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Abstract

We analyze the diffusion of rival information in a social network. In our model,

rational agents can share information sequentially, unconstrained by an exogenous

protocol or timing. We show how to compute the set of eventually informed agents

for any network, and show that it is essentially unique under altruistic preferences.

The relationship between network structure and information diffusion is complex

because the former shapes both the charity and confidentiality of potential senders

and receivers.

1 Introduction

Relationships and communication are basic social traits that interact: information

is often shared among people with close ties. This would seem particularly true for

rival information. Since rival information or knowledge becomes less valuable when

shared, people ought to be more (or only) willing to share it with those they care for.
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At first sight, this appears to imply that a network with many altruistic relationships,

for instance, encourages the diffusion of rival information.1 Such a conjecture neglects,

however, that people often have multiple relations that can create conflicting loyalties.

While P is friends with S and N , the latter may have other friends whom P is not

friends with and who in turn have friends and friends-of-friends that are even further

removed from P.

Such constellations create complex trust problems. Suppose M is N ’s friend, but

not P ’s. When P contemplates sharing a “secret” with N , she assesses whether N will

pass it on to M . This may depend on whether N trusts M to keep the secret, which in

turn may depend on how much M trusts her other friends, and so on—which results

in non-trivial interdependencies in trust. For instance, P may trust N if N distrusts M ,

and conversely, distrust N if N trusts M .

In general, therefore, the equilibrium constellation of trust is a function of the entire

network structure. Predicting which path, or how far, rival information travels through

a network is thus not as straightforward as it may seem.

This paper presents a theory of rival information diffusion in a social network. One

agent, the originator, is endowed with a piece of hard information. The private value of

this information to any informed agent decreases when the set of agents that possess it

expands. Communication is strategic and sequential: At any point, any informed agent

can freely communicate the information to any uninformed agents in the network, even

those she is not (altruistically) connected to. Everyone is rational and forward-looking.

The information diffusion process ends endogenously when no informed agent conveys

the information to any of the remaining uninformed agents.

Modeling information sharing as a sequential-move process, but without imposing

any exogenous sequences or communication channels, is key to our approach: It allows

us to account for every possible sequence of communication, and at the same time, use

backward induction to solve for what we call forecasts—all sets of ultimately informed

agents that are compatible with information-sharing incentives in the network—for any

1It has been shown that important social relations involve altruism (Becker, 1974), that such relations
facilitate the exchange of rival goods (Foster and Rosenzweig, 2001), and that the strength of altruism
correlates with measures of distance in social networks (Leider et al. (2009); Goeree et al. (2010)).
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arbitrary preference profile. For a large class of preferences, the forecast is essentially

unique.

We then impose a particular structure on the preferences that represents a setting in

which (i) information is rival and (ii) links in the social network are mutually altruistic

relations. Our model shows that, in such a setting, the mapping from network structure

to information diffusion is complex: Adding (subtracting) links in a network can have

non-monotonic effects on information diffusion, and small changes to the structure can

cause large changes in who becomes informed. Further, it is not obvious where within a

network information should be seeded to maximize diffusion. For example, it need not

be better to seed it with more agents, or with those who have high centrality measures.

These complexities stem from two sources:

The first concerns the evaluation of (yet) uninformed agents’ trustworthiness: Can

an agent be trusted not to share the information further, or at least not too far? In a net-

work, such trust is not a pairwise property, but as stressed earlier, depends on the dis-

position of trust across all links; trust relations are interdependent. Small changes, like

removing or adding a link, can alter trust relations elsewhere in the network, even far

away from the location of the change.

The second source of complexity is that informed agents’ secrecy may be mutually

conditional. For instance, information may be contained between two agents by each

one’s threat of informing friends that the other agent is not friends with. The credibility

or strength of such threats, and therefore the balance of power in this “mutual hostage

situation,” depends on the web of relationships the informed agents are embedded in.

Changes to the network—again, be it removing or adding links—can tilt the balance in

either direction and thereby support or undermine secrecy.

These strategic issues also complicate incentives for network formation (presuming

an environment where access to rival knowledge is of such concern that it affects rela-

tionship choices). Having many links need not be advantageous, as it could undermine

one’s trustworthiness. Nor is tying oneself to a single cluster, as keeping links outside a

specific circle of trust may preserve the balance of power within it.

There is a wealth of evidence that social ties play a significant role in the diffusion of
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rival information.2 Our theory resonates most with studies in which subjects (seem to)

take social networks into account to strategically steer or contain information diffusion.

The most compelling evidence of this kind comes from randomized controlled trials in

which information about scarce opportunities to participate in paid experiments or in

aid programs is “seeded” with individuals to then be shared by word of mouth (Banerjee

et al., 2012; Bandiera et al., 2018; Vilela, 2019). Another pertinent set of studies traces

out networks and information sharing among fishermen, a context wherein fraternizing

may even be endogenous to (concerns about) information flows (Palmer, 1991; Turner

et al., 2014; Alexander et al., 2020). These too find information flows to be embedded

in social relationships, and the role of network structure to be complex.

Although information diffusion is a central topic in the social network literature, the

latter features few theoretical analyses of rival information. In Immorlica et al. (2014),

agents select a time-invariant probability of passing information to friends. Once these

choices are set, information travels through the network according to a Poisson process.

In Kleinberg and Ligett (2013), agents want all their friends but none of their enemies

to become informed. Stable information sharing structures are characterized in a static

model with myopic agents. Kushnir and Nichifor (2014) take a similar approach.3 One

distinctive aspect of our model, which is crucial for our results, is that agent selectively

choose which of their friends to inform based on considerations of trustworthiness and

mutual secrecy.

At a conceptual level, our theory is closely related to Barbera et al. (2001)’s analysis

of club formation by invitations and to the literature on the resale of information (Muto,

2See, e.g., Cohen et al. (2008) in the context of fund managers and corporate executives, Iyer and
Puri (2012) and Kelly and O Grada (2000) in the context of bank runs and financial panics, Chen et
al. (2021) on health-related information in family networks, and the large literature documenting the
role of social networks in disseminating information about job opportunities, which is rival when shared
between job seekers (see, e.g., surveys by Ioannides and Datcher Loury (2004), Jackson (2010), Munshi
(2011) and Topa (2011)). Also relevant are the historical studies of secrecy over craft skills, which were
traditionally transmitted within families, master-apprentice relations, and guilds (e.g., Long, 2001).

3These are, of course, not the only papers that analyze strategic behavior with respect to information
in a social network. But other papers in this literature focus on different issues such as, e.g., information
acquisition and network formation when information is a local public good that “spills over” to neighbors
(Bramoullé and Kranton, 2007; Galeotti and Goyal, 2010) or communication of soft information (cheap
talk) to influence neighbors’ actions or cooperation (Galeotti et al., 2013; Lippert and Spagnolo, 2011).
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1986; Admati and Pfleiderer, 1986, 1990; Nakayama and Quintas, 1991; Nakayama et

al., 1991; Polanski, 2007, 2019; Ali et al., 2020). Last, the notion of forecast used in our

analysis can be seen as an adaptation of the notion of expectation in Jordan (2006) and

is akin to solution concepts used in Ray and Vohra (1997) and Acemoglu et al. (2012).

2 General framework

There is a group of agents N with one of them—o ∈ N—possessing a valuable piece

of information. We refer to o as the originator. The originator and, later, any other

informed agent, can pass the information to uninformed agents in N . We assume that

the agents share information sequentially. At any instance, at most one agent passes on

the information. However, several agents can receive the information simultaneously.

The act of sharing the information, but not information itself, is publicly observed.4

If agent i shares the information with some set of agents R ⊂ N , everyone observes that

agents in R are now informed and that agent i was the source. This process constitutes

a diffusion of information.

A snapshot of the diffusion process is represented by a directed tree T = (NT , ET )
where NT ⊂ N is the set of informed agents and ET ⊂ NT ×NT records communications

(e.g., (i, j) ∈ ET means that i informed j). In any such tree, the originator is informed:

o ∈ NT . And no one passes the information to the originator: (i, o) /∈ ET ∀i ∈ N .

Apart from these two conditions, we assume that agents can share information freely

without any restrictions. We refer to such trees as outcomes, and denote the collection

of feasible outcomes by I .5 In addition, by To := ({o},;), we denote an empty tree

and interpret it as an outcome in which only the originator is informed.

Everyone takes interest in how the information diffuses. We assume that each agent

i has complete and transitive preferences �i over I , and denote strict preferences by

�i. We abstract from the time dimension in agents’ preferences—agents are insensitive

4This assumption is stricter than needed. For our results, it would suffice to assume that, at any
stage, the set of then-informed agents learns whether any one of them passes on the information and to
whom it is passed on. See also our concluding discussion in Section 4.

5There are several ways to introduce constraints on how agents share information. One possibility
is to restrict set I . Another possibility is use large payoff penalties for some acts of sharing.
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to the speed of the information diffusion. We also assume that any uninformed agent

always wants to become informed.

2.1 Information diffusion

We study a dynamic process in which agents who receive information can pass it on

to anyone at any subsequent point in time. As in dynamic programming problems, we

examine this process for any initial condition represented by some outcome T . That is,

assuming that the information diffused according to T up to a certain point in time, we

ask: what happens next?

To answer this question, we must consider the information-sharing incentive of each

agent who is informed in outcome T . We do so under the assumption that all agents are

forward-looking and that their expectations are common and consistent. We construct

a function, µ : I → I , that we call a forecast. The forecast returns an ultimate, long-

term stable result of information diffusion µ(T ) for each initial condition T . It classifies

outcomes as terminal or transitory. An outcome is transitory if it is followed by further

diffusion, and it is terminal otherwise.

Consider agent i who is informed in T : i ∈ NT . Let

Θ(T, i) = {T̃ ∈ I | ET ⊂ ET̃ and ET̃ \ ET ⊂ i × (N \ NT )}

be the set of all outcomes that can result from agent i passing the information to some

uninformed agents. This set consists of all trees that can be obtained from T by adding

a star with a center at i to it.

Definition 1. A function µ : I →I is a forecast if for any T ∈ I

(i) T ⊂ µ(T );

(ii) µ(µ(T )) = µ(T );

(iii) if outcome T is terminal—i.e., if T = µ(T ), then for any informed agent i ∈ NT and

for any T̃ ∈ Θ(T, i) :

µ(T )�i µ(T̃ );

6



(iv) if outcome T is transitory—i.e., if T 6= µ(T ) then there is an informed agent i ∈ NT

such that

µ(T ) ∈ max�i

T̃∈Θ(T,i)

�

µ(T̃ )
	

�i T.

Condition (i) and the definition of Θ(·, ·) state that a diffusion is irreversible: once

informed, always informed. By condition (ii), a forecast is dynamically consistent.

Conditions (iii) and (iv) require that all agents are rational and forward-looking and

agree on their predictions about the future. Moreover, uninformed agents receive in-

formation only if some informed agent benefits from it strictly; if all informed agents

are indifferent between sharing the information further and not, we assume that they

stop sharing it.

A forecast is defined as a fixed point. However, we can exploit the irreversibility of

information diffusion to characterize a forecast using a backward induction algorithm.

Let

Q(µ, T ) = {i ∈ NT | ∀T̃ ∈ Θ(T, i) : T �i µ(T̃ )}

be a set of agents who have the information in T and prefer not to give it to uninformed

agents. The algorithm is as follows:

(i) Let µ(T ) := T for every T : NT = N . This is a starting point of the induction.

(ii) Take an outcome T such that for any bT ⊃ T , µ(bT ) is already defined.6

(a) If Q(µ, T ) = NT , then set µ(T ) := T ;

(b) otherwise, pick any agent i ∈ NT\Q(µ, T ) and setµ(T ) := T ′ ∈ max�i

T̃∈Θ(T,i)

�

µ(T̃ )
	

.

(iii) Repeat (ii) until µ is defined everywhere.

Theorem 2. For any set of agents N and any preference profile {�i}i∈N ,

(a) there exists at least one forecast;

6Note that for such a tree T , Q(µ, T ) is well defined because µ is defined for all T̃ ⊃ T at the previous
rounds of the induction.

7



(b) any forecast can be obtained by the backward induction algorithm.

Proof. The theorem follows from the definition of a forecast and the description of the

backward induction algorithm.

Forecasts are not necessarily unique. As we show next, placing certain restrictions

on agent preferences guarantees that running the algorithm once characterizes all fore-

casts, while still allowing for interesting applications of the model.

2.2 Uniqueness

If agents do not care about the entire diffusion path but only about who is eventually

informed and who is not, finding one forecast is sufficient to characterize every terminal

outcome under all forecasts. More formally, we assume the following:

Assumption 3. For any agent i and for any two outcomes T, T̃ such that NT = NT̃ , we

have T ∼i T̃ .

Under Assumption 3, the solution is essentially unique.

Theorem 4. If preferences satisfy Assumption 3 then:

(i) for any forecast µ and outcomes T1, T2 ∈ I such that NT1
= NT2

:

if µ(T1) = T1, then µ(T2) = T2; (1)

(ii) for any two forecasts µ1,µ2 :

if µ1(T ) = T, then µ2(T ) = T. (2)

Proof. We prove the first part of this theorem by setting up an induction:

1. If NT1
= NT2

= N , then µ(T1) = T1 implies µ(T2) = T2 because there are no

uninformed agents in T2.
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2. Let (1) hold for all T1, T2 : NT1
= NT2

, |NT1
|> k.

We show that (1) holds for all T1, T2 : NT1
= NT2

, |NT1
|= k. By contradiction assume

that for some T1, T2 : µ(T1) = T1,µ(T2) = T ′2 and T ′2 6= T2. There exists an agent

i ∈ NT2
: T ′2 �i T2 and T ′2 ∼i T ′1 ∈ Θ(T1, i). Since |NT ′2

| > k, µ(T ′2) = T ′2 implies

µ(T ′1) = T ′1, hence µ(T1) 6= T1 which is a desired contradiction.

We prove the second part of this theorem by setting up an induction:

1. If NT = N , then µ(T ) = T for any µ because there are no uninformed agents in

T .

2. Let (2) hold for all µ1,µ2, T : |NT |> k.

We show that (2) holds for all µ1,µ2, T : |NT | = k. Assume, by contradiction, that

µ1(T ) = T and µ2(T ) = T ′ : T ′ 6= T . There exists an agent i ∈ NT : T ′ �i T . Also

there exists T ′′ ∈ Θ(T, i) such that NT ′ = NT ′′ . Since |NT ′ | > k, µ2(T ′) = T ′ implies

µ1(T ′) = T ′. Also, by the first part of this theorem, µ1(T ′) = T ′ implies µ1(T ′′) = T ′′,

hence µ1(T ) 6= T which is a desired contradiction.

Let Ω = {T ∈ I | T = µ(T )} be the set of all terminal outcomes. Under Assump-

tion 3 we can omit the dependence of this set on the forecast.

The terminal outcome that results from an initial condition with a single informed

agent—the originator—is unique up to indifferences in the originator’s preferences. It

is as if the originator selects her favorite outcome from the set of all terminal ones:

µ(To) ∈max�o
Ω.

Suppose the originator wants to achieve outcome T . Given communication is uncon-

strained, the originator can inform every agent in NT by herself and thereby arrive

at some outcome T̃ : NT̃ = NT . This is as if her choice is restricted to the set Ω by

incentives of others, but she is essentially free to choose any element of that set.

When there is more than one originator, a similar principle applies: every forecast

is some originator’s favorite outcome among the set of the terminal ones.
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For an arbitrary initial condition T , the terminal outcome that results is always the

“closest”, or put differently, it features the smallest (in the set-inclusion sense) group

of informed agents that can occur in any terminal outcome.

Theorem 5. If preferences satisfy Assumption 3, for any T1 = µ(T ) there exists no T2 6=
µ(T ) such that T ⊂ T2 ⊂ T1 and T2 = µ(T2).

Proof. Consider agent i that initiates the transition from T to µ(T ). Note that T1 ∈
max�i
X∈Θ(T,i)

{µ (X )}. By contradiction, suppose there exists T2 : T ⊂ T2 ⊂ T1 and µ(T2) = T2.

There exists T ∗2 ∈ Θ(T, i) : NT ∗2
= NT2

and, therefore, µ(T ∗2 ) = T ∗2 . This implies that

T1 �i T ∗2 ∼i T2. Also, there exists T ∗1 ∈ Θ(T
∗
2 , i) such that NT1

= NT ∗1
and, therefore,

µ(T ∗1 ) = T ∗1 . Since T ∗1 �i T ∗2 , we arrive at the desired contradiction.

Of course, Theorem 5 also holds for To as the initial condition. The group of agents

that will be informed is minimal in size (in the set-inclusion sense) across all terminal

outcomes, and of all minimal ones, is the originator’s favorite group. Theorems 4 and 5

demonstrate that the absence of an exogenous communication protocol, together with

Assumption 3 on preferences, greatly simplifies finding the set of terminal outcomes.7

3 Directed altruism and rival information

We now study a specific application of our framework by putting more structure on

agents’ preferences in two ways. First, every informed agent incurs a utility penalty that

increases in the number of informed agents. This captures the idea that the information

is rival such that purely selfish agents would not share it. Second, we impose the notion

of a social network where connected agents are mutually altruistic “friends” who derive

additional utility if the other is informed.

Formally, such a network is represented by a symmetric adjacency matrix Φ ∈ RN×N
+ .

Element Φi, j represents the strength of altruism between agents i and j. Generally, the

7If agents care about the exact paths of information diffusion—e.g., if they experience “warm glow”
from the act of sharing information—both parts of Theorem 4 break down, and non-trivial multiplicity
arises. Theorem 2, however, holds for arbitrary preferences, any numbers of originators, and irrespective
of constraints on communication.
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utility of agent i in outcome T is Ui(NT ,Φ). These preferences satisfy Assumption 3. We

use this model to show that strategic sharing of rival information in a social network

is a complex problem and that readily generalizable patterns of information diffusion

and network formation do not emerge without additional restrictions. We pick different

specifications of Φ to illustrate a few of the complexities. An especially tractable class of

preferences that we use is linear: every agent gets a utility bonus of b for each informed

friend and a utility penalty of 1 for each informed person. Formally,

Definition 6. Agent i’s preferences are linear if they are characterized by a utility function

of the form

Ui(NT ,Φ) = bi

∑

j∈NT

Φi, j − |NT |,

where bi > 0.8

Note that under this specification, agents without any friends are never informed by

anyone, so we can ignore them in the analysis.

3.1 Endogenous (dis)trust: If I told her, would she tell anyone?

Since rival information would not be shared in the absence of altruistic preferences

in our model, one might conjecture that the degree of information diffusion increases

in the number of altruistic links or the strength of the altruism. However, this is not true

for reasons that are best exposed in a very simple setting. Suppose all agents have linear

preferences with a common parameter b > 0, and form a chain of friends of length m

with the originator at one end. In this case, a sufficient statistic to characterize terminal

outcomes is the total number of uninformed agents in the chain.

Proposition 7. Consider a chain of friends where Φi, j = 1 for all i, j ≤ m and |i − j|= 1

and Φi, j = 0 otherwise. Let tb ∈ N be a number that satisfies (tb − 1) < b < tb. For any

forecast µ, outcome T is terminal if and only if the number of uninformed agents is either

zero or a multiple of tb.
8Recall, that if an agent is not informed in outcome T , her utility is assumed to be low, so that agents

never refuse an information that is given to them.
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Proof. Suppose there are tb uninformed agents. An informed agent who has an un-

informed friend will not share the information because once she does, everyone will

be informed. If the number of uninformed agents is a multiple of tb, informing one of

them will result in tb of them getting the information eventually.

Two types of comparative statics follow from Proposition 7: one with respect to the

length of the chain m, and the other with respect to the strength of altruism b. In either

case, the relationship to the number of informed agents is non-monotonic, as depicted

in Figure 1.

The intuition underlying both comparative statics is that, because the information

is rival, an informed agent shares it with her friend only if she is certain that it will not

spread too far. Let us elaborate on this for the comparative statics with respect to the

chain length (Figure 1a). When the remaining chain of uninformed agents is short, it is

guaranteed that the information does not travel far. However, when the chain becomes

longer, informed agents must become strategically secretive—taking into account the

endogenous trustworthiness of the uninformed agents, which itself is a function of the

chain length.

For instance, when the chain is of length tb + 1, none of the agents can be trusted

to keep the secret: the originator knows that passing the secret to her friend ultimately

result in everyone being informed. When the length of the chain is tb+2, the originator

entrusts her friend with the secret because her friend finds himself in the same situation

as the originator with the chain of tb+1 agents. Namely, the originator’s friend will not

trust the remaining uninformed agents, which makes her endogenously trustworthy—

she is in the originator’s endogenous “circle of trust.”

Like the sequential information-sharing problem, the problem of trust is recursive:

Agent o’s trust in agent 1 depends on the latter’s trust in agent 2, which in turn depends

on agent 2’s trust in agent 3, and so forth. For example, agent o may trust agent 1 only

if the latter mistrusts agent 2, which may be the case only if agent 2 trusts agent 3. More

generally, in structures more complex than chains, whether an agent is inside another’s

circle of trust hence depends on the surrounding network in complex ways.

Figure 1a also illustrates that small changes in the network structure can have large
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(b) Number of informed agents as a function of b (m= 10);

Figure 1: Comparative statics for a chain of friends.

effects on who becomes informed. For instance, adding one link to a chain of length tb

causes a discrete drop in the number of informed agents from tb to 1, which means that

the structural change at the tbth position in the chain alters the originator’s information

sharing decision (i.e., tb − 1 nodes away from the change).
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3.2 Mutually conditional secrecy: I won’t tell, if you don’t tell

Another source of complexity is that one informed agent’s secrecy may not only take

into account the trustworthiness of those yet uninformed but also be conditional on the

secrecy of others already informed. To see this, consider a chain of four agents in which

the originator is one of the interior nodes: 1-o-2-3. Let b = 1.4, so an agent informs a

friend only if she is sure that it will not trigger further information diffusion.

One forecast is that the information only reaches agent 2 and travels no further. It is

not obvious why this outcome is terminal; agent 2 would seem to get 0.4 units of utility

from informing agent 3, as would agent o from informing agent 1. What contains the

information to agents o and 2 is the mutual threat of sharing the information further. If

agent 2 passes the information to agent 3, agent o will pass it to agent 1, and vice versa.

Once triggered, this sequence of events would result in a net loss of 0.6 each for agents o

and 2. This “mutually assured diffusion” contains the diffusion.

Although no information is shared between o and 1 or between 2 and 3, these links

are crucial to the forecast. For example, eliminating the link between 2 and 3 increases

information diffusion: the information would then reach agents 2 and 1. Hence, having

the extra link to agent 3 gives agent 2 more “power” over the information.9

3.3 Seeding and centrality

The previous arguments highlight that adding or subtracting links in a network can

have complex, even counterintuitive, effects on information diffusion. As a result, there

is no straightforward relationship between information diffusion and standard network

measures in our model. Similarly, there is no obvious relationship between information

diffusion and the location of the originator within a network.

This latter point matters for strategies that “seed” information with a small number

of recipients in order for it to spread by word-of-mouth. It is sometimes suggested that

9Note that this notion of “power” as a result of network links deviates from the standard emphasis
on the degree to which an agent has access to resources and the degree to which others depend on an
agent for resources. Here, it concerns the ability to deter dilutive sharing by others through a credible
threat to dilute the value of the resource herself—as in a mutual hostage game.
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a very effective seeding strategy is to select agents with high levels of network centrality

as initial recipients. One can construct centrality indices through theoretical arguments

(degree, betweenness, closeness, etc.) or empirically, using historical diffusion patterns

(Banerjee et al., 2013, 2014).

When information is rival, a very central agent may not be the best seeding point. To

give an example, consider the network shown in Figure 2. Common centrality indices—

such as degree centrality, betweenness-centrality and eigenvector centrality—indicate

2 and 3 as the most central agents. Agents 1, 7, 8, 9 and 10 form a cluster around agent

3, and agents 1, 4, 5, 6 and 10 form a similar cluster around agent 2.

1
23

4

5

6

7

8
9

10

11

Figure 2: A friendship network with two clusters

Suppose all agents have linear preferences with a common parameter b = 11/2. We

use the backward induction algorithm to compute the forecast for different originators.

If agent 2 is the originator, agents 4, 5, 6 and 10 will be informed. Agents 4 and 10 will

not pass the information into the cluster around agent 3—the resulting diffusion would

outweigh the benefit of having an additional informed friend.

In comparison, if agent 1 is the originator, everyone in the network will eventually be

informed. What distinguishes agent 1 from agent 2 or 3 is that she cares equally about

the clusters of agents on the left and the right, which makes her a more effective seeding

point than either 2 or 3.

One can also construct examples in which seeding information with fewer agents is

more effective. Revisit the example from Section 3.2 and suppose o and 2, while con-

nected, are the centers of two equal-sized star structures, which are otherwise disjoint
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(and include 1 and 3, respectively). In this modified example, for some values of b, it is

better to seed information with either o or 2 than with both of them.

3.4 Incentives to form or sever links

The arguments so far have treated the network structure as given since, in practice,

the formation of close relationships may result from forces outside of our framework. In

environments, however, where receiving and sharing rival information is a key concern,

the information diffusion problem analyzed in our model might have some influence

on network formation.

A natural conjecture is that agents gravitate toward close-knit clusters within which

rival information is shared and contained. Indeed, one might expect that, starting from

any given structure, all agents that the information reaches gain from being each other’s

friends (“inside links”) but not from being friends of those that will remain uninformed

(“outside links”). Such a logic would strongly favor clusters.

However, while such examples can easily be constructed, the above argument does

not generally hold in our model. Take the network shown in Figure 3a with preferences

assumed to be such that agents o, 3, and 4 will be informed, and think about pairwise

incentives to form links and unilateral incentives to sever links. Notice that this thought

experiment presumes that links require (only) bilateral consent.

Inside links. Consider whether agents 3 and 4 benefit from connecting, conditional

on staying informed. Among agents o, 3, and 4, such a link would lead to triadic closure,

a concept associated with trust in social network theory at least since Simmel (1908).10

It turns out that agents 3 and 4 do not necessarily gain from forming an inside link,

for reasons that have to do with trust. To explain this, we first show that they do benefit

from such a link if preferences are sufficiently separable, and then analyze an example

where this is not the case because the separability condition is violated.

10Triadic closure also features prominently in Granovetter (1973).
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(b) Network of friendships Φ̂ obtained
from network Φ by adding a link of
weight 1/3 between agents 3 and 4.

Figure 3: Friendship networks and sets of
informed agents for nonlinear preferences.

Assumption 8. For any agent i in a social network Φ, preferences are represented by

Ui(NT ,Φ) =
∑

j∈NT

Φi, j − gi(NT ).

Since the altruistic utility bonusesΦi, j from informing friends are fixed and additive,

an agent’s net gain from forming an additional link is independent of which (informed)

agents she is already friends with. For example, in Figure 3a, this means that agent 3’s

incentive to inform agent 5 does not depend on the relationship between agents 3 and

4.

For the class of preferences that satisfy Assumption 8, which nests the class of linear

preferences used in Sections 3.1 and 3.3, adding links between informed agents always

makes them better off. For a social network Φ, let µΦ be a forecast given a preference

profile that satisfies Assumption 8.

Proposition 9. Suppose that the agents’ preferences satisfy Assumption 8 for any social

network. Consider two agents, i and j who are informed given a social network Φ, namely

{i, j} ⊂ NµΦ(To). Let the strength of their friendship increases in the new social network Φ̂

(Φ̂i, j > Φi, j) and the rest of the social network remained the same (∀{k, l} 6= {i, j} : Φ̂k,l >
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Φk,l). If i and j remain informed under Φ̂—i.e., {i, j} ⊂ NµΦ̂(To)—then both are better off:

Ui(NµΦ̂(To), Φ̂)> Ui(NµΦ(To),Φ)

U j(NµΦ̂(To), Φ̂)> U j(NµΦ(To),Φ).

Proof. Consider any outcome T : {i, j} ⊂ NT . Note that any agent ranks the outcomes

that follow T under Φ in the same way as under Φ̂. More formally, for any T1, T2 ⊃ T ,

and for any k ∈ N : Uk(NT1
,Φ)≥ Uk(NT2

,Φ) iff Uk(NT1
, Φ̂)≥ U j(NT2

, Φ̂). This means that

when it comes to terminal outcomes, µΦ agrees with µΦ̂ for all outcomes in which both

i and j are informed. Since the originator can essentially select her favorite terminal

outcome, under the premise of the proposition, µΦ(To) = µΦ̂(To).

Now consider a case in which Assumption 8 does not hold. Let the preferences of an

agent be nonlinear in the number of informed friends:

Ui(NT ,Φ) = b log

 

∑

j∈NT

Φi, j

!

− |NT |. (3)

Under these preferences, an agent’s net gain from informing another friend depends on

how many informed friends she already has. We will provide an intuitive interpretation

further below.

Assume these preferences and set b = 3. Then, in network Φ in Figure 3a, agents o,

3, and 4 will be informed. In network Φ̂, which is obtained from network Φ by creating

an additional link between agents 3 and 4 with Φ3,4 = 1/3, the same agents plus agent

2 will be informed. Agents 3 and 4 prefer network Φ, in which they are not friends but

fewer agents are informed:

U3(NµΦ(To),Φ) = 3 log 1− 3> 3 log
4
3
− 4= U3(NµΦ̂(To), Φ̂).

What is the intuition? The key is to understand why the information remains contained

in network Φ, among agents o, 3, and 4. None of them diffuses the information further

because their mutual threat of doing so is credible. The added link in network Φ̂ renders
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agents 3 and 4 more reluctant to share information with others. This undermines their

threat vis-à-vis agent o, who consequently becomes less secretive. This showcases both

of the aspects highlighted in Sections 3.1 and 3.2: a friendship between agents 3 and 4

alters their endogenous trustworthiness, which critically tilts the balance in the “mutual

hostage” situation in favor of agent o.

Preferences as represented by (3) are by no means pathological, but quite natural.

The same preferences can be represented by the utility function

Ûi(NT ,Φ) =

 

1+
∑

j∈NT

Φi, j

!

e−
1
b |NT |.

One can see e−
1
b |NT | as the objective value of information, whose rival nature is reflected

in the fact that the value is decreasing in |NT |. In addition to enjoying this value, agent

i internalizes the share Φi, j of the value enjoyed by each of her informed friends j 6= i.

So, having more informed friends reduces agent i’s incentive to dilute the information,

that is, to diffuse it further.

Outside links. Taking again network Φ in Figure 3a, consider whether agents have

anything to lose from dropping links to uninformed friends. They do. Suppose agents 3

and 4 drop their links to agents 5 and 6. This harms them because, without the credible

threat of informing 5 and 6, they cannot keep agent o from informing agent 2. Notice

that this argument also indicates why an isolated cluster between agents o, 3, and 4 is

an unstable outcome. For instance, agent o would gain from befriending and informing

agent 2. In general, the implications of rival information sharing for network formation

seem far from straightforward.

4 Concluding remarks

Our model makes the strong assumption that whether information is shared, that is,

whether it diffuses, is observable. This is arguably more plausible for some types of rival

knowledge (e.g., trade craft) than for others (e.g., stock tip). Moreover, we make heroic

assumptions about agents’ comprehension of the network and the information-sharing
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incentives within it, which may be more appropriate for overseeable networks than for

far-reaching ones. In the latter case, introducing elements of bounded rationality in

the analysis would be a reasonable extension.

The caveats regarding observability and rationality are potentially less relevant if,

in contexts where rival information diffusion is a first-order concern, agents naturally

tend to group into small, close-knit clusters. However, in our model, agents’ incentives

to gravitate toward clusters is ambiguous, at least based on notions of pairwise stability.

They may eschew links that reinforce clustering and want links that “keep things open”

to support secrecy and trust, or better, to limit information diffusion. As a result, in our

model, agents’ attitudes toward forming links defy simple descriptions.

These complications highlight the difficulty of balancing out multilateral incentives

to share information (or not), if everyone is free to form and drop links. This points to

a possibly important real-world element left out of our analysis: in close-knit groups—

such as, e.g., families, cliques, gangs—the members sometimes restrict whom else each

of them may connect with, especially when it comes to “outsiders.” In our setting, such

power may rest with the originator. Being the source of rival information may empower

her to restrict others’ actions, including their freedom to enter into other relationships.

Developing and analyzing such a model, perhaps with multiple potential originators, is

a promising avenue for follow-on work.

References

Acemoglu, Daron, Georgy Egorov, and Konstantin Sonin, “Dynamics and stability

of constitutions, coalitions, and clubs,” American Economic Review, 2012, 102 (4),

1446–76.

Admati, Anat R and Paul Pfleiderer, “A monopolistic market for information,” Journal

of Economic Theory, 1986, 39 (2), 400–438.

and , “Direct and indirect sale of information,” Econometrica, 1990, pp. 901–928.

20



Alexander, Steven, Philip Staniczenko, and Örjan Bodin, “Social ties explain catch

portfolios of small-scale fishers in the Caribbean,” Fish and Fisheries, 2020, 21, 120–

131.

Ali, S Nageeb, Ayal Chen-Zion, and Erik Lillethun, “Reselling information,” Working

paper 2020.

Bandiera, Oriana, Robin Burgess, Erika Deserranno, Ricardo Morel, Imran Rasul,

and Munshi Sulaiman, “Social ties and the delivery of development programs,”

Working paper 2018.

Banerjee, Abhijit, Arun G Chandrasekhar, Esther Duflo, and Matthew O Jackson,

“The diffusion of microfinance,” Science, 2013, 341 (6144).

, , , and , “Gossip: Identifying central individuals in a social network,” Work-

ing paper 2014.

, Emily Breza, Arun G Chandrasekhar, Esther Duflo, and Matthew O Jackson,

“Come play with me: Experimental evidence of information diffusion about rival

goods,” Working paper 2012.

Barbera, Salvador, Michael Maschler, and Jonathan Shalev, “Voting for voters: a

model of electoral evolution,” Games and Economic Behavior, 2001, 37 (1), 40–78.

Becker, Gary S, “A theory of social interactions,” Journal of Political Economy, 1974,

82 (6), 1063–1093.

Bramoullé, Yann and Rachel Kranton, “Public goods in networks,” Journal of Eco-

nomic Theory, 2007, 135 (1), 478–494.

Chen, Yiqun, Petra Persson, and Maria Polyakova, “The Roots of Health Inequality

and the Value of Intra-Family Expertise,” Working paper, 2021.

Cohen, Lauren, Andrea Frazzini, and Christopher Malloy, “The small world of in-

vesting: Board connections and mutual fund returns,” Journal of Political Economy,

2008, 116 (5), 951–979.

21



Foster, Andrew D and Mark R Rosenzweig, “Imperfect commitment, altruism, and

the family: Evidence from transfer behavior in low-income rural areas,” Review of

Economics and Statistics, 2001, 83 (3), 389–407.

Galeotti, Andrea and Sanjeev Goyal, “The law of the few,” American Economic Review,

2010, 100 (4), 1468–92.

, Christian Ghiglino, and Francesco Squintani, “Strategic information transmis-

sion networks,” Journal of Economic Theory, 2013, 148 (5), 1751–1769.

Goeree, Jacob K, Margaret A McConnell, Tiffany Mitchell, Tracey Tromp, and Leeat

Yariv, “The 1/d law of giving,” American Economic Journal: Microeconomics, 2010,

2 (1), 183–203.

Granovetter, Mark S, “The strength of weak ties,” American journal of sociology, 1973,

78 (6), 1360–1380.

Immorlica, Nicole, Brendan Lucier, and Evan Sadler, “Sharing rival information,”

Working paper 2014.

Ioannides, Yannis M and Linda Datcher Loury, “Job information networks, neigh-

borhood effects, and inequality,” Journal of Economic Literature, 2004, 42 (4), 1056–

1093.

Iyer, Rajkamal and Manju Puri, “Understanding bank runs: The importance of

depositor-bank relationships and networks,” American Economic Review, 2012, 102

(4), 1414–45.

Jackson, Matthew O, Social and Economic Networks, Princeton University Press, 2010.

Jordan, James S, “Pillage and property,” Journal of Economic Theory, 2006, 131 (1),

26–44.

Kelly, Morgan and Cormac O Grada, “Market contagion: Evidence from the panics

of 1854 and 1857,” American Economic Review, 2000, 90 (5), 1110–1124.

22



Kleinberg, Jon and Katrina Ligett, “Information-sharing in social networks,” Games

and Economic Behavior, 2013, 82, 702–716.

Kushnir, Alexey I and Alexandru Nichifor, “Targeted vs. collective information shar-

ing in networks,” Working paper, 2014.

Leider, Stephen, Markus M Möbius, Tanya Rosenblat, and Quoc-Anh Do, “Directed

altruism and enforced reciprocity in social networks,” Quarterly Journal of Economics,

2009, 124 (4), 1815–1851.

Lippert, Steffen and Giancarlo Spagnolo, “Networks of relations and word-of-mouth

communication,” Games and Economic Behavior, 2011, 72 (1), 202–217.

Long, Pamela O., Openness, Secrecy, Authorship: Technical Arts and the Culture of

Knowledge from the Antiquity to the Renaissance, The John Hopkins University Press:

Baltimore and London, 2001.

Munshi, Kaivan, “Labor and credit networks in developing economies,” in “Handbook

of social economics,” Vol. 1, Elsevier, 2011, pp. 1223–1254.

Muto, Shigeo, “An information good market with symmetric externalities,” Economet-

rica: Journal of the Econometric Society, 1986, pp. 295–312.

Nakayama, Mikio and Luis Quintas, “Stable payoffs in resale-proof trades of infor-

mation,” Games and Economic behavior, 1991, 3 (3), 339–349.

, , and Shigeo Muto, “Resale-proof trades of information,” The Economic Studies

Quarterly, 1991, 42 (4), 292–302.

Palmer, Craig, “Kin-selection, reciprocal altruism, and information sharing among

Maine lobstermen,” Ethology and Sociobiology, 1991, 12, 221–235.

Polanski, Arnold, “A decentralized model of information pricing in networks,” Journal

of Economic Theory, 2007, 136 (1), 497–512.

23



, “Communication networks, externalities, and the price of information,” The RAND

Journal of Economics, 2019, 50 (2), 481–502.

Ray, Debraj and Rajiv Vohra, “Equilibrium binding agreements,” Journal of Economic

Theory, 1997, 73 (1), 30–78.

Simmel, Georg, Soziologie. Untersuchungen über die Formen der Vergesellschaftung.

1908.

Topa, Giorgio, “Labor markets and referrals,” in “Handbook of social economics,”

Vol. 1, Elsevier, 2011, pp. 1193–1221.

Turner, Rachel, Nicholas Polunin, and Selina Stead, “Social networks and fishers’

behavior: exploring the links between information flow and fishing success in the

Northumberland lobster fishery,” Ecology and Society, 2014, 19 (2), 38–48.

Vilela, Inês, “Diffusion of rival information in the field,” Working paper 2019.

24


