UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Principles governing control of aggregation and dispersion of aqueous graphene oxide

Suter, JL; Coveney, PV; (2021) Principles governing control of aggregation and dispersion of aqueous graphene oxide. Scientific Reports , 11 (1) , Article 22460. 10.1038/s41598-021-01626-3. Green open access

[thumbnail of s41598-021-01626-3.pdf]
Preview
Text
s41598-021-01626-3.pdf - Published Version

Download (3MB) | Preview

Abstract

Controlling the structure of graphene oxide (GO) phases and their smaller analogues, graphene (oxide) quantum dots (GOQDs), is vitally important for any of their widespread intended applications: highly ordered arrangements of nanoparticles for thin-film or membrane applications of GO, dispersed nanoparticles for composite materials and three-dimensional porous arrangements for hydrogels. In aqueous environments, it is not only the chemical composition of the GO flakes that determines their morphologies; external factors such as pH and the coexisting cations also influence the structures formed. By using accurate models of GO that capture the heterogeneity of surface oxidation and very large-scale coarse-grained molecular dynamics that can simulate the behaviour of GO at realistic sizes of GOQDs, the driving forces that lead to the various morphologies in aqueous solution are resolved. We find the morphologies are determined by a complex interplay between electrostatic, [Formula: see text]-[Formula: see text] and hydrogen bonding interactions. Assembled morphologies can be controlled by changing the degree of oxidation and the pH. In acidic aqueous solution, the GO flakes vary from fully aggregated over graphitic domains to partial aggregation via hydrogen bonding between hydroxylated domains, leading to the formation of planar extended flakes at high oxidation ratios and stacks at low oxidation ratios. At high pH, where the edge carboxylic acid groups are deprotonated, electrostatic repulsion leads to more dispersion, but a variety of aggregation behaviour is surprisingly still observed: over graphitic regions, via hydrogen bonding and "face-edge" interactions. Calcium ions cause additional aggregation, with a greater number of "face-face" and "edge-edge" aggregation mechanisms, leading to irregular aggregated structures. "Face-face" aggregation mechanisms are enhanced by the GO flakes possessing distinct domains of hydroxylated and graphitic regions, with [Formula: see text]-[Formula: see text] and hydrogen bonding interactions prevalent between these regions on aggregated flakes respectively. These findings furnish explanations for the aggregation characteristics of GO and GOQDs, and provide computational methods to design directed synthesis routes for self-assembled and associated applications.

Type: Article
Title: Principles governing control of aggregation and dispersion of aqueous graphene oxide
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41598-021-01626-3
Publisher version: https://doi.org/10.1038/s41598-021-01626-3
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery.ucl.ac.uk/id/eprint/10139378
Downloads since deposit
35Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item