A, b : A → B):

=

B

A

CA

B

c

C

ω

ω′

=

A B

c

C

b

B

a

A

(14)

Now, we let:

f

A C

B

:=

A

c

C

a

A

B

g

B

A

:= b

B

A

Then (13) holds by construction of a, b, c:

f

A B C

g :=

f

A B C

g

c

C

a

A

B

=

A B

b
=

A B

c

C

b

B

a

A

Note the last step above is just diagram deformation and the comonoid laws. The right-

most diagram above is equal to ω by (14).

For uniqueness, suppose (13) holds for some other f ′, g′. Then by uniqueness of dis-

integration, it follows that g′ = g = b. To show that f = f ′, we expand (13) explicitly

in terms of matrices. This equation is equivalent to ωijk = f ik
j gj

i = (f ′)ikj gj
i . Note that

if g had any zero elements, ω would not have full support, hence gj
i ∕= 0 and therefore

f ik
j = (f ′)ikj for all i, j, k.

Note that Theorem 6.5 generalises the normal disintegration property given in Theo-

rem 2.3. The latter is recovered by taking A := I (or C := I) above.

7. Returning to the Smoking Scenario
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ω

S T C

=

s

S C

c

h

H

t

T

f

g

We now return to the smoking scenario of Section 4.

There, we concluded by claiming that the introduction

of an intermediate variable T to the observational dis-

tribution ω : I → S⊗T⊗C would enable us to calculate

the interventional distribution. That is, we can calculate

ω′ = F(cutX(ω)) from ω := F(ω). Thanks to Theorem

6.5, we are now able to perform that calcuation. We

first observe that our assumed causal structure for ω

fits the form of Theorem 6.5, where g is t and f is a

2-comb containing everything else, as in the diagram on

the side.

Hence, f and g are computable from ω. If we plug them back together as in (13), we

will get ω back. However, if we insert a ‘cut’ between f and g:

s

S C

c

h

H

t

T

=

S C

c

h

H

t

T

f

S T C

g
= (15)

we obtain ω′ = F(cutX(ω)).

Let us now consider a concrete example. We fix interpretations for the sets S, T , and

C as booleans: S = T = C = {0, 1} and let ω : I → S ⊗ T ⊗C be the stochastic matrix:

ω :=

/

00000000001

0.5
0.1
0.01
0.02
0.1
0.05
0.02
0.2

2

33333333334

← P (S = 0, T = 0, C = 0)

← P (S = 0, T = 0, C = 1)

← P (S = 0, T = 1, C = 0)

← P (S = 0, T = 1, C = 1)

← P (S = 1, T = 0, C = 0)

← P (S = 1, T = 0, C = 1)

← P (S = 1, T = 1, C = 0)

← P (S = 1, T = 1, C = 1)

Now, disintegrating ω:

=

T CS

ω

c

s

S C

gives c ≈

/

10.81 0.32

0.19 0.68

2

4

The bottom-left element of c is P (C = 1|S = 0), whereas the bottom-right is P (C =

1|S = 1), so this suggests that patients are ≈ 3.5 times as likely to get cancer if they

smoke (68% vs. 19%). However, comb-disintegrating ω using Theorem 6.5 gives g : S → T
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and a comb f : T → S ⊗ C with the following stochastic matrices:

f ≈

/

000001

0.53 0.21

0.11 0.42

0.25 0.03

0.12 0.34

2

333334
g ≈

/

10.95 0.41

0.05 0.59

2

4

Recomposing these with a ‘cut’ in between, as in the left-hand side of (15), gives the in-

terventional distribution ω′ ≈ (0.38, 0.11, 0.01, 0.02, 0.16, 0.05, 0.07, 0.22). Disintegrating:

=

T CS

ω′

c′

s′

S C

gives c′ ≈

/

10.75 0.46

0.25 0.54

2

4 .

From the interventional distribution, we conclude that, in a (hypothetical) clinical trial,

patients are about twice as likely to get cancer if they smoke (54% vs. 25%). So, since

54 < 68, there was some confounding influence between S and C in our observational

data, but after removing it via comb disintegration, we see there is still a signficant causal

link between smoking and cancer.

Note this conclusion depends totally on the particular observational data that we

picked. For a different interpretation of ω in Stoch, one might conclude that there is no

causal connection, or even that smoking decreases the chance of getting cancer. Inter-

estingly, all three cases can arise even when a näıve analysis of the data shows a strong

direct correlation between S and C. To see and/or experiment with these cases, we have

provided the Python code‡ used to perform these calculations. See also [27] for a pedago-

cical overview of this example (using traditional Bayesian network language) with some

sample calculations.

8. Generic Single Interventions

While we applied the comb decomposition to a particular example, this technique applies

essentially unmodified to many examples where we intervene at a single variable (called

X below) within an arbitrary causal structure.

‡ https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6

https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6
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Theorem 8.1. Let G be a dag with a fixed node X that has corresponding generator

x : Y1⊗ . . .⊗Yn → X in SynG. Then, let ω be a morphism in SynG of the following form:

ω

A B C

=

X

X C

g

A B

x

f1

f2

(16)

for some morphisms f1, f2 and g in SynG not containing x as a subdiagram. Then the

interventional distribution ω′ := F(cutX(ω)) is computable from any observational dis-

tribution ω = F(ω) with full support.

Proof. The proof is very close to the example in the previous section. Interpreting ω

into Stoch, we get a diagram of stochastic maps, which we can comb-disintegrate, then

recompose with ◦ to produce the interventional distribution:

X C

g

A B

x

f1

f2

f

⇝

X C

g

A B

x

f1

f2

f

=

X C

g

A B

f1

f2

(3)

The right-hand-side above is then F(cutX(ω)).

This is general enough to cover several well-known sufficient conditions from the causal-

ity literature, including single-variable versions of the so-called front-door and back-door

criteria, as well as the sufficient condition based on confounding paths given by Pearl and

Tian [35]. As the latter subsumes the other two, we will say a few words about the rela-

tionship between the Pearl/Tian condition about confounding paths and Theorem 8.1. In

[35], the authors focus on semi-Markovian models, where the only latent variables have

exactly two observed children and no parents. Suppose we write A ↔ B if two observed

variables are connected by a latent common cause, then one can characterise confounding

paths as the transitive closure of ↔. They go on to show that the interventional distribu-

tion corresponding to cutting X is computable whenever there are no confounding paths

connecting X to one of its children.

We can compare this to the form of expression ω in equation (16). First, note this

factorisation implies that all boxes which take X as an input must occur as sub-diagrams

of g. Hence, any ‘confounding path’ connecting X to its children would yield at least one

(un-copied) wire from f1 to g, hence it cannot be factored as (16). Conversely, if there
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are no confounding paths from X to its children, then we can place the boxes involved in

any other confounding path either entirely inside of g or entirely outside of g and obtain

factorisation (16). Hence, restricting to semi-Markovian models, the non-confounding-

path condition from [35] is equivalent to ours. However, Theorem 8.1 is slightly more

general: its formulation doesn’t rely on the causal structure ω being semi-Markovian.

9. Counterfactuals

While interventional distributions are a powerful tool for extracting causal information

from a probabilistic model, there are certain cases where genuine causal influences remain

hidden. In those cases, we can extend string diagram surgery techniques to do counterfac-

tual reasoning. This enables us to reason about alternatives for events that have already

occurred. For example, we can consider the likelihood of statements like:

“Had Sally been able to play, the team would have won the game.”

Implicit in this statement is the assumption that Sally was, in fact, not able to play. We

can make this assumption explicit as follows:

“Given Sally was not able to play, the team would have won, had she been able to play.”

We therefore end up in the seemingly paradoxical situation of needing to condition on

a real world event (Sally not being able to play) and considering the outcome of a

contradictory event (Sally being able to play).

In order to evaluate the likelihood of such a statement, we need to be able to compare

two worlds: the real world, containing events that have already happened, with a hypo-

thetical world which is the same in every way except for a single intervention, namely

making Sally able to play.

To see how we could compute probabilities for counterfactual statements using string

diagram surgery, we will work out a concrete example of Balke and Pearl [2]. We will do

this by giving a diagrammatic version of the ‘twin model’ technique used there.

Consider three people, Ann, Bob and Carl, who may or may not go to a party. The

likelihood that Ann goes to the party is 60%. Bob is very likely (90%) to go to the

party if Ann is there, but he will almost surely not go otherwise (97%). For Carl, it is

the opposite: he is very likely to go (95%) if Ann does not go, and otherwise he will

probably not go (90%). If Bob and Carl both go to the party, they are very likely to

have a scuffle (95%). If only one of them is going, it is certain there will be no scuffle

(100%), whereas if both are not going there is still a small chance (5%) of them getting

in a scuffle somewhere else.

We can express this situation with the following string diagram, where the wires la-

belled A, B, and C represent whether Ann, Bob, or Carl go to the party, and S whether
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there is a scuffle:§

a

A

f g

h

B S

C

(17)

The probabilities given before are then modelled by the following stochastic matrices:

a :=

/

10.40

0.60

2

4 f :=

/

10.90 0.03

0.10 0.97

2

4 g :=

/

10.10 0.95

0.90 0.05

2

4 h :=

5
0.95 1 1 0.05
0.05 0 0 0.95

6

An example of a counterfactual statement is the following:

“Given Bob did not go to the party, there would have been a scuffle,

had he gone.”
(18)

Since we know all the stochastic matrices already, we can compute the (näıve) inter-

ventional distribution to predict how likely a scuffle is if we intervene and make Bob go

to the party:

a

A

f g

h

B S

C
cutB'→

a

A

g

h

B S

C
=

a

g

h

B S

Disintegrating on B yields:

a

g

h

B

S

≈

/

10.97 0.58

0.03 0.42

2

4

The bottom-right corner of this matrix corresponds to P (S = 1|B = 1), and as we can

see, the probability of a scuffle, given the intervention setting B = 1, is 42%.

However, we have ignored an important piece of information: Bob actually did not go

§ Note in (17) we treat A and C as latent variables, and choose to observe B and S. This is because B
and S are involved in the counterfactual query (18) under consideration.
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to the party. Hence, to assign a more accurate probability to statement (18), we should

take this into account. As we said before, to do this requires us to consider two copies

of the world, one which actually happened (where Bob did not go to the party) and one

where we introduce a hypothetical intervention (making Bob go to the party). Crucially,

everything else should be kept the same between the two copies of the world.

So, what does it mean to “keep everything else the same”? For example, if we look

at the stochastic map f relating Ann’s attendance to Bob’s, the randomness in f can

be interpreted as the presence of other, possibly unknown variables affecting Bob’s at-

tendance (e.g. the weather or Bob not feeling well). We can isolate those variables by

factoring f into a deterministic part f ′ and an exogenous state εB. For example, one

such factorisation is:

f
f ′

εB

= where f ′ :=

/

11 1 1 0 0 1 0 0

0 0 0 1 1 0 1 1

2

4 εB :=

/

000001

0.027

0.873

0.003

0.097

2

333334

The deterministic part is a function, which can be expressed as a stochastic matrix whose

entries are all only 0 or 1. It is well-known that such a factorisation for stochastic matrices

is always possible. For example, it is suggested by Fritz [13] as a candidate axiom for

‘well-behaved’ probabilistic categories (of which Stoch, which Fritz calls FinStoch, is an

example).

Decomposing f , g, and h into function and exogenous variables, we are able to exogonize

the diagram, i.e. obtain a new diagram where all of the randomness occurs in boxes with

no inputs:

a

A

f g

h

B S

C

⇝

aεB εC εS

f ′ g′

h′

C

SB

A

(19)

Note that, since a doesn’t have any inputs, we can already treat it as an exogenous state.

In order to answer the counterfactual query, we transform our diagram into a “twin”

diagram, which contains two copies of all the variables: the first copy represents the

“factual world” in which Bob did not go to the party, whereas the second copy represents

a counterfactual world, in which Bob went to the party. In order to keep everything else

but Bob’s attendance the same, the two copies share the same exogenous states. We then
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intervene on the counterfactual copy of B by cutting out the rightmost f ′:

f ′ g′

h′

C

SB

A

aεB εC εS

f ′ g′

h′

C

SB

A

cut'→

f ′ g′

h′

C

SB

A

aεB εC εS

g′

h′

C

SB

A

(20)

To evaluate the probability of the counterfactual statement (18), we first marginalise

out the left copy of S and do some simplification:

f ′ g′

h′

C

SB

A

aεB εC εS

g′

h′

C

SB

A

f ′

B

A

aεB εC εS

g′

h′

C

SB

A

=
f ′

B

a

εB

εSg′

h′

C

SB

A

=

εC

f

B

a

g

h

C

SB

A

=

The result is a state ω : I → B ⊗ B ⊗ S. Disintegrating over the two copies of B, we

obtain a stochastic map from ‘real’ B and ‘counterfactual’ B to S:

ω

B B S

=

ω′

S

k

B B

We can condition on the ‘real’ B = 0 by plugging the state e0 := (1, 0) (meaning “Bob

did not go to the party”) into the first wire of k, to obtain:

S

k

e0
B

≈

/

10.99 0.21

0.01 0.79

2

4 (21)
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Again looking at the bottom-right corner, we see the hypothetical probability of a scuffle

has gone up to 79%, matching the conclusion from [2].

This is because knowing that Bob actually did not attend the party enables us to draw

certain conclusions about what happened at the actual party. Namely, if Bob was not

there, it is less likely that Ann was there, which in turn means it was more likely that

Carl was. Hence, if we want to think about what would have happened at that same

party, had Bob gone, he most likely would have seen Carl, and there most likely would

have been some fisticuffs.

Crucially, the exogenous states are shared between the two copies the diagram, rather

than split into two independent copies. This is what enables us to imagine that the real

and counterfactual halves are talking about the exact same event, rather than a separate

event that happens to be modelled by the same stochastic processes. We can see in that

case that the shared a box is what enables information to flow between the two worlds:

f

B

a

g

h

C

SB

A

That is: when we condition on the counterfactual copy of B in equation (21), this has an

effect on the value of S for all values of the ‘real’ copy of B.

One other thing to note from this example is that it does not actually depend on the

decompositions of stochastic maps into functions and exogenous variables. This is not

the case in general, and furthermore such decompositions are not unique. Hence coun-

terfactual reasoning is only well-defined when either (i) the decomposition into functions

and exogenous states is given in advance, or (ii) the resulting counterfactual query does

not depend on the choice of decomposition.

In [2], the authors use this fact to state that causal Bayesian networks alone are not

adequate for counterfactual reasoning, and emphasise instead the utility of structural

equational models for this task. However, in certain situations, like the party example,

Bayesian networks do suffice.

10. Conclusion and Future Work

This paper takes a fresh, systematic look at the problem of causal identifiability. By

clearly distinguishing syntax (string diagram surgery and identification of comb shapes)

and semantics (comb-disintegration of joint states) we obtain a clear methodology for

computing interventional distributions, and hence causal effects, from observational data.

Furthermore, we show that diagram surgery can be used to model counterfactual queries.

A natural next step is moving beyond single-variable interventions to the general case,
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i.e. situations where we allow interventions on multiple variables which may have some

arbitrary causal relationships connecting them. This would mean extending the comb fac-

torisation Theorem 6.5 from a 2-comb and a channel to arbitrary n-combs. This seems

to be straightforward, via an inductive extension of the proof in Section 8. A more sub-

stantial direction of future work will be the strengthening of Theorem 8.1 from sufficient

conditions for causal identifiability to a full characterisation. Indeed, the related condition

based on confounding paths from [35] is a necessary and sufficient condition for comput-

ing the interventional distribution on a single variable. Hence, it will be interesting to

formalise this necessity proof (and more general versions, e.g. [16]) within our framework

and investigate, for example, the extent to which it holds beyond the semi-Markovian

case.

Throughout this work, we have relied crucially on the fact that observational data has

full support. This assumption seems to often be made without comment in the literature

on causal identifiability. For example, Tian and Pearl make this assumption implicitly

in [35] by dividing by conditional probabilities at will. However, it is a rather strong

assumption, and in particular rules out deterministic relationships between variables.

There are some tricks one can do to cope with this problem (see e.g. the discussion of

determinism in the context of causal discovery in [26]), so it would be interesting to see

if they can be adapted to our setting.

While we focus exclusively on the case of taking models in Stoch in this paper, the

techniques we gave are posed at an abstract level in terms of composition and fac-

torisation. Hence, we are optimistic about their prospects to generalise to other prob-

abilistic (e.g. infinite discrete and continuous variables) and quantum settings. In the

latter case, this could provide insights into the emerging field of quantum causal struc-

tures [11, 15, 25, 31, 32], which attempts in part to replay some of the results coming

from statistical causal reasoning, but where quantum processes play a role analogous to

stochastic ones. A key difficulty in applying our framework to a category of quantum

processes, rather than Stoch, is the unavailability of canonical (basis-independent) ‘copy’

morphisms due to the quantum no-cloning theorem [36]. However, a recent proposal for

the formulation of ‘quantum common causes’ [1] suggests a (partially-defined) analogue

to the role played by ‘copy’ in our formulation constructed via multiplication of certain

commuting Choi matrices. Hence, it may yet be possible to import results from classical

causal reasoning into the quantum case just by changing the category of models.
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