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Abstract

Advances in genetic technology and small molecule drug development have paved

the way for clinical trials in Charcot-Marie-Tooth disease (CMT); however, the current

FDA-approved clinical trial outcome measures are insensitive to detect a meaningful

clinical response. There is, therefore, a need to identify sensitive outcome measures

or clinically relevant biomarkers. The aim of this study was to further evaluate plasma

neurofilament light chain (NFL) as a disease biomarker in CMT. Plasma NFL was mea-

sured using SIMOA technology in both a cross-sectional study of a US cohort of

CMT patients and longitudinally over 6 years in a UK CMT cohort. In addition, plasma

NFL was measured longitudinally in two mouse models of CMT2D. Plasma concen-

trations of NFL were increased in a US cohort of patients with CMT1B, CMT1X and

CMT2A but not CMT2E compared with controls. In a separate UK cohort, over a

6-year interval, there was no significant change in plasma NFL concentration in

CMT1A or HSN1, but a small but significant reduction in patients with CMT1X.

Plasma NFL was increased in wild type compared to GARSC201R mice. There was no

significant difference in plasma NFL in GARSP278KY compared to wild type mice. In

patients with CMT1A, the small difference in cross-sectional NFL concentration vs
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healthy controls and the lack of change over time suggests that plasma NFL may lack

sufficient sensitivity to detect a clinically meaningful treatment response in

adulthood.

K E YWORD S

biomarkers, Charcot-Marie-Tooth disease, neurofilament

1 | INTRODUCTION

Charcot-Marie-Tooth disease (CMT) is one of the commonest

inherited neurological diseases with a population prevalence of 1 in

3000.1 With increased understanding of the genetic aetiology of CMT

combined with advances in genetic therapies and small molecule drug

development, the field is now entering an era where there are a num-

ber of promising therapies in the pipeline.2

Developing successful treatments in preclinical models of CMT is

only part of the journey in delivering therapies to patients. For a treat-

ment to be adopted in routine clinical practice, it will need to show effi-

cacy in clinical trials. CMT provides particular difficulties when it comes

to designing clinical trials.3 CMT is usually a lifelong disease, and even in

the rapidly progressive forms, the rate of progression is slower than for

other diseases such as amyotrophic lateral sclerosis. It is widely assumed

that a successful treatment would be one that stops the progression of

the disease, and therefore, clinical trials need to be designed with out-

come measures that are able to detect a slowing in the rate of progres-

sion. A number of CMT-specific clinical outcome measures have been

designed that have been validated or are undergoing validation, including

the CMT neuropathy score, CMT Functional Outcome Measure, CMT

Health Index and CMT Peds.4-9 In addition, biomarkers of disease pro-

gression, such as nerve and muscle MRI are also being developed as out-

come measures for clinical trials.10-12

Neurofilaments are the most abundant cytoskeletal proteins in neu-

rons of both the central and peripheral nervous systems.13 It has been

shown that plasma neurofilament light chain concentration (NFL) is

increased in several neurological diseases, including CMT, where it also

correlates with disease severity.14-21 To be able to use a blood biomarker

such as NFL in clinical trials, it is important to know how plasma concen-

trations vary over time. In this study, we replicate our previous cross-

sectional work in another cohort of CMT patients, investigate the change

in plasma NFL over time in patients with CMT and in two mouse models

of the disease.

2 | METHODS

2.1 | GARS mouse models

The generation and characterisation of the GARSP278KY and GAR-

SC201R mouse models have been described previously.22,23 All experi-

mental procedures were conducted in accordance with animal care

protocols approved by the Institutional Animal Care and Use Commit-

tee at The Jackson Laboratory. Blood samples were obtained from

5, 7, 9 and 11-week-old wild-type and GARS mice (n = 3-7 per age

group) using a lancet puncture of the submandibular vein.

2.2 | Participants

Blood samples were collected prospectively between January 2017 and

May 2019, with informed consent, from 27 out of 75 CMT patients who

had previously donated blood for a previous study.21 In addition, blood

from 49 patients with CMT, identified and evaluated in the Inherited

Neuropathy Consortium (INC) clinic in the Department of Neurology at

Iowa, was also collected.

The disease severity, as measured using the Rasch modified CMT

examination score, version 29 (hereto referred to as the weighted

CMTES), was recorded at the same time that plasma was collected. The

weighted CMTES is a validated outcome measure for assessing the sever-

ity of CMT. It is a composite score that includes the patient's symptoms

and examination findings.9 All patients underwent nerve conduction stud-

ies to confirm the presence of neuropathy; however, a weighted CMT

neuropathy score (CMTNS) (which required neurophysiology at the same

time as the clinical assessment) was only included if a nerve conduction

study had been performed within 18 months of the blood sample.

2.3 | Blood sampling and sample collection and
storage

All participants were evaluated in outpatient clinics, and blood

samples were taken and processed within 1 hour. Blood was col-

lected into EDTA-containing tubes and centrifuged at 20�C at

3500 rpm for 10 minutes. Plasma was then aliquoted and stored

at �80�C.

2.4 | Standard protocol approvals, registrations,
and patient consents

This study was approved by The National Hospital for Neurology and

Neurosurgery Research Ethics Committee/Central London REC

3 09/H0716, and written informed consent was obtained from all par-

ticipants in the study.
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Institutional Review Board approval was also obtained from the

University of Iowa, and written informed assent/consent was pro-

vided by participants under a protocol approved by the ethics board

of the NIH Rare Diseases Clinical Research Network (Protocol

INC6601).

2.5 | Simoa plasma NFL measurements

Plasma NFL concentration was measured using two highly correlated

methods, employing the same antibodies: the in-house Simoa NFL

assay that has been described in detail previously,16 and the commer-

cially available NF-Light assay (Quanterix, Billerica, MA). Samples were

analysed ‘blind’ and in duplicate using one batch of reagents. For the

UK samples, an aliquot of the original baseline sample was analysed in

the same batch as the 6-year follow up sample.

2.6 | Statistical analysis

Statistical analysis was performed using SPSS version 27.00 (IBM,

New York, USA) and GraphPad Prism 9.0 (GraphPad Inc., California,

USA). Correlations were assessed using Spearman's correlation coeffi-

cient. Two-tailed paired t-tests were used to compare differences in

plasma NFL concentration in patients with CMT at baseline and after

6 years. One-way ANOVA with post hoc Dunnett's two-tailed t-test

was used to compare differences in age and plasma NFL between

CMT subtypes and controls in the Iowa cohort.

3 | RESULTS

There has been recent interest in the potential use of plasma NFL as a

biomarker of disease progression in CMT for use in clinical trials. We,

therefore, sought to examine plasma NFL concentration in a cross-

sectional cohort of CMT patients and longitudinally in a further cohort

of patients with CMT and in two established mouse models of the

disease.

3.1 | Plasma NFL concentration is increased in
patients with CMT1B, CMT1X and CMT2A, but not
CMT2E, compared with controls

We have previously demonstrated an increase in plasma NFL concen-

tration in UK patients with CMT1A, CMT1X and HSN1.21 We, there-

fore, sought to see if we could replicate this finding in an independent

cohort of patients with CMT from the United States of America. The

cohort of patients from Iowa comprised 18 patients with CMT1B,

18 with CMT1X, 4 with CMT2A and 9 with CMT2E and 25 controls

(Table 1). There was no significant difference in the age of the patients

with each type of CMT and controls (One-way ANOVA, P = .931) or

the sex ratio (Chi-square, P = .53). Plasma NFL concentration was sig-

nificantly increased in patients with CMT1B (ANOVA P < .0001,

Dunnett's two-tailed t-test, P < .0001), CMT1X (P = .001) and CMT2A

(P = .048) compared with controls but not in patients with CMT2E

(P = .939) (Figure 1A and Table 1). In contrast to our previous study in a

UK cohort, there was no correlation between plasma NFL and the

weighted CMTES and CMTNS for any of the CMT subtypes included in

the study (Figure 1B and Table 1). There was a significant correlation

between plasma NFL in patients with CMT1B and the ulnar nerve Con-

duction Velocity (CV) (Spearman Rho = 0.876, P < .0001) and Ulnar

Compound Muscle Action Potential (Rho = 0.682, P = .015) but not for

patients with CMT1X or CMT2A (Table 1). There was no correlation

between age of onset and plasma NFL in the CMT1B cohort (Pearson

correlation coefficient, r = 0.44, P = .11).

3.2 | Plasma NFL changes with time in two mouse
models of CMT

In order for plasma NFL to be of use as a biomarker of disease pro-

gression in CMT, it is necessary to know if the concentration changes

with time. We have previously shown that in a mouse model of

CMTX,24 the concentration of plasma NFL rises rapidly between

2 and 3 months before falling by a third at 1 year. We, therefore, mea-

sured plasma NFL at 5, 7, 9 and 11 weeks in two mouse models of

CMT2D (Figure 2). The GARSC201R mouse is a milder model with

TABLE 1 Plasma NFL concentration in a US (Iowa) cohort of patients with CMT

Number of
patients Age (mean, 95% CI)

Median
[NFL] pg/ml
(range)

*CMTES/[NFL]

Spearman
correlation
co-efficient

*CMTNS/[NFL]

Spearman
correlation
co-efficient

Ulnar CV/[NFL]
correlation
co-efficient

Ulnar CMAP/[NFL]
correlation
co-efficient

CMT1B 18 49.9 (37.5-60.9) 25.5 (6.7-52.4) 0.329, P = .183 0.208, P = .517 0.876, P < .0001 0.682, P = .015

CMT1X 18 47.4 (39.5-55.3) 18.3 (11.2-26.5) �0.144, P = .568 �0.043, P = .907 0.258, P = .471 �0.322, P = .364

CMT2A 4 42 (28.8-55.2) 19.7 (15.6-23.7) �0.8, P = .2 �0.896, P = .104 �0.5, P = .667 �0.5, P = .667

CMT2E 9 46.9 (35.9-57.8) 5.58 (3.84-17.6) n/a n/a n/a n/a

Controls 25 49 (44.2-53.8) 7.54 (4.52-15.8) n/a n/a n/a n/a

Abbreviations: CI, confidence interval; CMAP, compound muscle action potential; CMT, Charcot-Marie-Tooth disease; *CMTES, Rasch modified (weighted)

CMT Examination Score; *CMTNS, Rasch modified (weighted) CMT Neuropathy Score; CV, conduction velocity; NFL, neurofilament light chain; [ ],

concentration. All correlations refer to Spearman's correlation coefficient.
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normal life expectancy in contrast to the GARSP278KY mouse, which has

a background-dependent reduced life expectancy of less than

6 months.22 Plasma NFL was increased in wild type compared with

GARSC201R mice at 5, 7 and 11 weeks, although the difference only

reached statistical significance at 11 weeks (Mann–Whitney U-test,

P = .01, Figure 2A). Plasma NFL concentration was also increased in

wild type compared with GARSC201R mice at 11 weeks in an unrelated

colony in the United Kingdom (see Figure S1). Plasma NFL was

increased in the GARSP278KY mouse compared with wild type at

5 weeks, although this did not reach significance. There was no differ-

ence in plasma NFL at 7, 9 and 11 weeks consistent with the early axon

loss in these mice, followed by very slow progress after 6-8 weeks of

age (Figure 2B).22

3.3 | Plasma NFL is stable in CMT1A and HSN but
not CMT1X over a 6-year period

Repeat blood samples were collected from 27 patients with CMT after a

6-year time interval (CMT1A = 10, CMT1X = 6, HSN1 = 6, SPTLC2 = 2,

CMT2A = 1, CMT4C = 1, CMT4B1 = 1). The mean increase in the

weighted CMTES over this time period was +2.3. Unlike the US cohort,

there was a significant correlation between 6-year follow up plasma NFL

and weighted CMTES (Spearman Rho= 0.53, P= .004) (Figure 3A). There

was no significant difference in plasma NFL over 6 years for all CMT

patients, (mean change = �3.17 pg/mL, SD = 8.07, paired t test P = .05)

(Table 2). An analysis of follow up plasma NFL for the three major CMT

subtypes revealed no significant change over 6 years in CMT1A (mean

change = �2.44 pg/mL, SD = 11.5, P = .52, Figure 4A) and HSN1 (mean

change = �0.69 pg/mL, SD = 1.18, P = .21, Figure 4C) but a significant

reduction in CMT1X (mean change = �3.28 pg/mL, SD = 2.13, P = .01,

Figure 4B). Plotting the 6-year change in plasma NFL against the 6-year

change in the weighted CMTES showed no significant correlation

(CMT1A, Spearman Rho = �0.2, P = .6; CMT1X Rho = �0.7247,

P= .12; HSN1 Rho= 0.25, P= .63) (Figure 3B-D).

4 | DISCUSSION

Clinical trials in CMT require the development and validation of clini-

cal outcome measures and biomarkers that are sufficiently sensitive

to detect a modest reduction in the rate of progression. This study
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provides further evidence on plasma NFL as a biomarker in CMT. In a

post hoc analysis of the Phase 3 study of Patisiran (APOLLO) in

patients with hereditary transthyretin-mediated (hATTR) amyloidosis,

there was a significant reduction in plasma NFL in those patients ran-

domised to Patisiran compared with placebo, validating the use of

plasma NFL as a biomarker for this subtype of inherited peripheral

neuropathy. Nevertheless, the concentration of plasma NFL in hATTR

patients prior to treatment (69.4 pg/mL) was significantly higher than

in our cohort of patients with CMT (18.6 pg/mL).25

In our previous single UK centre study, we demonstrated that

plasma NFL was increased in several forms of CMT compared with

age and sex-matched controls.21 The current study replicates those

findings in a separate cohort from the Iowa group in the

United States. In this cohort, plasma NFL was increased in all the sub-

types of CMT examined except for CMT2E due to mutations in the

neurofilament light chain gene (NEFL). Interestingly, the concentra-

tions in this group were lower than controls, although this did not

reach statistical significance. The reasons for this are not clear, but the

finding is concordant with a previous report demonstrating reduced

NFL expression in cutaneous nerve fibres of patients with CMT2E.26

An alternative explanation may be due to alteration of the NFL epi-

tope recognised by the antibody used in the Simoa analysis as a result

of neurofilament aggregations induced by the point mutation.27

It is often assumed that the rate of axonal degeneration in genetic

peripheral neuropathy such as CMT is constant. This is an important

assumption to test, because if the rates of axonal degeneration
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TABLE 2 Six-year follow up data of plasma NFL concentration and disease severity in CMT

CMT subtype

Mean age

(years)

Number of

participants Median baseline Median 6-y follow up Mean nfl change (95% CI)

2-sided

paired t test

Mean change

in *CMTES

CMT1A 46.0 10 19.03 (9.47-31.4) 14.72 (6.46-32.4) �2.44 (�10.67-5.80) P = .52 +3.56

CMTX1 48.0 6 18.98 (8.79-28.7) 14.54 (7.14-25.3) �3.28 (�1.04-�5.51) P = .01 �0.67

HSN1 (SPTLC1) 42.3 6 18.0 (13.0-24.4) 17.9 (12.3-23.9) �0.69 (�1.93-0.55) P = .21 +3.167

HSN1 (SPTLC2) 50 2 12.9 (7.90-18.0) 9.68 (5.84-13.5) �3.24 (�18.3-11.8) n/a +3.5

CMT2A 20 1 24.9 13.8 �11.1 n/a +1

CMT4C 49 1 48.7 27.1 �21.6 n/a +5

CMT4B1 32 1 16.5 18.2 1.67 n/a �1

All CMT 46.2 27 18.6 (7.90-48.7) 15.6 (5.84-38.9) �3.17 (�6.37-0.02) P = .05 +2.3

Abbreviations: CI, confidence interval; CMT, Charcot-Marie-Tooth disease; *CMTES, Rasch modified (weighted) CMT Examination Score; HSN, hereditary

sensory neuropathy.
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change with time, it may affect the timing of, or the ability to detect a

significant alteration in NFL concentration in a clinical trial. To explore

this further, we examined plasma NFL in two different mouse models

of CMT2D, which are known to show progressive neurodegeneration

over the examination period.28 In the more severe GARSP278KY

mouse, plasma NFL was highest at 5 weeks before falling to normal

levels suggesting an early window of opportunity for treatment.

Plasma NFL for the GARSC201R mouse was similar to the baseline wild

type concentration; however, the wild type mice showed significantly

increased plasma NFL at multiple later time points. The cause for this

difference is unknown but raises concern about the suitability of

plasma NFL as a biomarker of axonal degeneration for trials in mouse

models of this subtype of the disease. We originally speculated that

the elevated plasma NFL was due to haemolysis of samples, which

can result in spuriously elevated NFL concentrations (NFL is

expressed in red blood cells29); however, the replication of this result

in a separate colony at a different time point would argue against this,

although it remains a possibility.

In this study, we were also able to collect paired blood samples

on 27 patients from our original CMT cohort after a 6-year interval.21

Our analysis shows no statistically significant change in plasma NFL

over 6 years for patients with either CMT1A or HSN1, although there

was a trend towards a reduction in CMT1A, but this was not signifi-

cant. On the other hand, there was a statistically significant, albeit

small, reduction in plasma NFL in patients with CMT1X over 6 years,

although the number of patients was small (n = 6). Large cross-

sectional studies of patients with different CMT subtypes and ages

spanning all decades will be invaluable in identifying the age of maxi-

mal axonal degeneration and the window of opportunity for maximum

therapeutic effect.

The standardised response of the mean (SRM) is a measure of the

responsiveness of an outcome measure to detect the change and is

calculated by dividing the mean change by the SD of the change. In

CMT1A, version 1 of the CMT Neuropathy Score has an SRM of 0.13

to detect a 50% slowing of disease progression over 24 months. This

would equate to 7700 patients with CMT1A required in each arm of a

placebo-controlled trial to detect a 50% change in disease progression

with a significance level of 0.05% with 80% power.11 For calf muscle

MRI fat fraction with baseline fat fraction >10%, the SRM is 2.19 over

12 months, equating to a requirement of 11 patients in each arm of a

trial.3 We have previously demonstrated a mean difference in plasma

NFL concentration between patients with CMT1A and controls of

10 pg/mL. If one uses the SD of the mean change in NFL at 6 years in

this study as a measure of the intra-subject variability, one can esti-

mate an SRM for plasma NFL in CMT1A. For a 50% drop in plasma

NFL concentration (5 pg/mL) and an SD of 11.51, the estimated SRM

for plasma NFL is 0.04, which is significantly worse than version 1 of

the CMTNS (which has been shown to be underpowered for use as a

primary outcome measure in clinical trials in CMT1A).30 This suggests

that due to the small increase in plasma NFL in CMT1A compared

with controls and the significant intrasubject variation that it is

unlikely to be suitable as a primary outcome measure in CMT1A for

this age group. On the other hand, plasma NFL increases with age,31

and it is noteworthy that the mean age of the CMT cohort was

46 years. As the rate of axonal degeneration in CMT may vary, with

higher rates theoretically possible at a younger age, it remains a possi-

bility that plasma NFL may still have a role as a biomarker for clinical

trials at earlier time points.

In summary, this study provides additional data on the use of

plasma NFL as a biomarker in CMT. We have replicated our previous

findings of increased concentrations in patients with CMT compared

with controls, and we have shown that in mouse models of the dis-

ease, concentrations can vary over the lifetime of the animal and that

in humans, the change in concentration may vary according to sub-

type. We have also shown pilot data that NFL is unlikely to be suitable

as a primary outcome measure in patients with CMT1A. We are cur-

rently exploring NFL vs a number of other clinical, plasma and MRI

biomarkers in longitudinal studies of CMT1A, CMT1B, CMT2A and

CMT1X.
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