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Steering ecological-evolutionary dynamics to
improve artificial selection of microbial
communities
Li Xie1✉ & Wenying Shou 2✉

Microbial communities often perform important functions that depend on inter-species

interactions. To improve community function via artificial selection, one can repeatedly grow

many communities to allow mutations to arise, and “reproduce” the highest-functioning

communities by partitioning each into multiple offspring communities for the next cycle.

Since improvement is often unimpressive in experiments, we study how to design effective

selection strategies in silico. Specifically, we simulate community selection to improve a

function that requires two species. With a “community function landscape”, we visualize how

community function depends on species and genotype compositions. Due to ecological

interactions that promote species coexistence, the evolutionary trajectory of communities is

restricted to a path on the landscape. This restriction can generate counter-intuitive evolu-

tionary dynamics, prevent the attainment of maximal function, and importantly, hinder

selection by trapping communities in locations of low community function heritability. We

devise experimentally-implementable manipulations to shift the path to higher heritability,

which speeds up community function improvement even when landscapes are high dimen-

sional or unknown. Video walkthroughs: https://go.nature.com/3GWwS6j; https://

online.kitp.ucsb.edu/online/ecoevo21/shou2/.
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Multispecies microbial communities often display com-
munity functions—biochemical activities not achievable
by any member species alone. For example, a com-

munity of Desulfovibrio vulgaris and Methanococcus maripaludis,
but not either species alone, converts lactate to methane in the
absence of sulfate1. Community function arises from “interac-
tions” where one community member influences the physiology
of other community members. Interactions are typically complex
and difficult to characterize, making it challenging to rationally
design communities2,3. In a different approach, one could
mutagenize individual community members, assemble them at
various ratios, and screen the resultant communities for high
community function. However, this requires community mem-
bers to be culturable, and the number of combinatorial possibi-
lities increases rapidly with the number of species and genotypes.
In addition, such assembled communities might be vulnerable to
ecological invasion4.

Alternatively, community function may be improved by arti-
ficial selection (directed evolution; Fig. 1a)5–7. During each
selection cycle, newly assembled Newborn communities (“New-
borns”) grow into Adult communities (“Adults”) over a period of
“maturation” time set by the experimentalist. During community
maturation, community members can proliferate and mutate. At
the end of community maturation, Adults expressing the highest
community function are chosen to “reproduce” where each is

randomly partitioned into multiple Newborns for the next
selection cycle. Artificial community selection, if successful, can
improve useful community functions such as fighting pathogens8,
producing drugs9, or degrading wastes10 without detailed
knowledge of the underlying mechanisms.

Theoretical work predicts that artificial selection of commu-
nities can succeed, at least under certain conditions4,11–16.
Experimental work on community selection often yielded variable
outcomes17–28, and some studies were not conclusive due to the
lack of a “no selection” control. In some cases, communities
indeed responded to selection, presumably driven by changes in
species composition22–25 and/or evolution17,18. In other cases,
selecting for high-function communities yielded similar outcomes
as selecting for low-function or random communities19,26–28, and
community function could even decline despite selection20,25. For
example, selecting marine microbial communities for enhanced
chitin-degradation activity was ineffective, unless community
maturation time was progressively adjusted to prevent undesir-
able species from taking over25.

Successful community selection requires three elements: varia-
tion in community function, preferential survival of high-
functioning communities, and heritability of community
function29. Preferential survival of high-functioning communities
is enabled by intercommunity selection. Variation and heritability
of community function can be understood in terms of variation

Fig. 1 Artificial community selection to improve a community function. a Artificial community selection. In each cycle, Newborns (blue shading) mature
into Adults (yellow shading) during which intracommunity selection favors fast growers (olive bracket). The highest-functioning Adults are then chosen to
reproduce, and this intercommunity selection favors high function (red bracket). Note that both parent (top half) and offspring (bottom half) communities
have Newborn and Adult stages. Thus, the four rows from top to bottom represent parent Newborn, parent Adult, offspring Newborn, and offspring Adult,
respectively. b Community function determinants. c Heritability of community function and community function determinants. Similar to how heritability of
individual-level trait is determined60, we estimate heritability of community function (top) and of community function determinants (bottom) from the
slope of linear regression between parent functions (or determinants) and offspring functions (or determinants). Thus, although the notion of heritable
versus nonheritable is convenient for conceptualization, heritability is quantitative.
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and heritability of community function determinants. Commu-
nity function determinants (“determinants”) are defined as factors
that determine community function and that vary among com-
munities (Fig. 1b). Examples of community function determinants
include genotype and species composition. Variation in commu-
nity function is induced by variation in community function
determinants. For example, mutations and species migration can
introduce variation in community function by modifying genotype
and species compositions. Heritability of community function30 is
determined by heritability of community function determinants.
Both can be estimated from the slope of the parent–offspring linear
regression (Fig. 1c). Indeed, artificial community selection could
fail, unless one promotes both variation (e.g., choosing a suffi-
ciently large number of Adult communities to reproduce) and
heritability of community function (e.g., promoting species
coexistence)6,15,25,26,28.

Artificial community selection becomes particularly challen-
ging when community function incurs a fitness cost to one or
more community members. For example, fast-growing species
must evolve slower growth to coexist with slow-growing partner
species. If contributing to community function requires diversion
of cellular resources, then within a species, contributors to
community function will be outcompeted by cheaters who make
little or no contributions. Hence, cheaters are favored by intra-
community selection during community maturation (Fig. 1a,
olive bracket). However, cheaters are disfavored by inter-
community selection that only allows high-functioning commu-
nities to reproduce (Fig. 1a, red bracket). Thus, to improve a
costly community function, intercommunity selection must
overcome intracommunity selection (Fig. 1a).

To learn general principles on effective community selection
and to gain insights that can guide future experiments, we use
individual-based simulations to compare multiple selection stra-
tegies. We have conjured a highly simplified microbial commu-
nity where two species coexist due to a commensal ecological
interaction, and both species are required for community func-
tion. In our system, species composition is nonheritable: varia-
tions in Newborn species compositions are rapidly dampened
during community maturation due to an “attractor” (steady-state
species composition) induced by the commensal ecological
interaction. In contrast, genotype composition is heritable. We
visualize “community function landscape” relating community
function to its heritable and nonheritable determinants, similar to
a phenotype landscape relating an individual’s phenotype to its
genetic and environmental determinants31,32. We find that the
steady-state species composition confines evolving communities
to a path in the landscape. This confinement can generate
counterintuitive evolutionary dynamics and prevent the attain-
ment of maximal community function. Importantly, the local
landscape geometry near the steady state species composition is
indicative of community function heritability, an idea similar to
phenotype landscape indicative of heritability of individual traits.
When communities are trapped in low-heritability landscape
regions, community function does not improve or improves only
slowly under selection. Inspired by these observations, we devise
perturbation strategies that improve community function herit-
ability and thus the rate of community function improvement,
even when community function landscape is high-dimensional
and cannot be visualized.

Results
A commensal community with a species-composition attractor.
In our previous work15, we simulated artificial selection on a two-
species Helper–Manufacturer community (“H–M community”,
Fig. 2a). In this community, Helper (H) digests agricultural waste

and consumes Resource, grows biomass, and, at no cost to itself,
releases a metabolic Byproduct essential for Manufacturer (M).
As M consumes Byproduct and Resource, its cellular resource is
partitioned, so that a fraction fP (0 ≤ fP ≤ 1) is used to synthesize
Product P that is of interest to the experimentalist, while the rest
(1− fP) is used for its own biomass accumulation. Thus, H helps
M to grow, and such commensal interaction is commonly found
in microbial communities33–38.

Since M relies on H’s Byproduct, H can either drive M extinct
or coexist with M15. When M’s cost fP is large, M always grows
slower than H. Thus, ϕM, the fraction of M biomass in a
community, declines within a cycle and over cycles until M goes
extinct (Fig. 2b, arrows on the right approaching the horizontal
axis). When M’s cost fP is moderate or small, and when we choose
growth parameters of the two species properly (Table 1, Methods
“Parameter choices”), H and M can coexist at a steady-state ratio
(Fig. 2b, arrows on the left approaching the positive portion of the
blue dashed line). Note that communities with stably coexisting
strains have been engineered in the lab39,40. The steady-state
fraction of M biomass at various cost fP forms a species-
composition “attractor” (Fig. 2b, blue dashed line): at a given cost,
species composition away from the attractor is pulled toward the
attractor as the community matures. Because Adult composition
is restricted by the attractor, compositions of offspring Newborns
will also be restricted. We define this restriction on Newborn
composition as “attractor-induced Newborn restrictor” (“New-
born restrictor” or “restrictor” marked by the orange line in
Fig. 2d i). Note that manipulations of the Newborn restrictor will
play a key role in this work.

Visualizing community function landscape. H–M community
function is defined as the total amount of Product accumulated in
an Adult community, denoted by P(T) with T being the com-
munity maturation time. Community function requires both
species, since H supports M growth while M makes Product.
Community function is not costly to H, but costly to M (cost=
fP). Although evaluated at the end of a maturation cycle, com-
munity function accumulates throughout the cycle and is thus
sensitive to not only species genotypes (and thus phenotypes) but
also initial conditions. In our models, biological parameters (i.e.
cost fP, growth rates, etc.) are inherited upon cell division; we thus
interchangeably refer to them as genotypes or phenotypes,
depending on context.

If a community is well-mixed and if the populations are
clonal with deterministic dynamics (i.e., all members of a species
share the same genotypes and thus phenotypes), then community
function P(T) can be deterministically calculated from Equations
(1–7), given model parameters (species genotypes), maturation
time T, and initial conditions. Here, we allow only M’s cost fP and
the fraction of M biomass in the Newborn (ϕM(0)) to vary. We fix
all other parameters and all other initial conditions (i.e., Newborn
total biomass, excess agriculture waste that can be regarded as a
constant, and initial Resource). Thus, community function has
two determinants (fP and ϕM(0)), and “community function
landscape” can be visualized as a function of these two
determinants, similar to a topographic map (Fig. 2c). The single
peak corresponds to the global maximal community function
achieved at an intermediate species composition and an
intermediate M’s cost15. Note that when M pays a low cost,
community function is low because little Product is made, but
when M pays a very high cost, community function is also low
because M cannot proliferate substantially. Similarly, community
function peaks at an intermediate value of Newborn species
composition (ϕM(0)), since community function requires both
M and H.
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Fig. 2 A two-species commensal community, its species-composition attractor and restrictor, and its community function landscape in relation
to heritable and nonheritable determinants. a The Helper–Manufacturer commensal community. b Species-composition attractor. Each arrow describes
the change in ϕM, the fraction of M’s biomass in a community, from Newborn to Adult over one maturation cycle. All arrows are “attracted” to the
species-composition attractor (blue dashed curve). Depending on whether M’s cost fP is high or low, M goes extinct or coexists with H, respectively.
c Community function landscape for clonal H and M populations. (b) and (c) are calculated by numerically integrating Equations (1–7) with Newborn’s total
biomass= 100, maturation time T= 17, and all M cells having the same cost fP. Note that community function is defined for Adults, since Newborns have
zero Product. Newborn (but not Adult) species composition is a community function determinant, since at a fixed cost fP, different Newborn species
compositions lead to the same Adult species composition (b) yet different community functions (c). d Newborn composition restrictor (“restrictor”)
coincides with the attractor, unless experimentally manipulated. (i) Two parent Newborns mature into parent Adults whose species compositions reach
the same attractor. When these two Adults reproduce via pipetting, species compositions of offspring Newborns (green and mustard dots) fluctuate
around the attractor. Therefore, the Newborn restrictor (orange) coincides with the attractor (blue). (ii) When 70% of Newborn biomass comes from the
parent Adult and the other 30% comes from H (30%-H spiking), the Newborn restrictor (teal line) is shifted down from the attractor by about 30%. Note
that the effect of spiking on species composition is erased over one cycle—Adult species compositions reach the attractor regardless of spiking. e Newborn
average cost fPð0Þ is largely heritable (positive slope), while Newborn species composition ϕM(0) is not heritable (zero slope). Individual-based stochastic
simulations were carried out over one selection cycle (Methods), and M’s cost fP can mutate. Each circle is obtained by plotting the mean determinant of
~60 offspring Newborns against the determinant of their parent Newborn. The corresponding error bars extend from 25% to 75% quantile (see
Supplementary Fig. 4 for statistical distributions of the two determinants).

Table 1 Parameters for genotypes (and thus phenotypes) of H and M used in the simulations.

Definition Ancestral (e.g., Fig. 7) Bounds (e.g., Figs. 2–6)

fP fraction of M growth diverted to producing P 0.10 1
KMR fold of R(0) at which gMmax/2 is achieved in excess B 1 1/3*
KMB amount of Byproduct at which gMmax/2 is achieved in excess R 5

3 ´ 10
2 1

3 ´ 10
2*

KHR fold of R(0) at which gHmax/2 is achieved 1 1/5*
A0 in the exploitative community where M inhibits H via A

(Supplementary Fig. 21), the amount of A at which H’s growth
rate halves

103 2 × 103*

B0 in the mutualistic community where H is inhibited by Byproduct B
(Supplementary Fig. 20), the amount of B at which H’s growth rate
drops by e−1

2
3 ´ 10

2 1
3 ´ 10

3*

gMmax maximal biomass growth rate of M 0.58 per unit time 0.7 per unit time*
gHmax maximal biomass growth rate of H 0.25 per unit time 0.3 per unit time*
δM death rate of M 3.5 × 10−3 per unit time
δH death rate of H 1.5 × 10−3 per unit time
cRM fraction of R(0) consumed per M biomass grown 10−4

cRH fraction of R(0) consumed per H biomass grown 10−4

cBM amount of Byproduct consumed per M biomass grown 1
3

Pmut mutation probability per cell division for each mutable phenotype 2 × 10−3

Simulations in Fig. 7 start with H and M whose genotypes (and thus phenotypes) are listed in the “Ancestral” column. These genotypes are not allowed to change beyond values listed in the “Bounds”
column. In most simulations where only fP can be modified by mutations, except for fP, parameters in the Bounds column are used. For maximal growth rates, and H’s sensitivity to A and B (A0 and B0,
respectively), * represents evolutionary upper bound. For KSpeciesMetabolite, * represents evolutionary lower bound, which corresponds to evolutionary upper bound for Species’s affinity for Metabolite (1/
KSpeciesMetabolite). For parameter justifications, see our previous work15.
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The community function landscape calculated above can be used
even when the populations are not clonal, as long as genotype
composition does not change drastically within a cycle. Specifically,
when maturation time is ~6 population doublings, community
functions from individual-based simulations (where individual M
cells can have different cost genotypes; Supplementary Fig. 1, i–iii;
Methods) are well predicted by deterministic calculations based on
Newborn species composition (ϕM(0)) and the average cost paid by
M in the Newborn (f Pð0Þ) (Supplementary Fig. 3A). Overall,
community function during evolution has been simplified to rely on
only two determinants: Newborn species composition (ϕM(0)) and
Newborn genotype composition (average cost f Pð0Þ).

Heritability of community function determinants. Of the two
community function determinants, M’s average cost in a New-
born f Pð0Þ is heritable, while Newborn species composition ϕM(0)
is nonheritable (Fig. 2e). The heritability of genotype composition
is intuitive: if a parent Newborn is dominated by cheaters (low
f Pð0Þ) or cooperators (high f Pð0Þ), then so will its offspring
Newborns (Fig. 2e top). Note that offspring costs are generally
less than the parent cost, since cooperator frequency declines
during community maturation due to cheater takeover (circles are
below the dotted line of slope 1 in Fig. 2e top). Newborn species
composition ϕM(0) is not heritable due to the attractor. Parent
Newborns experience stochastic fluctuations in species compo-
sition (e.g., a species ratio of 50:50 can become 40:60 by chance
due to pipetting a small number of cells). However, due to the
attractor, parent Adults end up sharing similar species compo-
sitions (Fig. 2d i, left), and so will their offspring Newborns
(Fig. 2d i, right). In essence, variations in Newborn species
composition are not transmitted across cycles, and are therefore
not heritable (Fig. 2e bottom). Since any elevation in community
function due to nonheritable determinant will not transmit to the
next cycle, we can quantify selection efficacy as the progress in the
heritable determinant f Pð0Þ.

Restrictor leads to counterintuitive and suboptimal outcomes.
We now consider the case where ancestral M pays a cost smaller
than what is optimal for maximal community function. This
scenario poses a common problem that is challenging to address:
while maximal community function requires a higher cost,
intracommunity selection favors a lower or no cost (Fig. 1a).

To obtain selection dynamics, we performed individual-based
stochastic simulations (Methods, Supplementary Fig. 1). In each
cycle, we select from 100 communities. To discourage cheater
takeover, each Newborn has a small total biomass (100 biomass
units or 50 ~ 100 cells; Supplementary Fig. 2), and Newborns
mature into Adults over a relatively short period of time
(T= 6 ~ 7 doublings15). We track individual H and M cells as
they consume and release metabolites, grow biomass and divide,
and stochastically die. As an M cell divides, the fP of both
daughters have a probability (0.002/cell/generation) to mutate,
with 50% of mutations setting fP to 0, while the rest increasing or
decreasing fP by on average 5–6 percent. M cells with a higher fP
contribute more toward community function but grow slower. At
the end of T, Adults are ranked on their functions. The top 2 or
10 Adults are chosen to reproduce, with their H and M cells
randomly distributed into offspring Newborns so that Newborn
total biomass fluctuates around the target value (100 biomass
units or 50–100 cells) and Newborn species compositions
fluctuate around that of the parent Adult. We do not mix
different community lineages to preserve variations among
communities and to prevent cheaters from spreading across
communities (Supplementary Fig. 5). Our choices of model
parameters are supported by the microbial experimental literature
(Methods, Parameter choices).

In the absence of community selection (e.g., allowing each
Adult to reproduce one offspring, or randomly selecting Adults to
reproduce), then unsurprisingly, community function rapidly
declines to zero as cheaters take over15.

To ensure effective community selection, we increase commu-
nity function heritability by reducing variations in the
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Fig. 3 Restriction in Newborn species composition can produce counterintuitive evolutionary dynamics and prevent the attainment of maximal
community function. a Cost can evolve to be higher than what is optimal for community function. The evolutionary dynamics of the H–M community under
a “cell sorting” community selection scheme (Methods) is plotted in black curves. Over each selection cycle, 100 Newborns matured into 100 Adult
communities, and two Adults with the highest amount of Product were chosen to reproduce where each was randomly split into 50 Newborns. Chosen
Adults were reproduced through cell sorting, and thus each Newborn had a total biomass very close to the target value of 100 and species ratio very close
to that of the parent Adult. Community function determinants fPð0Þ or ϕM(0) were obtained from the Newborn stage of chosen Adults, and then averaged
over chosen communities. The black dashed lines mark the theoretical maximum of P(T) (corresponding to the black star in b) and the corresponding fPð0Þ
and ϕM(0) required to achieve maximal community function. b Newborn restrictor constrains community function away from the theoretical maximum.
Evolutionary dynamics of community function determinants (first cycle marked with a cross and subsequent cycles marked with circles) are plotted on top
of community function landscape (gray contours) overlaid with the attractor-induced Newborn restrictor (orange curve). Compared with the landscape in
Fig. 2c, the label of the x axis changes from fP, the cost of the clonal M population, to fPð0Þ, M’s average cost in a Newborn. In other words, determinants
defined at the Newborn stage are predictive of the community function defined at the Adult stage. This is because we have chosen maturation time to be
short, such that M’s average cost does not change significantly over maturation (Supplementary Fig. 3).
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nonheritable determinant ϕM(0). To do so, we reproduce Adults
via “cell sorting”, as if by a flow sorter capable of measuring the
biomass of individual H and M cells, so that all Newborns from
the same parent have nearly identical species composition and
total biomass. With this experimentally challenging method,
community selection successfully improves community function
over ~200 selection cycles (Fig. 3a). However, community
function P(T) never reaches the theoretical maximum (Fig. 3a
dashed line). The average cost paid by M stays above f �P optimal
for community function (Fig. 3a, middle panel), which is
surprising because high cost would be disfavored by both
intracommunity selection (which favors fast growth and low
cost) and intercommunity selection (which favors f �P).

To understand this suboptimal selection outcome, we overlay
community function landscape (Fig. 3b gray contours) with
attractor-induced Newborn restrictor (Fig. 3b orange line, which
coincides with the attractor—see Fig. 2d i). We note that the
Newborn restrictor does not pass through the maximal commu-
nity function (black star in Fig. 3b). During selection, Newborn
species compositions are strictly confined to the restrictor (Fig. 3b,
circles on top of the orange line). This explains the suboptimal
selection outcome: Like a hiker who is restricted to a trail that
does not traverse the mountain top, community function can
only climb to the highest value along the restrictor (magenta
circle), which is lower than the global maximum (black star).
Consequently, the corresponding Newborn average cost f Pð0Þ and
Newborn species composition ϕM(0) are higher than those
optimal for community function. Not surprisingly, community
function can reach the maximum if we push down the Newborn
restrictor by an appropriate amount (e.g., by replacing 15% of
Newborn total biomass with H during each cycle of selection), as
shown in Supplementary Fig. 8. We will not dwell on maximal
community function further, since the maximal function is
typically unknown in practice, as in many global optimization
problems. Instead, we will now focus on the rate of commu-
nity function improvement.

Landscape determines heritability and selection efficacy. Suc-
cessful selection requires heritability in community function.
Community function heritability depends on (1) variations in the
heritable and nonheritable determinants, and (2) how strongly
variations in these determinants impact variations in community
function. Minimizing variations in the nonheritable determinant
ϕM(0) (e.g., reproducing the chosen Adults through cell sorting,
Fig. 3) results in high heritability in community function and thus
rapid improvement under selection15. However, such a technique
is often difficult to apply.

We now explore how to achieve rapid improvement in
community function when variations in nonheritable determi-
nants cannot be easily diminished. We will show that the local
geometry of community function landscape predicts the herit-
ability of community function and thus the efficacy of
intercommunity selection. To illustrate, we consider a cartoon
model in Fig. 4 where community contours are straight lines. In
Fig. 4a, community function contours are perpendicular to the
axis of the heritable determinant. Therefore, variation in
community function (light to dark gray) is fully attributed to
variation in the heritable determinant. Thus, community function
is heritable (Fig. 4d), and intercommunity selection can make
large progress in the heritable determinant over a selection cycle
(Fig. 4a). In contrast, when community function contours are
parallel to the axis of the heritable determinant (Fig. 4b), no
variation in community function can be attributed to variation in
the heritable determinant. Thus, community function is

nonheritable (Fig. 4e), and intercommunity selection makes no
progress (Fig. 4b). An intermediate case is shown in Fig. 4c and f.

Boosting heritability hastens community function improve-
ment. We can now examine community selection when the
nonheritable determinant (Newborn’s fraction of M biomass
ϕM(0)) is allowed to fluctuate during community reproduction.
Specifically, if we simulate pipetting cells from Adults to seed
Newborns (while keeping the total Newborn biomass fixed),
ϕM(0) will fluctuate stochastically (due to small Newborn size),
essentially creating a “cloud” of Newborns around the Newborn
restrictor (Fig. 5b ii). Each Newborn’s community function at
Adulthood can be read out from the value (gray shade) of the
contour it resides on. Although landscape contours near the
restrictor are not straight lines, they are largely parallel to the
heritable determinant axis (similar to Fig. 4b). Thus, variations in
community function are largely attributed to variations in the
nonheritable determinant. Indeed, community function has low
heritability (~0 slope in Fig. 5c ii), and intercommunity selection
makes only a small progress in the heritable determinant (short
red arrow in Fig. 5b ii; statistics in the red box plot of Fig. 5b iv).
This small progress is just enough to counter the decline due to
intracommunity selection (olive box in Fig. 5b iv), resulting in a
net of zero-improvement rate (black box in Fig. 5b iv). Since
heritability remains low from cycle to cycle (Supplementary
Fig. 23 top panels), community function and heritable determi-
nant barely improve despite 1000 selection cycles (Fig. 6a).

We then seek to improve selection by shifting the Newborn
restrictor to a location with higher heritability, i.e., where
community function contours are largely perpendicular to the
axis of heritable determinant (e.g., south of the orange restrictor).
This can be achieved by replacing 30% of total Newborn biomass
with nonevolving H (“30%-H spiking”, teal box in Fig. 5a i,
Fig. 2d ii). Under 30%-H spiking, community function becomes
more heritable (positive slope in Fig. 5c iii) due to reduced
dependency on the nonheritable determinant and enhanced
dependency on the heritable determinant (Supplementary Fig. 6).
Intercommunity selection thus makes a larger improvement in
the heritable determinant (compare red arrows in Fig. 5b iii
versus ii; compare red boxes in Fig. 5b v versus iv), and the total
improvement rate becomes positive (black box in Fig. 5b v). Since
heritability fluctuates around a high level from cycle to cycle
(Supplementary Fig. 23 bottom panels), community selection
improves community function efficiently (Fig. 6b). Spiking must
be performed at each cycle since spiked species composition
rapidly returns to the attractor (Fig. 2d ii).

Under a variety of conditions, community function improves
faster when community function heritability is enhanced through
species spiking. The 30%-H spiking strategy boosts the already
increased selection efficacy when we choose top-10, instead of
top-2 Adults, to reproduce (Fig. 6: c more effective than a due to
increased variation among communities15; d more effective than
c due to spiking and consequently improved heritability). H
spiking promotes selection when measurement noise in commu-
nity function interferes with selection (Fig. 6: f better than e, h
better than g), and when both total biomass and species
composition of Newborns are allowed to fluctuate as if the
chosen Adults are reproduced and spiked through pipetting
without fixing the inoculum biomass (Supplementary Fig. 10).
Although quantitative details differ, H spiking at a wide range of
percentages speeds up the improvement of community function
(Supplementary Fig. 10). Importantly, compared with the
ancestral community, evolved communities selected under one
maturation time (T= 17) exhibit higher functions across a range
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of maturation times (from T= 13 to 21) and Newborn species
compositions (Supplementary Fig. 7).

Species spiking is but one of the perturbations we can use to
alter community function heritability. For example, if we extend
maturation time T from 17 to 20 (and assume that any potential
resource depletion will not affect cell phenotypes), then
community function heritability is improved (larger slope in
Supplementary Fig. 9c than in Fig. 5c ii). This leads to a faster
improvement of community function (compare Supplementary
Fig. 9a with Fig. 6a).

Enhancing selection efficacy without knowing the landscape. So
far, we have examined a simple scenario where commu-
nity function landscape can be visualized. Since landscapes of
most community functions are high-dimensional and unknown,
it is infeasible to devise a perturbation strategy based on land-
scape visualization. However, landscape geometry is reflected in
the heritability of community function (Fig. 4; Fig. 5b and c),
which can be estimated from experimental measurements
(similar to Fig. 5c). Thus, we can try several different perturbation
strategies, compare them, and choose the strategy yielding the
highest community function heritability. Since communities
move on the landscape as they evolve, periodic heritability check
is needed.

As an example, let us consider a more complex scenario with
the H–M community. If we allow growth parameters of H and M
to also evolve, then community function will have six heritable
determinants all defined at the Newborn stage (Supplementary
Fig. 3b): M’s average cost, the average maximal growth rates of H
and of M, the average affinities of M to Resource and to
Byproduct, and the average affinity of H to Resource. If we
reproduce the Adult via “pipetting”, then Newborn’s total
biomass and species composition fluctuate stochastically, adding
two nonheritable determinants. If we additionally consider com-
munity function measurement noise (a normal random variable
with mean 0 and standard deviation comparable to the ancestral

community function), we have yet another nonheritable deter-
minant. Overall, community function now has nine determinants,
six heritable and three nonheritable.

We simulate community selection in the above complex
scenario (schematic in Supplementary Fig. 11). We start with the
no-spiking strategy, and always choose top-10 Adults where each
reproduces 10 Newborns. If a fraction of Newborn biomass is to
be replaced with H (or M) biomass, the spiking mix consists of
equal parts of five evolved H (or M) clones randomly isolated
from the previous cycle of the same lineage (Supplementary
Fig. 11a). During reproduction, portions of a chosen Adult and
the spiking mix are “pipetted” to initiate Newborns, so that both
the total biomass and the species composition fluctuate
stochastically in Newborns. Every 100 cycles, we update the
spiking strategy based on heritability of community function.
Specifically, we quantify community function heritability for five
candidate spiking strategies (no spiking, 30%-H spiking, 60% H
spiking, 30% M spiking, and 60% M spiking) by regressing parent
function with median offspring function (similar to Fig. 5c). The
current spiking strategy is then updated if an alternative strategy
confers significantly higher community function heritability
(Supplementary Fig. 11b, Methods).

With the no-spiking strategy, community selection moderately
improves community function and heritable determinants
(Fig. 7a and b; Supplementary Fig. 12a). The rate of commu-
nity function improvement is higher when the spiking strategy is
periodically adjusted according to community function herit-
ability (Fig. 7c and d; Supplementary Fig. 12b). In contrast,
adopting the spiking strategy with the lowest heritability leads to
a slower rate of improvement (Supplementary Fig. 12c), while
randomly choosing spiking strategy leads to variable results
(Supplementary Fig. 12d). It is also noteworthy that under
periodic heritability check, the adopted spiking strategy is not
static (Fig. 7e). A static 60% H or 30%-H spiking strategy offers
negligible improvement over no spiking (Supplementary Fig. 13).
Communities obtained through selection with periodic

Fig. 4 The local geometry of community function landscape dictates the heritability of community function and consequently the efficacy of
intercommunity selection. Eight parent communities (dots) are under selection. Parent community function can be read from the gray shade of the underlying
contour where a darker shade indicates a higher function (top panels). Parent’s heritable determinant (purple shade of the dot) dictates the average function of its
offspring communities (as effects from the nonheritable determinant average out). Thus, we can plot parent function (gray shade) against average offspring
function (purple shade) (bottom panels), and the slope of the least-square linear regression (black dashed line) is an estimation of community function heritability.
The community with the highest function (sitting on the darkest contour) is chosen for reproduction (green open circle). Average heritable determinants before and
after intercommunity selection are marked by a red square and a red star, respectively. Thus, progress made by intercommunity selection can be measured as the
distance from red square to red star. Intercommunity selection is the most or the least effective when community function contours are perpendicular (a, d) or
parallel (b, e) to the axis of heritable determinant, respectively, and intermediate otherwise (c, f).
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heritability check exhibit higher functions than those obtained
through no spiking, even if Newborn species compositions are
readjusted to values over a wide range (Fig. 7f). Therefore, it is
important to evaluate heritability periodically and update
perturbation strategy accordingly.

Increasing heritability as an effective and general approach.
Qualitatively similar results are obtained when the number of
colonies used to make the spiking mix is changed from 5 to 1, 2,
or 10 clones (Supplementary Figs. 14, 15 and 16). Simulations
with three candidate spiking strategies (no spiking, 30% M
spiking, and 30%-H spiking) instead of five strategies generate
qualitatively similar results (Supplementary Fig. 22). The fre-
quency of heritability check can be adjusted. For example, similar
outcomes are obtained if heritability checks are performed
“adaptively” (e.g., only when the average rate of commu-
nity function improvement over the last 50 cycles is less than
zero, Supplementary Fig. 17). In this particular case, adaptive
check reduces the number of checks by ~50% compared with
Fig. 7 (periodic check every 100 cycles).

Heritability checks can also speed up community function
improvement for communities engaging in mutualistic and
exploitative ecological interactions, even when the commu-
nity function landscape is high-dimensional and unknown. First,
we simulated community selection on a mutualistic H–M
community, where M relies on H’s Byproduct, and H’s Byproduct
inhibits H’s growth. By removing Byproduct, M promotes H’s
growth. Similar to the simulations shown in Fig. 7, genotypes that
can be modified by mutations include M and H’s maximal growth
rates, affinities to metabolites, and M’s cost fP. Additionally, H’s
sensitivity to its Byproduct can also be modified by mutations. At
the end of each cycle, Adult communities with top-10 functions
are chosen and each reproduces 10 offspring Newborn commu-
nities through pipetting for the next cycle. The community
function of this mutualistic H–M community thus has seven
heritable determinants and three nonheritable determinants.
Improvement in community function is rapid under selection
even without spiking, and is sped up slightly but significantly
(Mann–Whitney U test, n1= n2= 6, p= 10−3, one-tailed) when
we periodically adopt the spiking strategy conferring the highest
community function heritability (Supplementary Fig. 20). Next,

Fig. 5 Increasing community function heritability improves selection efficacy. a Newborn restrictor (orange curve in ii) is shifted down when 30% of the
total biomass in a Newborn is replaced by the nonevolving H (“30%-H spiking”; teal curve in ii) in every cycle. Because communities are constrained by the
Newborn restrictor, we only need to focus on the geometry of the landscape near the restrictor. b Improving community function heritability improves
selection efficacy. i: Scheme of community selection over one cycle. ii, iii: Visualization of intercommunity selection on the landscape under the no-spiking
strategy and the 30%-H spiking strategy, respectively. The 30%-H spiking strategy is expected to improve community function heritability, since contours
near the teal line are more perpendicular to the axis of heritable determinant than contours near the orange line. The top 2 communities chosen to
reproduce are highlighted with green circles. The average heritable determinant fPð0Þ over all 100 communities and that over the top 2 are indicated by red
open square and red star, respectively. The length of the red arrow indicates the progress in heritable determinant fPð0Þ due to intercommunity selection.
iv, v: Progress in the heritable determinant fPð0Þ. In total, 100 repeats of the selection cycle are used to obtain box plots (center: median; bottom and top
edges: the 25th and 75th percentiles, respectively; whiskers: data range excluding outliers; open circles: outliers). Although intercommunity selection (red)
improves heritable determinant fPð0Þ, intracommunity selection (olive) reduces it. The sum of these two effects is the net progress (black). c Species
spiking can improve the heritability of community function. i: Heritability is quantified by comparing 100 pairs of parent Adult functions and their offspring
Adult functions and estimating the slope of the least-squares linear regression. ii: Under the no-spiking strategy, community function heritability is low. iii:
Under the 30%-H spiking strategy, community function heritability is high. Circles represent the mean, and error bars extend from 25% to 75% quantile. In
(ii) and (iii), error bars are calculated from ~60 to 100 offspring communities, respectively. Empirical determination of heritability as depicted here can be
used in lieu of landscape visualization to guide perturbation strategy.
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we simulated community selection on an exploitative H–M
community. In this community, M releases a compound that
inhibits H. That is, H helps M, but M inhibits H. Since H’s
sensitivity to the compound released by M can be modified by
mutations, this exploitative community also has seven heritable
determinants and three nonheritable determinants. Compared
with selection with no spiking, the rate of community function
improvement is much faster when we periodically adopt the

spiking strategy conferring the highest community function
heritability (Supplementary Fig. 21).

Discussion
We start with a highly simplified case where the community
function of interest varies due to variations in two determinants—
one heritable (genotype composition) and one nonheritable
(species composition that can change rapidly due to ecological
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Fig. 6 Increasing community function heritability by shifting Newborn restrictor can improve selection efficacy under various conditions. Evolutionary
dynamics of community function P(T) and its heritable determinant fPð0Þ averaged over the chosen communities under different selection schemes are
plotted. Species composition is allowed to stochastically fluctuate during community reproduction, as if pipetting an inoculum of a fixed total biomass from
an Adult to seed its Newborns. In all cases, community selection is more effective under the 30%-H spiking strategy (b, d, f, and h, where 30% of Newborn
biomass is replaced by the nonevolving H) compared with the no-spiking strategy (a, c, e and g). In “top-2” strategy (a, b, e and f), top-2 communities each
reproduces 50 Newborns. In “top-10” strategy (c, d, g and h), top 10 communities each reproduces 10 Newborns. In “no measurement noise” (a–d), the
measured community function is the true community function obtained in the simulation. In “with measurement noise” (e–h), measured community
function is the sum of the true community function and a normal random variable with a mean of 0 and a standard deviation of 100. Dashed lines
correspond to theoretical maximal community function or M’s cost f�P optimal for community function. Black, cyan, and gray curves represent three
independent replicates.
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interactions). These two determinants capture crucial elements
common to community function in general. Hence, our work
serves as a fundamental building block for conceptualizing
community selection, akin to physicists studying the ideal gas, or
population geneticists studying a single-locus two-allele trait.
Below, we recap our work’s major conclusions, assumptions,
limitations, and generality. Then, we reflect on what makes
community selection effective, and discuss future directions.

We have demonstrated how ecological interactions, especially
those that encourage species coexistence, can result in a species-
composition attractor that impacts community selection. The
attractor restricts Newborn species compositions to a narrow
region, which can (1) generate counterintuitive evolutionary
dynamics (Fig. 3a middle panel); (2) constrain communities away
from maximal community function (Fig. 3b); and (3) trap com-
munities in a region of low heritability where selection efficacy is
low (i.e., community function improves slowly or not at all
despite selection; Figs. 5c ii and 6a). This understanding has
helped us to devise perturbation strategies that improve com-
munity function heritability and in turn selection efficacy
(Figs. 5c iii and 6b, Supplementary Fig. 9). When we can visualize
the landscape, we can identify high-heritability regions where
community function contours are perpendicular to the axis of
heritable determinant (Fig. 4). We can then design perturbation
strategies (e.g., species spiking and varying maturation time) to
shift the restrictor to these regions (Fig. 5). When we can not
visualize the landscape, we can choose perturbation strategies
based on community function heritability (Fig. 7), a quantity that
can be estimated from experiments (similar to Fig. 5c). Since

evolving communities move in the landscape, perturbation
strategy needs to be adjusted—either periodically (Fig. 7; Sup-
plementary Fig. 11) or whenever selection progress slows down
(Supplementary Fig. 17).

Our study assumes no spatial structure within communities,
the presence of a species-composition attractor, and time scale
separation (ecological dynamics much faster than evolutionary
dynamics within a cycle). These assumptions capture realistic
situations: spatial structure can be disturbed by convection-
induced mixing, and by fast diffusion of metabolites if commu-
nities are encapsulated in small droplets. Composition attractor
and thus Newborn restrictor can arise from ecological interac-
tions that benefit at least one species, or when different species
show distinct environmental preferences16,35,37,41–46. Ecological
timescale is faster than evolutionary timescale because mutation
rate is small (our mutation rate of 0.002/cell/generation is already
on the high end among the published values) and because com-
munity maturation time needs to be short to prevent cheater
takeover15. Quantification of heritability does require variation in
community function, or else parent–offspring regression
can become a single dot and heritability becomes ill-defined. One
such example is found in the theoretical work by Doulcier et al.16

where species ratio evolves to a target value and is thus identical
among all evolved communities and their offspring communities.
However, most published experimental work does show large
variations in community functions17–28, at least initially.

Our work has limitations and caveats. First, for species spiking,
member species need to be culturable, so that we can isolate
clones to form spiking mixes. Flow sorting could potentially

Fig. 7 Adjusting perturbation strategies based on periodic heritability check improves selection efficacy even when the landscape is high-dimensional
and unknown. Plots show the evolutionary dynamics of community function P(T) and the heritable determinant fPð0Þ averaged over chosen communities
under the no-spiking strategy (a, b) and under spiking strategy dictated by periodic heritability check (c, d). During the periodic check, community function
heritability under five candidate spiking strategies (no spiking, 30%-H spiking, 60% H spiking, 30% M spiking, and 60% M spiking) is evaluated every 100
cycles. The current strategy is replaced by an alternative strategy if the alternative strategy confers significantly higher heritability. Spiking mix consists of
five evolved H clones or five evolved M clones randomly isolated from the same community lineage in the previous cycle. The corresponding spiking
percentages determined by periodic check are displayed in (e). Black, cyan, and gray curves represent three independent simulation replicas. Due to the
high-dimensional landscape, we can no longer determine the theoretical maximal community function. f Communities evolved under periodic heritability
check (red) exhibit higher functions than communities evolved under no spiking (black). To compare communities evolved under these two strategies, we
analyze communities with the highest functions in Cycle 3000 of simulations in (a) and (c), and plot their functions calculated using Equations (1–7) at
various Newborn species ϕM(0), based on their heritable determinants (fPð0Þ, gMmaxð0Þ, KMRð0Þ, etc.). We also calculated the steady state ϕM from the
same equations and plot them in vertical dashed lines.
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bypass this problem if member species can be distinguished by
light-scattering or fluorescence patterns. Second, evaluating
community function heritability is resource-intensive. Thus,
checking heritability only when necessary (Supplementary
Fig. 17) may help reduce workload. Third, the effect of pertur-
bation may be erased every cycle (Fig. 2d ii). However, improved
selection efficacy yields desired genotypes that can be frozen and
repeatedly revived and used. These evolved genotypes lead to
higher community functions even when maturation time or
Newborn species composition differs from those during the
evolution experiment (Fig. 7f and Supplementary Fig. 7). Fourth,
extreme perturbations (e.g., extreme spiking percentages) can
induce spurious heritability. For example, when we consider only
three candidate strategies (no spiking, 30%-H spiking, and 30% M
spiking), selection efficacy can be higher than when we also
include the 60% H spiking and 60% M spiking strategies. In
Supplementary Fig. 22a, the last stretch of community function
ascent closely follows the switching of spiking strategy from 60%
H to 30% H. This is presumably because 60% H spiking was so
extreme that species composition does not return to the attractor
within one cycle (Supplementary Fig. 24). Consequently, sto-
chastic fluctuations in species composition become partially
heritable (similar to Supplementary Fig. 19c), misleading the
choice of spiking strategy.

We have tested the generality of our work in several ways. We
varied the nature of perturbation (species spiking in Figs. 5–7,
altering maturation time in Supplementary Fig. 9), the number of
clones used in the spiking mixture (Supplementary Figs. 14, 15
and 16), the number of spiking strategies under heritability check
(Supplementary Fig. 22), the frequency of heritability check
(Supplementary Fig. 17), and ecological interactions between
species (Supplementary Figs. 20 and 21). In all cases, improve-
ments in community function can be sped up by perturbations
that improve community function heritability. Although we
mainly studied a costly community function, we obtained similar
results when community function is not costly (Supplementary
Fig. 18). Selection can be sped up by improving commu-
nity function heritability even when species composition fails to
reach the steady state by the end of maturation, in which case an
otherwise nonheritable determinant becomes partially heritable
(Supplementary Fig. 19). In sum, for communities with a stable
species composition, appropriate perturbation strategies under
the guidance of heritability checks can speed up the improvement
of community function.

Our most simplified case (Figs. 5 and 6) involves a single-
peaked landscape (Fig. 2c). Even if the landscape has multiple
peaks, we only need to consider the landscape region near the
Newborn restrictor. Should the restrictor traverse multiple peaks,
we have a multipeak optimization problem. The broader opti-
mization field deals with this by iteratively invoking an algorithm
designed for a single peak, but at different starting points (e.g.,
MATLAB’s GlobalSearch and MultiStart algorithms). In the case
of community selection, this means sampling diverse starting
compositions.

What makes community selection effective? Effective com-
munity selection relies on optimizing intercommunity variation,
selection strength, and community function heritability. Experi-
ments showed that low heritability of community function could
limit selection efficacy26–28. Since our community function is
affected by Newborn species composition, having an attractor
does not solve the problem of nonheritable variations in Newborn
species composition (contrary to the claim by Doulcier et al.16).
Our work identifies two strategies for improving commu-
nity function heritability. One strategy is to reduce the variation
in nonheritable determinant ϕM(0), for example, through cell
sorting15. Although nonheritable variation can also be reduced by

increasing Newborn size, large Newborn size leads to cheater
takeover in all communities and consequently selection failure
(Supplementary Fig. 2)15. Intriguingly, large Newborn size hin-
ders community selection even for noncostly community func-
tion, presumably because large Newborn size reduces inter-
community variation (Supplementary Fig. 18b). The other strat-
egy for improving heritability is to reduce the dependence of
community function on the nonheritable determinant. This can
be achieved through proper perturbations (e.g., manipulating
species composition in Figs. 5–7 and Supplementary Fig. 6;
altering maturation time in Supplementary Fig. 9). Overall,
selection efficacy is improved when we improve community
function heritability (compare improvement rates in Fig. 6a with
Fig. 3a and Fig. 6b, Figs. 5–7). In contrast, if we reduce com-
munity function heritability (and variation) by mixing Adults
before reproduction, selection efficacy is poor (Supplementary
Fig. 5).

Optimizing community selection is challenging, partly because
variation, selection strength, and heritability are interconnected.
For example, strong selection can diminish selection efficacy by
reducing intercommunity variation (“top 2” working less well
than “top 10” in Fig. 615). Drastically diluting a parent Adult
(strong bottleneck) increases intercommunity variation, but also
creates large stochastic variations that reduce heritability. Our
current work showcases an additional difficulty in achieving
effective community selection. On the one hand, species-
composition attractor can enhance heritability of community
function by promoting species coexistence. On the other hand,
the attractor and its associated Newborn restrictor mean that
communities may only sample a small region in the commu-
nity function landscape. This can constrain both selection
dynamics (Fig. 5) and selection outcome (Fig. 3b). These concepts
have prompted us to devise perturbation strategies to shift the
Newborn restrictor to a region conferring higher heritability.

For future directions, we start from the empirical side. (1) How
to balance variation with heritability during community selec-
tion? In Chang et al.4, selection efficacy was improved by alter-
nating community perturbations (whose stochastic effects boost
intercommunity variation but reduce heritability) with commu-
nity stabilization (so that stabilized communities might display
attractors). Our work suggests that following stabilization,
applying perturbation strategies to increase heritability could
further increase selection efficacy. (2) How to reduce workload of
community selection? (3) What general principles might we learn
from applying selection to diverse types of communities? (4) How
to scale up evolved communities for industrial applications?
Unlike community selection, large-scale productions involve large
microbial populations and long duration, and these conditions
will facilitate cheater takeover15 (Supplementary Fig. 2). To
combat cheaters during large-scale production, several strategies
can be deployed. If the ability to make a product is engineered,
then the costly synthesis of the product can be induced at the end
of growth phase, thus reducing the growth advantage of cheaters.
Additionally, biosensors can be engineered to link cellular growth
to product level, thus blocking cheater growth47. Moreover,
community selection can be sped up by using strains with high
mutation rates (i.e., mutators), and after the desired genotype has
been obtained, the mutator genotype can be repaired, so that
fewer cheaters arise during large-scale production. Finally, a
spatially structured environment (such as microwells or droplets)
can be introduced to reduce Newborn size and restrict cheater
takeover48,49.

We also need new theories on community selection. Over the last
century, a rich body of theory has been developed to understand
evolution of quantitative traits in individual organisms (e.g., the
work by Lynch and Walsh50). Two of the key concepts we use here
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are landscape and heritability, which are fundamental for under-
standing the evolution of individual traits. For example, phenotype
landscape as a function of genetic and environmental determinants
was used to illustrate the evolution of developmental
interactions31,32. The local geometry (gradient) of landscape deter-
mines how sensitive the phenotype is to underlying variations, and
thus to selection based on the phenotype. Heritability is a pivotal
concept in evolutionary biology, particularly in breeding. Multiple
statistical methods have been developed to estimate heritability and
facilitate designing effective breeding schemes50. These methods,
although providing inspirations for this work, will need to be
expanded to be directly applicable to community selection. Thus, it
will be important to develop new theories that incorporate unique
features of community selection, such as ecological dynamics
resulting from species interactions, interactions between ecological
and evolutionary dynamics, and the interplay between intra- and
intercommunity selection.

Methods
Calculating landscape, attractor, and restrictor. In this work, we considered
communities with commensal, mutualistic, and exploitative interactions. Below, we
describe the differential equations for each type of interaction, and how we cal-
culate the corresponding community function landscape, species-composition
attractor, and Newborn restrictor.

Commensal H–M community: The model community for most simulations is
the same commensal H–M community used in our previous work15. The
community function landscape plots P(T) as a function of ϕM(0) and f Pð0Þ.
Assume that a Newborn community has 100 biomass units, that all cells have the
same genotype (all M cells have the same f P ¼ f Pð0Þ), that death and birth
processes are deterministic, and that there is no mutation. P(T) can then be
numerically integrated from the following set of scaled differential equations for
any given pair of ϕM(0) and f Pð0Þ15:

dR
dt

¼ �cRMgMM � cRHgHH ð1Þ

dB
dt

¼ gHH � cBMgMM ð2Þ

dP
dt

¼ f PgMM ð3Þ

dH
dt

¼ gHH � δHH ð4Þ

dM
dt

¼ gM 1� f P
� �

M � δMM ð5Þ

where

gHðRÞ ¼ gHmax

R
Rþ KHR

ð6Þ

gMðR; BÞ ¼ gMmax
RMBM

RM þ BM

1
RM þ 1

þ 1
BM þ 1

� �
ð7Þ

and RM= R/KMR and BM= B/KMB. Unless otherwise specified, landscapes in this
paper are obtained by integrating Equations (1–5) from t= 0 to t= 17.

Equation (1) states that Resource R is depleted by biomass growth of M and H,
where cRM and cRH represent the amount of R consumed per unit of M and H
biomass, respectively. Equation (2) states that Byproduct B is released as H grows,
and is decreased by biomass growth of M due to consumption (cBM amount of B
per unit of M biomass). Equation (3) states that Product P is produced as fP
fraction of potential M growth. Equation (4) states that H biomass increases at a
rate dependent on Resource R in a Monod fashion (Equation (6)) and decreases at
the death rate δH. Note that Agricultural waste is not a state variable here as it is
present in excess. Equation (5) states that M biomass increases at a rate dependent
on Resource R and Byproduct B according to the Mankad and Bungay model
(Equation (7)51) discounted by (1− fP) due to the fitness cost of making Product,
and decreases at the death rate δM. In the Monod growth model (Equation (6)),
gHmax is the maximal growth rate of H and KHR is the R at which gHmax/2 is
achieved. In the Mankad and Bungay model (Equation (7)), KMR is the R at which
gMmax/2 is achieved when B is in excess; KMB is the B at which gMmax/2 is achieved
when R is in excess.

Mutualistic H–M community: If Byproduct is harmful for H, then the
community is mutualistic: H and M promote the growth of each other. Such a
mutualistic community can still be described by Equations (1–5) and (7), but

Equation (6) is replaced with

gH ðRÞ ¼ gHmax
R

Rþ KHR
exp � B

B0

� �
ð8Þ

where larger B0 indicates lower sensitivity, or higher resistance of H to its
Byproduct B.

Exploitative H–M community: If M releases an antagonistic byproduct A that
inhibits the growth of H, then the interaction is exploitative: H promotes the
growth of M, but M inhibits the growth of H. Besides Eqs (1–5) and (7), we then
need to add an equation that describes the dynamics of A

deA
dt

¼ rAgM 1� f P
� �

M

where rA is the amount of A released when M’s biomass grows by 1 unit. We can
then normalize eA with rA

A ¼ eA=rA
so that

dA
dt

¼ gM 1� f P
� �

M: ð9Þ
We also need to modify the growth rates for H:

gH ¼ gHðRÞ ¼ gHmax
R

Rþ KHR

A0

Aþ A0
ð10Þ

where larger A0 indicates lower sensitivity, or higher resistance of H to M’s
Antagonistic by product A.

To calculate the community function landscape, species attractor, and Newborn
restrictor, all phenotype parameters, except f Pð0Þ take the value from the Bounds
column in Table 1. To construct the landscape such as in Fig. 2c, we calculated P(T)
for every grid point on a 2D quadrilateral mesh of 10−2 ≤ ϕM(0) ≤ 0.99 and
10�2 ≤ f Pð0Þ ≤ 0:99 with a mesh size of ΔϕM(0)= 10−2 and Δf Pð0Þ ¼ 10�2. To
construct the landscapes in Fig. 5b(ii) and b(iii), P(T) was similarly calculated on a
2D grid with a finer mesh of ΔϕM(0)= 5 × 10−3 and Δf Pð0Þ ¼ 10�4.

To calculate the species composition attractor, we integrated Equations (1–5) to
obtain ϕM(T)− ϕM(0) for each grid point on the 2D mesh of ϕM(0) and f Pð0Þ. The
contour of ϕM(T)− ϕM(0)= 0 is then the species attractor (blue dashed curve in
Fig. 2b).

The attractor-induced Newborn restrictor at a given f Pð0Þ is calculated from its
definition: if ϕM(0) of a parent Newborn is on the restrictor, then so is the average
ϕM(0) among its offspring Newborns. Under no spiking, since the average ϕM(0)
among offspring Newborn is the same as ϕM(T) of their parent Adult, the Newborn
restrictor coincides with the species attractor (Fig. 3b and Fig. 5b ii). Under x% H
spiking, x% of the biomass in Newborns is replaced with H cells. Thus if the parent
Adult’s fraction of M biomass is ϕM(T), the average ϕM(0) among its offspring
Newborns is (1− x%)ϕM(T) under x% H spiking. The Newborn restrictor therefore
is the contour of (1− x%)ϕM(T)− ϕM(0)= 0 (teal curve in Fig. 5a ii and b iii,
Fig. 2d ii). Compared with the orange restrictor under no spiking, the teal restrictor
is shifted down.

Parameter choices. Details justifying our parameter choices are given in the
Methods section of our previous work15. Briefly, our parameter choices are based
on experimental measurements of microorganisms (e.g., S. cerevisiae and E. coli).
To ensure the coexistence of H and M, M must grow faster than H for part of the
maturation cycle since M has to wait for H’s Byproduct at the beginning of a cycle.
Because we have assumed M and H to have similar affinities for Resource (Table 1),
the maximal growth rate of M (gMmax) must exceed the maximal growth rate of H
(gHmax), and M’s affinity for Byproduct (1/KMB) must be sufficiently large. More-
over, metabolite release and consumption need to be balanced to avoid extreme
species ratios. We assume that H and M consume the same amount of Resource
per new cell (cRH= cRM) since the biomass of various microbes shares similar
elemental (e.g., carbon or nitrogen) compositions. We set consumption value so
that the input Resource can support a maximum of 104 total biomass. The evo-
lutionary bounds are set, such that evolved H and M could coexist for fp < 0.5, and
that Resource was on average not depleted by T to avoid cells entering
stationary phase.

In our simulations, we define “mutation rate” as the rate of nonneutral
mutations that alter a phenotype. For example in yeast, mutations that increase
growth rate by ≥2% occur at a rate of ~10−4 per genome per generation (calculated
from Fig. 3 of Levy et al.52), and mutations that reduce growth rate occur at a rate
of 10−4 ~ 10−3 per genome per generation53,54. Moreover, mutation rate can be
elevated by as much as 100-fold in hypermutators. In our simulations, we assume a
high, but biologically feasible, rate of 2 × 10−3 phenotype-altering mutations per
cell per generation per phenotype to speed up computation. At this rate, an average
community would sample ~20 new mutations per phenotype during maturation.
When we simulated with a 100-fold lower mutation rate, evolutionary dynamics
slowed down, but all of our conclusions still held15. Among phenotype-altering
mutations, tens of percent create null mutants, as illustrated by experimental
studies on protein, viruses, and yeast53,55,56. Thus, we assumed that 50% of
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phenotype-altering mutations were null (i.e., resulting in zero maximal growth rate,
zero affinity for metabolite, or zero fP). Among nonnull mutations, the relative
abundances of enhancing versus diminishing mutations are highly variable in
different experiments. We based our distribution of mutation effects on
experimental studies on S. cerevisiae where the fitness effects of thousands of
mutations were quantified under various nutrient limitations in an unbiased
fashion57. The relative fitness changes caused by beneficial (phenotype-enhancing)
and deleterious (phenotype-diminishing) mutations can be approximated by a
bilateral exponential distribution with means s+= 0.050 ± 0.002 and
s−= 0.067 ± 0.003 for the positive and negative halves, respectively.

Simulating community selection with small population size. Individual-based
stochastic simulation codes used in this work are largely similar to those in our
previous work, except for the modification to simulate species spiking. Below, we
briefly recapture the flow of the simulation, which can be found in our
previous work15.

Each simulation begins with ntot= 100 identical Newborns. The total biomass
of each Newborn is BMtarget. In most simulations, BMtarget= 100 consisting of 60
M cells and 40 H cells of biomass 1. Each Newborn is supplied with abundant
agriculture waste and a fixed amount of Resource that supports the growth of 104

total biomass. Unless otherwise specified, maturation time is set to T= 17 (~6
generations) to avoid Resource depletion (i.e., stationary phase in experiments) and
cheater takeover.

Each maturation cycle is divided into time steps of length Δτ= 0.05. During
each time step, the biomass of each M and H cell grows deterministically according
to Equations (4) and (5) (or the corresponding equations for mutualistic and
exploitative communities) without the death terms, while the concentration of
Resource, Byproduct and Product changes according to Equations (1–3). At the
end of each Δτ, each M and H cell dies with a probability of δMΔτ and δHΔτ,
respectively.

Among the survived cells, if a cell’s biomass exceeds the threshold of 2, the cell
divides into two identical daughter cells. Each daughter cell then mutates with a
probability of Pmut. For a M cell, its fP, gMmax, KMR and KMB can mutate
independently. For a H cell, its gHmax and KHR can mutate independently.
Additionally, H’s resistance to Byproduct B0 in a mutualistic H–M community and
H’s resistance to M’s antagonistic byproduct A0 in an exploitative H–M community
can mutate independently. In our simulations, these biological parameters are
inherited upon cell division, and thus we refer to them as phenotypes or genotypes
interchangeably. In most simulations of the simple scenario, only fP of M mutates,
while other phenotypes are held at their bounds whose values are shown in the
“Bounds” column of Table 1. In simulations where six phenotypes of the
commensal H–M community or seven phenotypes of the mutualistic H–M
community could be modified by mutations (e.g., Fig. 7 and Supplementary Fig. 12
for the commensal and Supplementary Fig. 20 for the mutualistic community),
these phenotypes start from ancestral values shown in the “Ancestral” column of
Table 1. In simulations where seven phenotypes of the exploitative H–M
community could be modified by mutations (Supplementary Fig. 21), M’s fP and
H’s sensitivity to M’s antagonistic byproduct A0 start from ancestral values shown
in the “Ancestral” column of Table 1. The other five growth phenotypes (2
maximal growth rates and 3 affinities to B and R) start from evolutionary bound
shown in the “Bounds” column of Table 1. This choice allows us to speed up the
simulation, since if we initiate these five growth phenotypes from ancestral values,
there is not enough biomass in Adult communities to perform heritability check
until after more than 1000 cycles.

If a mutation occurs, it could be a null mutation with a probability of 1
2. A null

mutation reduces fP, gMmax, gHmax, A0, or B0 to zero, while increases KMR, KMB and
KHR to infinity (equivalent to reducing affinities to zero). If a mutation is not null, it
modifies each phenotype by ~5–6% on average. Specifically, each phenotype is
multiplied by (1+ Δs), where Δs is a random variable with a distribution

μΔsðΔsÞ ¼
1

sþþs�ð1�expð�1=s�ÞÞ expð�Δs=sþÞ; if Δs≥ 0;

1
sþþs�ð1�expð�1=s�ÞÞ expðΔs=s�Þ; if �1 < Δs < 0:

(
ð11Þ

Here, s+= 0.05 and s−= 0.067 are the average percentage by which a mutation
increases or decreases a phenotype, respectively (for parameter justifications,
see our previous work15).

At the end of a maturation cycle, the amount of Product P accumulated in the
Adult, P(T), is the community function. In some simulations, measurement noise is
added to the true P(T) to yield the measured community function. For the simple
scenario where only fP is modified by mutations (e.g., Fig. 6(e–h)), measurement
noise is a normal random variable with 0 mean and standard deviation of 100,
approximately 10% of the community function of Cycle 1. For the complex
scenario where 6 or 7 phenotypes of H and M are modified by mutations (e.g.,
Fig. 7), measurement noise is a normal random variable with 0 mean and standard
deviation of 50. The magnitude of noise is comparable to the ancestral commensal
and mutualistic community function, and ~1/4 of the ancestral exploitative
community function. Top nchosen Adult communities with the highest measured
function are chosen to be reproduced. Sometimes, more than nchosen Adults might
be needed to obtain ntot= 100 Newborns for the next cycle if there is not enough
biomass in nchosen Adults.

Chosen Adults are reproduced into Newborns with different methods. If “cell
sorting” is used, then the deviation of a Newborn’s total biomass from the target
BMtarget= 100 is within 2, and the deviation of a Newborn’s species ratio from that
of the parent Adult is within 2%. If “pipetting an inoculum of a fixed total biomass”
is used, then a Newborn’s total biomass is within a deviation of two from the target
BMtarget, while its species composition fluctuates stochastically. If “pipetting” is
used, then Newborn’s total biomass and species composition both fluctuate
stochastically. The dilution fold of each Adult is adjusted, so that the average
Newborn community’s total biomass is BMtarget over all selection cycles. If a
fraction φS of a Newborn’s biomass is to be replaced by M or H cells, each Newborn
gets on average a biomass of BMtarget 1� φS

� �
from its parent Adult community

and on average a biomass of BMtargetφS from M or H-spiking mix. Specifically,
suppose that the biomass of an Adult is BM(T)=M(T)+H(T) where M(T) and
H(T) are the biomass of M and H at time T, respectively. If a fraction φS of each
Newborn’s biomass is to be replaced by a spiking mix, this Adult is then
reproduced into nD Newborns, where

nD ¼ bBMðTÞ=½BMtarget 1� φS

� ��c ð12Þ
and xb c is the floor (round-down) function. If nD is larger than ntot/nchosen, only
ntot/nchosen Newborns are kept. Otherwise, all nD Newborns are kept and as many
additional Adults with the next highest functions are reproduced to obtain ntot
Newborns for the next cycle. These Newborns are then topped off with either M or
H spiking mixes so that their total biomass is on average BMtarget= 100, as
described in the next subsection. Note that the fold of dilution of an Adult is
calculated based on biomass, a continuous variable. However, the biomass is
composed of individual biomass of discrete cells. During reproduction, integer
number of cells is distributed into each Newborn community.

Simulating species spiking when only M’s cost fP mutates. In the simple sce-
nario where only fP of M is modified by mutations, phenotypes of all H cells are the
same. Within an Adult community, all H cells also have identical individual bio-
mass LH, because simulations start with H cells of biomass 1 and because growth is
synchronous. To mimic reproducing a chosen Adult through pipetting an inocu-
lum of a fixed total biomass into each Newborn with a φS-H-spiking strategy, H
and M cells from the chosen Adult are randomly assigned to a Newborn com-
munity, until its total biomass comes closest to BMtarget 1� φS

� �
. If φS > 0, the

number of H cells supplemented to the Newborn community is the nearest integer
to BMtargetφSL

�1
H . Because integer number of cells is assigned to each Newborn, the

total biomass might not be exactly BMtarget but within a small deviation of ~2
biomass units.

To mimic reproducing through pipetting, each M and H cell in an Adult
community is assigned a random integer between 1 and dilution factor nD
(Equation (12)). All cells assigned with the same random integer are then dealt to
the same Newborn, generating nD Newborn communities. If φS > 0, the number of
H cells supplemented into each Newborn is a random number drawn from a
Poisson distribution of a mean of BMtargetφSL

�1
H .

To mimic reproducing through cell sorting, each Newborn receives a biomass of
BMtarget 1� φS

� �
from its parent Adult. Suppose that the fraction of M biomass in

the parent Adult is ϕM(T), then M cells from the parent Adult are randomly
assigned to the Newborn, until the total biomass of M comes closest to
BMtargetϕMðTÞ 1� φS

� �
without exceeding it. H cells with a total biomass of

BMtarget 1� ϕMðTÞ
� �

1� φS

� �
are assigned similarly. If φS > 0, the number of H

cells supplemented to the Newborn community is the nearest integer to
BMtargetφSL

�1
H where LH is the biomass of individual H cell in the parent Adult.

Because each of M and H cells had a length between 1 and 2, the actual biomass of
M and H assigned to a Newborn could vary from the target by up to 2 biomass
units. Consequently, deviations of BM(0) from BMtarget and of ϕM(0) from parent
Adult’s ϕM(T) are only a few percent.

Simulating species spiking when both H and M cells evolve. In the more
complex scenario, both H and M evolve. We thus need to spike with evolved H and
M clones. Additionally, Newborns are spiked with H or M clones from their own
lineage as demonstrated in Supplementary Fig. 11a. Below, we describe the
simulation code for the experimental procedure (Supplementary Fig. 11a) we
simulated.

In all simulations where 6 or 7 phenotypes are modified by mutations, chosen
Adults are reproduced through pipetting in a similar fashion as described above.
After Newborns are reproduced from a chosen Adult in Cycle C− 1, a preset
number of H or M cells are randomly picked from the remaining of this Adult to
form H or M-spiking mix for Cycle C. At the end of Cycle C, we choose 10 Adults
with the highest functions. Assuming that each chosen Adult is reproduced
through pipetting with φS-H-spiking strategy, a Newborn receives on average a
biomass of BMtarget 1� φS

� �
from its parent Adult community and on average a

biomass of BMtargetφS from H spiking mix generated at the end of Cycle C− 1.
Since each chosen Adult usually gives rise to 10 Newborns, the number of cells
distributed from the chosen Adult to each Newborn is drawn from a multinomial
distribution. Specifically, denote the integer random numbers of cells that would be
assigned to 10 Newborns to be {x1, x2,…, x10}. If the chosen Adult has a total

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26647-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6799 | https://doi.org/10.1038/s41467-021-26647-4 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


biomass of BM(T) composed of IM M cells and IH H cells (both IM and IH are
integers), the probability that {x1, x2,…, x10} cells are assigned to 10 Newborns,
respectively, and x11 cells remain, is

Pr fx1; x2; :::; x10; x11g
� � ¼ ðIH þ IMÞ!

x1! � � � x10!x11!
p0

x1þ���þx10 px1111 :

Here, p0 ¼ BMtarget 1� φS

� �
=BMðTÞ is the probability that a cell is assigned to

one of 10 Newborns, p11= 1− 10p0 is the probability that a cell is not assigned to
Newborns. Thus, x11 ¼ IH þ IM �∑10

i¼1 xi is the number of cells remaining after
reproduction, from which H and M cells are randomly picked to generate the
spiking mix for Cycle C+ 1.

Suppose that the current spiking strategy is φS-H, then these 10 Newborns are
spiked with H-spiking mix generated in Cycle C− 1. An average of BMtargetφS of H
biomass is spiked into each Newborn so that the total biomass of Newborns is on
average BMtarget. Suppose that five H cells from the parent Adult’s lineage are
randomly picked at the end of Cycle C− 1, and that they have biomass {LH1, LH2,
LH3, LH4, LH5}, respectively. The total number of H cells assigned to each Newborn,
xH, is then randomly drawn from a Poisson distribution with a mean of
BMtargetφS=LH , where LH ¼ 1

5∑
5
j¼1 LHj is the average biomass of the five H cells.

Each spiked H cell has an equal chance of being one of the five cells.

Updating spiking percentage based on heritability checks. When the com-
munity function landscape is unknown, we can estimate heritability of community
function under different spiking percentages through parent–offspring regression.
In most simulations (e.g., Fig. 7), heritability evaluation is carried out about every
100 cycles (“periodic heritability check”). In the simulations demonstrated in
Supplementary Fig. 17, the average improvement rate in community function is
estimated from the chosen Adults over the last 50 cycles. Heritability evaluation is
carried out when this average improvement rate becomes negative (“adaptive
heritability check”). For both periodic and adaptive checks, heritability evaluation
can be postponed until within-community selection improves cell growth suffi-
ciently to provide sufficient biomass for heritability check.

During one round of heritability evaluation, heritability of community function
is estimated through parent–offspring community function regression under all
candidate spiking strategies (Supplementary Fig. 11b). The current spiking strategy
is updated if an alternative spiking strategy confers significantly higher
community function heritability.

To evaluate heritability under one spiking strategy, up to 100 Newborn
communities are generated under this spiking strategy. After these mature into
Adults, their functions are the parent functions. Each Adult parent then gives rise
to six Newborn offspring under the same spiking strategy. When the six Newborn
offspring mature into Adults, the median of their functions is the average offspring
function. When offspring functions are plotted against their parent functions, the
slope of the least-squares linear regression (green dashed line in Supplementary
Fig. 11b) quantifies the heritability of community function. Heritability of a
community function is thus similar to heritability of an individual trait, except that
we use median instead of mean of offspring functions, because median is less
sensitive to outliers. The 95% confidence interval of heritability is then estimated by
nonparametric bootstrap58,59. More specifically, first, 100 pairs of parent–offspring
community functions are resampled with replacement. Second, heritability is
calculated with the resampled data. Third, 1000 heritabilities are calculated from
1000 independent resamplings, from which the 95% confidence interval is
estimated from the 5th and 95th percentile.

An alternative spiking strategy is considered significantly more advantageous
than the current spiking strategy if heritability of the alternative spiking strategy is
higher than the right endpoint of the 95% confidence interval of the heritability of
the current spiking strategy. If more than one alternative spiking strategies are more
advantageous, the one with the highest heritability is implemented to replace the
current strategy. Similarly, an alternative spiking strategy is considered more
disadvantageous if heritability of the alternative spiking strategy is lower than the
left endpoint of the 95% confidence interval of the heritability of the current spiking
strategy. When implementing random spiking strategy, the current spiking strategy
is updated with a strategy randomly picked from candidate spiking strategies.

Simulating community selection with large population size. When the popu-
lation size of each community is scaled up by 10 or 100 times (Supplementary
Figs. 2 and 18b), the simulation codes described above become inefficient. Instead
of tracking the biomass and phenotype of each cell in a large population, we divide
the cells into categories and track the number of cells from different categories,
where a category is defined by a unique combination of cell biomass and phenotype
ranges. In our simulations, the biomass of each cell ranges between 1 and 2, fP of
each M cell ranges between 0 and 1. Since H cells do not mutate, H cells are divided
into 100 categories. H cells that belong to category i have a biomass between
[1+ (i− 1) × ΔL, 1+ i × ΔL] where ΔL= 10−2. Since only fP of M cells are
modified by mutations, M cells are divided into 100 × 105 categories. M cells that
belong to category (i, j) have a biomass between [1+ (i− 1) × ΔL, 1+ i × ΔL] and
fP between [(j− 1) × ΔfP, j × ΔfP] where ΔfP= 10−5. Every time fP of a M cell is
modified by mutations, this cell jumps from the current category to a new category
determined by its new fP value.

Similar to simulations with small population sizes, each selection cycle starts
with ntot= 100 Newborn communities. Maturation time T is divided into time
steps of length Δτ= 0.05. Over each time step, the growth in cell biomass and the
changes in metabolites are simulated in a similar fashion as described above. At the
end of each time step, the number of cells to die or to mutate in each category is
drawn from a bionomial distribution. If fP of a M cell is modified by mutation, the
mutation effect is drawn from the same distribution as described above: 12 of
mutations reduce fP to 0 and the other 1

2 is randomly drawn from the distribution in
Equation (11).

At the end of a maturation cycle, top 10 Adults with the highest functions are
chosen. Each then reproduces 10 Newborns via pipetting for the next cycle. The
fold of dilution is similarly adjusted, so that the average of Newborn total biomass
is BMtarget over all selection cycles. From each category of a chosen Adult, the
number of cells assigned to a Newborn community is randomly drawn from a
multinomial distribution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in https://github.com/
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