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Abstract

Hormone receptor negative breast cancers are highly aggressive, and are thought to originate from
a subtype of epithelial cells called the luminal progenitor. In this paper, we show how to quantify the
number of luminal progenitor cells as well as other epithelial subtypes in breast tissue samples using
DNA and RNA based measurements. We find elevated levels of these hormone receptor negative
luminal progenitor cells in breast tumour biopsies of hormone receptor negative cancers, as well as
in healthy breast tissue samples from BRCA1 (FANCS) mutation carriers. We also find that breast
tumours from carriers of heterozygous mutations in non-BRCA Fanconi Anaemia pathway genes are
much more likely to be hormone receptor negative. These findings have implications for understanding
hormone receptor negative breast cancers, and for breast cancer screening in carriers of heterozygous
mutations of Fanconi Anaemia pathway genes.
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Introduction

Figure 1: DNA methylation.∗

Despite advances in diagnosis and treatment
in the last several decades, breast cancer re-
mains responsible for more than 5000 deaths per
year in the U.K. [1]. Triple-negative breast can-
cer (TNBC) is a particularly aggressive subtype
of breast cancer, with poor prognosis and few
treatment options [2]. The triple-negative breast
cancer subtype has this name because it lacks
receptors for the hormones estrogen and pro-
gesterone, as well as the growth-factor HER2.
Hence, quantifying hormone receptor negative
cells in breast tissue that is at risk of developing
cancer is likely to provide important prognostic in-
formation.

The cell of origin for TNBC is thought to be
a hormone receptor negative epithelial cell called
the ‘luminal progenitor’ cell [3]. Luminal progenitor cells are one of three main cell subtypes of the
breast epithelium, along with hormone receptor positive luminal mature cells, and basal epithelial cells:
these cells are arranged in luminal and basal layers in the bi-layered epithelium of the breast. Luminal
progenitor cells, basal cells, and luminal mature cells are all thought to originate from mammary stem
cells, which also reside in the basal layer [4].

DNA methylation (DNAme, Fig.1) is an epigenetic mark that is applied to the DNA at specific cytosine
bases, and DNA methylation patterns enable different tissues and cell types to be distinguished from
one another [5, 6]. Because DNAme marks are chemical modifications of specific DNA cytosine bases,

∗Illustration by Christoph Bock, Max Planck Institute for Informatics.
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their average levels over a tissue or cell type fluctuate much more slowly than levels of transient mRNA
transcripts do. The relative stability, and the tissue and cell type specificity of DNAme marks, along
with the observation that variation in mRNA levels may account for less than half of the variation in
protein levels [7, 8], means that DNAme data are a promising alternative to gene-expression or RNA-
seq data for identifying cell type mixing proportions in bulk-tissue data. DNAme patterns also have a
lot of potential as prognostic biomarkers for various cancers, as changes in DNAme levels in a tissue
precede formation of cancer at the same site [9]. DNA methylation patterns have been shown to have
prognostic power in TNBC [10] as well as other womens’ cancers [11, 12]. DNA methylation in bulk-
tissue samples is typically analysed in terms of the DNA methylation rate β at each DNA cytosine base.
Hence, the methylation rate β represents the fraction of DNA strands in the bulk sample (from several
hundred thousand cells) which carry the methylation mark at a specific cytosine locus.

The basic form of the cell type deconvolution model is

X = AW + ε, (1)

where X ∈ Rp×n are the observations on p genomic features in n bulk-tissue (i.e., mixed cell type)
samples, A ∈ Rp×k are the genomic profiles over the p features in k cell types, and W ∈ [0, 1]k×n are
the mixing weights representing the k cell or tissue-type proportions in the n samples. The main object
of inference is W, and various methods exist to estimate W in gene-expression (microarray or RNA-
seq) data [13, 14, 15, 16] as well as DNAme data [17, 6]. In practice, W is estimated by considering a
reduced set of p′ features (p′ < p), defined by A ∈ Rp′×k .

A key component of any cell type deconvolution algorithm is the identification of the reference ge-
nomic profiles A ∈ Rp′×k for the k main constituent cell types in the mixture. This reference matrix
A can be thought of as representing a p′-dimensional space in which the cell types of interest can be
distinguished well from one-another. In practice, A may be determined as part of a unified procedure
for fitting the model of Eq.1 [18, 17], or A may be estimated a-priori from external reference data-sets
[6, 19, 13, 15, 16]. In this paper we focus on inference of W using a-priori estimates of A. To estimate
A ∈ Rp′×k , a standard approach is to select p′ features which act as ‘markers’ for the k cell types of
interest based on a reference data-set, and then take Ail as the mean of the observed values in the
reference data-set for cell type l ∈ {1, ..., k} in feature (e.g., gene, or cytosine locus) i ∈ {1, ..., p′}.
These p′ features are typically identified by differential expression analysis for each cell type individually
(in comparison with all the other cell types pooled) [20].

In this work, we show how to estimate the concentrations of the breast epithelial cell subtypes luminal
progenitor, luminal mature and basal. We do this using both DNA methylation and RNA-seq (i.e., gene-
expression) data. We show the robustness of the DNAme-based classifier, and evaluate it against
several RNA-based methods. We then show that the DNAme-based breast epithelial subtype classifier
reproduces expected proportions of the epithelial subtypes in biopsies of hormone receptor positive and
negative tumours. Using the DNAme-based breast epithelial subtype classifier, we explain important
differences in inter-individual tumour heterogeneity in terms of variations in luminal progenitor cells that
are associated with carriers of heterozygous mutations in non-BRCA Fanconi Anaemia pathway genes.

Results
In this section, we first present the results of a simulation study; we then compare inferences of

cell type proportions based on data from DNA and RNA; finally, we present our findings when applying
these methods to data from breast tumour biopsies and healthy breast tissue samples.
Simulation study

For the DNAme reference profiles for the breast epithelial subtypes luminal progenitor, luminal ma-
ture, and basal, we used previously-published DNAme data from bisulphite-sequencing experiments
[21], leading to reference matrix A ∈ [0, 1]58×3 (where Ail ∈ [0, 1] rather than Ail ∈ R because we also
have methylation rate β ∈ [0, 1], for further details see Methods). To estimate W (the relative propor-
tions of the breast epithelial subtypes), we used a hierarchical procedure, first estimating the relative
proportions of the general cell types epithelial, adipose, stromal, and immune [6], before estimating the
proportions of the breast epithelial subtypes. To test how robust the procedure is for estimating con-
centrations of luminal progenitor, luminal mature and basal epithelial subtypes from DNAme data, we
generated simulated data based on Eq.1, together with this pre-defined breast epithelial subtype refer-
ence matrix A, with n = 100 simulated bulk-tissue samples, as follows. After generating W̃lj ∼ U(0, 1)
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independently for l ∈ {1, 3}, and j ∈ {1, 100}, and using this to calculate the simulated X̃ = AW̃,
we then replaced some randomly-chosen instances of these simulated data values X̃ij (where i and j

are independently sampled) with random noise X̃ij ∼ U(0, 1). We repeated this procedure b = 1000
times. Figure 2 shows the results of these robustness tests. We find that with up to 40% of data-values
replaced with noise, the results remain very good.
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Figure 2: Model robustness. A data-set with n = 100 bulk-tissue samples was simulated, and data-
points were removed and replaced at random with noise; this was repeated b = 1000 times. (a) Mean
square error (MSE) comparing predicted proportions of epithelial subtypes with the ground-truth, as an
increasing number of data-points are removed. (b) Percentage of mixing proportions l ∈ {1, k}, Wlj ,
j ∈ {1, n}, which cannot be estimated, as an increasing number of data-points are removed.

Comparison of RNA and DNA based inference
For RNA-seq reference profiles for the breast epithelial subtypes luminal progenitor, luminal mature,

and basal, we used publicly-available single-cell RNA-seq data for n = 13909 breast epithelial cells [4].
We identified which cells corresponded to each breast epithelial subtype, by fitting a Gaussian mixture
model (GMM) in the Eigenspace of the graph-Laplacian [22], a procedure we refer to as GMM-LE
clustering. Fig.3 shows UMAP (uniform manifold approximation and projection) [23] representations of
the data-matrix in two dimensions, illustrating clusters detected by GMM-LE, and average expression
levels of independent marker genes for the breast epithelial subtypes luminal progenitor, luminal mature,
and basal.

We compared the tissue proportions of the breast epithelial subtypes luminal progenitor, luminal
mature and basal, inferred from DNAme with those inferred from RNA-seq data according to a range of
existing methods, based on matched data from n = 175 low-stage (I-II) breast tumour biopsies down-
loaded from TCGA (The Cancer Genome Atlas). Table 1 shows correlation coefficients, comparing
inferred proportions of the breast epithelial cell subtypes estimated from DNAme data, with those es-
timated from RNA-seq data according to the URSM [13], Bisque [15], MuSiC [14] and Cibersortx [16]
methods. We note that URSM (Unified RNA-Sequencing Model) is the only method achieving correla-
tion close to 0.4 (or greater) when comparing RNA-inferred proportions with DNA-inferred proportions
across all cell types (including basal). Noting again that the correlation of mRNA levels with levels of
their corresponding proteins is often around 0.4 [7, 8], i.e., when comparing expression levels quantified
by different genomic data modalities, we infer that the URSM method for RNA-seq data, as well as the
DNAme method, are effective and robust for inferring concentrations of breast epithelial subtypes.

Method Luminal progenitor Luminal mature Basal
URSM [13] 0.46 (0.33-0.57) 0.71 (0.62-0.77) 0.39 (0.26-0.51)
Bisque [15] 0.45 (0.32-0.56) 0.59 (0.48-0.68) 0.25 (0.1-0.38)
MuSiC [14] 0.57 (0.47-0.67) 0.56 (0.45-0.65) 0.24 (0.1-0.38)

Cibersortx [16] 0.41 (0.27-0.52) 0.24 (0.09-0.37) 0.14 (-0.01-0.28)

Table 1: Correlation coefficients (with 95% C.I.s), comparing DNAme-estimated proportions of breast
epithelial cell subtypes with RNA-seq estimated proportions, according to various methods, in n = 175
low-stage breast tumour samples.
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Figure 3: UMAP projections of single-cell RNA-seq data from n = 13909 breast epithelial cells, with (a)
inferred GMM-LE clusters, and (b)-(d) colour-intensities of independent and pre-defined sets of marker
genes for luminal progenitor, luminal mature, and basal cells (respectively).

Application to breast cancer biopsies and controls
Luminal progenitor cells are thought to be the cell-of-origin for triple-negative breast cancer (TNBC),

which fits well with the model of luminal progenitor cells being similarly hormone receptor negative (HR-)
[3]. To test whether the proportions of the breast epithelial subtypes luminal progenitor, luminal mature,
and basal (as inferred from DNAme data) are in line with this biological model, we applied the DNAme
breast epithelial cell type deconvolution method to DNAme data from TCGA (The Cancer Genome
Atlas). Fig.4a shows the concentrations of the breast epithelial subtypes estimated from DNAme data
in hormone receptor positive and negative cancers (as classified by expression levels of ESR1, PGR
and ERBB2/HER2 in matched gene expression microarray data). As well as elevated levels of luminal
progenitors in HR- (hormone receptor negative) breast cancer, Fig.4a also shows elevated level of
luminal mature cells (which are HR+) in HR+ breast tumours, also in line with this biological model.
To further test whether the proportions of the breast epithelial subtypes inferred from DNAme data are
in line with established biological theory, we analysed a publicly-available data-set from GEO (Gene
Expression Omnibus). It is well known that the breast epithelial tissue of heterozygous carriers of
BRCA1 mutations contains higher levels of luminal progenitors than would be expected in the general
population [24], and this is confirmed in Fig.4b. BRCA1 (FANCS) mutation carriers who unfortunately
go on develop breast cancer mostly develop tumours which are HR- [24], presumably due to inefficient
DNA damage repair, which is also in line with this model.

The BRCA1 (FANCS) mutation is the best known example of a mutation in the Fanconi Anaemia
(FA) / DNA damage repair pathway. Next, we investigated whether similar observations could be made
in non-BRCA FA-pathway genes (non-BRCA FANC genes). We used DNAme data from n = 257 tu-
mour samples from TCGA with matched clinical data to test how heterozygous carriers of mutations
in non-BRCA FANC genes affect the proportions of the breast epithelial subtypes luminal progenitor,
luminal mature, and basal cells in tumours that unfortunately arise in this population. To do this, we
used multivariate linear models to explain the variation in the concentrations of luminal progenitor, lu-
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Figure 4: (a) Inferred proportions of luminal progenitor, basal, and mature luminal cells, in hormone
receptor positive / negative cancers. (b) Inferred proportions of luminal progenitor, basal, and mature
luminal cells, in BRCA1 (FANCS) mutation carriers.

minal mature, and basal cells in tumour biopsies in terms of non-BRCA FANC gene mutation status, as
well as the clinical covariates age and disease stage. We observed that carriers of non-BRCA FANC
genes have significantly elevated levels of luminal progenitors and basal cells (Fig.5a-b, significance
indicated by C.I. bars), but significantly decreased levels of mature luminal cells, as well as of epithelial
cells overall (Fig.5c-d, epithelial proportions calculated as the sum of the proportions of the individual
epithelial subtypes). This again fits with the biological model of inefficient DNA damage repair in het-
erozygous carriers of mutations in FA pathway genes, with this manifesting as elevated levels of cells
with replicative potential in the epithelial tissue (i.e., luminal progenitors and basal cells). Presumably
this pool of cells with replicative potential is prone to expand more quickly in this population who may
have inefficient DNA damage repair mechanisms due to heterozygous mutations in FA pathway genes.
This may be compounded by somatic mutations that arise by chance in the other allele of the gene
with the FA pathway mutation. This would be expected to correspond to an increase in prevalence of
HR- tumours relative to HR+ tumours in FA-gene mutation carriers, as previously reported [25], and
this is confirmed in Fig.5e-f. The 10 HR- tumour biopsies from carriers of heterozygous mutations in
non-BRCA FA genes represented in Fig.5e correspond to 2 carriers with SNPs in each of FANCD2,
FANCF, FANCG, FANCI, and FANCM (one carrier had SNPs in both FANCG and FANCI), as well as
one carrier with a SNP in FANCB. Several of these genes have already been associated with breast
cancer susceptibility; particularly, FANCD2 [26], FANCG [27, 28], and FANCM [28].

Discussion
We have presented methods to infer proportions of the breast epithelial cell subtypes luminal progen-

itor, luminal mature, and basal, using DNA and RNA-based methods. We have compared the results
using several existing algorithms for estimating the matrix of mixing proportions W ∈ [0, 1]k×n, for k
cell types in n bulk-tissue samples. In particular, we found good agreement (as assessed by Pearson
correlation) between the DNAme (DNA methylation) based inference method and the RNA-seq based
inference method called URSM [13], that are in line with the previously-reported level of agreement
between expression levels of a gene quantified by different genomic data modalities.

Our results when applying these methods to tumour biopsies and healthy breast tissue samples
agree well with established biological models of the cell-of-origin for hormone receptor negative breast
cancers [3]. Specifically, we found significantly elevated levels of luminal progenitors (which are hor-
mone receptor negative) in biopsies of triple-negative (i.e., hormone receptor negative) breast cancers.
Furthermore, we found significantly elevated levels of luminal progenitors in the healthy breast epithelial
tissue of heterozygous carriers of BRCA1 (FANCS) mutations, as previously reported [24].

Investigating whether these findings extend to non-BRCA FA-pathway genes (non-BRCA FANC
genes), we found that the concentration of luminal progenitors in a tissue sample was significantly
predicted by the presence of a heterozygous non-BRCA FANC mutation, in a model that adjusts for
the important clinical covariates disease stage and patient age. This is in line with observations based
on the same data-set, that incidence of hormone receptor negative tumours make up a significantly
much greater proportion of the total number of tumours in heterozygous carriers of non-BRCA FANC
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Figure 5: Linear modelling (bars show 95% C.I.) of (a) luminal progenitor, (b) mature luminal, (c) basal,
and (d) overall epithelial cell proportions, predicted by FA-gene (non-BRCA, FANC suffix) mutation
carrier status, with disease stage and volunteer age as covariates, in n = 257 tumour biopsies. (e)
Biopsies of FA-gene mutation carriers are mostly hormone receptor (HR) triple-negative, whereas those
of (f) FA-gene wild-type are mostly HR-positive.

mutations (50% compared to 9%). This finding has implications for cancer screening in this population
of heterozygous carriers of non-BRCA FANC mutations [29], given the relative much worse prognosis
of hormone receptor negative breast tumours compared to breast cancers overall, and may also be
relevant to screening for other epithelial cancers in this population.

Methods
Bulk-tissue DNAme microarray data were downloaded from TCGA (https://www.cancer.gov/about-nci/

organization/ccg/research/structural-genomics/tcga) and GEO (https://www.ncbi.nlm.nih.
gov/geo/) and pre-processed as follows. Data were background-corrected, probes were removed with
< 95% coverage across samples, and any remaining probes with detection p > 0.05 were replaced by
k-NN imputation, with k = 5. Cell type specific bisulphite-sequenced DNAme data for the breast ep-
ithelial subtypes luminal progenitor, luminal mature, and basal were downloaded from EGA (European
Genome-phenome Archive), https://ega-archive.org) and pre-processed as follows. Sequencer
reads were aligned and counted using Bismark [30] with default settings. We subsequently retained
only reads mapping to DNA cytosine loci that are also measured in the DNAme microarray data, and
which had a total number of mapped reads (methylated+unmethylated) of at least 20 (leading to a gran-
ularity of methylation rate of at least 0.05). In this breast epithelial cell type specific data-set, only one
reference profile is available for each epithelial subtype. So to select p′ features (i.e., DNA cytosine loci)
of interest, we selected features according to the following criteria: (1) Low variance of methylation rate
β across cell types of non-epithelial lineages (specifically, Vβ < 0.001, where V is the variance opera-
tor). (2) A difference in mean methylation rate β of at least 0.5 between the epithelial subtype of interest
and non-epithelial lineages. (3) The greatest difference in mean methylation rate β between the breast
epithelial subtypes. This results in a reference matrix A ∈ [0, 1]58×3. To estimate the concentrations
of the breast epithelial subtypes in the presence of stromal and adipose cells, we use a hierarchical
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procedure, first estimating the relative proportions of the general cell types epithelial, adipose, stromal,
and immune [6], before estimating the proportions of the breast epithelial subtypes.

Single-cell RNA-seq data for breast epithelial cells were downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/), and libraries with at least 250 reads and transcripts expressed in at least
1000 cells were analysed further. These data were used to define the RNA-seq reference profiles for
the breast epithelial subtypes. To estimate the concentrations of these epithelial subtypes in the pres-
ence of stromal and adipose cells, we augmented this single-cell breast epithelial data-set with synthetic
data based on bulk RNA-seq libraries from purified breast stromal [21] cells and from adipose tissue
samples from ENCODE (Encyclopedia of DNA Elements, https://www.encodeproject.org). We car-
ried out this augmentation by randomly sampling a single cell library from the breast epithlelial data-set,
then replacing the values of the chosen adipose or stromal bulk library with those of the equivalent
quantiles of the sampled breast epithelial single cell library, as follows. Define X̃·j = F̂−1b

[
F̂ref (x

ref )
]
,

where x ref ∈ Rp is the vector of (adipose or stromal) reference values across all p genes, F̂ref is the
empirical CDF of x ref , F̂b, b ∈ {1, ...,B} is the equivalent empirical CDF of a randomly selected ep-
ithelial cell, and X̃ ∈ Rp×B is the data-matrix of sampled, normalised values for the adipose or stromal
reference to use in the subsequent cell type deconvolution procedure. We then identified the reference
matrix A ∈ Rp′×k by identifying the top 100 most significantly upregulated genes for each cell type
l ∈ {1, ..., k}, when compared to all other cell types. We used the edgeR package in R to test genes for
differential expression.
Availability of data and materials

The DNA methylation breast epithelial cell subtype deconvolution tool is made available as an R
package from https://github.com/tombartlett/BreastEpithelialSubtypes

DNA methylation microarray data for breast cancer and controls were downloaded from TCGA and
from GEO under accession number GSE69914. Matched gene-expression microarray data for breast
cancer and controls were downloaded from TCGA.

Bisulphite-sequenced DNAme data for the purified breast epithelial cell subtypes luminal progenitor,
luminal mature, and basal, were downloaded from the European Genome-Phenome Archive (EGA)
under accession number EGAS00001000552

Single-cell RNA-seq data for the breast epithelial cell subtypes luminal progenitor, luminal mature,
and basal, were downloaded from the Gene Expression Omnibus (GEO) under accession number
GSE113197

Bulk RNA-seq data for breast stromal cells were downloaded from the European Genome-Phenome
Archive (EGA) under accession number EGAS00001000552. Bulk RNA-seq data from the adipose
tissue samples ENCFF072HRK, ENCFF654JLY, ENCFF732LRY and ENCFF924FNY were downloaded
from ENCODE.
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