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A B S T R A C T

The majority of the solvers for the acoustic problem in Photoacoustic
Tomography (PAT) rely on full solution of the wave equation, which
makes them less suitable for real-time and dynamic applications where
only partial data is available. This is in contrast to other tomographic
modalities, e.g. X-ray tomography, where partial data implies partial
cost for the application of the forward and adjoint operators. In this
work we present a novel solver for the forward and adjoint wave equa-
tions for the acoustic problem in PAT. We term the proposed solver
Hamilton-Green as it approximates the fundamental solution to the re-
spective wave equation along the trajectories of the Hamiltonian system
resulting from the high frequency asymptotic approximate solution for
the wave equation. This approach is flexible and scalable in the sense
that it allows computing the solution for each sensor independently at
a fraction of the cost of the full wave solution. The theoretical founda-
tions of our approach are rooted in results available in seismics and
ocean acoustics. To demonstrate the feasibility of our approach we
present results for 2D domains with homogeneous and heterogeneous
sound speeds and evaluate them against a full wave solution obtained
with a pseudospectral finite difference method implemented in the k-

Wave toolbox [1].
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1. Photoacoustic tomography

Photoacoustic tomography (PAT) is a hybrid imaging technique based on the photoacoustic effect. In PAT,

the biological tissue is irradiated with a laser pulse [2, 3]. Part of the energy of this pulse is absorbed in

the form of heat, which is then released through thermoelastic expansion and emission of an ultrasonic

wave. This wave propagates outwards, where a set of detectors placed at the boundary of the tissue records

the ultrasonic pressure over time. This data is then used to reconstruct the initial pressure (PAT image).

The main advantage of this modality is its ability to simultaneously obtain high spatial resolution of the

ultrasonic wave and the high contrast of the optical absorption of the laser pulse. To make PAT quantitative

requires a solution of a coupled acoustic and optical problem, where the initial acoustic pressure constitutes

the “interior data” for the optical problem [4]. In this work we focus on the acoustic problem.

1.1. Acoustic propagation in PAT

The forward problem in PAT is modeled by the initial value problem for the wave equation in free space Rd

see e.g. [3, 5]

�2u(t, x) :=
1

c2(x)
∂2u(t, x)
∂t2 − ∆u(t, x) = 0, (t, x) ∈ (0,∞) × Rd, (1a)

ut(0, x) = 0, x ∈ Rd, (1b)

u(0, x) = u0(x), x ∈ Rd, (1c)

where c(x) ∈ C∞(Rd) denotes the sound speed in Rd. Reconstruction of the PAT image amounts to recovery

of the initial pressure u(0, x) = u0(x) from pressure over time measurements at a set of ideal (isotropic and

point-like) detectors Γ = {xm
0 ∈ R

d, m = 1, . . . ,M}. The detectors are typically placed on the boundary of the

object, covering the boundary fully or, more frequently, in part, the latter scenario potentially resulting in a

limited view problem. Other factors like limited propagation time or trapping sound speed may also result

in incomplete data. We denote the data obtained at the sensors over a finite measuring time T > 0 with

g(t, y) = u(t, y), (t, y) ∈ (0,T ) × Γ. (2)

We define the forward operator P for PAT with sensors placed on Γ and the measurement time T as

P : C∞0 (Rd) −→ C∞0 (0,T ) × Γ

u0(x) 7−→ ω(t)g(t, y),

with g(t, y) given by (2) and an aperture function ω(t) ∈ C∞0 (0,T ) which applies a smooth cut off to the

measurement time. The corresponding adjoint operator P∗ is defined as

P∗ : C∞0 (0,T ) × Γ −→ C∞0 (Rd)

g(t, y) 7−→ v(x,T ),
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where v is the solution to the wave equation with a time varying source supported on (0,T ) × Γ

�2v(t, x) =

M∑
m=1

∂

∂t

(
g(T − t, xm

0 )ω(T − t)
)
δ(x − xm

0 ), (t, x) ∈ (0,T ) × Rd, (3a)

vt(0, x) = 0, x ∈ Rd, (3b)

v(0, x) = 0, x ∈ Rd, (3c)

evaluated at the time t = T , v(T, x) [5, 6]. Thus, in the adjoint problem the time reversed sensor measurements

g(T − t, xm
0 )ω(T − t), m = 1, . . . ,M act as time dependent point mass sources. In contrast, a popular technique

for PAT inversion known as time reversal consists of enforcing the same time reversed measurements g(T −

t, xm
0 )ω(T − t), m = 1, . . . ,M as constraints, see e.g. [3, 7], and yields an approximate-inverse operator to P

[8, 9]. The iterated variant of time reversal proposed in [10] effectively restores partially visible singularities

which arise in limited view problems (e.g. trapping sound speed, limited time, limited angle). However,

when the measured data is sparse, i.e. relatively few sensors are used, we increasingly encounter invisible

singularities. Variational methods provide a simple way of incorporating prior knowledge to fill in the missing

information in the data. Moreover, the adjoint operator to a sparse data problem can be directly obtained

and used in the framework of variational methods with readily available convergence results. Finally,

we would like to remark that we altered the functional framework introduced in [5] to suit the proposed

ray based approach. The adjoint operator from [5] follows analogously where all the spatial integrals are

evaluated in the sense of the definition of the Green’s function

�2G(t, x | t0, x0) = δ(x − x0) δ(t − t0),

which is the framework we adapt in this paper.

1.2. Motivation

The complexity of the full wave solvers such as [11, 12] is independent from the number of sensors. For

instance, for the pseudospectral finite difference solver on a cube-shaped domain of size n3 we have a com-

plexity of O(n4 log n). The analogous scenario for the here proposed Hamilton-Green (HG) solver corresponds

to the complete data case (with some abuse of notation as the sensor is finite) i.e. collecting n2 measurements

on one side of the cube, which results in the complexity of O(n5). Thus, at the first glance, our new method

has a worse theoretical complexity than the existing full wave solvers. However, the Hamilton-Green solver

also offers a number of advantages with respect to the full wave solvers which could make it competitive

in scenarios with e.g. incomplete / sparse data, various region of interest problems and in conjunction with

ultrasound tomography:



4 Francesc Rul·lan etal / Journal of Computational Physics (2021)

• Solution for each sensor is computed independently at a much lower cost, i.e. O(n3), than the full wave

solution;

• In contrast to the finite difference or pseudospectral solvers, it can take advantage of irregular or

multiscale grids;

• The solution can be computed on a part of the domain (a region of interest) at a largely reduced

computational cost;

• The coupling of the homogeneous and inhomogeneous parts of the domain is inherent and efficiently

accomplished via the step size choice;

• The Hamiltonian system underlying the trajectories computed by the Hamilton-Green solver is the

one of the transmission ultrasound problem, rendering the PAT solution essentially free when coupled

with ultrasound tomography.

Below we discuss a few scenarios which could benefit from the aforementioned advantages of the flexible ray

based Hamilton-Green solver.

1.2.1. Joint Photoacoustic Tomography and Ultrasound Tomography Reconstruction

The quality of the PAT reconstruction hinges upon the accurate knowledge of the speed of sound in the

domain. In the absence of sound speed measurements, there are two commonly taken approaches: i) assume

the sound speed homogeneous and potentially fit its value via optimization; ii) deduce an inhomogeneous

sound speed model from a priori information obtained from another non-acoustic modality (e.g. MRI as in

[13]). The first approach hits its limitations when the inhomogeneity becomes pronounced, which occurs

even in soft tissue, with differences up to 10% between different tissue types [14]. Assuming sound speed

difference as in [14], imaging to 7 [cm] depth in breast disregarding the inhomogeneity between the fat and

muscle, will result in an aberration on the order of mm and cause artefacts in the reconstruction. The second

needs an extra scan which is potentially expensive, time consuming, requires registration of the images and

the conversion of the other contrast to speed of sound is potentially difficult to justify. Therefore, recently

there has been an interest in developing integrated ultrasound (US) / PAT scanners, capable of simultaneous

acquisition of the US and PAT data and hence providing a registered set of measurements from which both

the speed of sound and PAT image can be reconstructed e.g. [15, 16]. As the forward solve for the complete

data transmission US problem requires solution of O(n2) full wave problems, the standard approach is to

settle for the time of travel tomography i.e. first time of arrival e.g. [17, 18]. The Hamiltonian system

underlying the bent ray tomography approaches such as [17, 18] is the same as the one used in Hamilton-

Green PAT solver thus the PAT solution can be obtained essentially for “free” when solving the transmission

US problem.

1.2.2. Region of Interest

The advances in the scanner hardware led to miniature endoscopic devices which can be deployed to guide

surgical intervention such as e.g. the separation of the twin fetuses involving separation of veins in the
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placenta. In this case, the probe can be at a substantial distance from the target. This region is usually

filled with a clear fluid. Furthermore, the measurements have to be acquired almost instantaneously. The

region of interest tomography, to the best of our knowledge, has not been widely considered in the context of

PAT. The existing full wave solvers cannot take advantage of this scenario as the wave has to be propagated

through the entire domain containing the region of interest and all the sensors. On the other hand, the

Hamilton-Green solver is inherently flexible and it is sufficient to restrict the propagation domain for each

sensor to this sensor and the region of interest. Furthermore, as the clear fluid region can be assumed to

have a homogeneous sound speed, and hence in the fluid the rays are straight lines, such a hybrid problem

can be efficiently handled by simply increasing the time step in this region without deteriorating the quality

of the solution.

1.2.3. Stochastic Methods and Subsampled Data

The data acquisition time in PAT presents a bottleneck in pre- and clinical environment. Hence the recent

interest in studying subsampling schemes and compressed sensing to reduce the acquisition time. The

computational cost of the full wave solvers is nearly independent of the number of sensors, while the cost

of Hamilton-Green solver scales linearly with the number of sensors. Furthermore, stochastic methods have

been shown to outperform their deterministic counterparts in applications such as PET [19, 20]. Stochastic

methods use partial operators i.e. a subset of the sensors in each iteration and so are particularly well suited

for the Hamilton-Green solver.

1.3. Contribution

The main theoretical contribution of this paper is a new way to construct an approximation to the solution

of the time-domain wave equation which arises in forward and adjoint problems in PAT. We term our solver

Hamilton-Green (HG), as it effectively approximates the time derivative of the unknown Green’s function

of the underlying acoustic problem along the trajectories of the Hamiltonian system resulting from the

high frequency asymptotic approximation to the solution of the wave equation. The bulk of the paper is

devoted to establishing the mathematical foundations of the proposed Hamilton-Green solver. The main

building blocks of the solver are derived from methods used in seismic and underwater acoustics, including

the computation of phase and amplitude along the rays.

Based on this approximation we develop a novel acoustic solver for the forward and adjoint PAT problems

for homogeneous and heterogeneous sound speeds. The proposed method is inherently ray based which

enables evaluation of partial forward/adjoint operators (for each sensor or even each ray) at a fractional cost

which is not possible with full-wave solvers and is a common and desirable feature of tomographic problems

exploited by many algebraic reconstruction methods.

We discuss the approximation error of the Hamilton-Green solver for the forward and adjoint problems for
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PAT and support our conclusions with 2D examples in domains with homogeneous and heterogeneous sounds

speeds. We compare our results to full-wave solution obtained with a pseudo-spectral finite difference method

implemented in k-Wave1, a well established and widely used toolbox for biomedical PAT and ultrasonic

simulations.

We consider full-data problems which, as alluded to in section 1.2, while native to the full-wave solvers are

not a realistic deployment scenario for our HG solver. However, we stress that our purpose here is not to

compete with the full-wave solver in this context, nor to produce PAT image reconstruction, but to evaluate

the impact of the approximation underlying the HG solver on both the forward and the adjoint problems.

This is also the reason for restricting ourselves to 2D domains which allow for a better visualization.

In future work, the HG solver will be deployed in a number of realistic 3D scenarios which can benefit from

the additional flexibility it offers.

1.4. Outline

The remainder of this paper is organized as follows. In section 2 we recall the high frequency approximation

to the solution of the wave equation including the equations for the phase, the amplitude and two methods for

computation of the Jacobian of the change of coordinates between the Cartesian and ray based coordinates

(which corresponds to the inverse ray density). Furthermore, we derive expressions for the reversed quantities

needed by the adjoint Hamilton-Green solver. Section 3 constitutes the core of the paper where we introduce

the novel Hamilton-Green acoustic solver for the forward and adjoint problems in PAT. In Section 4 we

analyse the error of the forward and adjoint Hamilton-Green solver. In section 5 we report simulations for

both the forward and the adjoint problems. We illustrate HG convergence in homogeneous case, and evaluate

HG error in inhomogeneous case against solutions obtained with the first order finite difference pseudo-

spectral method implemented in k-Wave toolbox. Section 6 summarizes the contributions and conclusions

of the paper and provides outlook on future research. Technical details of the solver pertaining mapping

between Cartesian and ray based grids and Green’s function derivative approximation are postponed to

Appendix A. A case study of the effect of caustics on HG solver on an acoustic lens example is provided in

Appendix B.

2. High frequency approximate solution to the wave equation

We consider the linear scalar wave equation

utt − c2(x)∆u = 0, (t, x) ∈ (0,∞) × Rd, (4)

with d = 2, 3 and appropriate initial / boundary conditions to be specified later, where c(x) is the speed of

the wave in the medium. In some scenarios, the initial/boundary/source conditions induce relatively high

1http://www.k-wave.org/
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essential frequencies (a.k.a. the corresponding wavelengths are short relative to the size of the domain) [21]

in the propagating waves. Accurate resolution of such high frequencies would require correspondingly fine

discretization, rendering the problem computationally infeasible.

In the high frequency limit ω → ∞, one can consider the following approximation to (4). Let u admit a

series expansion of the form

u(t, x) = eiωφ(t,x)
∞∑

k=0

Ak(t, x)(iω)−k, (5)

where φ(t, x) is the phase, Ak the coefficients of the amplitude and ω the frequency of the oscillating wave.

In this representation we expect the phase φ and the amplitude coefficients Ak to vary at a much lower

temporal and spatial rate than the wave field u since they are independent of ω.

The geometrical optics equations are obtained by substituting the WKB expansion (5) into the wave equation

(4) and equating terms of the same order to ensure that (4) holds down to O(ω): terms O(ω2) result in the

eikonal equation, while terms O(ω1) result in the transport equation.

The literature on solution of the geometrical optics equations is rich, thus the following list is necessarily

incomplete. We particularly mention Rakesh’s seminal work on Fourier integral operators [22], phase-space

methods for solution of eikonal equation with multi-valued phases [23, 24, 25, 26] and methods that solve

for both the multi-valued phases and amplitudes [27, 28, 10] and finally ray tracing methods which solve the

Hamiltonian system and the transport equation [29, 30]. Our solver is based on ray tracing approach, which

has immediate parallels to other tomographic modalities, most prominently X-ray computed tomography,

and has been studied extensively both theoretically and numerically, in particular in the context of seismic

imaging [31, 32, 33] and ocean acoustics [34, 35].

In the following, we will make use of the frequency domain formulation of geometrical optics with time

harmonic solution ansatz

u(t, x) = ũ(x)eiωt,

for fixed ω and ũ satisfying the Helmholtz equation

c2∆ũ + ω2ũ = 0.

Substituting

ũ(x) = eiωφ̃(x)
∞∑

k=0

Ãk(x)(iω)−k

into the Helmholtz equation and equating powers of ω yields frequency domain versions of the eikonal and

transport equations with consistent initial and boundary value data φ(t, x) = φ̃(x) − t. As the propagating

wavefront for t ≥ 0 is described by
{
x : φ(t, x) = φ̃(x) − t = 0

}
, the frequency domain phase admits an interpre-

tation as a travel time of a wave, φ̃(x) = t. For ease of notation we henceforth drop the index 0 for amplitude

coefficient and tilde from frequency domain quantities φ̃, Ã.
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2.1. Phase

The frequency domain version of the eikonal equation reads

‖∇φ‖ = 1/c = η, (6)

where η(x) = 1/c(x) is the slowness of the medium. Following the construction in [36], we introduce the

Hamiltonian H(x, p) = c(x)‖p‖ defined in the phase space Rd×Rd of double the dimensionality of the ambient

space, d. Let (x(t), p(t)) be a bicharacteristic pair associated with this Hamiltonian. The Hamiltonian H

is constant along these bicharacteristics and is set to the initial value H(x0, p0) = 1, which corresponds to

‖p‖ = η. Therefore we have

dx
dt

= ∇pH(x, p) =
p
η2 , x(0) = x0, (7a)

dp
dt

= −∇xH(x, p) =
∇η

η
, p(0) = p0, ‖p0‖ = η(x0), (7b)

where (x(0), p(0)) = (x0, p0) are the initial conditions for the Hamiltonian system (7). The point x0 ∈ Rd is

the origin of the ray and should be chosen on a non-characteristic hypersurface S ⊂ Rd. A hypersurface S

is non-characteristic whenever p0 is not tangent to S at x0.

Method of characteristics. Consider φ(x) smooth such that

H(x,∇φ(x)) = 1. (8)

Due to the uniqueness of the solution of (7), applying the method of characteristics we find that (x(t),∇φ(x(t)))

is a bicharacteristic pair of H with p(t) = ∇φ(x(t)). This pair can be interpreted as follows: x(t) represents

the trajectory in the domain, while the slowness vector p(t) is the direction of propagation at each point

along that trajectory. Furthermore, as discussed above, we have a linear relation between time and phase

φ(x(t)) = φ(x0) + t. (9)

The independence of bicharacteristic pairs (corresponding to different initial conditions for the bicharac-

teristic system (7)) naturally accommodates multiple phase solutions, in contrast to the inherently single

phased viscosity solution (first time of arrival). The system of ODEs (7) is numerically solved using a 2nd

order Runge-Kutta method. The details of the interpolation between the Cartesian and ray based grids are

given in Appendix A.

2.2. Amplitude

To compute the amplitude we solve the frequency domain version of the transport equation

2∇φ · ∇A + ∆φA = 0. (10)
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The solution of the first order equation (10) for the bicharacteristic pair (x(t; x0), p(t; p0)) at a point x(t; x0)

can be explicitly written as

A(x(t; x0)) = A(x0)
η(x0)

η(x(t; x0))

√
q(0; x0)
q(t; x0)

, (11)

where q is the determinant of the Jacobian J of x with respect to the initial data,

q(t; x0) = det J := det Dx0 x(t; x0) = det
∂x(t; x0)

∂x0,i

 . (12)

2.3. Jacobian determinant

For completeness we describe two methods for numerical evaluation of the determinant of the Jacobian, q,

along the ray trajectory [21, 32]. We restrict our presentation to 2D as 3D follows analogously.

ODE method. The time evolution of the determinant q can be computed solving the ODE system obtained

by differentiating the Hamiltonian with respect to the initial conditions [21] and changing the order of the

differentiation
d

dt

(
Dx0 x
Dx0 p

)
=

(
D2

pxH D2
ppH

−D2
xxH −(D2

pxH)T

) (
Dx0 x
Dx0 p

)
(13)

with the initial conditions

Dx0 x(0; x0) = I, Dx0 p(0; x0) = D2φ(x0). (14)

For this t parametrization of the Hamiltonian, H = c(x)‖p‖, the entries of the system matrix (13) are

D2
pxH = c

(
p∇T c

)
, D2

xxH = cD2c, D2
ppH = c2

[
I − c2(ppT )

]
.

It remains to specify the second initial condition, D2φ(x0). Assuming c to be constant in a neighborhood

of xS , the origin of the ray or shooting point, results in an out-propagating spherical wave (phase). Setting

φ(xS ) = 0 we have

φ(x) =
‖x − xS ‖

c
.

Furthermore, without loss of generality choosing the wave centered at the origin xS = (0, 0)T we obtain

φ(x) =
‖x‖
c

=

√
x2

1 + x2
2

c
, (15)

with x = (x1, x2)T the Cartesian coordinates of x. The Hessian of (15)

D2(φ(x)) =
1

c(x2
1 + x2

2)3/2

(
x2

2 −x1x2
−x1x2 x2

1

)
has a singularity at the shooting point xS . To circumvent this issue we assume that the initial conditions

are evaluated at a nearby point x0 further down the ray. To be precise, the initial point x0 at a distance ∆x

in the shooting direction p0 (see figure 1)
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xS = (0, 0)T

x0 = (x∆
1 , x∆

2 )

x∆
1

x∆
2

p0

∆x

Figure 1: The relation of the origin (shooting point) of the ray xS to its initial point x0 as used to calculate the
initial conditions for the ODE system (14).

x0 = ∆x
p0

‖p0‖
=

(
x∆

1
x∆

2

)
. (16)

The Hessian at x0

D2φ(x0) =
1

c((x∆
1 )2 + (x∆

2 )2)3/2

(
(x∆

2 )2 −x∆
1 x∆

2
−x∆

1 x∆
2 (x∆

1 )2

)
.

is not singular but it depends on the initial point x0 and hence implicitly on ∆x, the distance from x0 to

the origin of the ray, xS .

Proximal ray method. Inspired by an analogous construction in [32], we use a nearby ray to construct a

finite difference approximation to the Jacobian J.

Let {θ, τ} be a local coordinate system anchored at the initial point x(0) = x0 of the ray x(τ), with θ the

shooting angle and τ the parameter along the ray. We can write the Jacobian with respect to the initial

conditions x0 as

Jτ(x) =

(
∂x
∂θ

∂x
∂τ

)
and approximate the derivatives with forward finite differences

∂x(τ, p0; x0)
∂θ

≈
x(τ, pθ0; x0) − x(τ, p0; x0)

∆θ
,

∂x(τ, p0; x0)
∂τ

≈
x(τ + ∆τ, p0; x0) − x(τ, p0; x0)

∆τ
.

Here x(τ, p0; x0) denotes the main ray, x(τ, pθ0; x0) an auxiliary ray shot at the angle pθ0 = p0 + ∆θ and ∆τ is

the step length along the ray (chosen equal to the step length used while solving for the trajectories). With

this notation, we have the determinant of the Jacobian q [32]

qτ(τ; x0) =

∣∣∣∣∣ x(τ, pθ0; x0) − x(τ, p0; x0)
∆θ

x(τ + ∆τ, p0; x0) − x(τ, p0; x0)
∆τ

∣∣∣∣∣ . (17)
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xS x0 xτ
0

xθ
0

∆x

∆x

x(τ, p0;x0) x(τ +∆τ, p0;x0)

x(τ, pθ0;x0)

Main Ray

Auxiliary Ray

∆θ

pθ0

p0

Figure 2: The relation of the origin (shooting point) of the ray xS to its initial point x0 in the proximal ray method
for the determinant of the Jacobian.

The determinant admits an interpretation as the area of the parallelogram spanned by the vectors

{
∂x
∂θ
,
∂x
∂τ

}
(dashed area in figure 2).

The amplitude (11) requires the evaluation of the Jacobian (17) at the ray initial point x0, at which the

determinant is singular. We circumvent the problem analogously as in the ODE method by shifting the

origin of the ray to a nearby point xS = x0 − ∆x · p0/‖p0‖ (see figure 2), which yields xS = x(−∆τ, p0; x0), xτ0 =

x(∆τ, p0; x0) and xθ0 = x(∆τ, pθ0; xS ) and the non-singular approximation to the determinant

qτ(0; xS ) ≈

∣∣∣∣∣∣ xθ0 − x0

∆θ

xτ0 − x0

∆τ

∣∣∣∣∣∣ .
Finally, the point xθ0 corresponds to a rotation of x0 by an angle ∆θ around the origin of the ray xS ,

xθ0 = xS + ∆x
pθ0
‖pθ0‖

, pθ0 =

(
cos ∆θ − sin ∆θ
sin ∆θ cos ∆θ

)
p0.

We observe that q (and hence the amplitude A) depends on the choice of the ray origin xS , which is determined

by the increment ∆x. In a homogeneous 2D medium, the amplitude decays as A(x) ∼
√

∆x/
√

∆x + ‖x‖.

Assuming ∆x � ‖x‖, the amplitude behaves as A(x) ≈
√

∆x/
√
‖x‖ indicating that the shift by ∆x essentially

corresponds to a scaling factor.

2.4. Reversing rays

The computation of the ray trajectories is at the core of our Hamilton-Green (HG) solver. For the solver to

handle both the forward and the adjoint problems, it has to be capable of propagating the pressure wave both

from the domain towards the sensors and from the sensors back into the domain. A naive approach would

entail treating these two problems separately i.e. computing the ray trajectories for each independently.
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However, here the natural choice is to shoot the rays from the sensors into the domain. In the following we

show that such trajectories are reversible. Hence, they can be used to propagate the wave in both directions.

We derive an expression for the reversed phase φR and the reversed amplitude AR over the reversed ray xR(t)

in terms of the original phase φ and amplitude A over the original ray x(t).

2.4.1. Reversed trajectory and phase

Given a ray x(t) shot from x(0) = xA, p(0) = pA to x(T ) = xB, p(T ) = pB, we obtain its reversed ray as

xR(t) = x(T − t), pR(t) = −p(T − t).

Following the principle of reciprocity, we observe that the reversed ray also satisfies the Hamiltonian system

with the initial conditions xR(0) = xB, pR(0) = −pB. Summarising, for x and xR it holds

xR(0) = x(T ) = xB, xR(T ) = x(0) = xA,

pR(0) = −p(T ) = −pB, pR(T ) = −p(0) = −pA.

Recalling that the phase is essentially the propagation time (c.f. change of variables t′ = T−t), we immediately

obtain

φR(t) = φ(x(T − t)) = T − t + φ(x0). (18)

2.4.2. Reversed amplitude

In the same spirit we would like to express the reversed amplitude AR(xR(t)) along the reversed ray xR(t) in

terms of the original trajectory x, phase φ and the inverse ray density (Jacobian determinant) q. From the

first principle the reversed inverse ray density, qR, is the determinant of the Jacobian of xR w.r.t. the initial

point of xR (which is the end point of x) i.e. xT := x(T ; x0) = xR(0; xT )

qR(t; xT ) =
∣∣∣DxT xR(t; xT )

∣∣∣ , (19)

with

xR(t; xT ) := x(T − t; x0) (20)

Substituting (20) into (19), applying the chain rule and the determinant calculus yields

qR(t; xT ) = |DxT x(T − t; x0)| = |Dx0 x(T − t; x0)|
∣∣∣∣∣ ∂x0

∂xT

∣∣∣∣∣ ,
where |Dx0 x(T − t; x0)| = q(T − t; x0) by definition and

|∂x0/∂xT | = | ∂x(t; x0)/∂x0|t=T |
−1 = | Dx0 x(t; x0)

∣∣∣
t=T |

−1 = 1/q(T ; x0).

Thus we expressed qR in terms of q

qR(t; xT ) =
q(T − t; x0)

q(T ; x0)
. (21)
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The reversed amplitude AR(xR(t; xT )) along the reversed ray xR(t) in terms of reversed quantities follows

immediately from (11)

AR(xR(t; xT )) = A0(xT )

√
qR(0; xT )
qR(t; xT )

η(xT )
η(xR(t; xT ))

. (22)

Substituting the reversed quantities with (20) and (21) we obtain an expression in terms of the original

quantities x and q

AR(xR(t; xT )) = A0(xT )

√
q(T ; x0)

q(T − t; x0)
η(xT )

η(x(T − t; x0))
.

2.5. Caustics and shadow regions

We finish this section with the discussion of the two limitations of the ray tracing approach, the caustics

and the shadow regions.

Caustics

A caustic is a set of points at which the determinant of the Jacobian of the coordinate change, (12), becomes

singular.

As the determinant of the Jacobian (12) is in the denominator of the amplitude formula (11), the latter

becomes unbounded at caustics. Thus (11) cannot be used to compute the amplitude directly at and beyond

the caustic. The following modification has been proposed beyond the caustic (but not at the caustic itself)

A(x(t, x0)) = A(x0)
η(x0)

η(x(t; x0))

√∣∣∣∣∣q(0; x0)
q(t; x0)

∣∣∣∣∣e−im(t) π2 , (23)

where m(t) is the Keller-Maslov index which counts the number of times the ray crosses a caustic (see

e.g. [36]). To control the numerical integration error of the amplitude in the neighborhood of the caustic

point, we set the ray amplitudes A(x(t, x0)) to 0 for all times for which |q(t; x0)| < ε with a small parameter

ε = q(0; x0). Once the determinant magnitude becomes large enough |q(t; x0)| ≥ ε, we compute the ampli-

tudes A(x(t, x0)) behind the caustic according to (23) neglecting the complex factor exp(−im(t)π/2) which is

essentially a phase shift experienced by the rays that cross the caustic. Taking the absolute value of q(t; x0)

in (23) annihilates the reversing of the associated ray tube coordinate system due to the caustic. A solution

which holds at and beyond the caustic could be obtained e.g. using dynamic ray tracing or Gaussian beams,

which are out of scope of this manuscript but will be explored in future work.

Shadow regions

In geometrical optics a shadow region is defined with respect to a point (here we choose x0 < Ω). A shadow

region is a subset of the domain ΩS
x0
⊂ Ω which cannot be reached along any ray trajectory originating from

x0, in other words we cannot “illuminate” it with rays shot from x0. Consequently, any pressure propagating

from a shadow region will not affect the pressure at the sensor located at x0 when using the Hamilton-Green

solver.
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Therefore, in the sequel we assume that the sound speed c(x) in Ω is non-trapping [3], that is for any phase

space point (x0, p0) there exists a finite time T such that the ray x(t, x0) with shooting angle p0, satisfies

x(t, x0) < Ω ∀T > t. Due to relatively small variation of the sound speed in soft tissue, with a high probability

a domain in a typical PAT experiment will be non-trapping. However, in the numerical simulations the issue

can become more subtle. Even in absence of a shadow region there can be a region with only few rays. Such

low penetration region can in turn become an effective numerical shadow region, when we cannot illuminate

it with rays given a fixed numerical precision. In such case, adaptive techniques should be deployed to ensure

that all the domain is covered with rays sufficiently densely. Such methods could employ inserting new rays

into the cone if divergence is observed. For inspirational ideas we refer to the literature on wavefront tracking

methods [37, 38, 39]. It is not immediately clear how adaptive methods can be implemented maintaining

the efficiency of the one shot methods discussed here and a detailed study will be subject of future research.

3. Hamilton-Green solver for the forward and adjoint problems

In this section we derive the Hamilton-Green solver for the forward and adjoint problems in PAT. Our

approach can be viewed as approximating the time derivative of the unknown heterogeneous Green’s function

in the Green’s integral solution of the respective forward/adjoint wave equation along the rays via the ray

equations. We note that the PAT sensors provide the natural shooting points for the rays. As shown in

section 2.4 the same trajectories can be used in both the forward and the adjoint problem. In particular,

in the proposed Hamilton-Green solver, the adjoint problem solution follows the ray trajectories while the

forward formula uses the reversed ray trajectories.

We see the following benefits of our formulation against direct approximation of the pressure along rays:

i) the resulting integral formulations highlight the parallels to the forward and adjoint/inverse transforms

in ray based tomography e.g. X-ray CT, ii) the Green integral in ray coordinates is a convenient and

natural formulation for PAT where we integrate along isotemporal surfaces, iii) our formulation allows to

seamlessly plug in any numerical approximation to the homogeneous Green’s function G0 which makes the

ray approach more directly comparable to the numerical method used to obtain that approximation to G0

and makes explicit the point source normalisation used, iv) the asymptotic error O(1/ω) is confined to the

approximation of the time derivative of the Green’s function G̃′ := ∂G/∂t, G̃′ = G′ + O(1/ω) which leads to

a higher order asymptotic error for the solution of both the forward and adjoint problems than when these

solutions are directly approximated using ray equations.

3.1. Green’s solution to the wave equation

The general form of the fundamental solution of the wave equation for bounded and unbounded domains

can be found e.g. in [40]. Here we restrict the presentation to the initial value and the source problem for

the unbounded domain which are relevant to PAT, see section 1.
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The Green’s solution to the initial value problem for the inhomogeneous wave equation with the density

source term ρ

�2u = ρ(t, x), (24a)

u(0, x) = ψ(x), (24b)

ut(0, x) = ψ0(x), (24c)

can be written as

u(t, x) = f (t, x) + h1(t, x) + h2(t, x) (25)

with

f (t, x) =

∫ t+

0

∫
Rd

G(t, x | t′, x′)ρ(t′, x′) dx′ dt′, (26a)

h1(t, x) =

∫
Rd

1
c2(x′)

G(t, x | 0, x′)ψ0(x′) dx′, (26b)

h2(t, x) =

∫
Rd

1
c2(x′)

∂G
∂t

(t, x | 0, x′)ψ(x′) dx′. (26c)

Here G is the corresponding free space Green’s function in Rd and f and h = h1 + h2 independently solve

f : �2 f = ρ(t, x), f (0, x) = 0, ft(0, x) = 0,

h : �2h = 0, h(0, x) = ψ(x), ht(0, x) = ψ0(x).

In acoustically homogeneous medium the free space Green’s functions can be calculated analytically

R2 : G2
0(t, x | t′, x′) =

c
2π

H(c(t − t′) − ‖x − x′‖)√
c2(t − t′)2 − ‖x − x′‖2

, (27)

where H(t) is the Heaviside step function

H(t) =

{
0 t < 0,
1 t ≥ 0,

and

R3 : G3
0(t, x | t′, x′) =

δ(c(t − t′) − ‖x − x′‖)
4π‖x − x′‖

, (28)

where δ(t) denotes the Dirac delta distribution with the usual weak definition∫ ∞

−∞

δ(t)ζ(t)dt = ζ(0) (29)

holds for any Schwarz test function ζ, see e.g. [40].

In subsections 3.3, 3.4 we will make use of the following invariances of (in general heterogeneous) free space
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Green’s functions

G(t, x | t′, x′) = G(−t′, x′ | − t, x) (time reversal) (30a)

G(t, x | t′, x′) = G(t + T, x | t′ + T, x′), T > 0 (time shift). (30b)

3.2. Strong approximation to the Green’s function

In order to implement the Green’s formula within the ray tracing algorithm we need a strong approximation

of the Green’s function and its derivative. For strict comparability, in the numerical experiments in section

5 we are using the Green’s function obtained numerically using k-Wave [1]. We note that such obtained

Green’s function is not strictly shift invariant which will contribute to the discrepancies between the results

obtained with k-Wave and the proposed Hamilton-Green solver.

3.3. Forward problem

We recall the PAT forward problem introduced in (1)

�2u = 0, (t, x) ∈ (0,∞) × Rd, (1a)

ut(0, x) = 0, x ∈ Rd, (1b)

u(0, x) = u0(x), x ∈ Rd, (1c)

which is an initial value problem for the wave equation with heterogeneous sound speed c ∈ C∞(Rd).

In the Hamilton-Green forward solver the time dependent pressure is obtained at each of the sensors sep-

arately using the cone of rays originating from this particular sensor. Using Green’s formula (26c) the

pressure u(t, x0) at a given time t at a sensor location point x0 can be written as

u(t, x0) =

∫
Rd

1
c2(x′)

∂

∂t
G(t, x0 | 0, x′)u0(x′)dx′, (32)

where G(t, x | t′, x′) is an, in general, heterogeneous free-space Green’s function. Furthermore, for any u0

compactly supported on Ω the integration can be restricted to the domain Ω. Let (`, θ) ∈ R0+ ×S
d−1 be ray

based coordinates for the rays originating from x0 < Ω. Assuming that these rays do not intersect in Ω, they

form a coordinate system in Ω and we can perform a formal change of coordinates in (32). However, the

ray based coordinates parametrisation yields a useful approximation to (32) even if the rays intersect. In

this parametrisation (32) becomes

u(t, x0) =

∫ T

0

∫
Sd−1

1
c2(x(`, θ; x0))

∂

∂t
G(t, x0 | 0, x(`, θ; x0)) u0(x(`, θ; x0))

∣∣∣∣∣ dx′

d(`, θ)

∣∣∣∣∣ d(`, θ). (33)

The acquisition time T ∈ R+ is chosen sufficiently large so that all the rays in the cone have left the domain

i.e. x(`, θ; x0) < Ω ∀` > T, θ ∈ Sd−1. Furthermore, by the definition, the determinant of the Jacobian of the
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change of coordinates ∣∣∣∣∣ dx
d(`, θ)

∣∣∣∣∣
x(0)=x0

= q(`, θ; x0). (34)

Using the combined time reversal and shift invariances of Green’s functions (30) we can rewrite the Green’s

function with the source at the sensor

G(t, x0 | 0, x(`, θ; x0)) = G(t, x(`, θ; x0) | 0, x0). (35)

Substituting (34) and (35) into (33) we obtain

u(t, x0) =

∫ T

0

∫
Sd−1

1
c2(x(`, θ; x0))

∂

∂t
G(t, x(`, θ; x0) | 0, x0) u0(x(`, θ; x0)) q(`, θ; x0) d(`, θ). (36)

As the Green’s function for heterogeneous domain G is generally unknown, we propose the following ap-

proximation in (36). Assuming a constant sound speed in a small neighborhood N(x0) of x0, we can lo-

cally approximate the heterogeneous Green’s function G(t, x | 0, x0) with the homogeneous Green’s function

G0(t, x | 0, x0) with sound speed c0 equal to sound speed at the emission point x0 i.e. c0 = c(x0),

G(t, x | 0, x0) ≈ G0(t, x | 0, x0), x ∈ N(x0).

Equation (36) however, requires G everywhere and the homogeneous function approximation is not valid

outside of N(x0). To simplify notation we abbreviate the attenuation along the ray from x0 to x(`, θ; x0) in

the amplitude formula (11) as

µ(`, θ; x0) =
η(x0)

η(x(`, θ; x0))

√
q(0, θ; x0)
q(`, θ; x0)

. (37)

Now, the ray based coordinate system allows us to extend the approximation propagating the homoge-

neous free space Green’s function G0(t, x0 | 0, x0) along the ray (x0, θ) from x0 to x(`, θ; x0) and compute the

corresponding amplitude according to (11)

G(t, x(`, θ; x0) | 0, x0) ≈ G0(t − `, x0 | 0, x0) µ(`, θ; x0). (38)

Assuming the time parametrization along the ray, ` is the time of propagation from x0 to x(`, θ; x0) which

directly corresponds to the phase (9). The latter effects a time shift in the Green’s function due to its

explicit dependence on time (note that throughout our derivation the time dependence has been implicit

through the parametrization of the trajectory).

We note that the choice of the approximation point to be the evaluation point, here the sensor x0, is not

coincidental but necessary for the appropriate speed of sound c0 and hence time scaling of the homogeneous

Green’s function G0. This indeed was the reason for reversing the Green’s function in (35). Substituting
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Figure 3: Cone of rays from x0 covering the domain Ω where the initial pressure u0 is compactly supported.

(38) and (37) into (36) and rearranging the integration to reflect functional dependencies we arrive at

u(t, x0) = η(x0)
∫ T

0

∂

∂t
G0(t − `, x0 | 0, x0)

∫
Sd−1

η(x(`, θ; x0))
√

q(0, θ; x0)q(`, θ; x0) u0(x(`, θ; x0)) dθ d`. (39)

Below we summarize the steps necessary to numerically evaluate (39) which corresponds to solving the

forward problem (1) for a sensor located at x0.

• Trace ray trajectories from x0 such that they cover the domain Ω sufficiently densely (figure 3).

• Interpolate u0 and η at equitemporal points along the ray trajectories (q is already available at these

points), see Appendix A.1.

• Numerically evaluate the spherical integral along the isotemporal surfaces, ` = const. Using mid-point

rule this corresponds to summing the appropriately weighted contributions from all rays from x0 at `.

• Convolve the result with the time derivative of the homogeneous Green’s function at x0, ∂
∂t G0(t, x0 |

0, x0).

3.4. Adjoint problem

The adjoint problem in PAT (3) is a time varying source problem for the free space wave equation with

homogeneous initial conditions. Due to the linearity of the wave equation (3), the solution is a superposition

of the corresponding solutions for each individual point mass source located at the sensor xm
0 , m = 1, . . . ,M.

Similarly as for the forward problem, in the adjoint Hamilton-Green solver we solve the adjoint problem for
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each mass source separately using the ray cone originating from the sensor x0

�2v =
∂

∂t

(
g(T − t, x)ω(T − t)

)
δ(x − x0), (t, x) ∈ (0,T ) × Rd, (3a’)

vt(0, x) = 0, x ∈ Rd, (3b’)

v(0, x) = 0, x ∈ Rd . (3c’)

Analogously as for the forward problem, we start from the corresponding Green’s representation to the

solution of the source problem (26a) evaluated at t = T

v(T, x) =

∫
Rd

∫ T

0
G(T, x | t′, x′)

∂

∂t′
(
g(T − t′, x′)ω(T − t′)

)
δ(x′ − x0) dt′dx′. (41)

Upon the change to ray based coordinate system (41) becomes

v(T, x(`, θ; x0)) =

∫ T

0

∫
Sd−1

∫ T

0
G(T, x | t′, x(`′, θ′; x0))

∂

∂t′
(
g(T − t′, x(`′, θ′; x0))ω(T − t′)

)
dt′︸                                                                                   ︷︷                                                                                   ︸

(?)

× δ(`′ − 0)δ(θ′ − θ)︸               ︷︷               ︸
=δ(x(`′,θ′;x0)−x(0,θ;x0))

q(`′, θ′; x0) dθ′d`′, (42)

where we chose to represent x0 = x(0, θ; x0) using the ray through x = x(`, θ; x0). Integrating (?) by parts,

using the time shift invariance of the Green’s function to set the emission time to 0 and the variable change

t = T − t′ yields

(?) = −

∫ T

0

∂

∂t′
G(T, x | t′, x(`′, θ′; x0)) g(T − t′, x(`′, θ′; x0))ω(T − t′)dt′

+ G(T, x, | T, x(`′, θ′; x0))g(0, x(`′, θ′; x0)) ω(0)︸︷︷︸
=0

−G(T, x, | 0, x(`′, θ′; x0))g(T, x(`′, θ′; x0)) ω(T )︸︷︷︸
=0

=

∫ T

0

∂

∂t
G(t, x | 0, x(`′, θ′; x0)) g(t, x(`′, θ′; x0))ω(t)dt. (43)

Substituting (43) into (42) and using the distributional calculus to evaluate the ray cone integral against

the δ(`′ − 0)δ(θ′ − θ), we obtain

v(T, x(`, θ; x0)) = q(0, θ; x0)
∫ T

0

∂

∂t
G(t, x | 0, x0) g(t, x0)ω(t)dt. (44)

To approximate the unknown heterogeneous Green’s function we again make use of a ray based approxima-

tion setting

G(t, x | 0, x(`, θ; x0)) ≈ G0(t, x | 0, x(`, θ; x0)), x ∈ N(x(`, θ; x0)),

and outside of N(x(`, θ; x0)) (in particular at the sensor x0)

G(t, x0 | 0, x(`, θ; x0)) ≈ G0(t − `, x(`, θ; x0) | 0, x(`, θ; x0)) µR(`, θ; x0),
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where µR is the analogously defined reversed attenuation in (22) i.e. attenuation between x(`, θ; x0) and x0

along the reversed ray

µR(`, θ; x0) =
η(x(`, θ; x0))

η(x0)

√
qR(0, θ; x(`, θ; x0))
qR(`, θ; x(`, θ; x0))

=
η(x(`, θ; x0))

η(x0)

√
q(`, θ; x0)
q(0, θ; x0)

=
1

µ(`, θ; x0)
. (45)

Using the combined time shift and reversal invariances of Green’s function we rephrase the Green’s function

in (44) with a source at the evaluation point x(`, θ; x0)

v(T, x(`, θ; x0)) = q(0, θ; x0)
∫ T

0

∂

∂t
G(t, x0 | 0, x(`, θ; x0)) g(t, x0)ω(t)dt (46)

which will guarantee the correct speed of sound c0 = c(x(`, θ; x0))) for the homogeneous Green’s function G0.

Substituting the ray approximation and µR from (45) we arrive at the Hamilton-Green approximation to

the adjoint solution

v(T, x(`, θ; x0)) ≈
η(x(`, θ; x0))

η(x0)

√
q(0, θ; x0)q(`, θ; x0)

∫ T

0

∂

∂t
G0(t − `, x(`, θ; x0) | 0, x(`, θ; x0)) g(t, x0)ω(t)dt. (47)

Equation (47) is naturally defined in ray based coordinates and needs to be interpolated on the Cartesian

grid as described in the Appendix A.2. Summing over all sensors we obtain the adjoint of the original

equation (3)

v(T, x) ≈
M∑

m=1

v(T, x(`m, θm; xm
0 )). (48)

The steps necessary for numerical evaluation of (47) which corresponds to the adjoint problem with one

sensor located at x0 are summarized below. We note that steps 1,2 are the same as for the forward problem

and will be executed only once in an efficient implementation.

• Trace ray trajectories from x0 such that they cover the domain Ω sufficiently densely (figure 3).

• Interpolate η at equitemporal points in the domain (q is already available at these points).

• Numerically evaluate the time integral. Using mid-point rule this corresponds to summing the data

time series weighted by a shifted derivative of the homogeneous Green’s function G0 with a sound

speed c0 = c(x(`, θ; x0)). The details of efficient evaluation of G0 are given in the Appendix A.3.

4. Error analysis of the Hamilton-Green solver

In this section we identify and quantify various contributions to the error of the Hamilton-Green approxi-

mation to the solution of the forward and adjoint PAT problems.
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Asymptotic error in approximation of G′ := ∂G/∂t. The HG solver uses the first term of the WKB expansion

to approximate the time derivative of the unknown (heterogeneous) Green’s function G, G′ := ∂G/∂t, on the

domain along the rays. This implies that the asymptotic error of the approximation of G′ is G̃′ = G′+O(1/ω).

The solution u of the forward problem (39) is a convolution of the derivative of the Green’s function G′

with the initial pressure u0. Using the approximate G̃′ instead, results in an approximation ũ. Switching

to Fourier domain, we have the following asymptotic for this approximate solution (ũ)∧ =
(
G̃′

)∧
(u0)∧ =(

(G′)∧ + O(1/ω)
)

(u0)∧ = (G′)∧ (u0)∧ + O(1/ω) (u0)∧ = (u)∧ + O(1/ω) (u0)∧ as opposed to (ŭ)∧ = (u)∧ + O(1/ω)

when the solution is approximated directly by the ray equations. Making a conservative assumption that u0

is compactly supported of bounded variation, implies the decay of its Fourier transform | (u0(ξ))∧ | = O(1/|ξ|)

as |ξ| → ∞ yielding a higher order asymptotic error for the HG solution ũ = u + O(ω−1|ξ|−1) = u + O(ω−2).

When we assume u0 ∈ C∞0 (Rd) (as we do here), its Fourier transform decays faster than any polynomial

| (u0(ξ))∧ | = o(|ξ|−n), ∀n ∈ N as |ξ| → ∞ and consequently so does the asymptotic error of the HG solution

ũ = u + o(ω−n).

As the asymptotic error of G̃′ enters the adjoint problem (47) in the same way i.e. the solution of (47)

also contains the convolution of G′ but this time with the PAT data g, the same argument holds for the

asymptotic error of the solution to the adjoint problem with analogous smoothness assumptions on data g.

Accuracy of numerical integration of the ray trajectories. The solution to the Hamiltonian system (7) results

in ray trajectories x(t), which are an essential building block of our solver. These ray trajectories are

computed using a second order Runge-Kutta method. Assuming that the exact sound speed is known, the

error commited at each step is O(h3), where h is the step size [41]. Therefore, the accumulated overall error

for the whole trajectory is O(h2).

Grid interpolation error. Another source of error is the interpolation between Cartesian and ray grids. We

use nearest-neighbour interpolation in both directions: from Cartesian to ray and from ray to Cartesian

(see Appendix A). For a Cartesian grid with spacing h, the order of the error using nearest-neighbour

interpolation is O(h). Conversely, the order of the error when converting from the ray grid to a Cartesian

grid is O(h), where h describes the maximum distance between neighbouring points along the trajectory or

neighbouring points on the wavefront.

Accuracy of approximation of free space Green’s function G0 and its time derivative G′0. The forward (39)

and adjoint (47), (48) formulae require an approximation of the free space Green’s function G0 or its

time derivative G′0 . The free space Green’s function is a distribution with a singularity at the origin

(cf. equations (27) and (28)) which we compute as an impulse response to a strong approximation to δ. The

so approximated G0 is has no singularities and is finite (when e.g. using Gaussian strong approximation with

small tail truncation). Alternatively, G0 can be obtained solving the wave equation with a numerical method
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and an approximation of δ consistent with the method, see also Appendix A.3. As the G0 approximation

is obtained independently, we can tune it to be of the same or lower order as the interpolation errors. The

approximation of the derivative G′0 follows analogously.

Error resulting from reflections, caustics and shadow regions. When a wave traverses an interface between

two media, part of its energy is reflected back and part of its energy is transmitted. The strength of the

reflection depends on the smoothness of the sound speed respective to the wave length. The Hamilton-

Green solver does not account for the reflected part, since it only propagates the pressure at the wavefront.

As discussed in Subsection 2.5 the presence of caustics also limits the accuracy of our solver, since the

determinant becomes singular and amplitude blows up at caustics. To control this error, we set to 0

the amplitudes along the rays in the neighbourhood of a caustic region. As no rays pass through numerical

shadow regions, no contribution to pressure is recorded from these regions. These regions however, naturally

correspond to very low ray densities and their contribution should be minimal.

In Appendix B we study the effect of the caustics in an acoustic lens which however highly exaggerates the

issue. We performed no dedicated studies bounding the error introduced by reflections and shadow regions.

However, we know that caustics, reflections and shadow regions are absent in the homogeneous case thus

there we have control over all other errors (ray trajectories, grid interpolation and Green’s function), our

solver converges in the homogeneous case at the order determined by the lowest order of the numerical

scheme. Finally, we expect the errors introduced by reflections, caustics and shadow regions to be small

when the changes of sound speed in the domain are subtle, which is in general the case in soft tissue [14].

5. Evaluation of the Hamilton-Green solver

In this section we evaluate the accuracy of the Hamilton-Green solver (HG) for the forward and adjoint

PAT problems. We first discuss the numerical convergence of the solver for homogeneous sound speeds and

then move to heterogeneous sound speed phantom emulating vessels embedded in a soft tissue. The HG

solutions are compared against the first order pseudospectral method implemented in k-Wave toolbox [1].

The acoustic solver in k-Wave was extensively validated and its performance compared against analytical

solutions [42, 43], other numerical models [44, 45] and experimental measurements [46, 47]. Our examples

are restricted to 2D for ease of visualisation. An efficient GPU implementation enabling handling large

image volumes will be the subject of a sequel paper along with the integration of the solver with iterative

methods which can take full benefit of its flexibility. Therefore, we defer the discussion of the computational

efficiency to that later work.

5.1. Error Analysis of the Forward Problem
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Figure 4: Homogeneous sound speed. (a) Sum of initial pressure conditions
∑

ui. (b) Subset of ray trajectories
from x0 = (6.35, 0) [mm].

We consider a discretised rectangular domain Ω of dimensions 512×1024 with grid spacing ∆x = 25 [µm]

and homogeneous sound speed c0 = 1, 500 [m/s]. We compute the solutions for three smooth initial pressure

conditions ui, i ∈ {1, 2, 3}

ui(x, y) = e−
(x−xi)2+(y−yi )2

σ2 , (49)

where (x1, y1) = (6.35, 10.25) [mm], (x2, y2) = (6.35, 15.35) [mm] and (x3, y3) = (6.35, 20.48) [mm] and σ = 400

[µm]. The Gaussian serves as a smooth alternative to a ball allowing to bypass the use of the smoothing

filter in k-Wave simulations2 and reduce the errors at the boundary. For compactness of visualisation, a

superposition of these individual initial pressure conditions,
∑

i ui, is shown in figure 4(a).

We place a single sensor at x0 = (6.35, 0) [mm] and shoot 4,000 rays in directions equisampling the angle

range [0, π]. A subset of the trajectories obtained is shown in figure 4(b). These trajectories are straight

lines, as expected in the homogeneous case. We denote with gkW
i = PkW (ui) and gHG

i = PHG(ui) the k-Wave

and HG solutions of the forward problem for the initial pressure ui. We evaluated both methods for time

step lengths ∆t ∈ {2, 4, 8} [ns]. In figure 5(a) we plot the solutions at x0 for each of the initial conditions

individually. The HG solution (thick line) is superposed over k-Wave solution (thin line), the time step

length is ∆t = 8 [ns]. We colour coded the initial conditions: bottom (the ball closest to the sensor) in red,

middle in green and top in blue. Even for this coarse step, both solutions differ by at most 5% (see figure

5(b)). All pressure time series were normalised by `∞ norm of the k-Wave solution for the bottom ball,

‖gkW
1 ‖∞ = 0.062.

2http://www.k-wave.org/manual/k-wave user manual 1.1.pdf
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(a) HG vs. k-Wave for ∆t = 8 [ns]. (b) ∆t = 8 [ns].

(c) ∆t = 4 [ns]. (d) ∆t = 2 [ns].

(e) HG vs. k-Wave for ∆t = 8 [ns]; bottom ball
zoomed in.

(f) HG vs. k-Wave for ∆t = 8 [ns]; middle ball zoomed
in.

Figure 5: Homogeneous sound speed. Comparison between HG and k-Wave forward solutions at x0 for decreasing
time step length ∆t ∈ {8, 4, 2} [ns].
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Figure 6: Homogeneous sound speed. Convergence of the forward HG solver with decreasing time step ∆t ∈ {8, 4, 2}
[ns] in terms of (a) REE and (b) `∞ error.
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(a) (b) (c)

Figure 7: Homogeneous sound speed. Time step ∆t = 2 [ns]. (a) Sum of adjoint k-Wave solutions
∑

j P
?
kW (gkW

j ). (b)

Sum of adjoint HG solutions
∑

j P
?
HG(gkW

j ). (c) Difference between k-Wave and HG.

Figures 5(b-d) show the difference between the k-Wave and HG solutions for decreasing time steps ∆t ∈

{8, 4, 2} [ns]. We observe that halving the step essentially halves the `∞ error. This is in agreement with HG

solver for homogeneous sound speed being exact up to the numerical errors due to interpolation between the

grids, numerical integration and the approximation of the derivative of the Green’s function. Figure 6(a)

shows the convergence of the relative energy error

REEforward(gHG) =

∑
ti∈(0,T )(gkW (ti) − gHG(ti))2∑

ti∈(0,T )(gkW (ti))2 , (50)

for each initial pressure with the decreasing time step length. The corresponding non-normalised `∞ errors,

‖gkW − gHG‖∞, (51)

are shown in figure 6(b). Both metrics behave similarly, thus henceforth we use REE with its convenient

normalisation. The linear convergence is due to convergence of the grid interpolation error as the RK scheme

is of higher order and the Green’s function derivative G′ approximation is performed on a finer grid. Beyond

time step length of ∆t = 2 [ns], the error due to spatial interpolation of ui with fixed grid spacing ∆x and

accuracy of G′ approximation become significant, and we cannot arbitrarily reduce the error solely by further

time step refinement without also refining the spacial grid for u0 and the G′ approximation.

5.2. Error Analysis of the Adjoint Problem

We solve the adjoint PAT problem for the simulated data gkW
j , j ∈ {1, 2, 3} obtained with k-Wave in the

previous section 5.1. The k-Wave solution is assumed to have no errors, which allows us to explore the error
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Figure 8: Homogeneous sound speed. (a) Adjoint solution profile through x = 6.35 [mm] for k-Wave and HG with
∆t = 2 [ns]. (b) Convergence of adjoint HG solver with decreasing time step ∆t = {8, 4, 2} [ns].

in our adjoint solver independently from the forward. Because of the reversibility of rays, we can reuse the

ray trajectories obtained for the forward problem. In figure 7 we plot the sum of the three adjoint solutions

for gkW
j obtained with k-Wave (a), HG (b) and their difference (c) for time step ∆t = 2 [ns]. The amplitude

profile along the central cross-section x = 6.35 [mm] is shown in Figure 8(a). Similarly, as for the forward

problem, the `∞ error of the adjoint solution is in the order of 1%.

The convergence of the relative energy error for the adjoint problem for g = gkW
j , j = {1, 2, 3}

REEadjoint(g) =

∑
xi∈Ω((P∗kW g)(xi) − (P∗HG g)(xi))2∑

xi∈Ω((P∗kW g)(xi))2 (52)

with the decreasing time step is depicted in Figure 8(b) evidencing that HG adjoint solver is also exact for

homogeneous sound speeds up to the same numerical errors as discussed for the forward problem.

5.3. Simulated 2D Vessel Phantom with Heterogeneous Sound Speed

We complete our simulations with an experiment using a more realistic vessel phantom visualised in 9(a).

The domain Ω was discretised with 128 × 256 equispaced grid points with ∆x = 100 [µm]. The sound speed

c(x) shown in figure 9(c) was generated with the peaks() function in MATLAB and c(x) ∈ 1, 500 ± 10% [m/s].

The time step was set to ∆t = 10 [ns] for both k-Wave and HG simulations. To avoid Gibbs phenomena in

k-Wave, the initial pressure is a priori smoothed, see figure 9(b).

Forward problem. We place a sensors at each grid point on the boundary of Ω amounting to 764 sensor in

total. From each sensor location we shoot 4,000 rays with direction angles uniformly distributed between

0 and 2π to ensure that we cover the entire domain. In figure 10 we exhibit a subset of trajectories for

three sensors chosen at the random. Due to heterogeneity of c, these trajectories are no longer straight

lines and present the two problematic scenarios: caustics (figure 10(c)) and shadow regions (figure 10(b-c)).
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(a) (b) (c)

Figure 9: (a) Initial pressure (without smoothing). (b) Initial pressure u0(x) (k-Wave smoothing). (c) Sound speed
c(x).
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Figure 10: Ray trajectories from 3 randomly chosen sensors.
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(a) (b) (c)

Figure 11: (a) k-Wave sinogram. (b) HG sinogram. (c) Difference between k-Wave and HG sinograms.

We note that the pseudo-spectral finite difference method in k-Wave is a full wave solver and as such not

affected neither by caustics nor shadow regions. In figure 11 we plot the sinograms for k-Wave, HG and their

difference. The sinograms were normalised to 1 using the `∞ norm of the k-Wave solution, ‖gkW‖∞ = 0.9329.

The `∞ error of the HG sinogram is significantly larger than in the homogeneous case (albeit `∞ appears a

pessimistic metric in this case) while its REE is 1.99%.

Consistent forward-adjoint. We compute the k-Wave adjoint with the k-Wave forward data and the HG

adjoint with its corresponding HG forward data. The results for these simulations are shown in figures

12(a-b). The overall structure of the adjoints is the same, containing similar artefacts for both methods.

However, we observe more significant differences in the bottom left part of the image (c.f. figure 12(c)). The

`∞ norm of the HG adjoint is on the order of 20%, although the large errors are concentrated in small region

of the image. Here, the REE is equal to 2.23%.

Mixed forward-adjoint. We solve two additional adjoint problems combining HG forward data with k-Wave

adjoint solver and vice-versa to isolate forward/adjoint errors. Figure 12(d) shows the k-Wave solution of

adjoint problem with HG forward data and figure 12(e) the HG adjoint with the k-Wave forward data. Both

solutions have similar structure and artefacts also similar to the consistent case. The difference between the

two mixed adjoints is shown in figure 12(f), with `1 norm of around 20%. The REE for the combination

HG forward data / k-Wave adjoint is 0.74% and for k-Wave forward data / HG adjoint is 1.79%, both lower

than the REE for the consistent forward-adjoint, as one would expect.

6. Conclusions and outlook

In this paper we presented a novel acoustic Hamilton-Green solver for the forward and adjoint problems in

PAT. The name is derived from the two main ingredients of the solver: the Hamiltonian system and the

Green’s integral formula for the solution of the wave equation with initial data and time varying sources. The
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(d) (e) (f)

Figure 12: (a) k-Wave adjoint (gold standard). (b) HG adjoint. (c) Difference between k-Wave and HG adjoints
(same as error of HG adjoint). (d) k-Wave adjoint - HG data. (e) HG adjoint - k-Wave data. (f)
Difference between mixed adjoints.
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solver can be viewed as a ray tracing approximation of the heterogeneous Green’s function (more precisely

its time derivative) in the Green’s integral formula evaluated on the ray induced grid. The main benefit

of this approach is that the solution is computed for each sensor independently, opening to PAT the realm

of ray based solvers which are well established for other tomographic modalities e.g. X-ray CT or PET.

Furthermore, ray based solvers allow the flexibility to efficiently deal with sparse sensors and regions of

interest thus potentially enabling online/real-time or dynamic reconstructions.

We analysed the error the proposed Hamilton-Green method, discussed its convergence in the homoge-

neous case and evaluated its accuracy in heterogeneous case on a 2D numerical vessel phantom against an

established finite difference pseudo-spectral method implemented in k-Wave toolbox [1].

There are many open questions that need addressing to advance understanding and performance of the

Hamilton-Green solver. A theoretical challenge is to find solution that holds valid in the presence of caus-

tics without compromising the computational efficiency. In this context we are currently investigating two

promising approaches: the dynamical ray tracing and Gaussian beams which both can be integrated with

the Hamilton-Green solver. We are also working on an efficient implementation on GPU hardware which

is imperative to apply the solver to large scale 3D real data problems. A particularly challenging imple-

mentation aspect is adaptive inserting and removing rays into and from the cone to control the impact of

the changing ray density while maintaining the efficiency offered by one shot methods. Furthermore, we

are working on coupling the Hamilton-Green solver with iterative methods for variational reconstruction

which performance hinges on the ability to independently evaluate partial operators such as for instance the

stochastic primal-dual hybrid gradient method recently proposed in [19].

Appendix A. Implementation details

Appendix A.1. Interpolation: from Cartesian to ray based grid

When interpolating a function specified on Cartesian grid at a point in a ray based grid, x(`, θ; x0), we use

the Cartesian grid point closest to x(`, θ; x0) in the `2 sense.

Quantities in the code interpolated from Cartesian to ray based grid are: slowness η and its gradient ∇η,

initial pressure u0.

Appendix A.2. Interpolation: from ray based to Cartesian grid

When interpolating a function specified on ray based grid at a point in Cartesian grid, x, we use the the ray

based grid point closest to x in the `2 sense.

Quantities in the code interpolated from ray based to Cartesian grid are: the solution of the adjoint problem

(47), the reversed phase (propagation time), the reversed amplitude attenuation (µR) used in the computation

of the adjoint. To be precise, the latter can be obtained according to equations (18) and (45) from the (non-

reversed) phase and amplitude attenuation (or ray density), respectively.
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(a) Lens sound speed c(x). (b) Ray trajectories
from sensor S .

(c) Superposition of initial
pressures

∑
i ui.

Figure B.13: (a) Acoustic lens sound speed c(x). (b) Ray trajectories with a caustic in vicinity of (6.35, 15) [mm].
(c) Superposition of

∑
i ui, each ui is an independent initial condition to the forward PAT problem.

Appendix A.3. Approximating the homogeneous Green’s function at a point in the domain

Equation (47) requires knowledge of time derivative of the homogeneous Green’s function G0 for a sound

speed value c0 = c(x(`, θ; x0)). Obtaining G0 for an exact value of c0 = c(x(`, θ; x0)) (in particular if c was

interpolated on the rays using an interpolation formula of an order higher than the nearest neighbour)

would undue increase the computational cost. Instead, we precompute the Green’s function G0 for a range

of sound speeds cmin ≤ c(x) ≤ cmax,∀x ∈ Ω at equal increments, ∆c fine enough and use the tabulated G0

with the closest sounds speed value to approximate G0 with c0 = c(x(`, θ; x0)). The time derivative of G0 is

precomputed analogously.

Appendix B. Effect of caustics on the HG forward solution in an acoustic lens

To illustrate the effect of caustics we compute the forward propagation through an acoustic lens. We would

like to stress, that our construction relies on a large variation of the speed of sound (here some 33%). This

being said, even for small variation of speed of sound, caustics can form given large enough propagation

times. However, none of the scenarios is likely to transpire in soft tissue PAT experiments where variations

of sound speed are on the order of 5-10% and domain sizes on the order of few centimeters.

Let Ω be a rectangular domain which we discretise with Nx × Ny = 128 × 256 equispaced grid points, ∆x =

100 [µm] with mostly homogeneous sound speed c = 1, 500 [m/s] which dips in the centre to cmin = 1, 050

[m/s] forming an acoustic lens depicted in figure B.13(a). This lens has the effect of focusing the rays.
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We place a single sensor x0 at the point (6.35, 0) [mm] on the boundary and compute the PAT data for this

sensor for three initial pressures ui(x), i ∈ {b,m, t}, each ui(x), up to smoothing, assumes value 1 on a shifted

ball of radius 8∆x. Figure B.13(c), for compactness, shows their superposition
∑

i ui.

To evaluate the impact of the caustic on HG solver, we compare the respective solutions at the sensor to

the full wave solutions obtained with k-Wave. Both solvers use the same time step ∆t = 10 [ns].

HG solver shoots 4,000 rays from the sensor x0 evenly sampling the angular range [π/4, 3π/4] to cover the

relevant part of the domain. The ray cone is illustrated in figure B.13(b). The inner trajectories focus in

the vicinity of (6.35, 15)[mm]. These rays form the caustic while the outer trajectories bend around that

point and hence are unaffected by the caustic. The balls, ui, were placed so to illustrate the differences in

accuracy of the solution at the sensor in dependence of their location relative to the caustic: the bottom

ball ub(x) is seen before any focusing, the middle ball um(x) overlaps with the focus point and the top ball

ut(x) is seen after a subset of rays passed the caustic.

The solutions at the sensor for each initial condition ui(x) computed with HG and k-Wave are plotted in

B.14(a), and their difference in B.14(b). The results in B.14(b) demonstrate that the solution for the initial

pressure before the caustic is not affected (bottom ball, ub). The error is largest for the initial pressure at

the caustic (middle ball, ub). This is mainly due to setting to 0 the ray amplitudes A(x(t, x0)) for all times

for which |q(t; x0)| < ε with a small parameter ε = q(0; x0) (note that the pulse shape is essentially preserved).

The initial pressure behind the caustic is also affected but to a lesser degree (top ball, ut). The amplitude

contributions carried by the subset of rays that bends around the caustic are not affected at all, while the

amplitude contribution of rays passing though the caustic undergo a phase shift (note the stretching of the

pulse) according to (23). HG solution after the caustic does not account for the complex factor exp(−im(t)π/2)

but it compensates for the caustic induced reversing of the associated ray tube coordinate system by taking

the absolute value of q(t; x0).

Figure B.15(a) shows the trajectories of a small subset of rays in the transition region between the inner

rays which form the caustic in Ω (light green) and the outer rays that bend around the caustic (dark blue).

In the top of figure B.15(b) we plot the corresponding determinants as functions of time q(t; x0). q(t; x0)

are linear increasing until the rays reach the lens, for t ≈ 8 [µs]. Thereafter, the determinants q(t; x0) for

different rays diverge, with q(t; x0) for the three light green trajectories bending downwards and eventually

becoming negative. As q(t; x0) approach 0, the individual amplitudes blow up and become unbounded for

q(t; x0) = 0, as illustrated in the bottom of figure B.15(b). Numerically, these amplitudes will be set to 0

for all t : |q(t; x0)| < ε thus this interval will not contribute to the solution at the sensor. Once |q(t; x0)| ≥ ε,
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Figure B.14: (a) Forward solution u(t, x0) at x0 for initial conditions ui, i ∈ {b,m, t} computed with HG and k-Wave.
(b) Difference between HG and k-Wave solutions.

x [mm]

0 5 10

y
 [
m

m
]

0

5

10

15

20

25

(a)

t [ µs]

0 5 10 15 20

q

×10 -9

-1

0

1

2

t [ µs]

0 5 10 15 20

A
m

p
lit

u
d
e

10 -3

10 -2

10 -1

(b)

Figure B.15: (a) Subset of ray trajectories shot from x0 illustrating the transition between the rays which form
the caustic (light green) and those which bend around it (dark blue). (b) q(t; x0) (top) and A(x(t; x0))
(bottom) corresponding to the subset of ray trajectories in (a).
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these amplitudes will again contribute to the solution.
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[29] V. Červenỳ, I. Pšenč́ık, Ray amplitudes of seismic body waves in laterally inhomogeneous media, Geophysical Journal
International 57 (1979) 91–106.

[30] A. Virovlyansky, Ray travel times at long ranges in acoustic waveguides, The Journal of the Acoustical Society of America
113 (2003) 2523–2532.

[31] P. G. Richards, K. Aki, Quantitative seismology: theory and methods, Freeman, 1980.
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