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Abstract

In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched
disturbances in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be
conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus
is achieved asymptotically and all subsystems are globally input-to-state-stable. By using an integral sliding mode control, the
subsystems lie on the sliding surface from the initial time, which avoids any sensitivity to disturbances during the reaching phase.
By use of an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces
the conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method.
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I. I NTRODUCTION

Cooperative control of multiagent systems has received considerable attention in recent years due to its relevance in fields

including microgrids, spacecraft formation and industrial cooperative robotics [1]. The behaviour is characterised by cooperation

between subsystems via a communication network whereby each subsystem shares information with its neighbours to ensure

that all agents reach an agreed goal. Consensus control is a typical and fundamental collective behavior of cooperativecontrol.

In a distributed system, consensus control generally focuses on how the agents come to agreement on certain quantities by using

their own information together with information received from their neighbours [2]. Consensus control can be widely applied

in practice. For instance, in order to increase production,multiple reactors are used to simultaneously perform a chemical

reaction where controllers communicate with each other andmaintain the temperature, pressure and flow across the reactors

in order to maintain consistency of the product.

In process control, external disturbances can seriously affect the behaviour of subsystems. Within a multiagent network this

behaviour can spread across the systems because of the interactions between the agents. The presence of such uncertainties

can greatly decrease the performance in terms of control accuracy. Robust control is an effective approach to cope with such

uncertainty.H∞ control is a typical robust control strategy which has been widely applied in consensus theory [3][4]. The

adaptive control paradigm is also commonly used to deal withdisturbances in multiagent systems [5][6]. However, in much of

this research, a high control gain is required to suppress disturbances which may be undesirable in practice. In some cases, a

disturbance observer can be systematically designed to observe and then compensate for disturbances [7][8]. However, typically

well parameterised models are required to define the disturbance observer. Sliding mode control possesses useful characteristics

such as total invariance to matched disturbances, straightforward implementation and fast global convergence [9][10]. There

are several contributions which consider distributed control using sliding mode approaches. Consensus is achieved using a

decoupled distributed sliding mode control for second-order multiagent systems in [2]. Leader-following containment control

is investigated for linear systems in [11]. Scaled consensus is studied for linear systems by means ofan H∞ sliding mode

control in [12]. It should be noted that during the reaching phase in classical sliding mode control, the system behaviour is

still affected by matched disturbances [13]. Integral sliding mode control serves as a solution to thisproblem as it eliminates
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the reaching phase. Finite-time consensus is achieved for second-order multiagent systems with disturbances using anintegral

sliding mode approach in [14]. Fixed-time consensus tracking is studied for second-order nonlinear systems in [15]. The

consensus protocols in [14] and [15] are not applicable for more general classes of linear system. A nearly optimal integral

sliding-mode consensus protocol is designed for multiagent systems in the presence of matched disturbances in [16]. Note that

the unmatched disturbances have not been considered in thiswork. Consequently, it is valuable to develop a method to cope

with matched and unmatched disturbances for linear multiagent systems.

Much of the existing research in distributed control considers consensus for multiagent systems, but does not considerthe

stability of the subsystems. For example, in [2] [14] [17], second order systems are usually considered as position-velocity

systems, in which position increases over time, i.e., the subsystems are unstable after achieving consensus. Theoretically, this is

due to the existence of zero eigenvalues in the system matrix, which causes the system to be critically stable, and when subject

to disturbances, the states will diverge. However, in physics, the second order system can also act as a mathematical model of

a sensor system [18] or a motor system [19]. In these application scenarios, divergence of the statesto infinity over time is

undesirable. For other known research, though the states reach the equilibrium point ultimately, there is no direct proof of the

stability of the subsystems. In [1] [5] and [6], a robust adaptive strategy is utilized to achieve consensus, but it is difficult to

synthesize this method to demonstrate stability of the subsystems. As a consequence, it is challenging to develop a consensus

protocol which will stabilize the subsystems and where proof of stability can be demonstrated constructively.

Motivated by the above discussion, in this paper a consensusframework is proposed for linear multiagent systems which are

subjected to disturbances and uncertainties by using an integral sliding mode strategy. Firstly, the distributed linear system is

transformed into a novel regular form by a linear coordinatetransformation, which facilitates designing the distributed consensus

protocol. In comparison with the traditional regular form [20], the novel regular form inherits the property that matchedand

unmatched disturbances can be separated. Further the transformed representation facilitates analysis of the consensus error.

Secondly, despite the presence of external disturbances, an integral sliding mode strategy is employed so that the states start on

the sliding surface. Thirdly, in light of the novel regular form and integral sliding mode strategy, a consensus controlprotocol

is proposed for a distributed linear system, which renders all the subsystems globally input-to-state-stable (ISS). The proposed

protocol is fully distributed without requiring global information when compared to [4][21] and [22]. In this paper, the main

contributions are twofold. On the one hand, an integral sliding mode based consensus protocol is proposed so that matched

disturbances are eliminated while the unmatched disturbances are minimized by the projection theorem. On the other hand,

in light of the consensus control framework, consensus for the multiagent system can be achieved asymptotically, whilethe

subsystems are rendered globally ISS.

The rest of this paper is organized as follows. In Section II,some basic concepts are stated, a linear coordinate transformation

is given and the problem to be solved is formulated. In Section III, the integral sliding mode control is designed and sliding

motion stability is analyzed. In Section IV, consensus and subsystems’ stability are analyzed. In Section V, simulation results

are analysed and finally in Section VI, conclusions are drawn.

II. PRELIMINARIES AND PROBLEM FORMULATION

Graph theory is used to illustrate the communication among subsystems [23]. Let G = (V, E ,A) denote anN order undirected

graph consisting of a set of nodesV = {v1, v2, . . . , vN}, a set of undirected edgesE ⊆ V × V, and a weighted adjacency

matrix A = (aij)N×N . An undirected edgeEij in the undirected graphG is denoted by a pair of unordered nodes(vi, vj),

which indicatesvi andvj are neighbours and can communicate with each other. The set of neighbours for nodevi is denoted

by Nvi
= {vj ∈ V : (vi, vj) ∈ E , i 6= j}. The weightsaij = aji= 1 in the weighted adjacency matrixA if and only if the

edge(vi, vj) exists, andaij = aji=0 otherwise. Defineaij = 0 when i = j. A path is a sequence of connected edges in a

graph, and a graph is connected if there is a path between every pair of vertices.

0n×m denotes ann−row andm−column matrix with all the entries being 0.0n denotes ann−row vector with all the entries

being 0.Im denotes anm × m identity matrix. Let‖M‖F =

√
p∑

i=1

q∑

j=1

|mij |
2 be the Frobenius norm ofM = (mij)p×q.

‖̟‖∞= max
1≤i≤n

|̟i| denotes an infinite norm of̟ ∈ Rn. ‖�‖ denotes the Euclidean norm and is consistently assumed in this
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paper unless additionally stated.λi (P ) denotes an eigenvalue ofP ∈ Rn×n, where i = 1, 2, . . . , n, λmax (P ) denotes the

maximum eigenvalue ofP .

Consider a distributed multiagent system withN subsystems where the communication among subsystems is denoted by an

undirected topology graphG. Each subsystem has the following identical nominal lineardynamics which is subject to external

disturbances

ẋi (t) = Axi (t) +Bui (t) + φi (t, x) , i = 1, 2, . . . , N (1)

wherexi (t) ∈ Rn, ui (t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m are the state, control protocol, system matrix and input matrix of

the ith subsystem respectively. The disturbances and uncertainties are lumped together and denoted asφi (t, x) ∈ Rn, and

x
∆
=
[
xT1 , . . . , x

T
N

]T
∈ RNn.

The following assumptions will be imposed on system (1).

Assumption 1:The pair(A,B) is controllable.

Assumption 2:B has full column rank, i.e.,rank (B) = m.

Assumption 3:φi (t, x) ∈ Rn is unknown but bounded, i.e.,‖φi (t, x)‖ ≤ β, whereβ ∈ R is known.

Assumption 4:The undirected graphG is connected.

Under Assumption 2, it follows from Lemma 5.3 in [20] that there exists a linear coordinate transformation
[

z̃Ti1 z̃Ti2

]T

=

T1x such that (1) can be described as

˙̃zi1 (t) = Ã11z̃i1 (t)+Ã12z̃i2 (t) + φ̃i1 (t, z̃1, z̃2)

˙̃zi2 (t) = Ã21z̃i1 (t) + Ã22z̃i2 (t) +B2ui (t) + φ̃i2 (t, z̃1, z̃2)
(2)

whereT1 is an invertible matrix,̃zi1 (t) ∈ Rn−m, z̃i2 (t) ∈ Rm, Ã11 ∈ R(n−m)×(n−m), Ã22 ∈ Rm×m, rank (B2) = m,

φ̃i1 (t, z̃1, z̃2) ∈ Rn−m andφ̃i2 (t, z̃1, z̃2) ∈ Rm are unmatched and matched disturbances respectively,z̃1
∆
=
[
z̃T11, . . . , z̃

T
N1

]T
∈

RN(n−m) and z̃2
∆
=
[
z̃T12, . . . , z̃

T
N2

]T
∈ RNm.

Perform a coordinate transformation
[

zTi1 zTi2

]T

= T2

[

z̃Ti1 z̃Ti2

]T

=

[

K1 0(n−m)×m

K2 Im

]
[

z̃Ti1 z̃Ti2

]T

such thatA11 in (3)

is negative symmetric definite

żi1 (t) = A11zi1 (t)+A12zi2 (t) + φi1 (t, z1, z2)

żi2 (t) = A21zi1 (t) +A22zi2 (t) +B2ui (t) + φi2 (t, z1, z2)
(3)

where T2 is an invertible matrix,zi1 (t) ∈ Rn−m, zi2 (t) ∈ Rm, A11 = K1

(

Ã11 − Ã12K2

)

K−1
1 ∈ R(n−m)×(n−m),

A22 ∈ Rm×m, φi1 (t, z1, z2) = K1φ̃i1 (t, z̃1, z̃2), φi2 (t, z1, z2) = K2φ̃i1 (t, z̃1, z̃2)+ φ̃i2 (t, z̃1, z̃2) are unmatched and matched

disturbances respectively,z1
∆
=
[
zT11, . . . , z

T
N1

]T
∈ RN(n−m) andz2

∆
=
[
zT12, . . . , z

T
N2

]T
∈ RNm.

The steps required to renderA11 negative symmetric definite are presented as follows:

(a) Apply pole assignment tõA11−Ã12K2. Under Assumption 1, the pair
(

Ã11, Ã12

)

is controllable according to Proposition

3.3 in [20], so there existsK2 ∈ Rm×(n−m) such thatÃ11 − Ã12K2 hasn−m distinct negative eigenvaluesλi
(

Ã11 − Ã12K2

)

,

i = 1, . . . , n−m. In this case,Ã11 − Ã12K2 is Hurwitz stable andrank
(

Ã11 − Ã12K2

)

= n−m.

(b) SinceÃ11 − Ã12K2 hasn−m distinct negative eigenvalues, it follows from Theorem 1.3.9 in [24] that Ã11 − Ã12K2

can be transformed into the corresponding diagonal matrixΛ , diag (λ1, . . . , λn−m) by using the nonsingular matrixK1 ∈

R(n−m)×(n−m), i.e.,A11 = K1

(

Ã11 − Ã12K2

)

K−1
1 , thenA11 = Λ.

Remark 1:A11 being negative symmetric definite in (3) is helpful for consensus protocol design and synthesis. This will

play an important role in achieving consensus and ensuring the subsystems’ stability.

From the results in [25], φi (t, x), φi1 (t, z1, z2) andφi2 (t, z1, z2) may be expressed in the following form:

[
0Tn−m, φ

T
i2 (t, z1, z2)

]T
= T2T1BB

+φi (t, x) (4)

[
φTi1 (t, z1, z2) , 0

T
m

]T
= T2T1B

⊥B⊥+φi (t, x) (5)
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whereB+ ,
(
BTB

)−1
BT ∈ Rm×n is the left inverse ofB, and the columns ofB⊥ ∈ Rn×(n−m) span the null space of

BT , i.e.,BTB⊥ = 0m×(n−m). Moreover, the following identity holds

BB+ +B⊥B⊥+ = In (6)

Definition 1: Consensus is said to be achieved for the distributed multiagent system (1) if for any initial conditions,

lim
t→∞

‖xi (t)− xj (t)‖ = 0, ∀i, j = 1, 2, · · · , N .

This paper concentrates on utilizing local information to develop a control protocol such that consensus can be achieved

when each subsystem (3) is affected by bounded external disturbances. In this case, the consensus problem for (1) can also

be solved correspondingly.

Before presenting the main results, some lemmas and definitions are given as follows.

Lemma 1:[26] (Global Invariant Set Theorem) Consider the autonomous systemẋ = f (x) with f continuous, and letV (x)

be a scalar function with continuous first partial derivatives. Assume thatV (x) → ∞ as‖x‖ → ∞, and V̇ (x) ≤ 0 over the

whole state space. LetR be the set of all points wherėV (x) = 0, andM be the largest invariant set inR. Then all solutions

globally asymptotically converge toM as t→ ∞.

Definition 2: [27] Consider the system

ẋ = f (x, u) (7)

Assume thatẋ = f (x, 0) has a uniformly asymptotically stable equilibrium point atthe origin. The system (7) is said to be

globally ISS if there exist aKL function η, a classK function ϑ such that

‖x‖ ≤ η (‖x0‖ , t) + ϑ (‖u‖∞) , ∀t ≥ 0 (8)

for any initial statex0 ∈ Rn and any bounded inputu ∈ Rm.

Definition 3: [27] A continuously differentiable functionV : Rn → R is said to be an ISS global Lyapunov function onRn

for the system (7) if there exist classK∞ functionsε1, ε2, ε3 andX such that:

ε1 (‖x‖) ≤ V (x (t)) ≤ ε2 (‖x‖) , ∀x ∈ Rn, t > 0 (9)

∂V (x)

∂x
f (x, u) ≤ −ε3 (‖x‖) , ∀u ∈ Rm : ‖x‖ ≥ X (‖x‖) (10)

Lemma 2:[27] (Globally ISS Theorem) Consider the system (7) and letV : Rn → R be an ISS global Lyapunov function

for this system. Then (7) is globally ISS according to Definition 2 with

ϑ = ε−1
1 · ε2 · χ (11)

Remark 2:According to Definition 2, the response ofẋ = f (x, 0) with initial statex0 satisfies

‖x‖ ≤ η (‖x0‖ , t) , ∀t ≥ 0 (12)

As t increases,η (‖x0‖ , t) → 0, then

‖x‖ ≤ ϑ (‖u‖∞) (13)

Lemma 3:[28] If µ1, µ2, . . . , µn ≥ 0 and0 < p < q, then
(

n∑

i=1

µq
i

)1/q

≤

(
n∑

i=1

µp
i

)1/p

(14)

III. I NTEGRAL SLIDING MODE CONTROL PROTOCOL DESIGN AND STABILITYANALYSIS OF THE SLIDING MOTION

This section aims to design an integral sliding mode controlprotocol and analyze the stability of the sliding motion forthe

multiagent system (3). To simplify notation, some of the function arguments will be omitted.
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The sliding function is presented as follows

si (t) = αiG

([

zTi1 (t) zTi2 (t)
]T

−
[

zTi1 (t0) zTi2 (t0)
]T

−

∫ t

t0

[

A11 A12

A21 A22

]
[

zTi1 (τ) zTi2 (τ)
]T

+

[

0(n−m)×m

B2

]

uconi (τ) dτ

) (15)

wheresi (t) is a sliding-mode variable,G ∈ Rm×n is a projection matrix that will be designed later accordingto the projection

theorem and satisfiesrank

(

G

[

0(n−m)×m

B2

])

= m, αi ∈ R is a small positive parameter which can be chosen by the

designer,zi1 (t0) andzi2 (t0) are the initial values anduconi (t) is a consensus control protocol that is defined by

uconi (t) = B−1
2





N∑

j=1

aij (zj2 (t)− zi2 (t)) +AT
12

N∑

j=1

aij (zj1 (t)− zi1 (t))



−A21zi1 (t)−A22zi2 (t) (16)

The corresponding sliding surface is
{(
zT11, · · · , z

T
N1, z

T
12, · · · , z

T
N2

)T
∣
∣
∣ si (t) = 0m, ∀i = 1, 2, · · · , N

}

(17)

wheresi (t) is defined in (15).

The control protocol for the multiagent system (3) is given by

ui (t) = udisi (t) + uconi (t) (18)

whereudisi (t) is a discontinuous control protocol and selected as

udisi (t) = −ρ

(

G

[

0(n−m)×m

B2

])T

si (t)

∥
∥
∥
∥
∥
∥

(

G

[

0(n−m)×m

B2

])T

si (t)

∥
∥
∥
∥
∥
∥

(19)

whereρ > β‖B+‖F is a control gain.

Next, the behaviour when each subsystem is subjected to disturbance effects will be analyzed when the system is controlled

by the discontinuous control protocol (19). Closing the loop in (3) with (18), the derivative ofsi (t) with respect to time is

given by

ṡi (t) = αiG

(
[

żTi1 żTi2

]T

−

([

A11 A12

A21 A22

]
[

zTi1 zTi2

]T

+

[

0(n−m)×m

B2

]

uconi

))

= αiG

([

A11 A12

A21 A22

]
[

zTi1 zTi2

]T

+

[

0(n−m)×m

B2

]

(
udisi + uconi

)
+
[

φTi1 φTi2

]T

−

([

A11 A12

A21 A22

]
[

zTi1 zTi2

]T

+

[

0(n−m)×m

B2

]

uconi

))

= αiG

([

0(n−m)×m

B2

]

udisi +
[

φTi1 φTi2

]T
)

(20)

The equivalent discontinuous controludisieq is obtained from this as

udisieq (t) = −

(

G

[

0(n−m)×m

B2

])−1

G
[

φTi1 φTi2

]T
(21)
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By substituting (21) asudisi (t) in (3), the sliding dynamics can be obtained as

żi1 (t) = A11zi1 (t) +A12zi2 (t) + φi1 (t, z1, z2)

żi2 (t) = A21zi1 (t) +A22zi2 (t) +B2u
con
i (t)−B2

(

G

[

0(n−m)×m

B2

])−1

G
[

φTi1 0Tm

]T (22)

As can be seen, the action of the integral sliding mode control strategy has transformed the original disturbances
[

φTi1 φTi2

]T

into the following equivalent disturbances

φieq (t, z1, z2) ,







φi1

−B2

(

G

[

0(n−m)×m

B2

])−1

G
[

φTi1 0Tm

]T






=






In −







0(n−m)×n

B2

(

G

[

0(n−m)×m

B2

])−1

G













[

φTi1 0Tm

]T

(23)

Theorem 1:SinceG

[

0(n−m)×m

B2

]

has full rank,B+(T2T1)
−1 is a matrix which minimizes the norm ofφieq (t, z1, z2),

i.e.,

G∗ = B+(T2T1)
−1

= arg min
G∈Rm×n

∥
∥
∥
∥
∥
∥
∥
∥






In −







0(n−m)×n

B2

(

G

[

0(n−m)×m

B2

])−1

G













[

φTi1 0Tm

]T

∥
∥
∥
∥
∥
∥
∥
∥

(24)

Proof : Notice that
∥
∥
∥
∥
∥
∥
∥
∥






In −







0(n−m)×n

B2

(

G

[

0(n−m)×m

B2

])−1

G













[

φTi1 0Tm

]T

∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

[

φTi1 0Tm

]T

−

[

0(n−m)×m

B2

]

ϕi

∥
∥
∥
∥
∥

(25)

whereϕi =

(

G

[

0(n−m)×m

B2

])−1

G
[

φTi1 0Tm

]T

. Thus (24) can be transformed into

ϕ∗
i = arg min

ϕi∈Rm

∥
∥
∥
∥
∥

[

φTi1 0Tm

]T

−

[

0(n−m)×m

B2

]

ϕi

∥
∥
∥
∥
∥

(26)

which hasϕ∗
i = B+(T2T1)

−1
[

φTi1 0Tm

]T

as a solution according to the classical projection theoremin page 51 of [29].

Making G = B+(T2T1)
−1, it can be obtained thatϕi = B+(T2T1)

−1
[

φTi1 0Tm

]T

= ϕ∗
i , which implies that (24) is true.

Remark 3:By substitutingϕ∗
i = B+(T2T1)

−1
[

φTi1 0Tm

]T

into (25) and combining (6), it follows that
∥
∥φ∗ieq

∥
∥=

∥
∥
∥
∥

[

φTi1 0Tm

]T
∥
∥
∥
∥
,

i.e., the norm of the equivalent disturbances is driven by the unmatched disturbances and the effects of the disturbances are

minimized by designing the projection matrixG optimally.

Theorem 2:Assume Assumptions 1-3 hold. Then the control from (19) can keep the subsystem (3) on the sliding surface

(17) from the initial time withG = B+(T2T1)
−1.

Proof : Substitute the discontinuous element from (19) withG = B+(T2T1)
−1 into (20). Then

ṡi (t) = αiB
+(T2T1)

−1

(

−ρT2T1B
si
‖si‖

+
[

φTi1 φTi2

]T
)

(27)

A Lyapunov candidate function is selected as

V1 (t) =
1

2

N∑

i=1

sTi si (28)
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Combining with (4), (5) and (27), the derivative ofV1 (t) is given by

V̇1 (t) =
N∑

i=1

sTi ṡi

=

N∑

i=1

sTi αiB
+(T2T1)

−1

(

−ρT2T1B
si

‖si‖
+
[

φTi1 φTi2

]T
)

=

N∑

i=1

αi

(
−ρ ‖si‖+ sTi B

+φi
)

≤
N∑

i=1

αi

(
−ρ ‖si‖+ ‖si‖

∥
∥B+φi

∥
∥
)

=
N∑

i=1

−αi ‖si‖
(
ρ−

∥
∥B+φi

∥
∥
)

≤
N∑

i=1

−αi ‖si‖
(
ρ−

∥
∥B+

∥
∥
F
‖φi‖

)

≤
N∑

i=1

−αi ‖si‖
(
ρ− β

∥
∥B+

∥
∥
F

)

(29)

According to Lemma 3, it follows that

V̇1 (t) ≤
N∑

i=1

−σi ‖si‖

≤ −σmin

N∑

i=1

‖si‖

≤ −σmin

√

V1

(30)

whereσi = αi (ρ− β‖B+‖F ), σmin is the minimum among theσi.

It follows that the subsystem (3) will slide on the surface (17) despite the presence of the disturbances [20]. Because the

subsystem starts on the sliding surface at the initial time,it will remain on the sliding surface thereafter, i.e.,s = ṡ = 0 when

t ≥ 0.

IV. CONSENSUS AND STABILITY ANALYSIS OF SUBSYSTEMS

In this section, consensus will be analyzed for the distributed system in the presence of the control protocol. The stability

of each subsystem is then considered.

When the subsystem is restricted on the sliding surface (17),substituteG = B+(T2T1)
−1 and the consensus control protocol

(16) into (22). The sliding dynamics can then be described as

żi1 (t) = A11zi1 (t) +A12zi2 (t) + φi1 (t, z1, z2)

żi2 (t) = ζi (t, z1, z2)
(31)

whereζi (t, z1, z2) =
N∑

j=1

aij (zj2 (t)− zi2 (t)) +AT
12

N∑

j=1

aij (zj1 (t)− zi1 (t)).

Assumption 5:[9] ‖φi1 (t, z1, z2)‖ ≤ γi (t, z1, z2) ‖zi1‖, whereγmax (t, zi1, zj1) ≤ −λmax (A11), γmax is the maximum

among theγi, i = 1, . . . , N .

Assumption 6:The closed-loop system (31) does not involve the case thatzi2 → ∞ whenζi → 0m.

Remark 4:According to Assumption 6, both the disturbances
[

φTi1 φTi2

]T

and control inputs (18) do not drivezi2 → ∞

in the system (3), i.e.,zi2 does not correspond to the unbounded cases from [26] (page 122). Recalling that the disturbances

are bounded, the consensus control protocol (16) is linear,and the discontinuous control protocol (19) is bounded, then zi2

will be bounded whenζi → 0m.
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Theorem 3:Suppose Assumptions 1-5 hold. The distributed system (31) can achieve consensus asymptotically.

Proof : The consensus problem can be transformed into the followingstabilisation problem:

ėai (t) = A11e
a
i (t) +A12e

b
i (t) + eφ1

i (t, z1, z2)

ėbi (t) = ζi (t, z1, z2)− ζ̄ (t, z1, z2)
(32)

whereeai (t)
∆
=
(
eai1, . . . , e

a
i,n−m

)T
= zi1 − 1

N

N∑

j=1

zj1, ebi (t)
∆
=
(
ebi1, . . . , e

b
i,m

)T
= zi2 − 1

N

N∑

j=1

zj2, eφ1

i (t, z1, z2) , φi1 −

1
N

N∑

j=1

φj1, ζ̄ (t, z1, z2)
∆
= 1

N

N∑

j=1

ζj .

Based on the errors defined above,ζi (t, z1, z2) can be rewritten as

ζi (t, z1, z2) =
N∑

j=1

aij
(
ebj − ebi

)
+AT

12

N∑

j=1

aij
(
eaj − eai

)

(33)

Becauseaij = aji, for ζ̄ (t, z1, z2) it can be obtained that

ζ̄ (t, z1, z2) =
1
N

N∑

j=1

ζj

=
1
N

N∑

j=1

(
N∑

k=1

ajk
(
ebk − ebj

)
+AT

12

N∑

k=1

ajk
(
eak − eaj

)

)

=
1
2N

N∑

j=1

N∑

k=1

ajk
[(
ebk − ebj

)
+
(
ebj − ebk

)
+AT

12

(
eak − eaj

)
+AT

12

(
eaj − eak

)]

= 0m

(34)

A Lyapunov candidate function is constructed as

V2(t) =
1

2

N∑

i=1

N∑

j=1

n−m∑

k=1

∫ eaik−eajk

0

aijydy +
1

2

N∑

i=1

(
ebi
)T
ebi (35)

The derivative ofV2 along the errorseai andebi is given by

V̇2(t) =
1

2

N∑

i=1

N∑

j=1

n−m∑

k=1

aij
(
eaik − eajk

) (
ėaik − ėajk

)
+

N∑

i=1

(
ebi
)T
ėbi

=

N∑

i=1

N∑

j=1

n−m∑

k=1

aij
(
eaik − eajk

)
ėaik +

N∑

i=1

(
ebi
)T
ėbi

=
N∑

i=1

(ėai )
T

N∑

j=1

aij
(
eai − eaj

)
+

N∑

i=1

(
ebi
)T
ėbi

(36)

Combined with (32), it can be obtained that

V̇2(t) =

N∑

i=1

(

A11e
a
i +A12e

b
i + eφ1

i

)T N∑

j=1

aij
(
eai − eaj

)
+

N∑

i=1

(
ebi
)T





N∑

j=1

aij
(
ebj − ebi

)
+AT

12

N∑

j=1

aij
(
eaj − eai

)





=

N∑

i=1

N∑

j=1

aij(e
a
i )

T
AT

11

(
eai − eaj

)
+

N∑

i=1

N∑

j=1

aij
(
ebi
)T (

ebj − ebi
)
+

1

2

N∑

i=1

N∑

j=1

aij

((

eφ1

i

)T

−
(

eφ1

j

)T
)
(
eai − eaj

)

=
1

2

N∑

i=1

N∑

j=1

aij
(
eai − eaj

)T
AT

11

(
eai − eaj

)
−

1

2

N∑

i=1

N∑

j=1

aij
(
ebi − ebj

)T (
ebi − ebj

)
+

N∑

i=1

N∑

j=1

aijφ
T
i1

(
eai − eaj

)

=
1

2

N∑

i=1

N∑

j=1

aij(zi1 − zj1)
T
AT

11 (zi1 − zj1)−
1

2

N∑

i=1

N∑

j=1

aij(zi2 − zj2)
T
(zi2 − zj2) +

N∑

i=1

N∑

j=1

aijφ
T
i1 (zi1 − zj1)

(37)



9

Further, note thatA11 is negative definite, soAT
11 is negative definite. Combined with Assumption 5, the following inequalities

can be obtained

V̇2(t) ≤
1

2

N∑

i=1

N∑

j=1

aijλmax

(
AT

11

)
‖zi1 − zj1‖

2 −
1

2

N∑

i=1

N∑

j=1

aij‖zi2 − zj2‖
2
+

N∑

i=1

N∑

j=1

aij ‖φi1‖ ‖zi1 − zj1‖

≤
1

2

N∑

i=1

N∑

j=1

aijλmax

(
AT

11

)
‖zi1 − zj1‖

2 −
1

2

N∑

i=1

N∑

j=1

aij‖zi2 − zj2‖
2
+

1

2

N∑

i=1

N∑

j=1

aij (γi ‖zi1‖+ γj ‖zj1‖) ‖zi1 − zj1‖

≤
1

2

N∑

i=1

N∑

j=1

aij
(
λmax

(
AT

11

)
+ γmax

)
(‖zi1‖+ ‖zj1‖) ‖zi1 − zj1‖ −

1

2

N∑

i=1

N∑

j=1

aij‖zi2 − zj2‖
2

(38)

The analysis of (38) is presented as follows:
(
λmax

(
AT

11

)
+ γmax

)
(‖zi1‖+ ‖zj1‖) ‖zi1 − zj1‖ ≤ 0, equality holds if and

only if zi1 − zj1 = 0n−m (zi1 = zj1 = 0n−m included);‖zi2 − zj2‖
2 ≥ 0, equality holds if and only ifzi2 − zj2 = 0m.

Hence,V̇2 ≤ 0. Referring to Lemma 1, it can be obtained that (a)V2 (t) is radially unbounded overeai andebi ; (b) Since the

undirected graph is connected, ifV̇2 ≡ 0, thenzi1 ≡ zj1, zi2 ≡ zj2, ∀i, j = 1, 2, . . . , N . That is, lim
t→∞

‖zi1 − zj1‖ = 0 and

lim
t→∞

‖zi2 − zj2‖ = 0, ∀i, j = 1, 2, . . . , N , i.e., lim
t→∞

‖xi − xj‖ = 0, ∀i, j = 1, 2, · · · , N . Based on the above analysis, system

(31) can be driven to consensus asymptotically.

It can then be obtained from (31) thatżi2 goes to0m asymptotically. Due to the presence of the unmatched disturbances

φi1 (t, z1, z2), the evolution ofzi1 (t) andzi2 (t) should be discussed.

Theorem 4:Suppose Assumptions 1-6 hold. The subsystem (31) is globally ISS wherezi1 is the state and bothzi2 andφi1
are considered as inputs.

Proof : According to Assumption 3‖φi‖ ≤ β, thus‖φi1‖ ≤ β. From Assumption 6 and Remark 4,zi2 is bounded. Referring

to Lemma 2, the inputszi2 andφi1 are both bounded.

A Lyapunov candidate function is constructed as

V3(t) =
1

2
zTi1zi1 (39)

Let −1 < θ < 0, then the derivative ofV3 (t) is given by

V̇3 (t) = zTi1żi1

= zTi1 (A11zi1 +A12zi2 + φi1)

= (1 + θ) zTi1A11zi1 + zTi1A12zi2 + zTi1φi1 − θzTi1A11zi1

≤ (1 + θ)λmax (A11) ‖zi1‖
2

(40)

provided thatzTi1A12zi2 + zTi1φi1 − θzTi1A11zi1 ≤ 0.

Assume that
∥
∥zTi1A12zi2 + zTi1φi1

∥
∥ ≤

∥
∥θzTi1A11zi1

∥
∥, or equivalently

‖zi1‖ ≥
‖A12‖F ‖zi2‖+ ‖φi1‖

λmax (A11) θ
(41)

According to Lemma 2, it can be shown thatε1 (‖zi1‖) = ε2 (‖zi1‖) =
1
2‖zi1‖

2, −ε3 (‖zi1‖) = (1 + θ)λmax (A11) ‖zi1‖
2,

wherezi1 is taken as the state andzi2 andφi1 as the inputs in Lemma 2. It follows that the subsystem is globally ISS with

ϑ (‖u‖) =
‖A12‖F ‖zi2‖+ ‖φi1‖

λmax (A11) θ
(42)

Therefore, appealing to Remark 2,zi1 is bounded with

‖zi1‖ ≤
‖A12‖F ‖zi2‖+ ‖φi1‖

λmax (A11) θ
(43)

Remark 5:The above results indicate that the Lyapunov functionV3 is negative definite along the trajectories ofzi1 whenever

the trajectories are outside of the ball defined by‖z∗i1‖ =
‖A12‖F

‖zi2‖+‖φi1‖

λmax(A11)θ
, and the trajectories will remain ultimately bounded

by the ball of radius‖A12‖F
‖zi2‖+‖φi1‖

λmax(A11)θ
.
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Remark 6:This section considers stability of the subsystems. Note that the stability of the subsystems is not considered

in [1]. When the subsystem dynamics (1) is a class of second-order systems, the states may diverge due to the existence of

disturbances. See the appendix for a detailed analysis.

V. SIMULATIONS AND ANALYSIS

In this section, two simulation examples are presented to demonstrate the validity of the proposed method.

Example 1. This example aims to demonstrate the effectiveness of the theoretical results in the presence of matched and

unmatched disturbances. Consider a multiagent system withfour subsystems, whose topology connection is shown in Fig.1.

Fig. 1: Undirected graph with 4 subsystems

The dynamics of each subsystem is given by

ẋi =









1 5 8 3

4 7 5 9

11 5 4 3

9 6 0 9









xi +









5 7

4 1

0 5

−8 6









ui + φi (44)

where the initial states are selected as follows:

x1 (0) =
[

−5 7 6 8
]T

, x2 (0) =
[

11 3 −10 −4
]T

x3 (0) =
[

8 −3 −1 0
]T

, x4 (0) =
[

−4 6 0 −2
]T

(45)

The disturbances are as follows:

φi =















⌣

t 11γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

+
⌣

t 13 (0.1cos (xi3)) +
⌣

t 14 (0.5sin (t))

⌣

t 21γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

+
⌣

t 23 (0.1cos (xi3)) +
⌣

t 24 (0.5sin (t))

⌣

t 31γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

+
⌣

t 33 (0.1cos (xi3)) +
⌣

t 34 (0.5sin (t))

⌣

t 41γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

+
⌣

t 43 (0.1cos (xi3)) +
⌣

t 44 (0.5sin (t))















(46)

whereT2T1 =
[
⌢

t ij

]

4×4
, (T2T1)

−1
=
[
⌣

t ij

]

4×4
, γi = 0.1, i, j = 1, 2, 3, 4.

The coordinate transformation matrices are

T1 =









−0.4943 0.3465 0.7856 −0.1356

−0.1300 0.8433 −0.3951 0.3404

−0.4880 −0.3904 0.0000 0.7807

0.7076 0.1279 0.4762 0.5062









, T2 =









1.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000

0.3561 0.9858 1.0000 0.0000

−0.0737 0.6324 0.0000 1.0000









(47)

and other parameters are selected asβ = 1.00, αi = 0.0001, ρ = 0.15, G =

[

3.6493 10.1017

0.4614 −7.5056

]

.

It can be verified by computations that‖φi‖ ≤ β. In addition, by coordination transformation, it can be obtained that

φi1 = γi




sin

((
⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
)

0



 (48)
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‖φi1‖ ≤ γi ‖zi1‖=γi

√
(

⌢

t 11xi1 +
⌢

t 12xi2 +
⌢

t 13xi3 +
⌢

t 14xi4

)2
+
(

⌢

t 21xi1 +
⌢

t 22xi2 +
⌢

t 23xi3 +
⌢

t 24xi4

)2
can be verified.

To avoid chattering in the implementation, a boundary layerapproximation is used such that

(

G

[

0(n−m)×m

B2

])T

si (t)/
∥
∥
∥
∥
∥
∥

(

G

[

0(n−m)×m

B2

])T

si (t) + δ

∥
∥
∥
∥
∥
∥

is used to replace (19), whereδ is a small positive scalar and selected asδ = 0.01.

The simulation results are shown as Fig.2−4.
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(a) xi1 with respect to time
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(b) xi2 with respect to time
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(c) xi3 with respect to time
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Fig. 2: Subsystems’ states with respect to time

Fig.2 shows the subsystems’ states with respect to time. As can be seen, in the presence of matched and unmatched

disturbances, the system achieves consensus. Fig.3 shows the subsystems’ control inputs with respect to time. It can beseen

that the control inputs remain bounded after the subsystemsare stabilized, and there is no obvious chattering in the control

signal. Fig.4 shows the sliding variable with respect to time. It is seen that every subsystem starts on the sliding surface from

the beginning which avoids sensitivity to matched disturbances in the reaching phase.
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Fig. 3: Subsystems’ control inputs with respect to time

Example 2. Consider the multiagent system whose topology connection is also shown as Fig.1. To further test the proposed

distributed protocol, the protocol (3) developed in [1] which uses an adaptive scheme will be compared with the method

proposed in this paper. The dynamics of each subsystem is given by

ẋi =

[

0 1

0 0

]

xi +

[

0

0.4

]

ui + φi (49)

where the initial states are selected as follows:

x1 (0) =
[

1 2
]T

, x2 (0) =
[

−1 −2
]T

, x3 (0) =
[

3 4
]T

, x4 (0) =
[

−3 −4
]T

(50)

The disturbances are as follows:

φi =







⌣

t 11γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)

+ 0.01
⌣

t 12 (cos (xi1) + sin (t))

⌣

t 21γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)

+ 0.01
⌣

t 22 (cos (xi1) + sin (t))







(51)

whereT2T1 =
[
⌢

t ij

]

2×2
, (T2T1)

−1
=
[
⌣

t ij

]

2×2
, γi = 0.08, i, j = 1, 2.
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For the protocol proposed in this paper, the coordinate transformation matrices are

T1 =

[

−1 0

0 −1

]

, T2 =

[

1 0

1 1

]

(52)

and the other parameters are selected asβ = 0.15, αi = 0.0001, ρ = 0.4, G =
[

0.4 −0.4
]

, δ = 0.0001.

It can be verified by computations that‖φi‖ ≤ β. In addition, by coordination transformation, it can be obtained that

φi1 = γi sin

((
⌢

t 11xi1 +
⌢

t 12xi2

)2
)

(53)

‖φi1‖ ≤ γi ‖zi1‖=γi

√
(

⌢

t 11xi1 +
⌢

t 12xi2

)2
can be verified.

For the protocol (3) proposed in [1], the parameters are selected asΓ =

[

1.0000 2.4495

2.4495 6.0000

]

,K=
[

−1.0000 −2.4495
]

, d̄i (0) =

0, ēi (0) = 0, τi = 10, εi = 10, κi = 0.5, ϕi = 0.05, ψi = 0.05.

The simulation results are shown as Fig.5−6, where the solid lines denote the method proposed in this paper, labeled as

2020; the dashed lines denote the method proposed in [1], labeled as 2014.
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Fig. 4: Subsystems’ sliding motion with respect to time
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(c) Consensus errors with respect to time for the third subsystem
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(d) Consensus errors with respect to time for the fourth subsystem

Fig. 5: Consensus errors with respect to time in two protocols
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Fig. 6: Subsystems’ control inputs with respect to time in two protocols

From Fig.5, the consensus errors with respect to time using the proposed method (2020) differ very little from those of the

method in [1] (2014) in terms of the settling time and overshoot. However, it can been seen that the control inputs of the method

in [1] are several times higher than for the proposed method for aninitial period of time (Fig.6), which is energy-consuming.

Stability of the subsystems is not considered when designing the protocol (3) in [1], and the states correspondingly diverge.

This can be verified by substituting numerical values into the system matrix (54) in the appendix. No matter what valuesd̄i

take, it can be seen that there are two zero eigenvalues in thesystem matrix. The simulation results also illustrate thispoint,

as shown in Fig.7 (a) and (b). With the proposed approach, thenegative symmetric definitness ofA11 guarantees the state

evolution with the protocol devised in this paper are ultimately bounded as seen in Fig.7 (c) and (d).
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(c) xi1 with respect to time in this paper
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Fig. 7: Subsystems’ states with respect to time
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VI. CONCLUSION

A consensus framework is proposed for a class of linear multiagent systems in the presence of matched and unmatched

disturbances. An integral sliding mode strategy is utilized to ensure the subsystems lie on the sliding surface from theinitial

time. The impact of the disturbances are minimized according to the projection theorem. A consensus protocol is designed

and analyzed applying a linear coordinate transformation and the global invariant set theorem. The stability of each subsystem

is guaranteed by appealing to results on global ISS. Numerical simulations show the validity and superiority of the proposed

method. Future work will focus on experimental testing and practical application of the proposed method. In terms of theory,

an interesting direction is to discuss the consensus of nonlinear systems using a sliding mode strategy.

APPENDIX

The analysis of the case where the subsystem states are diverging in [1] is presented as follows:

(a) Substitute the consensus protocol (3, [1]) into the subsystem dynamics (2, [1]), to obtain a lumped form:

ẋ =
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
x+ (IN ⊗B) (R+ F ) (54)

It should be noted that in this appendix, (∗, [1]) refers to the corresponding equation (∗) in [1], and the notations also refer

to the ones in [1] unless otherwise stated.

(b) Here, an eigenvalue can be acquired by the system matrix
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
in (53) by which stability of the

subsystem can be judged.

(b.1) When the subsystem dynamics (1, [1]) is in a linear second-order form, thenA ,

[

0 ā12

0 0

]

andB ,

[

0

b̄2

]

, where

ā12, b̄2 ∈ R. To guarantee the controllability of the subsystem,ā12 6= 0 and b̄2 6= 0. K ,

[

k̄1 k̄2

]

, wherek̄1, k̄2 ∈ R.

(b.2) Calculate the elements item by item as follows for the system matrix
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
:

IN ⊗A = diag









[

0 ā12

0 0

]

, . . . ,

[

0 ā12

0 0

]

︸ ︷︷ ︸

N









(55)

D̄L =
[
d̄iLij

]

N×N
, i, j = 1, . . . , N (56)

BK =

[

0 0

k1b2 k2b2

]

(57)

(
D̄L
)
⊗ (BK) =

[

d̄iLij

[

0 0

k1b2 k2b2

]]

N×N

=

[[

0 0

d̄iLijk1b2 d̄iLijk2b2

]]

N×N

(58)

then
IN ⊗A+

(
D̄L
)
⊗ (BK)

= diag









[

0 ā12

0 0

]

, . . . ,

[

0 ā12

0 0

]

︸ ︷︷ ︸

N









+

[[

0 0

d̄iLijk1b2 d̄iLijk2b2

]]

N×N

,
[
Λ̄ij

]

2N×2N

(59)

In (58), Λ̄i1 + Λ̄i3 + Λ̄i5 + . . .+ Λ̄i(2N−1) = 0, thenᾱ



1, 0, . . . , 1, 0
︸ ︷︷ ︸

2N





T

is an eigenvector of (58), wherēα ∈ R and ᾱ 6= 0,

and the corresponding eigenvalue is 0.
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(c) Consider now where there is at least one 0 in the eigenvalues of
[
IN ⊗A+

(
D̄L
)
⊗ (BK)

]
so that the subsystem is

critically stable. For (53), although the nonlinear termR can compensate the disturbance termF , the disturbances still have

an effect on the critically stable subsystem and as a consequence the states diverge. This covers the analysis of [1].

In addition to [1], there are other contributions [2][5][6][14] where the states may diverge for a second-order subsystem

when subjected to disturbances.
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