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Abstract 

A new molecular dataset called HAB79 is introduced to provide ab-initio reference values for 

electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) 

and density functional tight-binding (DFTB) calculations. The HAB79 dataset is comprised 

of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in 

organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We 

show that CASSCF/NEVPT2 with a minimal active space provides a robust reference 

method that can be applied to the relatively large molecules of the dataset. Electronic 

couplings are largest for cofacial dimers, in particular sulfur-containing polyaromatic 

hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial 

dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic 

crystals, exhibit medium-sized couplings whereas T-shaped dimers have the lowest 

couplings. DFT values obtained from the projector operator-based diabatization (POD) 

method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found 

to systematically improve when climbing Jacob’s ladder, giving mean relative unsigned 

errors (MRUE) of 27.7% (26.3%) for the GGA functional BLYP, 20.7% (15.8%) for hybrid 

functional B3LYP and 5.2% (7.5%) for the long-range corrected hybrid functional omega-
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B97X. Cost effective POD in combination with a GGA functional (PBE) and very efficient 

DFTB calculations on the dimers of the HAB79 database give a  good linear correlation with 

the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, 

gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that 

couplings in HAB79 vary over 4 orders of magnitude. The ab-initio reference data reported 

here are expected to be useful for benchmarking other DFT or semi-empirical approaches for 

electronic coupling calculations. 

 

I. Introduction 

One of the key parameters in molecular charge transport modeling and simulation is 

the electronic coupling between two diabatic charge transfer electronic states [1-4]. 

Electronic couplings (or charge transfer integrals) for a given molecular dimer configuration 

can be calculated using a variety of methods, including but not limited to ab-initio 

wavefunction, density functional theory (DFT), and semi-empirical or solely empirical 

methods [5-24]. The choice of a particular method is typically dictated by various factors, 

trying to strike a balance between chemical accuracy and computational resources utilization. 

Although accurate ab-initio methods such as n-electron valence state perturbation 

theory NEVPT2 [25-27] and multi-reference configuration interaction [28] are considered a 

“golden standard” for charge transfer integral calculations, their practical implementation is 

hindered by their inherent complexity and the sheer amount of computational resources 

required in the case of extended systems or when a significant number of electronic coupling 

evaluations is needed. In order to overcome this obstacle, benchmark datasets are utilized as 

to evaluate the accuracy – and calibrate if needed – computationally less demanding methods 

[19, 21]. 

In this work, we introduce the HAB79 dataset: a selection of 79 heterocyclic 

polyaromatic hydrocarbons, either already utilized or inspired by contemporary organic 

(opto)electronic applications [29], arranged to 921 structurally diverse homomolecular 

dimers. Having such structural information at hand, ab-initio electronic couplings are 

calculated at the CASSCF/NEVPT2 level of theory, forming this way the HAB79 charge 

transfer integral reference dataset. DFT and density functional tight binding (DFTB) 

electronic couplings are calculated using the same dimeric configurations, thus enabling the 

direct comparison with reference ab-initio coupling values. 

A general linear correlation between reference and DFT and DFTB electronic 

coupling values is identified, hence allowing the determination of a universal multiplicative 
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scaling constant for each method and level of theory that can be used for a-posteriori 

corrections. Furthermore, the HAB11 and HAB7- datasets from the literature are revisited by 

means of projection operator-based diabatization (POD) DFT electronic coupling calculations 

in order to examine the effect of various exchange-correlation functionals to the predictive 

capability of the POD method with respect to reference ab-initio data. 

The layout of the paper is organized follows: all computational details regarding the 

construction of the HAB79 dataset and the employed simulation methods are outlined in Sec. 

II, followed by the results for all datasets in Sec. III. The conclusions of this work are 

presented in Sec. IV.  

 

II. Computational details 

II.1 HAB79 database 

The HAB79 dataset is a compilation of planar heterocyclic polyaromatic 

hydrocarbons exhibiting either electron or hole conductivity, with N, O, F, and S heteroatoms 

significantly participating to the non-degenerate frontier molecular orbitals. This particular 

selection of molecules is based on either current or potential applications in the field or 

organic (opto)electronics [29-33]. The molecules of the HAB79 dataset are illustrated in Fig. 

1, numbered in an ascending order with respect to the total number of electrons. A more 

comprehensive record of the HAB79 dataset including formal compound names and 

InChIKey values (where available) is listed in the supplementary material. The geometry of 

each molecule was optimized using DFT at the B3LYP/6-311g(d) [34, 35] level of theory as 

implemented in the NWChem package [36]. 
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Fig. 1. The HAB79 molecular dataset. 

 

Due to the planarity of all molecules in the dataset, one can define a local orthonormal 

system of coordinates for each molecule spanned by the normal vector to the conjugation 
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plane, 𝑢⃗ , and two coplanar vectors, 𝑐 long and 𝑐 short with respect to the conjugation plane that 

characterize the long and short molecular axes according to the molecular mass distribution. 

These vectors are derived by the diagonalization of the molecular inertia tensor, thus 

retrieving the normal vector and short and long molecular axes vectors in an ascending order 

with respect to the sorted eigenvalue spectrum. 

Such a local system of coordinates can be used to create a series of homo-molecular 

dimeric configurations. The simplest form is that of cofacial dimers: monomers are translated 

along 𝑢⃗  by a given distance, thus forming totally eclipsed structures, typically associated with 

high electronic couplings. Following prior work [19, 21], the distances of 3.5 Å, 4.0 Å, 4.5 Å, 

and 5.0 Å are chosen, resulting in four cofacial dimers per dataset entry. The next 

conformation of dimers under consideration are of the parallel-displaced (PD) type. A 

cofacial dimer with a vertical separation of 3.5 Å is initially created and is used to create 

three different PD dimers via appropriate translations along 𝑐 long, 𝑐 short, and 𝑐 long + 𝑐 short, 

respectively, as described in the supplementary material. Finally, a series of T-shaped dimers 

is created by means of proper displacements and rotations: as in the case of PD dimers, an 

initial cofacial dimer is created, followed by rigid body rotations of the second monomer 

about either 𝑐 long or 𝑐 short by 45° (also referred to as V-shaped) and 90°, making sure to 

alleviate any steric overlap by augmenting the vertical separation. Further information on T- 

and V-shaped dimers is included in the supplementary material. All dimer configurations are 

included in the supplementary material in xyz format.  

 

II.2 Electronic coupling calculations 

II.2.1 Ab-initio reference calculations 

The reference couplings are obtained with the generalized Mulliken-Hush (GMH) 

approach [5, 37-43]. Within this method, the electronic coupling matrix element 𝐻𝑎𝑏 in a 

two-state donor-acceptor system is obtained from quantities calculated in an adiabatic 

(delocalized) basis using the following expression: 

|𝐻𝑎𝑏| =  
|𝜇12|Δ𝐸12

√(𝜇11−𝜇22)
2+4(𝜇12)

2
   (1) 

where Δ𝐸12 is a vertical excitation energy from the ground state 1 to the excited state 2, 𝜇11 

and 𝜇22 denote the respective states’ dipole moments, and 𝜇12 is the transition dipole moment 

between the two states. In the case of symmetric dimers that possess a mirror plane 

perpendicular to the 𝑢⃗  vector, the Eq. (1) reduces to half the excitation energy Δ𝐸12. 
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The quantities that enter the Eq. (1) are calculated with the n-electron valence state 

perturbation theory (NEVPT2) [25-27] using state-averaged complete active space self-

consistent field (CASSCF) reference wavefunction [44]. The averaging was over two doublet 

states for each dimer. Due to the size of the systems under study, the CASSCF active space 

was chosen as a minimal set comprising of two orbitals and three electrons (p-type carriers) 

or two orbitals and one electron (n-type carriers).  

Our reference calculations utilize aug-cc-pVDZ basis set for heavy atoms and a 

smaller cc-pVDZ basis for hydrogen atoms [45, 46]. Such combination was shown to balance 

computational cost and accuracy for electronic coupling calculations [19]. The NEVPT2 

calculations are carried out with an active “frozen core” approximation so that chemically 

inert core electrons are not correlated. The Coulomb and exchange integrals are efficiently 

evaluated with the resolution-of-identity (RI) [47, 48] and chain-of-spheres (COSX) 

approximations [49], respectively. The RI auxiliary basis set is aug-cc-pVDZ/C or cc-

pVDZ/C [50]. The CASSCF/NEVPT2 calculations are performed with ORCA 4.2.0 package. 

When comparing GMH results with outcomes from other methods, it is essential to 

ensure the couplings are calculated between the same donor-acceptor states. In the present 

case, we first generate a cube file with the natural molecular orbital (NMO) that is 

approximately singly occupied in the CASSCF ground state of a dimer. In the next step, we 

numerically compute its overlap with the cube file that contains grid data for the 

approximately singly occupied NMO obtained from the ground state, unrestricted DFT 

calculations that employ the PBE functional [51, 52]. The latter calculations are performed 

with the same setup as CASSCF, i.e. doublet electronic state, same basis functions and 

charge. An overlap close to unity confirms a similar nature of the CASSCF and DFT ground 

states. Subsequently, we screen computed CASSCF transition dipole moments for values 

lower than 0.1 D which allows us to identify states that are not of charge-transfer character 

but instead correspond to locally excited states. The final step involves visual inspection of 

CASSCF NMOs for cases where any of the two previous steps identified issues. Orbitals are 

then reordered, and the re-converged CASSCF wavefunction is checked against the two 

criteria. The overlap is calculated with Multiwfn 3.7 [53]. 

 

II.2.2 DFT approaches 

Projection operator-based diabatization (POD).  The POD method [10, 22, 24] is 

described in detail in Ref. [22] and we only briefly summarize the method here. First a Kohn-

Sham calculation is carried out on the neutral dimer, unless stated otherwise, followed by 
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transformation of the KS Hamiltonian to a Löwdin-orthogonalized atomic orbital basis set. 

The resultant KS Hamiltonian is then rearranged in block form, with the first (second) block 

on the diagonal, 𝐻̃𝐷𝐷 (𝐻̃𝐴𝐴), containing the orthogonal atomic orbitals centred on the donor 

(acceptor), 𝐻̃ = [
𝐻̃𝐷𝐷 𝐻̃𝐷𝐴

𝐻̃𝐴𝐷 𝐻̃𝐴𝐴

]. The two blocks, 𝐻̃𝐷𝐷 and 𝐻̃𝐴𝐴, are diagonalized to 𝐻̅ =

[
𝐻̅𝐷𝐷 𝐻̅𝐷𝐴

𝐻̅𝐴𝐷 𝐻̅𝐴𝐴

], where 𝐻̅𝐷𝐷 (𝐻̅𝐴𝐴) are diagonal with diagonal elements 𝜖𝐷,𝑖 (𝜖𝐴,𝑖). The 

corresponding orbitals are localized on the donor and acceptor molecules, respectively. The 

energy levels of neutral donor and neutral acceptor are filled with 2N electrons each 

(assuming that donor and acceptor have the same number of electrons).  For hole transfer 

(electron transfer), the off-diagonal block element  [𝐻̅𝐷𝐴 ]𝑁𝑁  ([𝐻̅𝐷𝐴 ]𝑁+1𝑁+1) is taken as the 

electronic coupling matrix element, i.e. the coupling between the diabatized HOMO (LUMO) 

orbitals of the donor and acceptor, respectively.  Note that this procedure differs from the one 

we have previously employed, where calculations of coupling matrix elements were carried 

out on cationic (anionic) dimers. The current definition is the same as the one used in Ref. 

[24]. We found that both definitions give very similar results at POD/PBE level, though the 

definition used here is computationally more efficient.  

POD calculations were first carried out on two smaller databases, HAB11 and HAB7- 

[19, 21] to test the performance of the exchange-correlation functional (XC) and basis set. 

We tested the PBE and BLYP generalized gradient approximation (GGA) XC functionals 

[34, 51, 52, 54], the PBE0 and B3LYP hybrid XC functionals [34, 35, 55], and HSE06, LRC-

ωPBEh, and ωB97X range-separated hybrid XC functionals [56-58] and basis sets of variable 

size, namely DZVP-, TZVP- and TZV2P-GTH. POD calculations on the dimers of the 

HAB79 database were carried out at the PBE/DZVP-GTH level of theory [51, 52, 59]. All 

POD calculations were carried out with the CP2K package [60].  

 Electron transfer-fragment molecular orbital method (ET-FMO). Supplementary 

charge transfer integral calculations for the HAB79 dataset are carried out using the ET-FMO 

method [61] at the B3LYP/6-311g(d) level of theory, as implemented in NWChem. The ET-

FMO method relies on the expression of one-electron dimer states using localized monomer 

molecular orbitals. Should the dimer HOMO-1 and HOMO (LUMO and LUMO+1) result 

from the interaction of monomer HOMOs (LUMOs) denoted as Ψ𝑖, the secular equation 

describing dimer orbital energies can be expressed as 𝐻𝐶 − 𝜖𝑆𝐶 = 0, where 𝐻 = [
𝑒1 𝐽12

𝐽12 𝑒2
] 

the Hamiltonian matrix and 𝑆 = [
1 𝑆12

𝑆12 1
] the overlap matrix, with 𝑒𝑖 = ⟨Ψ𝑖|𝐻̂|Ψ𝑖⟩ being 
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the site energy and 𝐽𝑖𝑗 = ⟨Ψ𝑖|𝐻̂|Ψ𝑗⟩ the transfer integral at the non-orthogonal frontier orbital 

basis set. Upon an appropriate Löwdin symmetric transformation, the Hamiltonian is 

expressed as 𝐻eff = [
𝑒1

eff 𝐽12
eff

𝐽12
eff 𝑒2

eff
], with 𝐽12

eff =
𝐽12−0.5(𝑒1+𝑒2)𝑆12

1−𝑆12
2  being the actual orthogonalized 

charge transfer integral. 

 

II.2.3 DFTB approach 

DFTB is derived from DFT by a Taylor expansion of the total energy around a well-

defined reference density and is found to be 2−3 orders of magnitude faster than DFT-GGA 

functionals with midsized basis sets [62, 63]. Recent studies have shown that DFTB can 

provide electronic couplings in good agreement with other DFT approaches, and the 

application of a uniform scaling factor allows the accuracy comparable to high-level 

electronic-structure methods [19, 21]. In the present work, all calculations are performed 

within the framework of the fragment-orbital first-order DFTB (FODFTB1) with MIO 

parameter set [64]. Since charge transfer typically occurs in a narrow energy window around 

the Fermi level, we simplify the description of the charge by considering frontier orbitals of 

the fragments, i.e., HOMOs for hole transfer and LUMO for electron transfer.  

 

III. Results and Discussion 

III.1 Ab-initio electronic couplings for HAB79 

The size of systems that enter the HAB79 database constitutes a challenge for high-

level ab-initio calculations. In our previous study [19] we showed that MRCI+Q with large 

CASSCF active space provides results in excellent agreement with the full CI method. We 

also found a multireference perturbative approach such as NEVPT2 to provide couplings 

with a mean relative unsigned error of 6.9 % w.r.t. MRCI+Q. We also explored the CC2 

method as an economical approach for larger systems and found that it has accuracy slightly 

lower than NEVPT2 [19, 21]. We note, however, that ROHF-based CC2 calculations have 

unfavorable scaling behavior with the system size, in particular when the calculations are 

performed without the use of symmetry.  

The present manuscript explores an alternative route – NEVPT2 calculations with a 

minimal active space CASSCF reference wavefunction instead of a complete valence active 

orbital set. Such significant active space reduction compared to our previous study [19] is 

well justified owing to the nature of the systems under investigation. The geometries of the 

donor and acceptor molecules are identical, and the diabatic energies of the sites are either 
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equal (cofacial orientation) or only marginally different (PD and T-shaped dimers). We also 

note that the dimers selected to enter the HAB79 do not display pronounced multireference 

character. Moreover, the two orbitals that form the active space in each case always 

constitute a bonding and anti-bonding pair. Thus, the two-orbital space provides a balanced 

description of the two adiabatic states already at the CASSCF level, and small differential 

dynamic correlation contribution is well approximated with a NEVPT2 approach. Two 

additional elements of our protocol made the NEVPT2 calculations feasible on the entire 

HAB79 set: a compact aug-cc-pVDZ basis set and the frozen core approximation.  

Table I compares electronic couplings obtained for the furane cofacial dimer 

calculated with four different set-ups. The NEVPT2 calculations in [19] did not explore 

frozen core approximation as it was not available at that time. This became possible with the 

newer ORCA versions, and when it is turned on, the agreement with MRCI+Q (by default 

carried out with frozen core) improves. Active space reduction from (11,10) to minimal (3,2) 

and reduction of basis set along with the release of symmetry restrictions did not deteriorate 

NEVPT2 couplings. These observations are further confirmed by calculations on two 

geometries of the dimer 1 – cofacial at an intermolecular separation of 4.0 Å and T-shaped 

structure (see Table II). Here, the active space reduction decreases the couplings by 2 meV 

(ca. 1 %) compared to the larger active space selected on the basis of occupation numbers of 

the unrestricted MP2 natural orbitals. Interestingly, the basis set incompleteness error of the 

aug-cc-pVDZ basis renders the couplings slightly too large compared to calculations with 

aug-cc-pVTZ. The impact is somehow smaller for cofacial dimers (error of 1 %) compared to 

T-shaped geometry (error of 4 %). In any case, our test calculations show that the use of a 

minimal active space along with diffuse, double-z basis set and frozen core approximation 

provides electronic couplings that are of benchmark quality for the HAB79 set. 

 

Table I. Comparison of the electronic coupling matrix elements (expressed in meV) and the 

decay constant β for cofacial furane dimer (couplings calculated at four intermolecular 

distances) obtained with various ab-initio methods. The last column present results that were 

obtained with the set-up used throughout this study. 

 MRCI+Q* NEVPT2* NEVPT2** NEVPT2** 

Basis set aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVDZ 

Ref. CAS (11,10) (11,10) (11,10) (3,2) 

Symmetry C2v C2v C2v C1 

Frozen core 9 el. off 9 el. 9 el. 
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d (Å)     

3.5 440.3 412.7 423.3 426.2 

4.0 214.9 200.8 210.1 213.8 

4.5 101.8 97.4 103.2 107.3 

5.0 46.0 48.9 50.3 50.1 

β (1/Å) 3.01 2.85 2.84 2.85 
*: Ref. [19] 

**: current work 

 

Table II. Comparison of the electronic coupling matrix elements (expressed in meV) of the 

dimer 1 at two geometries computed at NEVPT2 level with active spaces of different size and 

with different basis sets. 

Active space Basis set Cofacial (4.0 Å) T-shape 

(11,10) aug-cc-pVDZ 251.1 188.9 

(3,2) aug-cc-pVDZ 249.2 186.7 

 aug-cc-pVTZ 247.0 179.2 

 

As regards dimers belonging to the HAB79 dataset, ab-initio electronic couplings 

span an interval from 0 to 500 meV in a near-contiguous manner. Cofacial dimers with a 

vertical separation of 3.5 Å exhibit the highest values, ranging from 300 to 500 meV, as 

expected due to augmented molecular orbital overlap and in-phase alignment. Cofacial 

dimeric configurations with separations of 4.0 and 4.5 Å populate the intervals between 150 

and 250 meV and 50 and 150 meV, respectively. Finally, cofacial dimers with a core distance 

of 5.0 Å are restricted to electronic coupling values below 50 meV. 

In an attempt to classify all HAB79 dataset molecules regarding their potential charge 

transfer capabilities, one can examine the relationship between the electronic coupling of a 

given dimeric configuration and the single molecule reorganization energy λ [3, 65, 66]. If 

the coupling value is larger than λ/2, then no activation barrier for electron transfer exists 

(assuming zero driving force) and, as a consequence, the charge delocalizes over donor and 

acceptor. If this configuration is periodically replicated in a crystal the charge transport is 

likely to occur via (fast) diffusion of a delocalized polaron, unless structural defects or other 

charge localizing effects are present. We simply refer to this case as “band-like” mechanism. 

In the opposite regime, if the coupling is smaller than λ/2, an activation barrier for electron 

transfer exists and the mechanism would be (slow) hopping of a relatively localized polaron. 
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Having this categorization in mind, all cofacial dimers with a separation of 3.5 Å and the 

majority of 4.0 Å dimers clearly lie in the band-like charge transfer regime, as illustrated in 

Fig. 2.  

 

 

Fig. 2. Correlation diagrams between reorganization energy and ab-initio electronic couplings 

for all HAB79 dimers. Dimers in the area depicted in yellow support stable localized 

(diabatic) electronic states resulting in hopping transport. Dimers outside this area do not 

support stable localized electronic states resulting in delocalized or band-like polaronic 

transport when periodically replicated. Left panel is for cofacial dimers, middle panel for 

parallel displaced (PD) dimers where displacement is along the short, long or diagonal 

(short+long) axis, and right panel is for T-shaped dimers with rotation about the long (TL) or 

short axis (TS). Dimer configurations based on tetrathiafulvalene are also included as to 

illustrate the different intermolecular arrangements, with the vectors annotated as “L” and 

“S” corresponding to the long and short molecular axes vectors, respectively. 

 

The highest electronic coupling values for 3.5 Å cofacial dimers are reported for 

sulfur-containing PAHs: dibenzo[b,b']thieno[2,3-f:5,4-f']bis[1]benzothiophene (DBTBT; 

molecule 63) and tetrathiafulvalene (TTF; molecule 1) register coupling values of 515 and 
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503 meV, respectively, closely followed by compounds 12, 27, and 38 [67-71]. Of particular 

importance is also the case of nitrogen-based macrocycles like pristine and benzo-annulated 

porphyrin (43 and 77), and phthalocyanine (78) [72, 73]: due to their low reorganization 

energy values, cofacial dimers of such molecules appear to lie in the band-like charge transfer 

regime – even for large core separations. 

In the case of PD dimers, electronic couplings are limited to below 300 meV, with the 

highest values associated with perylene derivatives (compounds 61, 62, and 70) and fully 

(76) and partially (69) fluorinated pentacene [30, 74-76], all situated in the band-like charge 

transfer regime. If one applies the λ/2 categorization criterion, PD dimers of all three types 

(i.e. displaced along the long, short, and composite directions) can be found in the band-like 

conductivity mechanism regime. 

The third broad dimer category corresponds to T-shaped dimers. Electronic couplings 

for such dimeric configurations are limited to around 200 meV, with the largest values 

belonging to DBTBT (63) and V-shaped thienobisbenzothiophenes 29 and 30 [77, 78]. In 

contrast to cofacial and PD dimer configurations, T-shaped dimers belonging to the band-like 

charge transfer regime are limited to rotations about the long axis by 45º, although there exist 

some cases on the λ/2 dividing line, for 45º rotations about the short axis, primarily for 

nitrogen-containing rod-like molecules (4, 7, 18, 19, 21, 23, 39) and partially fluorinated 

tetracenes (9 and 32) [32, 79, 80].  

 

III.2 DFT POD electronic couplings for HAB11 and HAB7- 

Ab-initio calculated electronic couplings from the HAB79 dataset are used as 

reference in order to evaluate the suitability of computationally less intensive methods, 

namely DFT and DFTB approaches. Before we present the DFT POD results for HAB79, we 

investigate the performance of different XC functionals and basis sets on two smaller 

databases of pi-conjugated organic homo-dimers for which similar ab-initio reference data 

are available, HAB11 and HAB7- [19, 21].  

A suitable metric of the correlation between electronic coupling values obtained using 

a specific calculation method and the reference dataset is the inverse of the slope coefficient 

derived by means of a linear least squares regression fitting procedure, corresponding to the 

linear scaling constant. Further quantitative assessments are carried out using a series of 

statistical error metrics, such as the mean unsigned error (MUE) MUE = ∑ |𝑦calc − 𝑦ref|𝑛 𝑛⁄  , 

the mean relative unsigned and signed errors (MRUE and MRSE, respectively) MRUE =
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∑ (|𝑦calc − 𝑦ref| 𝑦ref⁄ )𝑛 𝑛⁄  and MRSE = ∑ (𝑦calc 𝑦ref⁄ − 1)𝑛 𝑛⁄ , and the maximum unsigned 

error (MAX) MAX = max|𝑦calc − 𝑦ref|. 

Electronic couplings from cofacial dimer configurations are further utilized for the 

calculation of the exponential distance decay constant β satisfying the equation |𝐻ab| =

𝐴exp(−0.5𝛽𝑑), where d is the vertical separation between monomers. Furthermore, all 

aforementioned error estimates are also applied to the derived exponential decay constant 

values. 

Scaling constants and statistical error metrics for the HAB7- and HAB11 datasets are 

listed in Table III and Table IV. Due to the larger size of molecules belonging to the HAB7- 

dataset, DFT calculations were restricted to DZVP and TZVP basis sets, whereas for the 

smaller molecules of the HAB11 dataset, the TZV2P basis set was used. Discrepancies with 

previously reported values on the HAB11 dataset are due to differences in dimer charge and 

an erroneous definition of the PBE0 XC functional in Ref. [22] which is here corrected. 

 

Table III. Linear scaling constants between reference and DFT POD couplings and error 

statistics on electronic couplings and exponential decay parameters β for the HAB7- dataset 

for different XC functionals using a TZVP-GTH basis set. Values in parentheses correspond 

to DFT calculations using a DZVP-GTH basis set. Scaled PBE (sPBE) correspond to DZVP-

GTH/PBE values multiplied by 1.325. 

XC PBE PBE0 HSE06 
LRC-

ωPBEh 
BLYP B3LYP ωB97X sPBE 

Scaling const. 
1.368 

(1.325) 

1.200 

(1.157) 

1.203 

(1.161) 
1.139 1.355 1.214 1.030 1.000 

MUE |𝐻ab| (meV) 
49.1 

(45.2) 

29.9 

(24.8) 

30.5 

(25.5) 
21.2 47.5 31.0 8.3 6.2 

MRUE |𝐻ab| (%) 
27.4 

(25.4) 

15.5 

(13.5) 

16.0 

(14.0) 
10.4 26.3 15.8 7.5 5.4 

MRSE |𝐻ab| (%) 
-27.4 

(-25.4) 

-15.5 

(-12.3) 

-16.0 

(-13.1) 
-8.9 -26.3 -15.8 4.8 -1.1 

MAX |𝐻ab| (meV) 
110.6 

(98.8) 

72.6 

(56.0) 

73.0 

(56.6) 
55.4 108.7 77.3 30.9 20.5 

MUE β (Å-1) 
0.13 

(0.12) 

0.13 

(0.12) 

0.13 

(0.12) 
0.15 0.13 0.14 0.27 0.12 

MRUE β (%) 
4.4 

(4.1) 

4.4 

(4.2) 

4.4 

(4.0) 
5.0 4.4 4.7 9.0 4.1 

MRSE β (%) 
1.1 

(1.6) 

-1.1 

(-1.2) 

-0.6 

(-0.5) 
-3.5 -0.1 -2.6 -9.0 1.6 

MAX β (Å-1) 
0.25 

(0.25) 

0.23 

(0.24) 

0.22 

(0.22) 
0.29 0.21 0.26 0.44 0.25 
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Table IV. Linear scaling constant between reference and DFT POD couplings and error 

statistics on electronic couplings and exponential decay parameters β for the HAB11 dataset 

for different XC functionals using a TZV2P-GTH basis set. Scaled PBE (sPBE) correspond 

to PBE values multiplied by 1.395. 

XC PBE PBE0 HSE06 
LRC-

ωPBEh 
BLYP B3LYP ωB97X sPBE 

Scaling const. 1.395 1.254 1.262 1.163 1.383 1.263 1.066 1.000 

MUE |𝐻ab| (meV) 60.8 44.0 45.3 29.5 58.7 44.1 12.2 6.1 

MRUE |𝐻ab| (%) 29.2 21.5 22.4 13.5 27.7 20.7 5.2 3.6 

MRSE |𝐻ab| (%) -29.2 -21.5 -22.4 -13.5 -27.7 -20.7 -4.3 -1.2 

MAX |𝐻ab| (meV) 147.5 108.0 110.2 78.1 145.7 115.1 48.6 22.6 

MUE β (Å-1) 0.07 0.08 0.09 0.06 0.07 0.06 0.06 0.07 

MRUE β (%) 2.6 2.8 3.0 2.0 2.4 2.2 2.2 2.6 

MRSE β (%) 0.7 1.4 2.0 -1.1 -0.4 -0.4 -1.9 0.7 

MAX β (Å-1) 0.14 0.13 0.15 0.16 0.14 0.14 0.17 0.14 

 

For both HAB7- and HAB11 datasets, statistical measures, such as the MUE and 

MRUE for DFT POD electronic couplings, exhibit an almost systematic improvement from 

GGA XC functionals to global hybrids (PBE0, B3LYP) to long-range (LR) corrected hybrid 

XC functionals, with ωB97X exhibiting the best performance and a scaling factor very close 

to unity. As regards PBE-based XC functionals, the transition from the global hybrid PBE0 to 

the short-range corrected HSE06 functional is linked with no actual improvement. In the case 

of the exponential distance decay constants, ab-initio reference values are well reproduced by 

GGA XC functionals, with the presence of Hartree-Fock exchange (HFX) in the LR region 

leading to slower decay. 

This behavior is typical for POD where the charge density is optimized on the whole 

dimer and the HFX in LR enhances the overlap between the monomer densities in the 

intermolecular region due to an improved description of the asymptotic behaviour of the XC 

potential. This is in contrast to electronic couplings obtained from constrained density 

functional theory (CDFT) [9, 15], which are generally too high with GGA XC and decrease 

to values in good agreement with ab-initio reference data upon inclusion of HFX [15, 19, 21 

81-83].  The reason is that in CDFT the charge constrained states are optimized for charged 

donor-acceptor pairs and these states are still subject to the electron delocalization error, 

albeit to a lesser extent than adiabatic electronic states. For GGA XC the delocalization of the 

charge constrained states leads to too large overlaps and couplings, and this situation 

drastically improves when HFX functionals are used. 
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Finally, the effect of basis set size to the electronic couplings error statistics for the 

HAB7- dataset indicate that the utilization of a smaller basis set such as DZVP-GTH has a 

minimal effect. As a result, an alternative to using computationally demanding levels of 

theory, such as TZVP-GTH/ωB97X, is to calculate electronic couplings using a GGA XC 

functional and the small DZVP-GTH basis set and apply an a-posteriori scaling of the results 

by an appropriate multiplicative constant. As we show in the following, this approach can 

give very accurate numbers and at the same time allows for a very large number of coupling 

calculations, which could be beneficial in computational screening studies.   

 

III.3 DFT POD, ET-FMO and DFTB electronic couplings for HAB79 

DFT- and DFTB-based calculations under study exhibit strong linear correlations, 

both in comparison with the reference data and between them, as illustrated in the diagrams 

in Fig. 3. Moreover, the statistical distribution of the exponential distance decay constants for 

reference and DFT and DFTB calculations are depicted in Fig. 4. 

 

 

Fig. 3. Electronic couplings correlation diagrams and statistical distributions for the HAB79 

dataset. All coupling values are expressed in meV. 
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Fig. 4. Statistical distributions of the exponential decay constant β for cofacial dimers of the 

HAB79 dataset. 

 

Scaling constants and statistical error metrics for the HAB79 dataset are listed in 

Table V. All electronic couplings error statistical metrics are also recalculated using the 

linear scaling constants, resulting in significant statistical improvements regarding the POD 

and DFTB calculations. 

 

Table V. Linear scaling constants between reference and DFT and DFTB couplings and error 

statistics on electronic couplings and exponential decay parameters β for the HAB79 dataset. 

Values obtained after scaling are given in parentheses. 

Method POD ET-FMO DFTB 

Scaling const. 1.282 1.017 1.600 

MUE |𝐻ab| (meV) 
24.3 

(8.5) 

10.8 

(10.8) 

41.5 

(14.5) 

MRUE |𝐻ab| (%) 
29.8 

(17.9) 

28.2 

(28.2) 

52.4 

(40.1) 

MRSE |𝐻ab| (%) 
-24.6 

(-3.3) 

-1.5 

(0.2) 

-33.8 

(5.9) 

MAX |𝐻ab| (meV) 
122.0 

(125.0) 

104.9 

(113.3) 

191.8 

(179.9) 

MUE β (Å-1) 0.16  0.48 0.42 

MRUE β (%) 5.4 16.2 14.3 

MRSE β (%) 5.4 16.2 14.2 

MAX β (Å-1) 0.37 0.66 0.81 
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 The ET-FMO DFT method at the B3LYP/6-311g(d) level of theory exhibits the best 

correlation with respect to the reference ab-initio data (slope closest to 1). However, given its 

performance on the HAB7- and HAB11 database, we expect POD to exhibit a similarly good 

correlation as ET-FMO if POD had been carried out with a hybrid functional. Importantly, 

both methods have a very similar MRUE, but the one for POD can be significantly reduced 

by applying a multiplicative scaling factor of 1.282 upon which the MRUE decreases from 

29.8 to 17.9%. DFTB-based couplings require a scaling by 1.6 and are associated with the 

largest error metric values. Nevertheless, upon scaling, the error metrics decreases. The larger 

value of the DFTB scaling factor compared to the DFT methods is due to the minimal basis 

set utilized for the calculation of DFTB electronic couplings. Similar scaling factors have 

been reported for datasets in the literature, namely 1.795 for the HAB7- dataset and 1.54 for 

the HAB11 dataset [19, 21]. 

As regards the errors in the exponential distance decay constant β, the POD method 

features the lowest values, with a MUE of 0.16 Å-1 and a MRSE of 5.4%, whereas the other 

two methods exhibit larger statistical errors. A similar picture of the effect of the electronic 

coupling calculation method on the exponential decay constants is visible in the histograms in 

Fig. 4, where the shifting of the distributions towards larger β values upon selecting POD, 

ET-FMO, and DFTB calculations is evident. 

 A more in-depth analysis of the electronic couplings correlations between ab-initio 

reference values and DFT and DFTB results is carried out by examining the data according to 

the carrier type (p-type and n-type for hole and electron conductors, respectively) and the 

dimer type. This breakdown of the original set of electronic couplings data for the HAB79 

dataset is illustrated for p-type molecules in Fig. 5 and n-type molecules in Fig. 6. 
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Fig. 5. Electronic couplings decomposition diagrams per dimer type for hole conducting 

molecules of the HAB79 dataset. 
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Fig. 6. Electronic couplings decomposition diagrams per dimer type for electron conducting 

molecules of the HAB79 dataset. 

 

 A general linear correlation with respect to the reference data for both carrier types 

and all four dimer types is evident. Moreover, error statistics as reported in the supplementary 

material indicate that following a multiplicative scaling according to Table V, metrics such as 

the MUE and MRSE are improved in a similar manner, regardless of carrier or dimer type. 

 

IV. Conclusions 

 

 In this work, the HAB79 molecular dataset for benchmarking intermolecular 

electronic couplings is introduced, featuring 79 single molecules and 921 diverse dimeric 

configurations. For every dimer in the HAB79 dataset, we calculate ab-initio electronic 

couplings by means of the GMH method at a validated, minimal active space 

CASSCF/NEVPT2 level of theory, thus forming a reference charge transfer integral dataset 

in order to benchmark DFT and DFTB electronic coupling calculation schemes. 
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 DFT-based couplings using the POD method at the PBE/DZVP-GTH level of theory 

show an excellent linear correlation with respect to reference ab-initio values, best described 

by a multiplicative scaling constant of 1.282. Upon applying such a scaling, the MRSE is 

significantly improved from -24.6% to -3.3%, hence constituting a-posteriori scaled 

PBE/DZVP-GTH POD electronic coupling calculations a relatively straightforward method 

of choice, with augmented predictive capabilities at a reasonable computational cost. If the 

POD method is used in combination with computationally more expensive functionals, e.g. 

range-separated hybrids, the error reduces significantly to MRSEs of about 5% for HAB11 

and HAB7- (without scaling). Furthermore, DFT couplings by means of the ET-FMO method 

using the widely popular B3LYP XC functional and a 6-311g(d) triple-zeta all-electron basis 

set exhibit a fine correlation with reference data. The most cost-effective method in this work 

as regards computational resources utilizes DFTB calculations, with a linear scaling constant 

of 1.600 which improves the MRSE from -33.8% to 5.9%. 

 Regarding possible structure-property relationships arising from a direct comparison 

between HAB79 electronic couplings and reorganization energy, most cofacial dimers up to a 

separation of 4.0 Å can potentially manifest band-like charge transport characteristics – if 

such motifs are periodically replicated in a molecular crystal. In the case of PD dimers, some 

systems fall into the aforementioned transport regime, whereas for T-shaped dimers, such a 

behavior is only evident for selected dimers with a rotation of 45° about the short molecular 

axis. 

The HAB7- and HAB11 datasets are revisited using POD charge transfer integral 

calculations with a variety of XC functionals. All functionals tend to capture the exponential 

decay constant β for cofacial dimers very well, but pure GGA XC exhibit too low absolute 

coupling values. The agreement with ab-initio couplings improves considerably for hybrids 

and range-separated hybrids. The optimal level of theory with respect to POD electronic 

coupling error minimization is based on the LR-corrected hybrid ωB97X XC functional and a 

triple-zeta basis set, giving MRUEs of 5.2% and 7.5% for HAB11 and HAB7- databases, 

respectively (without scaling). 

We anticipate the newly introduced HAB79 dataset to provide useful ab-initio 

reference electronic coupling values to the computational charge transport community, 

enabling further benchmark work using various computational methodologies not covered by 

this work.   

 

Supplementary material 
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Refer to the supplementary material for an extended record of the HAB79 including 

IUPAC or compound names, InChIKey values (where available), chemical formulae, carrier 

type, total number of electrons, frontier orbital energy levels, and reorganization energies, 

details regarding dimer geometric constructions, error statistics for the HAB79 dataset per 

carrier and dimer type, and POD electronic coupling and exponential decay parameters for 

the HAB7- and HAB11 datasets. HAB79 dimer geometries are also included in xyz format 

and all electronic coupling values are included in JSON file format. 
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